* Makefile.in (SUBDIR_TUI_OBS): Add tui-out.o, tui-hooks.o.
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
b6ba6518
KB
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
d9fcf2fb 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
39424bef 24#include "gdb_assert.h"
c906108c
SS
25#include <ctype.h>
26#include "gdb_string.h"
c2c6d25f 27#include "event-top.h"
c906108c
SS
28
29#ifdef HAVE_CURSES_H
30#include <curses.h>
31#endif
32#ifdef HAVE_TERM_H
33#include <term.h>
34#endif
35
9d271fd8
AC
36#ifdef __GO32__
37#include <pc.h>
38#endif
39
c906108c
SS
40/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41#ifdef reg
42#undef reg
43#endif
44
042be3a9 45#include <signal.h>
c906108c
SS
46#include "gdbcmd.h"
47#include "serial.h"
48#include "bfd.h"
49#include "target.h"
50#include "demangle.h"
51#include "expression.h"
52#include "language.h"
53#include "annotate.h"
54
ac2e2ef7
AC
55#include "inferior.h" /* for signed_pointer_to_address */
56
c906108c
SS
57#include <readline/readline.h>
58
81b8eb80 59#ifndef MALLOC_INCOMPATIBLE
3c37485b
AC
60#ifdef NEED_DECLARATION_MALLOC
61extern PTR malloc ();
62#endif
0e52036f
AC
63#ifdef NEED_DECLARATION_REALLOC
64extern PTR realloc ();
65#endif
81b8eb80
AC
66#ifdef NEED_DECLARATION_FREE
67extern void free ();
68#endif
69#endif
70
917317f4
JM
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
c906108c
SS
74/* readline defines this. */
75#undef savestring
76
507f3c78 77void (*error_begin_hook) (void);
c906108c 78
2acceee2
JM
79/* Holds the last error message issued by gdb */
80
d9fcf2fb 81static struct ui_file *gdb_lasterr;
2acceee2 82
c906108c
SS
83/* Prototypes for local functions */
84
d9fcf2fb
JM
85static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
c906108c 87
d9fcf2fb 88static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
89
90#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
a14ed312 91static void malloc_botch (void);
c906108c
SS
92#endif
93
a14ed312 94static void prompt_for_continue (void);
c906108c 95
a14ed312 96static void set_width_command (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_width (void);
c906108c 99
c906108c
SS
100/* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
c5aa993b
JM
103static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
107/* cleaned up on each error from within an execution command */
108static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
109
110/* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114struct continuation *cmd_continuation;
c2d11a7d 115struct continuation *intermediate_continuation;
c906108c
SS
116
117/* Nonzero if we have job control. */
118
119int job_control;
120
121/* Nonzero means a quit has been requested. */
122
123int quit_flag;
124
125/* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136int immediate_quit;
137
138/* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141int demangle = 1;
142
143/* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147int asm_demangle = 0;
148
149/* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153int sevenbit_strings = 0;
154
155/* String to be printed before error messages, if any. */
156
157char *error_pre_print;
158
159/* String to be printed before quit messages, if any. */
160
161char *quit_pre_print;
162
163/* String to be printed before warning messages, if any. */
164
165char *warning_pre_print = "\nwarning: ";
166
167int pagination_enabled = 1;
c906108c 168\f
c5aa993b 169
c906108c
SS
170/* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175struct cleanup *
e4005526 176make_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 177{
c5aa993b 178 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
179}
180
181struct cleanup *
e4005526 182make_final_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 183{
c5aa993b 184 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 185}
7a292a7a 186
c906108c 187struct cleanup *
e4005526 188make_run_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 189{
c5aa993b 190 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 191}
7a292a7a 192
43ff13b4 193struct cleanup *
e4005526 194make_exec_cleanup (make_cleanup_ftype *function, void *arg)
43ff13b4 195{
c5aa993b 196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
197}
198
6426a772 199struct cleanup *
e4005526 200make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
6426a772
JM
201{
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203}
204
7a292a7a 205static void
fba45db2 206do_freeargv (void *arg)
7a292a7a 207{
c5aa993b 208 freeargv ((char **) arg);
7a292a7a
SS
209}
210
211struct cleanup *
fba45db2 212make_cleanup_freeargv (char **arg)
7a292a7a
SS
213{
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215}
216
5c65bbb6
AC
217static void
218do_bfd_close_cleanup (void *arg)
219{
220 bfd_close (arg);
221}
222
223struct cleanup *
224make_cleanup_bfd_close (bfd *abfd)
225{
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227}
228
f5ff8c83
AC
229static void
230do_close_cleanup (void *arg)
231{
f042532c
AC
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
f5ff8c83
AC
235}
236
237struct cleanup *
238make_cleanup_close (int fd)
239{
f042532c
AC
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
f5ff8c83
AC
243}
244
11cf8741 245static void
d9fcf2fb 246do_ui_file_delete (void *arg)
11cf8741 247{
d9fcf2fb 248 ui_file_delete (arg);
11cf8741
JM
249}
250
251struct cleanup *
d9fcf2fb 252make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 253{
d9fcf2fb 254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
255}
256
c906108c 257struct cleanup *
e4005526
AC
258make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
c906108c
SS
260{
261 register struct cleanup *new
c5aa993b 262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271}
272
273/* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276void
fba45db2 277do_cleanups (register struct cleanup *old_chain)
c906108c 278{
c5aa993b 279 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
280}
281
282void
fba45db2 283do_final_cleanups (register struct cleanup *old_chain)
c906108c 284{
c5aa993b 285 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
286}
287
288void
fba45db2 289do_run_cleanups (register struct cleanup *old_chain)
c906108c 290{
c5aa993b 291 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
292}
293
43ff13b4 294void
fba45db2 295do_exec_cleanups (register struct cleanup *old_chain)
43ff13b4 296{
c5aa993b 297 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
298}
299
6426a772 300void
fba45db2 301do_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
302{
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304}
305
c906108c 306void
fba45db2
KB
307do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
c906108c
SS
309{
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
b8c9b27d 315 xfree (ptr);
c906108c
SS
316 }
317}
318
319/* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322void
fba45db2 323discard_cleanups (register struct cleanup *old_chain)
c906108c 324{
c5aa993b 325 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
326}
327
328void
fba45db2 329discard_final_cleanups (register struct cleanup *old_chain)
c906108c 330{
c5aa993b 331 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
332}
333
6426a772 334void
fba45db2 335discard_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
336{
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338}
339
c906108c 340void
fba45db2
KB
341discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
c906108c
SS
343{
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
b8c9b27d 348 xfree (ptr);
c906108c
SS
349 }
350}
351
352/* Set the cleanup_chain to 0, and return the old cleanup chain. */
353struct cleanup *
fba45db2 354save_cleanups (void)
c906108c 355{
c5aa993b 356 return save_my_cleanups (&cleanup_chain);
c906108c
SS
357}
358
359struct cleanup *
fba45db2 360save_final_cleanups (void)
c906108c 361{
c5aa993b 362 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
363}
364
365struct cleanup *
fba45db2 366save_my_cleanups (struct cleanup **pmy_chain)
c906108c
SS
367{
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372}
373
374/* Restore the cleanup chain from a previously saved chain. */
375void
fba45db2 376restore_cleanups (struct cleanup *chain)
c906108c 377{
c5aa993b 378 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
379}
380
381void
fba45db2 382restore_final_cleanups (struct cleanup *chain)
c906108c 383{
c5aa993b 384 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
385}
386
387void
fba45db2 388restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
c906108c
SS
389{
390 *pmy_chain = chain;
391}
392
393/* This function is useful for cleanups.
394 Do
395
c5aa993b
JM
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
398
399 to arrange to free the object thus allocated. */
400
401void
2f9429ae 402free_current_contents (void *ptr)
c906108c 403{
2f9429ae 404 void **location = ptr;
e2f9c474 405 if (location == NULL)
8e65ff28
AC
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
2f9429ae 408 if (*location != NULL)
e2f9c474 409 {
b8c9b27d 410 xfree (*location);
e2f9c474
AC
411 *location = NULL;
412 }
c906108c
SS
413}
414
415/* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422/* ARGSUSED */
423void
e4005526 424null_cleanup (void *arg)
c906108c
SS
425{
426}
427
74f832da 428/* Add a continuation to the continuation list, the global list
c2d11a7d 429 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4 430void
74f832da
KB
431add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
43ff13b4 433{
c5aa993b 434 struct continuation *continuation_ptr;
43ff13b4 435
c5aa993b
JM
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
43ff13b4
JM
441}
442
443/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
c5aa993b 451void
fba45db2 452do_all_continuations (void)
c2d11a7d
JM
453{
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
b8c9b27d 470 xfree (saved_continuation);
c2d11a7d
JM
471 }
472}
473
474/* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476void
fba45db2 477discard_all_continuations (void)
43ff13b4 478{
c5aa993b 479 struct continuation *continuation_ptr;
43ff13b4 480
c5aa993b
JM
481 while (cmd_continuation)
482 {
c5aa993b
JM
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
b8c9b27d 485 xfree (continuation_ptr);
c5aa993b 486 }
43ff13b4 487}
c2c6d25f 488
57e687d9 489/* Add a continuation to the continuation list, the global list
c2d11a7d
JM
490 intermediate_continuation. The new continuation will be added at the front.*/
491void
74f832da
KB
492add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
c2d11a7d
JM
495{
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503}
504
505/* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513void
fba45db2 514do_all_intermediate_continuations (void)
c2d11a7d
JM
515{
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
b8c9b27d 532 xfree (saved_continuation);
c2d11a7d
JM
533 }
534}
535
c2c6d25f
JM
536/* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538void
fba45db2 539discard_all_intermediate_continuations (void)
c2c6d25f
JM
540{
541 struct continuation *continuation_ptr;
542
c2d11a7d 543 while (intermediate_continuation)
c2c6d25f 544 {
c2d11a7d
JM
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
b8c9b27d 547 xfree (continuation_ptr);
c2c6d25f
JM
548 }
549}
550
c906108c 551\f
c5aa993b 552
c906108c
SS
553/* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562void
fba45db2 563warning_begin (void)
c906108c
SS
564{
565 target_terminal_ours ();
c5aa993b 566 wrap_here (""); /* Force out any buffered output */
c906108c
SS
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570}
571
572/* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
c906108c 578void
c5aa993b 579warning (const char *string,...)
