Make Syd Polk principal maintainer.
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
d9fcf2fb
JM
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include <ctype.h>
24#include "gdb_string.h"
c2c6d25f 25#include "event-top.h"
c906108c
SS
26
27#ifdef HAVE_CURSES_H
28#include <curses.h>
29#endif
30#ifdef HAVE_TERM_H
31#include <term.h>
32#endif
33
9d271fd8
AC
34#ifdef __GO32__
35#include <pc.h>
36#endif
37
c906108c
SS
38/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39#ifdef reg
40#undef reg
41#endif
42
43#include "signals.h"
44#include "gdbcmd.h"
45#include "serial.h"
46#include "bfd.h"
47#include "target.h"
48#include "demangle.h"
49#include "expression.h"
50#include "language.h"
51#include "annotate.h"
52
53#include <readline/readline.h>
54
917317f4
JM
55#undef XMALLOC
56#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
c906108c
SS
58/* readline defines this. */
59#undef savestring
60
61void (*error_begin_hook) PARAMS ((void));
62
2acceee2
JM
63/* Holds the last error message issued by gdb */
64
d9fcf2fb 65static struct ui_file *gdb_lasterr;
2acceee2 66
c906108c
SS
67/* Prototypes for local functions */
68
d9fcf2fb
JM
69static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
c906108c 71
d9fcf2fb 72static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
73
74#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75static void malloc_botch PARAMS ((void));
76#endif
77
c906108c
SS
78static void
79prompt_for_continue PARAMS ((void));
80
c5aa993b 81static void
c906108c
SS
82set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84static void
85set_width PARAMS ((void));
86
c906108c
SS
87/* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
c5aa993b
JM
90static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
94/* cleaned up on each error from within an execution command */
95static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
96
97/* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101struct continuation *cmd_continuation;
c2d11a7d 102struct continuation *intermediate_continuation;
c906108c
SS
103
104/* Nonzero if we have job control. */
105
106int job_control;
107
108/* Nonzero means a quit has been requested. */
109
110int quit_flag;
111
112/* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123int immediate_quit;
124
125/* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128int demangle = 1;
129
130/* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134int asm_demangle = 0;
135
136/* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140int sevenbit_strings = 0;
141
142/* String to be printed before error messages, if any. */
143
144char *error_pre_print;
145
146/* String to be printed before quit messages, if any. */
147
148char *quit_pre_print;
149
150/* String to be printed before warning messages, if any. */
151
152char *warning_pre_print = "\nwarning: ";
153
154int pagination_enabled = 1;
c906108c 155\f
c5aa993b 156
c906108c
SS
157/* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162struct cleanup *
e4005526 163make_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 164{
c5aa993b 165 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
166}
167
168struct cleanup *
e4005526 169make_final_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 170{
c5aa993b 171 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 172}
7a292a7a 173
c906108c 174struct cleanup *
e4005526 175make_run_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 176{
c5aa993b 177 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 178}
7a292a7a 179
43ff13b4 180struct cleanup *
e4005526 181make_exec_cleanup (make_cleanup_ftype *function, void *arg)
43ff13b4 182{
c5aa993b 183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
184}
185
6426a772 186struct cleanup *
e4005526 187make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
6426a772
JM
188{
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
190}
191
7a292a7a
SS
192static void
193do_freeargv (arg)
194 void *arg;
195{
c5aa993b 196 freeargv ((char **) arg);
7a292a7a
SS
197}
198
199struct cleanup *
200make_cleanup_freeargv (arg)
201 char **arg;
202{
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
204}
205
11cf8741 206static void
d9fcf2fb 207do_ui_file_delete (void *arg)
11cf8741 208{
d9fcf2fb 209 ui_file_delete (arg);
11cf8741
JM
210}
211
212struct cleanup *
d9fcf2fb 213make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 214{