c906108c
SS
580{
581 va_list args;
c906108c 582 va_start (args, string);
c906108c
SS
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
c5aa993b
JM
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
c906108c
SS
592}
593
594/* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601void
fba45db2 602error_begin (void)
c906108c
SS
603{
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
c5aa993b 608 wrap_here (""); /* Force out any buffered output */
c906108c
SS
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615}
616
617/* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
4ce44c66
JM
621NORETURN void
622verror (const char *string, va_list args)
623{
c2d11a7d
JM
624 char *err_string;
625 struct cleanup *err_string_cleanup;
4ce44c66 626 /* FIXME: cagney/1999-11-10: All error calls should come here.
e26cc349 627 Unfortunately some code uses the sequence: error_begin(); print
4ce44c66
JM
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
c2d11a7d
JM
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
d9fcf2fb 638 ui_file_rewind (gdb_lasterr);
4ce44c66 639 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
b8c9b27d 642 err_string_cleanup = make_cleanup (xfree, err_string);
c2d11a7d
JM
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
4ce44c66
JM
646 return_to_top_level (RETURN_ERROR);
647}
648
c906108c 649NORETURN void
c5aa993b 650error (const char *string,...)
c906108c
SS
651{
652 va_list args;
c906108c 653 va_start (args, string);
4ce44c66
JM
654 verror (string, args);
655 va_end (args);
c906108c
SS
656}
657
2acceee2 658NORETURN void
d9fcf2fb 659error_stream (struct ui_file *stream)
2acceee2 660{
4ce44c66 661 long size;
d9fcf2fb 662 char *msg = ui_file_xstrdup (stream, &size);
b8c9b27d 663 make_cleanup (xfree, msg);
4ce44c66 664 error ("%s", msg);
2acceee2
JM
665}
666
667/* Get the last error message issued by gdb */
668
669char *
670error_last_message (void)
671{
4ce44c66 672 long len;
d9fcf2fb 673 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 674}
4ce44c66 675
2acceee2
JM
676/* This is to be called by main() at the very beginning */
677
678void
679error_init (void)
680{
4ce44c66 681 gdb_lasterr = mem_fileopen ();
2acceee2 682}
c906108c 683
96baa820
JM
684/* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
c906108c 686
c906108c 687NORETURN void
8e65ff28
AC
688internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
c906108c 690{
96baa820
JM
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
7be570e7
JM
693 int continue_p;
694 int dump_core_p;
c906108c 695
96baa820
JM
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
e1e9e218 705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
96baa820
JM
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
c906108c 711
96baa820 712 /* Try to get the message out */
4261bedc 713 target_terminal_ours ();
8e65ff28 714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
4ce44c66 715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 716 fputs_unfiltered ("\n", gdb_stderr);
c906108c 717
7be570e7
JM
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
62fd9fad 721An internal GDB error was detected. This may make further\n\
7be570e7
JM
722debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
e1e9e218 734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
735 }
736 }
737 else
738 {
739 if (dump_core_p)
e1e9e218 740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
741 else
742 exit (1);
743 }
96baa820
JM
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
c906108c
SS
747}
748
4ce44c66 749NORETURN void
8e65ff28 750internal_error (const char *file, int line, const char *string, ...)
4ce44c66
JM
751{
752 va_list ap;
753 va_start (ap, string);
4261bedc 754
8e65ff28 755 internal_verror (file, line, string, ap);
4ce44c66
JM
756 va_end (ap);
757}
758
c906108c
SS
759/* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763char *
fba45db2 764safe_strerror (int errnum)
c906108c
SS
765{
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775}
776
c906108c
SS
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
fba45db2 782perror_with_name (char *string)
c906108c
SS
783{
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
c5aa993b 799 error ("%s.", combined);
c906108c
SS
800}
801
802/* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805void
fba45db2 806print_sys_errmsg (char *string, int errcode)
c906108c
SS
807{
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821}
822
823/* Control C eventually causes this to be called, at a convenient time. */
824
825void
fba45db2 826quit (void)
c906108c 827{
819cc324 828 struct serial *gdb_stdout_serial = serial_fdopen (1);
c906108c
SS
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
c5aa993b 838 wrap_here ((char *) 0);
c906108c
SS
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
2cd58942
AC
845 serial_drain_output (gdb_stdout_serial);
846 serial_un_fdopen (gdb_stdout_serial);
c906108c
SS
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
7be570e7
JM
854#ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858#else
c906108c 859 if (job_control
c5aa993b
JM
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
c906108c
SS
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
c5aa993b 866 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 867#endif
c906108c
SS
868 return_to_top_level (RETURN_QUIT);
869}
870
c906108c 871/* Control C comes here */
c906108c 872void
fba45db2 873request_quit (int signo)
c906108c
SS
874{
875 quit_flag = 1;
876 /* Restore the signal handler. Harmless with BSD-style signals, needed
877 for System V-style signals. So just always do it, rather than worrying
878 about USG defines and stuff like that. */
879 signal (signo, request_quit);
880
881#ifdef REQUEST_QUIT
882 REQUEST_QUIT;
883#else
c5aa993b 884 if (immediate_quit)
c906108c
SS
885 quit ();
886#endif
887}
c906108c
SS
888\f
889/* Memory management stuff (malloc friends). */
890
c906108c
SS
891#if !defined (USE_MMALLOC)
892
c0e61796
AC
893/* NOTE: These must use PTR so that their definition matches the
894 declaration found in "mmalloc.h". */
ed9a39eb 895
c906108c 896PTR
fba45db2 897mmalloc (PTR md, size_t size)
c906108c 898{
c0e61796 899 return malloc (size); /* NOTE: GDB's only call to malloc() */
c906108c
SS
900}
901
902PTR
fba45db2 903mrealloc (PTR md, PTR ptr, size_t size)
c906108c 904{
c5aa993b 905 if (ptr == 0) /* Guard against old realloc's */
c0e61796 906 return mmalloc (md, size);
c906108c 907 else
c0e61796
AC
908 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
909}
910
911PTR
912mcalloc (PTR md, size_t number, size_t size)
913{
914 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
c906108c
SS
915}
916
917void
fba45db2 918mfree (PTR md, PTR ptr)
c906108c 919{
c0e61796 920 free (ptr); /* NOTE: GDB's only call to free() */
c906108c
SS
921}
922
c5aa993b 923#endif /* USE_MMALLOC */
c906108c
SS
924
925#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
926
927void
082faf24 928init_malloc (void *md)
c906108c
SS
929{
930}
931
932#else /* Have mmalloc and want corruption checking */
933
934static void
fba45db2 935malloc_botch (void)
c906108c 936{
96baa820 937 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
e1e9e218 938 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
939}
940
941/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
942 by MD, to detect memory corruption. Note that MD may be NULL to specify
943 the default heap that grows via sbrk.
944
945 Note that for freshly created regions, we must call mmcheckf prior to any
946 mallocs in the region. Otherwise, any region which was allocated prior to
947 installing the checking hooks, which is later reallocated or freed, will
948 fail the checks! The mmcheck function only allows initial hooks to be
949 installed before the first mmalloc. However, anytime after we have called
950 mmcheck the first time to install the checking hooks, we can call it again
951 to update the function pointer to the memory corruption handler.
952
953 Returns zero on failure, non-zero on success. */
954
955#ifndef MMCHECK_FORCE
956#define MMCHECK_FORCE 0
957#endif
958
959void
082faf24 960init_malloc (void *md)
c906108c
SS
961{
962 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
963 {
964 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
965 to something other than dummy_target, until after
966 initialize_all_files(). */
c906108c
SS
967
968 fprintf_unfiltered
969 (gdb_stderr, "warning: failed to install memory consistency checks; ");
970 fprintf_unfiltered
971 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
972 }
973
974 mmtrace ();
975}
976
977#endif /* Have mmalloc and want corruption checking */
978
979/* Called when a memory allocation fails, with the number of bytes of
980 memory requested in SIZE. */
981
982NORETURN void
fba45db2 983nomem (long size)
c906108c
SS
984{
985 if (size > 0)
986 {
8e65ff28
AC
987 internal_error (__FILE__, __LINE__,
988 "virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
989 }
990 else
991 {
8e65ff28
AC
992 internal_error (__FILE__, __LINE__,
993 "virtual memory exhausted.");
c906108c
SS
994 }
995}
996
c0e61796 997/* The xmmalloc() family of memory management routines.
c906108c 998
c0e61796
AC
999 These are are like the mmalloc() family except that they implement
1000 consistent semantics and guard against typical memory management
1001 problems: if a malloc fails, an internal error is thrown; if
1002 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1003 is returned.
1004
1005 All these routines are implemented using the mmalloc() family. */
1006
1007void *
1008xmmalloc (void *md, size_t size)
c906108c 1009{
c0e61796 1010 void *val;
c906108c
SS
1011
1012 if (size == 0)
1013 {
1014 val = NULL;
1015 }
c0e61796 1016 else
c906108c 1017 {
c0e61796
AC
1018 val = mmalloc (md, size);
1019 if (val == NULL)
1020 nomem (size);
c906108c
SS
1021 }
1022 return (val);
1023}
1024
c0e61796
AC
1025void *
1026xmrealloc (void *md, void *ptr, size_t size)
c906108c 1027{
c0e61796 1028 void *val;
c906108c 1029
d7fa9de0 1030 if (size == 0)
c906108c 1031 {
d7fa9de0
KB
1032 if (ptr != NULL)
1033 mfree (md, ptr);
1034 val = NULL;
c906108c
SS
1035 }
1036 else
1037 {
d7fa9de0
KB
1038 if (ptr != NULL)
1039 {
1040 val = mrealloc (md, ptr, size);
1041 }
1042 else
1043 {
1044 val = mmalloc (md, size);
1045 }
1046 if (val == NULL)
1047 {
1048 nomem (size);
1049 }
c906108c
SS
1050 }
1051 return (val);
1052}
1053
c0e61796
AC
1054void *
1055xmcalloc (void *md, size_t number, size_t size)
ed9a39eb 1056{
d7fa9de0 1057 void *mem;
d7fa9de0
KB
1058 if (number == 0 || size == 0)
1059 mem = NULL;
1060 else
1061 {
c0e61796 1062 mem = mcalloc (md, number, size);
d7fa9de0
KB
1063 if (mem == NULL)
1064 nomem (number * size);
1065 }
ed9a39eb
JM
1066 return mem;
1067}
1068
c0e61796
AC
1069void
1070xmfree (void *md, void *ptr)
1071{
1072 if (ptr != NULL)
1073 mfree (md, ptr);
1074}
1075
1076/* The xmalloc() (libiberty.h) family of memory management routines.
1077
1078 These are like the ISO-C malloc() family except that they implement
1079 consistent semantics and guard against typical memory management
1080 problems. See xmmalloc() above for further information.
1081
1082 All these routines are wrappers to the xmmalloc() family. */
1083
1084/* NOTE: These are declared using PTR to ensure consistency with
1085 "libiberty.h". xfree() is GDB local. */
1086
1087PTR
1088xmalloc (size_t size)
1089{
1090 return xmmalloc (NULL, size);
1091}
c906108c
SS
1092
1093PTR
fba45db2 1094xrealloc (PTR ptr, size_t size)
c906108c 1095{
c0e61796 1096 return xmrealloc (NULL, ptr, size);
c906108c 1097}
b8c9b27d 1098
c0e61796
AC
1099PTR
1100xcalloc (size_t number, size_t size)
1101{
1102 return xmcalloc (NULL, number, size);
1103}
b8c9b27d
KB
1104
1105void
1106xfree (void *ptr)
1107{
c0e61796 1108 xmfree (NULL, ptr);
b8c9b27d 1109}
c906108c 1110\f
c5aa993b 1111
76995688
AC
1112/* Like asprintf/vasprintf but get an internal_error if the call
1113 fails. */
1114
1115void
1116xasprintf (char **ret, const char *format, ...)
1117{
1118 va_list args;
1119 va_start (args, format);
1120 xvasprintf (ret, format, args);
1121 va_end (args);
1122}
1123
1124void
1125xvasprintf (char **ret, const char *format, va_list ap)
1126{
1127 int status = vasprintf (ret, format, ap);
1128 /* NULL could be returned due to a memory allocation problem; a
1129 badly format string; or something else. */
1130 if ((*ret) == NULL)
8e65ff28
AC
1131 internal_error (__FILE__, __LINE__,
1132 "vasprintf returned NULL buffer (errno %d)",
1133 errno);
76995688
AC
1134 /* A negative status with a non-NULL buffer shouldn't never
1135 happen. But to be sure. */
1136 if (status < 0)
8e65ff28
AC
1137 internal_error (__FILE__, __LINE__,
1138 "vasprintf call failed (errno %d)",
1139 errno);
76995688
AC
1140}
1141
1142
c906108c
SS
1143/* My replacement for the read system call.
1144 Used like `read' but keeps going if `read' returns too soon. */
1145
1146int
fba45db2 1147myread (int desc, char *addr, int len)
c906108c
SS
1148{
1149 register int val;
1150 int orglen = len;
1151
1152 while (len > 0)
1153 {
1154 val = read (desc, addr, len);
1155 if (val < 0)
1156 return val;
1157 if (val == 0)
1158 return orglen - len;
1159 len -= val;
1160 addr += val;
1161 }
1162 return orglen;
1163}
1164\f
1165/* Make a copy of the string at PTR with SIZE characters
1166 (and add a null character at the end in the copy).
1167 Uses malloc to get the space. Returns the address of the copy. */
1168
1169char *
5565b556 1170savestring (const char *ptr, size_t size)
c906108c
SS
1171{
1172 register char *p = (char *) xmalloc (size + 1);
1173 memcpy (p, ptr, size);
1174 p[size] = 0;
1175 return p;
1176}
1177
1178char *
5565b556 1179msavestring (void *md, const char *ptr, size_t size)
c906108c
SS
1180{
1181 register char *p = (char *) xmmalloc (md, size + 1);
1182 memcpy (p, ptr, size);
1183 p[size] = 0;
1184 return p;
1185}
1186
c906108c 1187char *
082faf24 1188mstrsave (void *md, const char *ptr)
c906108c
SS
1189{
1190 return (msavestring (md, ptr, strlen (ptr)));
1191}
1192
1193void
fba45db2 1194print_spaces (register int n, register struct ui_file *file)
c906108c 1195{
392a587b 1196 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1197}
1198
1199/* Print a host address. */
1200
1201void
d9fcf2fb 1202gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1203{
1204
1205 /* We could use the %p conversion specifier to fprintf if we had any
1206 way of knowing whether this host supports it. But the following
1207 should work on the Alpha and on 32 bit machines. */
1208
c5aa993b 1209 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1210}
1211
1212/* Ask user a y-or-n question and return 1 iff answer is yes.
1213 Takes three args which are given to printf to print the question.
1214 The first, a control string, should end in "? ".
1215 It should not say how to answer, because we do that. */
1216
1217/* VARARGS */
1218int
c5aa993b 1219query (char *ctlstr,...)
c906108c
SS
1220{
1221 va_list args;
1222 register int answer;
1223 register int ans2;
1224 int retval;
1225
c906108c 1226 va_start (args, ctlstr);
c906108c
SS
1227
1228 if (query_hook)
1229 {
1230 return query_hook (ctlstr, args);
1231 }
1232
1233 /* Automatically answer "yes" if input is not from a terminal. */
1234 if (!input_from_terminal_p ())
1235 return 1;
d036b4d9
AC
1236 /* OBSOLETE #ifdef MPW */
1237 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1238 /* OBSOLETE if (mac_app) */
1239 /* OBSOLETE return 1; */
1240 /* OBSOLETE #endif *//* MPW */
c906108c
SS
1241
1242 while (1)
1243 {
1244 wrap_here (""); /* Flush any buffered output */
1245 gdb_flush (gdb_stdout);
1246
1247 if (annotation_level > 1)
1248 printf_filtered ("\n\032\032pre-query\n");
1249
1250 vfprintf_filtered (gdb_stdout, ctlstr, args);
1251 printf_filtered ("(y or n) ");
1252
1253 if (annotation_level > 1)
1254 printf_filtered ("\n\032\032query\n");
1255
d036b4d9
AC
1256 /* OBSOLETE #ifdef MPW */
1257 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1258 /* OBSOLETE have a prompt on the front of it. */
1259 /* OBSOLETE if (!mac_app) */
1260 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1261 /* OBSOLETE #endif *//* MPW */
c906108c 1262
c5aa993b 1263 wrap_here ("");
c906108c
SS
1264 gdb_flush (gdb_stdout);
1265
37767e42 1266 answer = fgetc (stdin);
c906108c
SS
1267 clearerr (stdin); /* in case of C-d */
1268 if (answer == EOF) /* C-d */
c5aa993b 1269 {
c906108c
SS
1270 retval = 1;
1271 break;
1272 }
1273 /* Eat rest of input line, to EOF or newline */
37767e42 1274 if (answer != '\n')
c5aa993b 1275 do
c906108c 1276 {
37767e42 1277 ans2 = fgetc (stdin);
c906108c
SS
1278 clearerr (stdin);
1279 }
c5aa993b 1280 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
c906108c
SS
1281
1282 if (answer >= 'a')
1283 answer -= 040;
1284 if (answer == 'Y')
1285 {
1286 retval = 1;
1287 break;
1288 }
1289 if (answer == 'N')
1290 {
1291 retval = 0;
1292 break;
1293 }
1294 printf_filtered ("Please answer y or n.\n");
1295 }
1296
1297 if (annotation_level > 1)
1298 printf_filtered ("\n\032\032post-query\n");
1299 return retval;
1300}
c906108c 1301\f
c5aa993b 1302
c906108c
SS
1303/* Parse a C escape sequence. STRING_PTR points to a variable
1304 containing a pointer to the string to parse. That pointer
1305 should point to the character after the \. That pointer
1306 is updated past the characters we use. The value of the
1307 escape sequence is returned.
1308
1309 A negative value means the sequence \ newline was seen,
1310 which is supposed to be equivalent to nothing at all.
1311
1312 If \ is followed by a null character, we return a negative
1313 value and leave the string pointer pointing at the null character.
1314
1315 If \ is followed by 000, we return 0 and leave the string pointer
1316 after the zeros. A value of 0 does not mean end of string. */
1317
1318int
fba45db2 1319parse_escape (char **string_ptr)
c906108c
SS
1320{
1321 register int c = *(*string_ptr)++;
1322 switch (c)
1323 {
1324 case 'a':
1325 return 007; /* Bell (alert) char */
1326 case 'b':
1327 return '\b';
1328 case 'e': /* Escape character */
1329 return 033;
1330 case 'f':
1331 return '\f';
1332 case 'n':
1333 return '\n';
1334 case 'r':
1335 return '\r';
1336 case 't':
1337 return '\t';
1338 case 'v':
1339 return '\v';
1340 case '\n':
1341 return -2;
1342 case 0:
1343 (*string_ptr)--;
1344 return 0;
1345 case '^':
1346 c = *(*string_ptr)++;
1347 if (c == '\\')
1348 c = parse_escape (string_ptr);
1349 if (c == '?')