d9fcf2fb 215 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
216}
217
c906108c 218struct cleanup *
e4005526
AC
219make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
220 void *arg)
c906108c
SS
221{
222 register struct cleanup *new
c5aa993b 223 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
224 register struct cleanup *old_chain = *pmy_chain;
225
226 new->next = *pmy_chain;
227 new->function = function;
228 new->arg = arg;
229 *pmy_chain = new;
230
231 return old_chain;
232}
233
234/* Discard cleanups and do the actions they describe
235 until we get back to the point OLD_CHAIN in the cleanup_chain. */
236
237void
238do_cleanups (old_chain)
239 register struct cleanup *old_chain;
240{
c5aa993b 241 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
242}
243
244void
245do_final_cleanups (old_chain)
246 register struct cleanup *old_chain;
247{
c5aa993b 248 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
249}
250
251void
252do_run_cleanups (old_chain)
253 register struct cleanup *old_chain;
254{
c5aa993b 255 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
256}
257
43ff13b4
JM
258void
259do_exec_cleanups (old_chain)
260 register struct cleanup *old_chain;
261{
c5aa993b 262 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
263}
264
6426a772
JM
265void
266do_exec_error_cleanups (old_chain)
267 register struct cleanup *old_chain;
268{
269 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
270}
271
c906108c
SS
272void
273do_my_cleanups (pmy_chain, old_chain)
274 register struct cleanup **pmy_chain;
275 register struct cleanup *old_chain;
276{
277 register struct cleanup *ptr;
278 while ((ptr = *pmy_chain) != old_chain)
279 {
280 *pmy_chain = ptr->next; /* Do this first incase recursion */
281 (*ptr->function) (ptr->arg);
282 free (ptr);
283 }
284}
285
286/* Discard cleanups, not doing the actions they describe,
287 until we get back to the point OLD_CHAIN in the cleanup_chain. */
288
289void
290discard_cleanups (old_chain)
291 register struct cleanup *old_chain;
292{
c5aa993b 293 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
294}
295
296void
297discard_final_cleanups (old_chain)
298 register struct cleanup *old_chain;
299{
c5aa993b 300 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
301}
302
6426a772
JM
303void
304discard_exec_error_cleanups (old_chain)
305 register struct cleanup *old_chain;
306{
307 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
308}
309
c906108c
SS
310void
311discard_my_cleanups (pmy_chain, old_chain)
312 register struct cleanup **pmy_chain;
313 register struct cleanup *old_chain;
314{
315 register struct cleanup *ptr;
316 while ((ptr = *pmy_chain) != old_chain)
317 {
318 *pmy_chain = ptr->next;
e4005526 319 free (ptr);
c906108c
SS
320 }
321}
322
323/* Set the cleanup_chain to 0, and return the old cleanup chain. */
324struct cleanup *
325save_cleanups ()
326{
c5aa993b 327 return save_my_cleanups (&cleanup_chain);
c906108c
SS
328}
329
330struct cleanup *
331save_final_cleanups ()
332{
c5aa993b 333 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
334}
335
336struct cleanup *
337save_my_cleanups (pmy_chain)
c5aa993b 338 struct cleanup **pmy_chain;
c906108c
SS
339{
340 struct cleanup *old_chain = *pmy_chain;
341
342 *pmy_chain = 0;
343 return old_chain;
344}
345
346/* Restore the cleanup chain from a previously saved chain. */
347void
348restore_cleanups (chain)
349 struct cleanup *chain;
350{
c5aa993b 351 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
352}
353
354void
355restore_final_cleanups (chain)
356 struct cleanup *chain;
357{
c5aa993b 358 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
359}
360
361void
362restore_my_cleanups (pmy_chain, chain)
363 struct cleanup **pmy_chain;
364 struct cleanup *chain;
365{
366 *pmy_chain = chain;
367}
368
369/* This function is useful for cleanups.
370 Do
371
c5aa993b
JM
372 foo = xmalloc (...);
373 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
374
375 to arrange to free the object thus allocated. */
376
377void
2f9429ae 378free_current_contents (void *ptr)
c906108c 379{
2f9429ae
AC
380 void **location = ptr;
381 if (*location != NULL)
382 free (*location);
c906108c
SS
383}
384
385/* Provide a known function that does nothing, to use as a base for
386 for a possibly long chain of cleanups. This is useful where we
387 use the cleanup chain for handling normal cleanups as well as dealing
388 with cleanups that need to be done as a result of a call to error().
389 In such cases, we may not be certain where the first cleanup is, unless
390 we have a do-nothing one to always use as the base. */
391
392/* ARGSUSED */
393void
e4005526 394null_cleanup (void *arg)
c906108c
SS
395{
396}
397
43ff13b4 398/* Add a continuation to the continuation list, the gloabl list
c2d11a7d 399 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4
JM
400void
401add_continuation (continuation_hook, arg_list)
c5aa993b
JM
402 void (*continuation_hook) PARAMS ((struct continuation_arg *));
403 struct continuation_arg *arg_list;
43ff13b4 404{
c5aa993b 405 struct continuation *continuation_ptr;
43ff13b4 406
c5aa993b
JM
407 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
408 continuation_ptr->continuation_hook = continuation_hook;
409 continuation_ptr->arg_list = arg_list;
410 continuation_ptr->next = cmd_continuation;
411 cmd_continuation = continuation_ptr;
43ff13b4
JM
412}
413
414/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
415 continuations. There is a problem though. In some cases new
416 continuations may be added while we are in the middle of this
417 loop. If this happens they will be added in the front, and done
418 before we have a chance of exhausting those that were already
419 there. We need to then save the beginning of the list in a pointer
420 and do the continuations from there on, instead of using the
421 global beginning of list as our iteration pointer.*/
c5aa993b 422void
43ff13b4 423do_all_continuations ()
c2d11a7d
JM
424{
425 struct continuation *continuation_ptr;
426 struct continuation *saved_continuation;
427
428 /* Copy the list header into another pointer, and set the global
429 list header to null, so that the global list can change as a side
430 effect of invoking the continuations and the processing of
431 the preexisting continuations will not be affected. */
432 continuation_ptr = cmd_continuation;
433 cmd_continuation = NULL;
434
435 /* Work now on the list we have set aside. */
436 while (continuation_ptr)
437 {
438 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
439 saved_continuation = continuation_ptr;
440 continuation_ptr = continuation_ptr->next;
441 free (saved_continuation);
442 }
443}
444
445/* Walk down the cmd_continuation list, and get rid of all the
446 continuations. */
447void
448discard_all_continuations ()
43ff13b4 449{
c5aa993b 450 struct continuation *continuation_ptr;
43ff13b4 451
c5aa993b
JM
452 while (cmd_continuation)
453 {
c5aa993b
JM
454 continuation_ptr = cmd_continuation;
455 cmd_continuation = continuation_ptr->next;
456 free (continuation_ptr);
457 }
43ff13b4 458}
c2c6d25f 459
57e687d9 460/* Add a continuation to the continuation list, the global list
c2d11a7d
JM
461 intermediate_continuation. The new continuation will be added at the front.*/
462void
463add_intermediate_continuation (continuation_hook, arg_list)
464 void (*continuation_hook) PARAMS ((struct continuation_arg *));
465 struct continuation_arg *arg_list;
466{
467 struct continuation *continuation_ptr;
468
469 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
470 continuation_ptr->continuation_hook = continuation_hook;
471 continuation_ptr->arg_list = arg_list;
472 continuation_ptr->next = intermediate_continuation;
473 intermediate_continuation = continuation_ptr;
474}
475
476/* Walk down the cmd_continuation list, and execute all the
477 continuations. There is a problem though. In some cases new
478 continuations may be added while we are in the middle of this
479 loop. If this happens they will be added in the front, and done
480 before we have a chance of exhausting those that were already
481 there. We need to then save the beginning of the list in a pointer
482 and do the continuations from there on, instead of using the
483 global beginning of list as our iteration pointer.*/
484void
485do_all_intermediate_continuations ()
486{
487 struct continuation *continuation_ptr;
488 struct continuation *saved_continuation;
489