1350 return 0177;
1351 return (c & 0200) | (c & 037);
c5aa993b 1352
c906108c
SS
1353 case '0':
1354 case '1':
1355 case '2':
1356 case '3':
1357 case '4':
1358 case '5':
1359 case '6':
1360 case '7':
1361 {
1362 register int i = c - '0';
1363 register int count = 0;
1364 while (++count < 3)
1365 {
1366 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1367 {
1368 i *= 8;
1369 i += c - '0';
1370 }
1371 else
1372 {
1373 (*string_ptr)--;
1374 break;
1375 }
1376 }
1377 return i;
1378 }
1379 default:
1380 return c;
1381 }
1382}
1383\f
1384/* Print the character C on STREAM as part of the contents of a literal
1385 string whose delimiter is QUOTER. Note that this routine should only
1386 be call for printing things which are independent of the language
1387 of the program being debugged. */
1388
43e526b9 1389static void
74f832da
KB
1390printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1391 void (*do_fprintf) (struct ui_file *, const char *, ...),
1392 struct ui_file *stream, int quoter)
c906108c
SS
1393{
1394
1395 c &= 0xFF; /* Avoid sign bit follies */
1396
c5aa993b
JM
1397 if (c < 0x20 || /* Low control chars */
1398 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1399 (sevenbit_strings && c >= 0x80))
1400 { /* high order bit set */
1401 switch (c)
1402 {
1403 case '\n':
43e526b9 1404 do_fputs ("\\n", stream);
c5aa993b
JM
1405 break;
1406 case '\b':
43e526b9 1407 do_fputs ("\\b", stream);
c5aa993b
JM
1408 break;
1409 case '\t':
43e526b9 1410 do_fputs ("\\t", stream);
c5aa993b
JM
1411 break;
1412 case '\f':
43e526b9 1413 do_fputs ("\\f", stream);
c5aa993b
JM
1414 break;
1415 case '\r':
43e526b9 1416 do_fputs ("\\r", stream);
c5aa993b
JM
1417 break;
1418 case '\033':
43e526b9 1419 do_fputs ("\\e", stream);
c5aa993b
JM
1420 break;
1421 case '\007':
43e526b9 1422 do_fputs ("\\a", stream);
c5aa993b
JM
1423 break;
1424 default:
43e526b9 1425 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1426 break;
1427 }
1428 }
1429 else
1430 {
1431 if (c == '\\' || c == quoter)
43e526b9
JM
1432 do_fputs ("\\", stream);
1433 do_fprintf (stream, "%c", c);
c5aa993b 1434 }
c906108c 1435}
43e526b9
JM
1436
1437/* Print the character C on STREAM as part of the contents of a
1438 literal string whose delimiter is QUOTER. Note that these routines
1439 should only be call for printing things which are independent of
1440 the language of the program being debugged. */
1441
1442void
fba45db2 1443fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1444{
1445 while (*str)
1446 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1447}
1448
1449void
fba45db2 1450fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1451{
1452 while (*str)
1453 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1454}
1455
1456void
fba45db2 1457fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
43e526b9
JM
1458{
1459 int i;
1460 for (i = 0; i < n; i++)
1461 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1462}
1463
c906108c 1464\f
c5aa993b 1465
c906108c
SS
1466/* Number of lines per page or UINT_MAX if paging is disabled. */
1467static unsigned int lines_per_page;
cbfbd72a 1468/* Number of chars per line or UINT_MAX if line folding is disabled. */
c906108c
SS
1469static unsigned int chars_per_line;
1470/* Current count of lines printed on this page, chars on this line. */
1471static unsigned int lines_printed, chars_printed;
1472
1473/* Buffer and start column of buffered text, for doing smarter word-
1474 wrapping. When someone calls wrap_here(), we start buffering output
1475 that comes through fputs_filtered(). If we see a newline, we just
1476 spit it out and forget about the wrap_here(). If we see another
1477 wrap_here(), we spit it out and remember the newer one. If we see
1478 the end of the line, we spit out a newline, the indent, and then
1479 the buffered output. */
1480
1481/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1482 are waiting to be output (they have already been counted in chars_printed).
1483 When wrap_buffer[0] is null, the buffer is empty. */
1484static char *wrap_buffer;
1485
1486/* Pointer in wrap_buffer to the next character to fill. */
1487static char *wrap_pointer;
1488
1489/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1490 is non-zero. */
1491static char *wrap_indent;
1492
1493/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1494 is not in effect. */
1495static int wrap_column;
c906108c 1496\f
c5aa993b 1497
c906108c
SS
1498/* Inialize the lines and chars per page */
1499void
fba45db2 1500init_page_info (void)
c906108c
SS
1501{
1502#if defined(TUI)
5ecb1806 1503 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
c906108c
SS
1504#endif
1505 {
1506 /* These defaults will be used if we are unable to get the correct
1507 values from termcap. */
1508#if defined(__GO32__)
c5aa993b
JM
1509 lines_per_page = ScreenRows ();
1510 chars_per_line = ScreenCols ();
1511#else
c906108c
SS
1512 lines_per_page = 24;
1513 chars_per_line = 80;
1514
d036b4d9 1515#if !defined (_WIN32)
c906108c
SS
1516 /* No termcap under MPW, although might be cool to do something
1517 by looking at worksheet or console window sizes. */
1518 /* Initialize the screen height and width from termcap. */
1519 {
c5aa993b 1520 char *termtype = getenv ("TERM");
c906108c 1521
c5aa993b
JM
1522 /* Positive means success, nonpositive means failure. */
1523 int status;
c906108c 1524
c5aa993b
JM
1525 /* 2048 is large enough for all known terminals, according to the
1526 GNU termcap manual. */
1527 char term_buffer[2048];
c906108c 1528
c5aa993b
JM
1529 if (termtype)
1530 {
c906108c
SS
1531 status = tgetent (term_buffer, termtype);
1532 if (status > 0)
1533 {
c5aa993b 1534 int val;
c906108c 1535 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1536
1537 val = tgetnum ("li");
1538 if (val >= 0 && !running_in_emacs)
1539 lines_per_page = val;
1540 else
1541 /* The number of lines per page is not mentioned
c906108c
SS
1542 in the terminal description. This probably means
1543 that paging is not useful (e.g. emacs shell window),
1544 so disable paging. */
c5aa993b
JM
1545 lines_per_page = UINT_MAX;
1546
1547 val = tgetnum ("co");
1548 if (val >= 0)
1549 chars_per_line = val;
c906108c 1550 }
c5aa993b 1551 }
c906108c
SS
1552 }
1553#endif /* MPW */
1554
1555#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1556
1557 /* If there is a better way to determine the window size, use it. */
1558 SIGWINCH_HANDLER (SIGWINCH);
1559#endif
1560#endif
1561 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1562 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1563 lines_per_page = UINT_MAX;
1564 } /* the command_line_version */
1565 set_width ();
c906108c
SS
1566}
1567
1568static void
fba45db2 1569set_width (void)
c906108c
SS
1570{
1571 if (chars_per_line == 0)
c5aa993b 1572 init_page_info ();
c906108c
SS
1573
1574 if (!wrap_buffer)
1575 {
1576 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1577 wrap_buffer[0] = '\0';
1578 }
1579 else
1580 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1581 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1582}
1583
1584/* ARGSUSED */
c5aa993b 1585static void
fba45db2 1586set_width_command (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1587{
1588 set_width ();
1589}
1590
1591/* Wait, so the user can read what's on the screen. Prompt the user
1592 to continue by pressing RETURN. */
1593
1594static void
fba45db2 1595prompt_for_continue (void)
c906108c
SS
1596{
1597 char *ignore;
1598 char cont_prompt[120];
1599
1600 if (annotation_level > 1)
1601 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1602
1603 strcpy (cont_prompt,
1604 "---Type <return> to continue, or q <return> to quit---");
1605 if (annotation_level > 1)
1606 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1607
1608 /* We must do this *before* we call gdb_readline, else it will eventually
1609 call us -- thinking that we're trying to print beyond the end of the
1610 screen. */
1611 reinitialize_more_filter ();
1612
1613 immediate_quit++;
1614 /* On a real operating system, the user can quit with SIGINT.
1615 But not on GO32.
1616
1617 'q' is provided on all systems so users don't have to change habits
1618 from system to system, and because telling them what to do in
1619 the prompt is more user-friendly than expecting them to think of
1620 SIGINT. */
1621 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1622 whereas control-C to gdb_readline will cause the user to get dumped
1623 out to DOS. */
1624 ignore = readline (cont_prompt);
1625
1626 if (annotation_level > 1)
1627 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1628
1629 if (ignore)
1630 {
1631 char *p = ignore;
1632 while (*p == ' ' || *p == '\t')
1633 ++p;
1634 if (p[0] == 'q')
0f71a2f6 1635 {
6426a772 1636 if (!event_loop_p)
0f71a2f6
JM
1637 request_quit (SIGINT);
1638 else
c5aa993b 1639 async_request_quit (0);
0f71a2f6 1640 }
b8c9b27d 1641 xfree (ignore);
c906108c
SS
1642 }
1643 immediate_quit--;
1644
1645 /* Now we have to do this again, so that GDB will know that it doesn't
1646 need to save the ---Type <return>--- line at the top of the screen. */
1647 reinitialize_more_filter ();
1648
1649 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1650}
1651
1652/* Reinitialize filter; ie. tell it to reset to original values. */
1653
1654void
fba45db2 1655reinitialize_more_filter (void)
c906108c
SS
1656{
1657 lines_printed = 0;
1658 chars_printed = 0;
1659}
1660
1661/* Indicate that if the next sequence of characters overflows the line,
1662 a newline should be inserted here rather than when it hits the end.
1663 If INDENT is non-null, it is a string to be printed to indent the
1664 wrapped part on the next line. INDENT must remain accessible until
1665 the next call to wrap_here() or until a newline is printed through
1666 fputs_filtered().
1667
1668 If the line is already overfull, we immediately print a newline and
1669 the indentation, and disable further wrapping.
1670
1671 If we don't know the width of lines, but we know the page height,
1672 we must not wrap words, but should still keep track of newlines
1673 that were explicitly printed.
1674
1675 INDENT should not contain tabs, as that will mess up the char count
1676 on the next line. FIXME.