490 /* Copy the list header into another pointer, and set the global
491 list header to null, so that the global list can change as a side
492 effect of invoking the continuations and the processing of
493 the preexisting continuations will not be affected. */
494 continuation_ptr = intermediate_continuation;
495 intermediate_continuation = NULL;
496
497 /* Work now on the list we have set aside. */
498 while (continuation_ptr)
499 {
500 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
501 saved_continuation = continuation_ptr;
502 continuation_ptr = continuation_ptr->next;
503 free (saved_continuation);
504 }
505}
506
c2c6d25f
JM
507/* Walk down the cmd_continuation list, and get rid of all the
508 continuations. */
509void
c2d11a7d 510discard_all_intermediate_continuations ()
c2c6d25f
JM
511{
512 struct continuation *continuation_ptr;
513
c2d11a7d 514 while (intermediate_continuation)
c2c6d25f 515 {
c2d11a7d
JM
516 continuation_ptr = intermediate_continuation;
517 intermediate_continuation = continuation_ptr->next;
c2c6d25f
JM
518 free (continuation_ptr);
519 }
520}
521
c906108c 522\f
c5aa993b 523
c906108c
SS
524/* Print a warning message. Way to use this is to call warning_begin,
525 output the warning message (use unfiltered output to gdb_stderr),
526 ending in a newline. There is not currently a warning_end that you
527 call afterwards, but such a thing might be added if it is useful
528 for a GUI to separate warning messages from other output.
529
530 FIXME: Why do warnings use unfiltered output and errors filtered?
531 Is this anything other than a historical accident? */
532
533void
534warning_begin ()
535{
536 target_terminal_ours ();
c5aa993b 537 wrap_here (""); /* Force out any buffered output */
c906108c
SS
538 gdb_flush (gdb_stdout);
539 if (warning_pre_print)
540 fprintf_unfiltered (gdb_stderr, warning_pre_print);
541}
542
543/* Print a warning message.
544 The first argument STRING is the warning message, used as a fprintf string,
545 and the remaining args are passed as arguments to it.
546 The primary difference between warnings and errors is that a warning
547 does not force the return to command level. */
548
c906108c 549void
c5aa993b 550warning (const char *string,...)
c906108c
SS
551{
552 va_list args;
c906108c 553 va_start (args, string);
c906108c
SS
554 if (warning_hook)
555 (*warning_hook) (string, args);
556 else
c5aa993b
JM
557 {
558 warning_begin ();
559 vfprintf_unfiltered (gdb_stderr, string, args);
560 fprintf_unfiltered (gdb_stderr, "\n");
561 va_end (args);
562 }
c906108c
SS
563}
564
565/* Start the printing of an error message. Way to use this is to call
566 this, output the error message (use filtered output to gdb_stderr
567 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
568 in a newline, and then call return_to_top_level (RETURN_ERROR).
569 error() provides a convenient way to do this for the special case
570 that the error message can be formatted with a single printf call,
571 but this is more general. */
572void
573error_begin ()
574{
575 if (error_begin_hook)
576 error_begin_hook ();
577
578 target_terminal_ours ();
c5aa993b 579 wrap_here (""); /* Force out any buffered output */
c906108c
SS
580 gdb_flush (gdb_stdout);
581
582 annotate_error_begin ();
583
584 if (error_pre_print)
585 fprintf_filtered (gdb_stderr, error_pre_print);
586}
587
588/* Print an error message and return to command level.
589 The first argument STRING is the error message, used as a fprintf string,
590 and the remaining args are passed as arguments to it. */
591
4ce44c66
JM
592NORETURN void
593verror (const char *string, va_list args)
594{
c2d11a7d
JM
595 char *err_string;
596 struct cleanup *err_string_cleanup;
4ce44c66
JM
597 /* FIXME: cagney/1999-11-10: All error calls should come here.
598 Unfortunatly some code uses the sequence: error_begin(); print
599 error message; return_to_top_level. That code should be
600 flushed. */
601 error_begin ();
c2d11a7d
JM
602 /* NOTE: It's tempting to just do the following...