1677
1678 This routine is guaranteed to force out any output which has been
1679 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1680 used to force out output from the wrap_buffer. */
1681
1682void
fba45db2 1683wrap_here (char *indent)
c906108c
SS
1684{
1685 /* This should have been allocated, but be paranoid anyway. */
1686 if (!wrap_buffer)
e1e9e218 1687 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
1688
1689 if (wrap_buffer[0])
1690 {
1691 *wrap_pointer = '\0';
1692 fputs_unfiltered (wrap_buffer, gdb_stdout);
1693 }
1694 wrap_pointer = wrap_buffer;
1695 wrap_buffer[0] = '\0';
c5aa993b 1696 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1697 {
1698 wrap_column = 0;
1699 }
1700 else if (chars_printed >= chars_per_line)
1701 {
1702 puts_filtered ("\n");
1703 if (indent != NULL)
1704 puts_filtered (indent);
1705 wrap_column = 0;
1706 }
1707 else
1708 {
1709 wrap_column = chars_printed;
1710 if (indent == NULL)
1711 wrap_indent = "";
1712 else
1713 wrap_indent = indent;
1714 }
1715}
1716
1717/* Ensure that whatever gets printed next, using the filtered output
1718 commands, starts at the beginning of the line. I.E. if there is
1719 any pending output for the current line, flush it and start a new
1720 line. Otherwise do nothing. */
1721
1722void
fba45db2 1723begin_line (void)
c906108c
SS
1724{
1725 if (chars_printed > 0)
1726 {
1727 puts_filtered ("\n");
1728 }
1729}
1730
ac9a91a7 1731
c906108c
SS
1732/* Like fputs but if FILTER is true, pause after every screenful.
1733
1734 Regardless of FILTER can wrap at points other than the final
1735 character of a line.
1736
1737 Unlike fputs, fputs_maybe_filtered does not return a value.
1738 It is OK for LINEBUFFER to be NULL, in which case just don't print
1739 anything.
1740
1741 Note that a longjmp to top level may occur in this routine (only if
1742 FILTER is true) (since prompt_for_continue may do so) so this
1743 routine should not be called when cleanups are not in place. */
1744
1745static void
fba45db2
KB
1746fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1747 int filter)
c906108c
SS
1748{
1749 const char *lineptr;
1750
1751 if (linebuffer == 0)
1752 return;
1753
1754 /* Don't do any filtering if it is disabled. */
7a292a7a 1755 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1756 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1757 {
1758 fputs_unfiltered (linebuffer, stream);
1759 return;
1760 }
1761
1762 /* Go through and output each character. Show line extension
1763 when this is necessary; prompt user for new page when this is
1764 necessary. */
c5aa993b 1765
c906108c
SS
1766 lineptr = linebuffer;
1767 while (*lineptr)
1768 {
1769 /* Possible new page. */
1770 if (filter &&
1771 (lines_printed >= lines_per_page - 1))
1772 prompt_for_continue ();
1773
1774 while (*lineptr && *lineptr != '\n')
1775 {
1776 /* Print a single line. */
1777 if (*lineptr == '\t')
1778 {
1779 if (wrap_column)
1780 *wrap_pointer++ = '\t';
1781 else
1782 fputc_unfiltered ('\t', stream);
1783 /* Shifting right by 3 produces the number of tab stops
1784 we have already passed, and then adding one and
c5aa993b 1785 shifting left 3 advances to the next tab stop. */
c906108c
SS
1786 chars_printed = ((chars_printed >> 3) + 1) << 3;
1787 lineptr++;
1788 }
1789 else
1790 {
1791 if (wrap_column)
1792 *wrap_pointer++ = *lineptr;
1793 else
c5aa993b 1794 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1795 chars_printed++;
1796 lineptr++;
1797 }
c5aa993b 1798
c906108c
SS
1799 if (chars_printed >= chars_per_line)
1800 {
1801 unsigned int save_chars = chars_printed;
1802
1803 chars_printed = 0;
1804 lines_printed++;
1805 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1806 if chars_per_line is right, we probably just overflowed
1807 anyway; if it's wrong, let us keep going. */
c906108c
SS
1808 if (wrap_column)
1809 fputc_unfiltered ('\n', stream);
1810
1811 /* Possible new page. */
1812 if (lines_printed >= lines_per_page - 1)
1813 prompt_for_continue ();
1814
1815 /* Now output indentation and wrapped string */
1816 if (wrap_column)
1817 {
1818 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1819 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1820 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1821 /* FIXME, this strlen is what prevents wrap_indent from
1822 containing tabs. However, if we recurse to print it
1823 and count its chars, we risk trouble if wrap_indent is
1824 longer than (the user settable) chars_per_line.
1825 Note also that this can set chars_printed > chars_per_line
1826 if we are printing a long string. */
1827 chars_printed = strlen (wrap_indent)
c5aa993b 1828 + (save_chars - wrap_column);
c906108c
SS
1829 wrap_pointer = wrap_buffer; /* Reset buffer */
1830 wrap_buffer[0] = '\0';
c5aa993b
JM
1831 wrap_column = 0; /* And disable fancy wrap */
1832 }
c906108c
SS
1833 }
1834 }
1835
1836 if (*lineptr == '\n')
1837 {
1838 chars_printed = 0;
c5aa993b 1839 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1840 lines_printed++;
1841 fputc_unfiltered ('\n', stream);
1842 lineptr++;
1843 }
1844 }
1845}
1846
1847void
fba45db2 1848fputs_filtered (const char *linebuffer, struct ui_file *stream)
c906108c
SS
1849{
1850 fputs_maybe_filtered (linebuffer, stream, 1);
1851}
1852
1853int
fba45db2 1854putchar_unfiltered (int c)
c906108c 1855{
11cf8741 1856 char buf = c;
d9fcf2fb 1857 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1858 return c;
1859}
1860
d1f4cff8
AC
1861/* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1862 May return nonlocally. */
1863
1864int
1865putchar_filtered (int c)
1866{
1867 return fputc_filtered (c, gdb_stdout);
1868}
1869
c906108c 1870int
fba45db2 1871fputc_unfiltered (int c, struct ui_file *stream)
c906108c 1872{
11cf8741 1873 char buf = c;
d9fcf2fb 1874 ui_file_write (stream, &buf, 1);
c906108c
SS
1875 return c;
1876}
1877
1878int
fba45db2 1879fputc_filtered (int c, struct ui_file *stream)
c906108c
SS
1880{
1881 char buf[2];
1882
1883 buf[0] = c;
1884 buf[1] = 0;
1885 fputs_filtered (buf, stream);
1886 return c;
1887}
1888
1889/* puts_debug is like fputs_unfiltered, except it prints special
1890 characters in printable fashion. */
1891
1892void
fba45db2 1893puts_debug (char *prefix, char *string, char *suffix)
c906108c
SS
1894{
1895 int ch;
1896
1897 /* Print prefix and suffix after each line. */
1898 static int new_line = 1;
1899 static int return_p = 0;
1900 static char *prev_prefix = "";
1901 static char *prev_suffix = "";
1902
1903 if (*string == '\n')
1904 return_p = 0;
1905
1906 /* If the prefix is changing, print the previous suffix, a new line,
1907 and the new prefix. */
c5aa993b 1908 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1909 {
9846de1b
JM
1910 fputs_unfiltered (prev_suffix, gdb_stdlog);
1911 fputs_unfiltered ("\n", gdb_stdlog);
1912 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1913 }
1914
1915 /* Print prefix if we printed a newline during the previous call. */
1916 if (new_line)
1917 {
1918 new_line = 0;
9846de1b 1919 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1920 }
1921
1922 prev_prefix = prefix;
1923 prev_suffix = suffix;
1924
1925 /* Output characters in a printable format. */
1926 while ((ch = *string++) != '\0')
1927 {
1928 switch (ch)
c5aa993b 1929 {
c906108c
SS
1930 default:
1931 if (isprint (ch))
9846de1b 1932 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1933
1934 else
9846de1b 1935 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1936 break;
1937
c5aa993b
JM
1938 case '\\':
1939 fputs_unfiltered ("\\\\", gdb_stdlog);
1940 break;
1941 case '\b':
1942 fputs_unfiltered ("\\b", gdb_stdlog);
1943 break;
1944 case '\f':
1945 fputs_unfiltered ("\\f", gdb_stdlog);
1946 break;
1947 case '\n':
1948 new_line = 1;
1949 fputs_unfiltered ("\\n", gdb_stdlog);
1950 break;
1951 case '\r':
1952 fputs_unfiltered ("\\r", gdb_stdlog);
1953 break;
1954 case '\t':
1955 fputs_unfiltered ("\\t", gdb_stdlog);
1956 break;
1957 case '\v':
1958 fputs_unfiltered ("\\v", gdb_stdlog);
1959 break;
1960 }
c906108c
SS
1961
1962 return_p = ch == '\r';
1963 }
1964
1965 /* Print suffix if we printed a newline. */
1966 if (new_line)
1967 {
9846de1b
JM
1968 fputs_unfiltered (suffix, gdb_stdlog);
1969 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
1970 }
1971}
1972
1973
1974/* Print a variable number of ARGS using format FORMAT. If this
1975 information is going to put the amount written (since the last call
1976 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1977 call prompt_for_continue to get the users permision to continue.
1978
1979 Unlike fprintf, this function does not return a value.
1980
1981 We implement three variants, vfprintf (takes a vararg list and stream),
1982 fprintf (takes a stream to write on), and printf (the usual).
1983
1984 Note also that a longjmp to top level may occur in this routine
1985 (since prompt_for_continue may do so) so this routine should not be
1986 called when cleanups are not in place. */
1987
1988static void
fba45db2
KB
1989vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1990 va_list args, int filter)
c906108c
SS
1991{
1992 char *linebuffer;
1993 struct cleanup *old_cleanups;
1994
76995688 1995 xvasprintf (&linebuffer, format, args);
b8c9b27d 1996 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
1997 fputs_maybe_filtered (linebuffer, stream, filter);
1998 do_cleanups (old_cleanups);
1999}
2000
2001
2002void
fba45db2 2003vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2004{
2005 vfprintf_maybe_filtered (stream, format, args, 1);
2006}
2007
2008void
fba45db2 2009vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2010{
2011 char *linebuffer;
2012 struct cleanup *old_cleanups;
2013
76995688 2014 xvasprintf (&linebuffer, format, args);
b8c9b27d 2015 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2016 fputs_unfiltered (linebuffer, stream);
2017 do_cleanups (old_cleanups);
2018}
2019
2020void
fba45db2 2021vprintf_filtered (const char *format, va_list args)
c906108c
SS
2022{
2023 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2024}
2025
2026void
fba45db2 2027vprintf_unfiltered (const char *format, va_list args)
c906108c
SS
2028{
2029 vfprintf_unfiltered (gdb_stdout, format, args);
2030}
2031
c906108c 2032void
d9fcf2fb 2033fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2034{
2035 va_list args;
c906108c 2036 va_start (args, format);
c906108c
SS
2037 vfprintf_filtered (stream, format, args);
2038 va_end (args);
2039}
2040
c906108c 2041void
d9fcf2fb 2042fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2043{
2044 va_list args;
c906108c 2045 va_start (args, format);
c906108c
SS
2046 vfprintf_unfiltered (stream, format, args);
2047 va_end (args);
2048}
2049
2050/* Like fprintf_filtered, but prints its result indented.
2051 Called as fprintfi_filtered (spaces, stream, format, ...); */
2052
c906108c 2053void
d9fcf2fb 2054fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2055{
2056 va_list args;
c906108c 2057 va_start (args, format);
c906108c
SS
2058 print_spaces_filtered (spaces, stream);
2059
2060 vfprintf_filtered (stream, format, args);
2061 va_end (args);
2062}
2063
2064
c906108c 2065void
c5aa993b 2066printf_filtered (const char *format,...)
c906108c
SS
2067{
2068 va_list args;
c906108c 2069 va_start (args, format);
c906108c
SS
2070 vfprintf_filtered (gdb_stdout, format, args);
2071 va_end (args);
2072}
2073
2074
c906108c 2075void
c5aa993b 2076printf_unfiltered (const char *format,...)
c906108c
SS
2077{
2078 va_list args;
c906108c 2079 va_start (args, format);
c906108c
SS
2080 vfprintf_unfiltered (gdb_stdout, format, args);
2081 va_end (args);
2082}
2083
2084/* Like printf_filtered, but prints it's result indented.
2085 Called as printfi_filtered (spaces, format, ...); */
2086
c906108c 2087void
c5aa993b 2088printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2089{
2090 va_list args;
c906108c 2091 va_start (args, format);
c906108c
SS
2092 print_spaces_filtered (spaces, gdb_stdout);
2093 vfprintf_filtered (gdb_stdout, format, args);
2094 va_end (args);
2095}
2096
2097/* Easy -- but watch out!
2098
2099 This routine is *not* a replacement for puts()! puts() appends a newline.
2100 This one doesn't, and had better not! */
2101
2102void
fba45db2 2103puts_filtered (const char *string)
c906108c
SS
2104{
2105 fputs_filtered (string, gdb_stdout);
2106}
2107
2108void
fba45db2 2109puts_unfiltered (const char *string)
c906108c
SS
2110{
2111 fputs_unfiltered (string, gdb_stdout);
2112}
2113
2114/* Return a pointer to N spaces and a null. The pointer is good
2115 until the next call to here. */
2116char *
fba45db2 2117n_spaces (int n)
c906108c 2118{
392a587b
JM
2119 char *t;
2120 static char *spaces = 0;
2121 static int max_spaces = -1;
c906108c
SS
2122
2123 if (n > max_spaces)
2124 {
2125 if (spaces)
b8c9b27d 2126 xfree (spaces);
c5aa993b
JM
2127 spaces = (char *) xmalloc (n + 1);
2128 for (t = spaces + n; t != spaces;)
c906108c
SS
2129 *--t = ' ';
2130 spaces[n] = '\0';
2131 max_spaces = n;
2132 }
2133
2134 return spaces + max_spaces - n;
2135}
2136
2137/* Print N spaces. */
2138void
fba45db2 2139print_spaces_filtered (int n, struct ui_file *stream)
c906108c
SS
2140{
2141 fputs_filtered (n_spaces (n), stream);
2142}
2143\f
2144/* C++ demangler stuff. */
2145
2146/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2147 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2148 If the name is not mangled, or the language for the name is unknown, or
2149 demangling is off, the name is printed in its "raw" form. */
2150
2151void
fba45db2
KB
2152fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2153 int arg_mode)
c906108c
SS
2154{
2155 char *demangled;
2156
2157 if (name != NULL)
2158 {
2159 /* If user wants to see raw output, no problem. */
2160 if (!demangle)
2161 {
2162 fputs_filtered (name, stream);
2163 }
2164 else
2165 {
2166 switch (lang)
2167 {
2168 case language_cplus:
2169 demangled = cplus_demangle (name, arg_mode);
2170 break;
2171 case language_java:
2172 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2173 break;
2174 case language_chill:
2175 demangled = chill_demangle (name);
2176 break;
2177 default:
2178 demangled = NULL;
2179 break;
2180 }
2181 fputs_filtered (demangled ? demangled : name, stream);
2182 if (demangled != NULL)
2183 {
b8c9b27d 2184 xfree (demangled);
c906108c
SS
2185 }
2186 }
2187 }
2188}
2189
2190/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2191 differences in whitespace. Returns 0 if they match, non-zero if they
2192 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2193
c906108c
SS
2194 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2195 This "feature" is useful when searching for matching C++ function names
2196 (such as if the user types 'break FOO', where FOO is a mangled C++
2197 function). */
2198
2199int
fba45db2 2200strcmp_iw (const char *string1, const char *string2)
c906108c
SS
2201{
2202 while ((*string1 != '\0') && (*string2 != '\0'))
2203 {
2204 while (isspace (*string1))
2205 {
2206 string1++;
2207 }
2208 while (isspace (*string2))
2209 {
2210 string2++;
2211 }
2212 if (*string1 != *string2)
2213 {
2214 break;
2215 }
2216 if (*string1 != '\0')
2217 {
2218 string1++;
2219 string2++;
2220 }
2221 }
2222 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2223}
c906108c 2224\f
c5aa993b 2225
c906108c 2226/*
c5aa993b
JM
2227 ** subset_compare()
2228 ** Answer whether string_to_compare is a full or partial match to
2229 ** template_string. The partial match must be in sequence starting
2230 ** at index 0.
2231 */
c906108c 2232int
fba45db2 2233subset_compare (char *string_to_compare, char *template_string)
7a292a7a
SS
2234{
2235 int match;
c5aa993b
JM
2236 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2237 strlen (string_to_compare) <= strlen (template_string))
2238 match = (strncmp (template_string,
2239 string_to_compare,
2240 strlen (string_to_compare)) == 0);
7a292a7a
SS
2241 else
2242 match = 0;
2243 return match;
2244}
c906108c
SS
2245
2246
a14ed312 2247static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2248static void
fba45db2 2249pagination_on_command (char *arg, int from_tty)
c906108c
SS
2250{
2251 pagination_enabled = 1;
2252}
2253
a14ed312 2254static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2255static void
fba45db2 2256pagination_off_command (char *arg, int from_tty)
c906108c
SS
2257{
2258 pagination_enabled = 0;
2259}
c906108c 2260\f
c5aa993b 2261
c906108c 2262void
fba45db2 2263initialize_utils (void)
c906108c
SS
2264{
2265 struct cmd_list_element *c;
2266
c5aa993b
JM
2267 c = add_set_cmd ("width", class_support, var_uinteger,
2268 (char *) &chars_per_line,
2269 "Set number of characters gdb thinks are in a line.",
2270 &setlist);
c906108c
SS
2271 add_show_from_set (c, &showlist);
2272 c->function.sfunc = set_width_command;
2273
2274 add_show_from_set
2275 (add_set_cmd ("height", class_support,
c5aa993b 2276 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2277 "Set number of lines gdb thinks are in a page.", &setlist),
2278 &showlist);
c5aa993b 2279
c906108c
SS
2280 init_page_info ();
2281
2282 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2283 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2284 lines_per_page = UINT_MAX;
2285
c5aa993b 2286 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2287
2288 add_show_from_set
c5aa993b
JM
2289 (add_set_cmd ("demangle", class_support, var_boolean,
2290 (char *) &demangle,
2291 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2292 &setprintlist),
2293 &showprintlist);
2294
2295 add_show_from_set
2296 (add_set_cmd ("pagination", class_support,
c5aa993b 2297 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2298 "Set state of pagination.", &setlist),
2299 &showlist);
4261bedc 2300
c906108c
SS
2301 if (xdb_commands)
2302 {
c5aa993b
JM
2303 add_com ("am", class_support, pagination_on_command,
2304 "Enable pagination");
2305 add_com ("sm", class_support, pagination_off_command,
2306 "Disable pagination");
c906108c
SS
2307 }
2308
2309 add_show_from_set
c5aa993b
JM
2310 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2311 (char *) &sevenbit_strings,
2312 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2313 &setprintlist),
2314 &showprintlist);
2315
2316 add_show_from_set
c5aa993b
JM
2317 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2318 (char *) &asm_demangle,
2319 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2320 &setprintlist),
2321 &showprintlist);
2322}
2323
2324/* Machine specific function to handle SIGWINCH signal. */
2325
2326#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2327SIGWINCH_HANDLER_BODY
c906108c
SS
2328#endif
2329\f
2330/* Support for converting target fp numbers into host DOUBLEST format. */
2331
2332/* XXX - This code should really be in libiberty/floatformat.c, however
2333 configuration issues with libiberty made this very difficult to do in the
2334 available time. */
2335
2336#include "floatformat.h"
2337#include <math.h> /* ldexp */
2338
2339/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2340 going to bother with trying to muck around with whether it is defined in
2341 a system header, what we do if not, etc. */
2342#define FLOATFORMAT_CHAR_BIT 8
2343
a14ed312
KB
2344static unsigned long get_field (unsigned char *,
2345 enum floatformat_byteorders,
2346 unsigned int, unsigned int, unsigned int);
c906108c
SS
2347
2348/* Extract a field which starts at START and is LEN bytes long. DATA and
2349 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2350static unsigned long
fba45db2
KB
2351get_field (unsigned char *data, enum floatformat_byteorders order,
2352 unsigned int total_len, unsigned int start, unsigned int len)
c906108c
SS
2353{
2354 unsigned long result;
2355 unsigned int cur_byte;
2356 int cur_bitshift;
2357
2358 /* Start at the least significant part of the field. */
c906108c 2359 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2360 {
2361 /* We start counting from the other end (i.e, from the high bytes
2362 rather than the low bytes). As such, we need to be concerned
2363 with what happens if bit 0 doesn't start on a byte boundary.