603 vfprintf_filtered (gdb_stderr, string, args);
604 and then follow with a similar looking statement to cause the message
605 to also go to gdb_lasterr. But if we do this, we'll be traversing the
606 va_list twice which works on some platforms and fails miserably on
607 others. */
608 /* Save it as the last error */
d9fcf2fb 609 ui_file_rewind (gdb_lasterr);
4ce44c66 610 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
611 /* Retrieve the last error and print it to gdb_stderr */
612 err_string = error_last_message ();
613 err_string_cleanup = make_cleanup (free, err_string);
614 fputs_filtered (err_string, gdb_stderr);
615 fprintf_filtered (gdb_stderr, "\n");
616 do_cleanups (err_string_cleanup);
4ce44c66
JM
617 return_to_top_level (RETURN_ERROR);
618}
619
c906108c 620NORETURN void
c5aa993b 621error (const char *string,...)
c906108c
SS
622{
623 va_list args;
c906108c 624 va_start (args, string);
4ce44c66
JM
625 verror (string, args);
626 va_end (args);
c906108c
SS
627}
628
2acceee2 629NORETURN void
d9fcf2fb 630error_stream (struct ui_file *stream)
2acceee2 631{
4ce44c66 632 long size;
d9fcf2fb 633 char *msg = ui_file_xstrdup (stream, &size);
4ce44c66
JM
634 make_cleanup (free, msg);
635 error ("%s", msg);
2acceee2
JM
636}
637
638/* Get the last error message issued by gdb */
639
640char *
641error_last_message (void)
642{
4ce44c66 643 long len;
d9fcf2fb 644 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 645}
4ce44c66 646
2acceee2
JM
647/* This is to be called by main() at the very beginning */
648
649void
650error_init (void)
651{
4ce44c66 652 gdb_lasterr = mem_fileopen ();
2acceee2 653}
c906108c 654
96baa820
JM
655/* Print a message reporting an internal error. Ask the user if they
656 want to continue, dump core, or just exit. */
c906108c 657
c906108c 658NORETURN void
4ce44c66 659internal_verror (const char *fmt, va_list ap)
c906108c 660{
96baa820
JM
661 static char msg[] = "Internal GDB error: recursive internal error.\n";
662 static int dejavu = 0;
7be570e7
JM
663 int continue_p;
664 int dump_core_p;
c906108c 665
96baa820
JM
666 /* don't allow infinite error recursion. */
667 switch (dejavu)
668 {
669 case 0:
670 dejavu = 1;
671 break;
672 case 1:
673 dejavu = 2;
674 fputs_unfiltered (msg, gdb_stderr);
675 abort ();
676 default:
677 dejavu = 3;
678 write (STDERR_FILENO, msg, sizeof (msg));
679 exit (1);
680 }
c906108c 681
96baa820 682 /* Try to get the message out */
4261bedc 683 target_terminal_ours ();
7be570e7 684 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
4ce44c66 685 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 686 fputs_unfiltered ("\n", gdb_stderr);
c906108c 687
7be570e7
JM
688 /* Default (no case) is to quit GDB. When in batch mode this
689 lessens the likelhood of GDB going into an infinate loop. */
690 continue_p = query ("\
691An internal GDB error was detected. This may make make further\n\
692debugging unreliable. Continue this debugging session? ");
693
694 /* Default (no case) is to not dump core. Lessen the chance of GDB
695 leaving random core files around. */
696 dump_core_p = query ("\
697Create a core file containing the current state of GDB? ");
698
699 if (continue_p)
700 {
701 if (dump_core_p)
702 {
703 if (fork () == 0)
704 abort ();
705 }
706 }
707 else
708 {
709 if (dump_core_p)
710 abort ();
711 else
712 exit (1);
713 }
96baa820
JM
714
715 dejavu = 0;
716 return_to_top_level (RETURN_ERROR);
c906108c
SS
717}
718
4ce44c66
JM
719NORETURN void
720internal_error (char *string, ...)
721{
722 va_list ap;
723 va_start (ap, string);
4261bedc 724
4ce44c66
JM
725 internal_verror (string, ap);
726 va_end (ap);
727}
728
c906108c
SS
729/* The strerror() function can return NULL for errno values that are
730 out of range. Provide a "safe" version that always returns a
731 printable string. */
732
733char *
734safe_strerror (errnum)
735 int errnum;
736{
737 char *msg;
738 static char buf[32];
739
740 if ((msg = strerror (errnum)) == NULL)
741 {
742 sprintf (buf, "(undocumented errno %d)", errnum);
743 msg = buf;
744 }
745 return (msg);
746}
747
748/* The strsignal() function can return NULL for signal values that are
749 out of range. Provide a "safe" version that always returns a
750 printable string. */
751
752char *
753safe_strsignal (signo)
754 int signo;
755{
756 char *msg;
757 static char buf[32];
758
759 if ((msg = strsignal (signo)) == NULL)
760 {
761 sprintf (buf, "(undocumented signal %d)", signo);
762 msg = buf;
763 }
764 return (msg);
765}
766
767
768/* Print the system error message for errno, and also mention STRING
769 as the file name for which the error was encountered.
770 Then return to command level. */
771
772NORETURN void
773perror_with_name (string)
774 char *string;
775{
776 char *err;
777 char *combined;
778
779 err = safe_strerror (errno);
780 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
781 strcpy (combined, string);
782 strcat (combined, ": ");
783 strcat (combined, err);
784
785 /* I understand setting these is a matter of taste. Still, some people
786 may clear errno but not know about bfd_error. Doing this here is not
787 unreasonable. */
788 bfd_set_error (bfd_error_no_error);
789 errno = 0;
790
c5aa993b 791 error ("%s.", combined);
c906108c
SS
792}
793
794/* Print the system error message for ERRCODE, and also mention STRING
795 as the file name for which the error was encountered. */
796
797void
798print_sys_errmsg (string, errcode)
799 char *string;
800 int errcode;
801{
802 char *err;
803 char *combined;
804
805 err = safe_strerror (errcode);
806 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
807 strcpy (combined, string);
808 strcat (combined, ": ");
809 strcat (combined, err);
810
811 /* We want anything which was printed on stdout to come out first, before
812 this message. */
813 gdb_flush (gdb_stdout);
814 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
815}
816
817/* Control C eventually causes this to be called, at a convenient time. */
818
819void
820quit ()
821{
822 serial_t gdb_stdout_serial = serial_fdopen (1);
823
824 target_terminal_ours ();
825
826 /* We want all output to appear now, before we print "Quit". We
827 have 3 levels of buffering we have to flush (it's possible that
828 some of these should be changed to flush the lower-level ones
829 too): */
830
831 /* 1. The _filtered buffer. */
c5aa993b 832 wrap_here ((char *) 0);
c906108c
SS
833
834 /* 2. The stdio buffer. */
835 gdb_flush (gdb_stdout);
836 gdb_flush (gdb_stderr);
837
838 /* 3. The system-level buffer. */
839 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
840 SERIAL_UN_FDOPEN (gdb_stdout_serial);
841
842 annotate_error_begin ();
843
844 /* Don't use *_filtered; we don't want to prompt the user to continue. */
845 if (quit_pre_print)
846 fprintf_unfiltered (gdb_stderr, quit_pre_print);
847
7be570e7
JM
848#ifdef __MSDOS__
849 /* No steenking SIGINT will ever be coming our way when the
850 program is resumed. Don't lie. */
851 fprintf_unfiltered (gdb_stderr, "Quit\n");
852#else
c906108c 853 if (job_control
c5aa993b
JM
854 /* If there is no terminal switching for this target, then we can't
855 possibly get screwed by the lack of job control. */
c906108c
SS
856 || current_target.to_terminal_ours == NULL)
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858 else
859 fprintf_unfiltered (gdb_stderr,
c5aa993b 860 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 861#endif
c906108c
SS
862 return_to_top_level (RETURN_QUIT);
863}
864
865
7be570e7 866#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
867
868/*
869 * Windows translates all keyboard and mouse events
870 * into a message which is appended to the message
871 * queue for the process.