2364 I.e, we need to properly handle the case where total_len is
2365 not evenly divisible by 8. So we compute ``excess'' which
2366 represents the number of bits from the end of our starting
2367 byte needed to get to bit 0. */
2368 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2369 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2370 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2371 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2372 - FLOATFORMAT_CHAR_BIT;
2373 }
2374 else
2375 {
2376 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2377 cur_bitshift =
2378 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2379 }
2380 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2381 result = *(data + cur_byte) >> (-cur_bitshift);
2382 else
2383 result = 0;
c906108c
SS
2384 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2385 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2386 ++cur_byte;
2387 else
2388 --cur_byte;
2389
2390 /* Move towards the most significant part of the field. */
2391 while (cur_bitshift < len)
2392 {
0fda6bd2 2393 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2394 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2395 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2396 ++cur_byte;
2397 else
2398 --cur_byte;
2399 }
0fda6bd2
JM
2400 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2401 /* Mask out bits which are not part of the field */
2402 result &= ((1UL << len) - 1);
c906108c
SS
2403 return result;
2404}
c5aa993b 2405
c906108c
SS
2406/* Convert from FMT to a DOUBLEST.
2407 FROM is the address of the extended float.
2408 Store the DOUBLEST in *TO. */
2409
2410void
fba45db2
KB
2411floatformat_to_doublest (const struct floatformat *fmt, char *from,
2412 DOUBLEST *to)
c906108c 2413{
c5aa993b 2414 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2415 DOUBLEST dto;
2416 long exponent;
2417 unsigned long mant;
2418 unsigned int mant_bits, mant_off;
2419 int mant_bits_left;
2420 int special_exponent; /* It's a NaN, denorm or zero */
2421
2422 /* If the mantissa bits are not contiguous from one end of the
2423 mantissa to the other, we need to make a private copy of the
2424 source bytes that is in the right order since the unpacking
2425 algorithm assumes that the bits are contiguous.
2426
2427 Swap the bytes individually rather than accessing them through
2428 "long *" since we have no guarantee that they start on a long
2429 alignment, and also sizeof(long) for the host could be different
2430 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2431 for the target is 4. */
2432
c5aa993b 2433 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2434 {
2435 static unsigned char *newfrom;
2436 unsigned char *swapin, *swapout;
2437 int longswaps;
2438
c5aa993b 2439 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2440 longswaps >>= 3;
c5aa993b 2441
c906108c
SS
2442 if (newfrom == NULL)
2443 {
c5aa993b 2444 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2445 }
2446 swapout = newfrom;
2447 swapin = ufrom;
2448 ufrom = newfrom;
2449 while (longswaps-- > 0)
2450 {
2451 /* This is ugly, but efficient */
2452 *swapout++ = swapin[4];
2453 *swapout++ = swapin[5];
2454 *swapout++ = swapin[6];
2455 *swapout++ = swapin[7];
2456 *swapout++ = swapin[0];
2457 *swapout++ = swapin[1];
2458 *swapout++ = swapin[2];
2459 *swapout++ = swapin[3];
2460 swapin += 8;
2461 }
2462 }
2463
2464 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2465 fmt->exp_start, fmt->exp_len);
2466 /* Note that if exponent indicates a NaN, we can't really do anything useful
2467 (not knowing if the host has NaN's, or how to build one). So it will
2468 end up as an infinity or something close; that is OK. */
2469
2470 mant_bits_left = fmt->man_len;
2471 mant_off = fmt->man_start;
2472 dto = 0.0;
2473
2474 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2475
11cf8741
JM
2476/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2477 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2478 if (!special_exponent)
2479 exponent -= fmt->exp_bias;
11cf8741
JM
2480 else if (exponent == 0)
2481 exponent = 1 - fmt->exp_bias;
c906108c
SS
2482
2483 /* Build the result algebraically. Might go infinite, underflow, etc;
2484 who cares. */
2485
2486/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2487 increment the exponent by one to account for the integer bit. */
2488
2489 if (!special_exponent)
7a292a7a
SS
2490 {
2491 if (fmt->intbit == floatformat_intbit_no)
2492 dto = ldexp (1.0, exponent);
2493 else
2494 exponent++;
2495 }
c906108c
SS
2496
2497 while (mant_bits_left > 0)
2498 {
2499 mant_bits = min (mant_bits_left, 32);
2500
2501 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2502 mant_off, mant_bits);
c906108c 2503
c5aa993b 2504 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2505 exponent -= mant_bits;
2506 mant_off += mant_bits;
2507 mant_bits_left -= mant_bits;
2508 }
2509
2510 /* Negate it if negative. */
2511 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2512 dto = -dto;
2513 *to = dto;
2514}
2515\f
a14ed312
KB
2516static void put_field (unsigned char *, enum floatformat_byteorders,
2517 unsigned int,
2518 unsigned int, unsigned int, unsigned long);
c906108c
SS
2519
2520/* Set a field which starts at START and is LEN bytes long. DATA and
2521 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2522static void
fba45db2
KB
2523put_field (unsigned char *data, enum floatformat_byteorders order,
2524 unsigned int total_len, unsigned int start, unsigned int len,
2525 unsigned long stuff_to_put)
c906108c
SS
2526{
2527 unsigned int cur_byte;
2528 int cur_bitshift;
2529
2530 /* Start at the least significant part of the field. */
c906108c 2531 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2532 {
2533 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2534 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2535 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2536 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2537 - FLOATFORMAT_CHAR_BIT;
2538 }
2539 else
2540 {
2541 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2542 cur_bitshift =
2543 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2544 }
2545 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2546 {
2547 *(data + cur_byte) &=
2548 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2549 << (-cur_bitshift));
2550 *(data + cur_byte) |=
2551 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2552 }
c906108c
SS
2553 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2554 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2555 ++cur_byte;
2556 else
2557 --cur_byte;
2558
2559 /* Move towards the most significant part of the field. */
2560 while (cur_bitshift < len)
2561 {
2562 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2563 {
2564 /* This is the last byte. */
2565 *(data + cur_byte) &=
2566 ~((1 << (len - cur_bitshift)) - 1);
2567 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2568 }
2569 else
2570 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2571 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2572 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2573 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2574 ++cur_byte;
2575 else
2576 --cur_byte;
2577 }
2578}
2579
2580#ifdef HAVE_LONG_DOUBLE
2581/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2582 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2583 frexp, but operates on the long double data type. */
2584
a14ed312 2585static long double ldfrexp (long double value, int *eptr);
c906108c
SS
2586
2587static long double
fba45db2 2588ldfrexp (long double value, int *eptr)
c906108c
SS
2589{
2590 long double tmp;
2591 int exp;
2592
2593 /* Unfortunately, there are no portable functions for extracting the exponent
2594 of a long double, so we have to do it iteratively by multiplying or dividing
2595 by two until the fraction is between 0.5 and 1.0. */
2596
2597 if (value < 0.0l)
2598 value = -value;
2599
2600 tmp = 1.0l;
2601 exp = 0;
2602
2603 if (value >= tmp) /* Value >= 1.0 */
2604 while (value >= tmp)
2605 {
2606 tmp *= 2.0l;
2607 exp++;
2608 }
2609 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2610 {
2611 while (value < tmp)
2612 {
2613 tmp /= 2.0l;
2614 exp--;
2615 }
2616 tmp *= 2.0l;
2617 exp++;
2618 }
2619
2620 *eptr = exp;
c5aa993b 2621 return value / tmp;
c906108c
SS
2622}
2623#endif /* HAVE_LONG_DOUBLE */
2624
2625
2626/* The converse: convert the DOUBLEST *FROM to an extended float
2627 and store where TO points. Neither FROM nor TO have any alignment
2628 restrictions. */
2629
2630void
fba45db2
KB
2631floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2632 char *to)
c906108c
SS
2633{
2634 DOUBLEST dfrom;
2635 int exponent;
2636 DOUBLEST mant;
2637 unsigned int mant_bits, mant_off;
2638 int mant_bits_left;
c5aa993b 2639 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2640
2641 memcpy (&dfrom, from, sizeof (dfrom));
ba8966d6
KB
2642 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2643 / FLOATFORMAT_CHAR_BIT);
c906108c
SS
2644 if (dfrom == 0)
2645 return; /* Result is zero */
2646 if (dfrom != dfrom) /* Result is NaN */
2647 {
2648 /* From is NaN */
2649 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2650 fmt->exp_len, fmt->exp_nan);
2651 /* Be sure it's not infinity, but NaN value is irrel */
2652 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2653 32, 1);
2654 return;
2655 }