872 */
873
c5aa993b
JM
874void
875notice_quit ()
c906108c 876{
c5aa993b 877 int k = win32pollquit ();
c906108c
SS
878 if (k == 1)
879 quit_flag = 1;
880 else if (k == 2)
881 immediate_quit = 1;
882}
883
4ce44c66 884#else /* !defined(_MSC_VER) */
c906108c 885
c5aa993b
JM
886void
887notice_quit ()
c906108c
SS
888{
889 /* Done by signals */
890}
891
4ce44c66 892#endif /* !defined(_MSC_VER) */
c906108c 893
c906108c 894/* Control C comes here */
c906108c
SS
895void
896request_quit (signo)
897 int signo;
898{
899 quit_flag = 1;
900 /* Restore the signal handler. Harmless with BSD-style signals, needed
901 for System V-style signals. So just always do it, rather than worrying
902 about USG defines and stuff like that. */
903 signal (signo, request_quit);
904
905#ifdef REQUEST_QUIT
906 REQUEST_QUIT;
907#else
c5aa993b 908 if (immediate_quit)
c906108c
SS
909 quit ();
910#endif
911}
c906108c
SS
912\f
913/* Memory management stuff (malloc friends). */
914
915/* Make a substitute size_t for non-ANSI compilers. */
916
917#ifndef HAVE_STDDEF_H
918#ifndef size_t
919#define size_t unsigned int
920#endif
921#endif
922
923#if !defined (USE_MMALLOC)
924
082faf24
AC
925PTR
926mcalloc (PTR md, size_t number, size_t size)
ed9a39eb
JM
927{
928 return calloc (number, size);
929}
930
c906108c
SS
931PTR
932mmalloc (md, size)
933 PTR md;
934 size_t size;
935{
936 return malloc (size);
937}
938
939PTR
940mrealloc (md, ptr, size)
941 PTR md;
942 PTR ptr;
943 size_t size;
944{
c5aa993b 945 if (ptr == 0) /* Guard against old realloc's */
c906108c
SS
946 return malloc (size);
947 else
948 return realloc (ptr, size);
949}
950
951void
952mfree (md, ptr)
953 PTR md;
954 PTR ptr;
955{
956 free (ptr);
957}
958
c5aa993b 959#endif /* USE_MMALLOC */
c906108c
SS
960
961#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
962
963void
082faf24 964init_malloc (void *md)
c906108c
SS
965{
966}
967
968#else /* Have mmalloc and want corruption checking */
969
970static void
971malloc_botch ()
972{
96baa820
JM
973 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
974 abort ();
c906108c
SS
975}
976
977/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
978 by MD, to detect memory corruption. Note that MD may be NULL to specify
979 the default heap that grows via sbrk.
980
981 Note that for freshly created regions, we must call mmcheckf prior to any
982 mallocs in the region. Otherwise, any region which was allocated prior to
983 installing the checking hooks, which is later reallocated or freed, will
984 fail the checks! The mmcheck function only allows initial hooks to be
985 installed before the first mmalloc. However, anytime after we have called
986 mmcheck the first time to install the checking hooks, we can call it again
987 to update the function pointer to the memory corruption handler.