2656
2657 /* If negative, set the sign bit. */
2658 if (dfrom < 0)
2659 {
2660 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2661 dfrom = -dfrom;
2662 }
2663
2664 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2665 {
2666 /* Infinity exponent is same as NaN's. */
2667 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2668 fmt->exp_len, fmt->exp_nan);
2669 /* Infinity mantissa is all zeroes. */
2670 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2671 fmt->man_len, 0);
2672 return;
2673 }
2674
2675#ifdef HAVE_LONG_DOUBLE
2676 mant = ldfrexp (dfrom, &exponent);
2677#else
2678 mant = frexp (dfrom, &exponent);
2679#endif
2680
2681 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2682 exponent + fmt->exp_bias - 1);
2683
2684 mant_bits_left = fmt->man_len;
2685 mant_off = fmt->man_start;
2686 while (mant_bits_left > 0)
2687 {
2688 unsigned long mant_long;
2689 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2690
2691 mant *= 4294967296.0;
ba8966d6 2692 mant_long = ((unsigned long) mant) & 0xffffffffL;
c906108c
SS
2693 mant -= mant_long;
2694
2695 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2696 If we are discarding a zero, we should be (but are not) creating
2697 a denormalized number which means adjusting the exponent
2698 (I think). */
c906108c
SS
2699 if (mant_bits_left == fmt->man_len
2700 && fmt->intbit == floatformat_intbit_no)
2701 {
2702 mant_long <<= 1;
ba8966d6 2703 mant_long &= 0xffffffffL;
c906108c
SS
2704 mant_bits -= 1;
2705 }
2706
2707 if (mant_bits < 32)
2708 {
2709 /* The bits we want are in the most significant MANT_BITS bits of
2710 mant_long. Move them to the least significant. */
2711 mant_long >>= 32 - mant_bits;
2712 }
2713
2714 put_field (uto, fmt->byteorder, fmt->totalsize,
2715 mant_off, mant_bits, mant_long);
2716 mant_off += mant_bits;
2717 mant_bits_left -= mant_bits;
2718 }
c5aa993b 2719 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2720 {
2721 int count;
2722 unsigned char *swaplow = uto;
2723 unsigned char *swaphigh = uto + 4;
2724 unsigned char tmp;
2725
2726 for (count = 0; count < 4; count++)
2727 {
2728 tmp = *swaplow;
2729 *swaplow++ = *swaphigh;
2730 *swaphigh++ = tmp;
2731 }
2732 }
2733}
2734
39424bef
MK
2735/* Check if VAL (which is assumed to be a floating point number whose
2736 format is described by FMT) is negative. */
2737
2738int
2739floatformat_is_negative (const struct floatformat *fmt, char *val)
2740{
2741 unsigned char *uval = (unsigned char *) val;
2742
2743 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2744}
2745
2746/* Check if VAL is "not a number" (NaN) for FMT. */
2747
2748int
2749floatformat_is_nan (const struct floatformat *fmt, char *val)
2750{
2751 unsigned char *uval = (unsigned char *) val;
2752 long exponent;
2753 unsigned long mant;
2754 unsigned int mant_bits, mant_off;
2755 int mant_bits_left;
2756
2757 if (! fmt->exp_nan)
2758 return 0;
2759
2760 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2761 fmt->exp_start, fmt->exp_len);
2762
2763 if (exponent != fmt->exp_nan)
2764 return 0;
2765
2766 mant_bits_left = fmt->man_len;
2767 mant_off = fmt->man_start;
2768
2769 while (mant_bits_left > 0)
2770 {
2771 mant_bits = min (mant_bits_left, 32);
2772
2773 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2774 mant_off, mant_bits);
2775
2776 /* If there is an explicit integer bit, mask it off. */
2777 if (mant_off == fmt->man_start
2778 && fmt->intbit == floatformat_intbit_yes)
2779 mant &= ~(1 << (mant_bits - 1));
2780
2781 if (mant)
2782 return 1;
2783
2784 mant_off += mant_bits;
2785 mant_bits_left -= mant_bits;
2786 }
2787
2788 return 0;
2789}
2790
2791/* Convert the mantissa of VAL (which is assumed to be a floating
2792 point number whose format is described by FMT) into a hexadecimal
2793 and store it in a static string. Return a pointer to that string. */
2794
2795char *
2796floatformat_mantissa (const struct floatformat *fmt, char *val)
2797{
2798 unsigned char *uval = (unsigned char *) val;
2799 unsigned long mant;
2800 unsigned int mant_bits, mant_off;
2801 int mant_bits_left;
2802 static char res[50];
2803 char buf[9];
2804
2805 /* Make sure we have enough room to store the mantissa. */
2806 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2807
2808 mant_off = fmt->man_start;
2809 mant_bits_left = fmt->man_len;
2810 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2811
2812 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2813 mant_off, mant_bits);
2814
2815 sprintf (res, "%lx", mant);
2816
2817 mant_off += mant_bits;
2818 mant_bits_left -= mant_bits;
2819
2820 while (mant_bits_left > 0)
2821 {
2822 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2823 mant_off, 32);
2824
2825 sprintf (buf, "%08lx", mant);
2826 strcat (res, buf);
2827
2828 mant_off += 32;
2829 mant_bits_left -= 32;
2830 }
2831
2832 return res;
2833}
2834
5683e87a
AC
2835/* print routines to handle variable size regs, etc. */
2836
c906108c
SS
2837/* temporary storage using circular buffer */
2838#define NUMCELLS 16
2839#define CELLSIZE 32
c5aa993b 2840static char *
fba45db2 2841get_cell (void)
c906108c
SS
2842{
2843 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2844 static int cell = 0;
2845 if (++cell >= NUMCELLS)
2846 cell = 0;
c906108c
SS
2847 return buf[cell];
2848}
2849
d4f3574e
SS
2850int
2851strlen_paddr (void)
2852{
79496e2f 2853 return (TARGET_ADDR_BIT / 8 * 2);
d4f3574e
SS
2854}
2855
c5aa993b 2856char *
104c1213 2857paddr (CORE_ADDR addr)
c906108c 2858{
79496e2f 2859 return phex (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2860}
2861
c5aa993b 2862char *
104c1213 2863paddr_nz (CORE_ADDR addr)
c906108c 2864{
79496e2f 2865 return phex_nz (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2866}
2867
104c1213
JM
2868static void
2869decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2870{
2871 /* steal code from valprint.c:print_decimal(). Should this worry
2872 about the real size of addr as the above does? */
2873 unsigned long temp[3];
2874 int i = 0;
2875 do
2876 {
2877 temp[i] = addr % (1000 * 1000 * 1000);
2878 addr /= (1000 * 1000 * 1000);
2879 i++;
2880 }
2881 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2882 switch (i)
2883 {
2884 case 1:
2885 sprintf (paddr_str, "%s%lu",
2886 sign, temp[0]);
2887 break;
2888 case 2:
2889 sprintf (paddr_str, "%s%lu%09lu",
2890 sign, temp[1], temp[0]);
2891 break;
2892 case 3:
2893 sprintf (paddr_str, "%s%lu%09lu%09lu",
2894 sign, temp[2], temp[1], temp[0]);
2895 break;
2896 default:
e1e9e218 2897 internal_error (__FILE__, __LINE__, "failed internal consistency check");
104c1213
JM
2898 }
2899}
2900
2901char *
2902paddr_u (CORE_ADDR addr)
2903{
2904 char *paddr_str = get_cell ();
2905 decimal2str (paddr_str, "", addr);
2906 return paddr_str;
2907}
2908
2909char *
2910paddr_d (LONGEST addr)
2911{
2912 char *paddr_str = get_cell ();
2913 if (addr < 0)
2914 decimal2str (paddr_str, "-", -addr);
2915 else
2916 decimal2str (paddr_str, "", addr);
2917 return paddr_str;
2918}
2919
5683e87a
AC
2920/* eliminate warning from compiler on 32-bit systems */
2921static int thirty_two = 32;
2922
104c1213 2923char *
5683e87a 2924phex (ULONGEST l, int sizeof_l)
104c1213 2925{
5683e87a
AC
2926 char *str = get_cell ();
2927 switch (sizeof_l)
104c1213
JM
2928 {
2929 case 8:
5683e87a
AC
2930 sprintf (str, "%08lx%08lx",
2931 (unsigned long) (l >> thirty_two),
2932 (unsigned long) (l & 0xffffffff));
104c1213
JM
2933 break;
2934 case 4:
5683e87a 2935 sprintf (str, "%08lx", (unsigned long) l);
104c1213
JM
2936 break;
2937 case 2:
5683e87a 2938 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
104c1213
JM
2939 break;
2940 default:
5683e87a
AC
2941 phex (l, sizeof (l));
2942 break;
104c1213 2943 }
5683e87a 2944 return str;
104c1213
JM
2945}
2946
c5aa993b 2947char *
5683e87a 2948phex_nz (ULONGEST l, int sizeof_l)
c906108c 2949{
5683e87a
AC
2950 char *str = get_cell ();
2951 switch (sizeof_l)
c906108c 2952 {
c5aa993b
JM
2953 case 8:
2954 {
5683e87a 2955 unsigned long high = (unsigned long) (l >> thirty_two);
c5aa993b 2956 if (high == 0)
5683e87a 2957 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
c5aa993b 2958 else
5683e87a
AC
2959 sprintf (str, "%lx%08lx",
2960 high, (unsigned long) (l & 0xffffffff));
c906108c 2961 break;
c5aa993b
JM
2962 }
2963 case 4:
5683e87a 2964 sprintf (str, "%lx", (unsigned long) l);
c5aa993b
JM
2965 break;
2966 case 2:
5683e87a 2967 sprintf (str, "%x", (unsigned short) (l & 0xffff));
c5aa993b
JM
2968 break;
2969 default:
5683e87a
AC
2970 phex_nz (l, sizeof (l));
2971 break;
c906108c 2972 }
5683e87a 2973 return str;
c906108c 2974}
ac2e2ef7
AC
2975
2976
2977/* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2978 using the target's conversion routines. */
2979CORE_ADDR
2980host_pointer_to_address (void *ptr)
2981{
090a2205 2982 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
8e65ff28
AC
2983 internal_error (__FILE__, __LINE__,
2984 "core_addr_to_void_ptr: bad cast");
090a2205 2985 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
ac2e2ef7
AC
2986}
2987
2988void *
2989address_to_host_pointer (CORE_ADDR addr)
2990{
2991 void *ptr;
090a2205 2992 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
8e65ff28
AC
2993 internal_error (__FILE__, __LINE__,
2994 "core_addr_to_void_ptr: bad cast");
090a2205 2995 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
ac2e2ef7
AC
2996 return ptr;
2997}
This page took 0.268556 seconds and 4 git commands to generate.