988
989 Returns zero on failure, non-zero on success. */
990
991#ifndef MMCHECK_FORCE
992#define MMCHECK_FORCE 0
993#endif
994
995void
082faf24 996init_malloc (void *md)
c906108c
SS
997{
998 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
999 {
1000 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
1001 to something other than dummy_target, until after
1002 initialize_all_files(). */
c906108c
SS
1003
1004 fprintf_unfiltered
1005 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1006 fprintf_unfiltered
1007 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1008 }
1009
1010 mmtrace ();
1011}
1012
1013#endif /* Have mmalloc and want corruption checking */
1014
1015/* Called when a memory allocation fails, with the number of bytes of
1016 memory requested in SIZE. */
1017
1018NORETURN void
1019nomem (size)
1020 long size;
1021{
1022 if (size > 0)
1023 {
96baa820 1024 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1025 }
1026 else
1027 {
96baa820 1028 internal_error ("virtual memory exhausted.");
c906108c
SS
1029 }
1030}
1031
1032/* Like mmalloc but get error if no storage available, and protect against
1033 the caller wanting to allocate zero bytes. Whether to return NULL for
1034 a zero byte request, or translate the request into a request for one
1035 byte of zero'd storage, is a religious issue. */
1036
1037PTR
1038xmmalloc (md, size)
1039 PTR md;
1040 long size;
1041{
1042 register PTR val;
1043
1044 if (size == 0)
1045 {
1046 val = NULL;
1047 }
1048 else if ((val = mmalloc (md, size)) == NULL)
1049 {
1050 nomem (size);
1051 }
1052 return (val);
1053}
1054
1055/* Like mrealloc but get error if no storage available. */
1056
1057PTR
1058xmrealloc (md, ptr, size)
1059 PTR md;
1060 PTR ptr;
1061 long size;
1062{
1063 register PTR val;
1064
1065 if (ptr != NULL)
1066 {
1067 val = mrealloc (md, ptr, size);
1068 }
1069 else
1070 {
1071 val = mmalloc (md, size);
1072 }
1073 if (val == NULL)
1074 {
1075 nomem (size);
1076 }
1077 return (val);
1078}
1079
1080/* Like malloc but get error if no storage available, and protect against
1081 the caller wanting to allocate zero bytes. */
1082
1083PTR
1084xmalloc (size)
1085 size_t size;
1086{
1087 return (xmmalloc ((PTR) NULL, size));
1088}
1089
ed9a39eb
JM
1090/* Like calloc but get error if no storage available */
1091
1092PTR
1093xcalloc (size_t number, size_t size)
1094{
1095 void *mem = mcalloc (NULL, number, size);
1096 if (mem == NULL)
1097 nomem (number * size);
1098 return mem;
1099}
1100
c906108c
SS
1101/* Like mrealloc but get error if no storage available. */
1102
1103PTR
1104xrealloc (ptr, size)
1105 PTR ptr;
1106 size_t size;
1107{
1108 return (xmrealloc ((PTR) NULL, ptr, size));
1109}
c906108c 1110\f
c5aa993b 1111
c906108c
SS
1112/* My replacement for the read system call.
1113 Used like `read' but keeps going if `read' returns too soon. */
1114
1115int
1116myread (desc, addr, len)
1117 int desc;
1118 char *addr;
1119 int len;
1120{
1121 register int val;
1122 int orglen = len;
1123
1124 while (len > 0)
1125 {
1126 val = read (desc, addr, len);
1127 if (val < 0)
1128 return val;
1129 if (val == 0)
1130 return orglen - len;
1131 len -= val;
1132 addr += val;
1133 }
1134 return orglen;
1135}
1136\f
1137/* Make a copy of the string at PTR with SIZE characters
1138 (and add a null character at the end in the copy).
1139 Uses malloc to get the space. Returns the address of the copy. */
1140
1141char *
1142savestring (ptr, size)
1143 const char *ptr;
1144 int size;
1145{
1146 register char *p = (char *) xmalloc (size + 1);
1147 memcpy (p, ptr, size);
1148 p[size] = 0;
1149 return p;
1150}
1151
1152char *
082faf24 1153msavestring (void *md, const char *ptr, int size)
c906108c
SS
1154{
1155 register char *p = (char *) xmmalloc (md, size + 1);
1156 memcpy (p, ptr, size);
1157 p[size] = 0;
1158 return p;
1159}
1160
1161/* The "const" is so it compiles under DGUX (which prototypes strsave
1162 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1163 Doesn't real strsave return NULL if out of memory? */
1164char *
1165strsave (ptr)
1166 const char *ptr;
1167{
1168 return savestring (ptr, strlen (ptr));
1169}
1170
1171char *
082faf24 1172mstrsave (void *md, const char *ptr)
c906108c
SS
1173{
1174 return (msavestring (md, ptr, strlen (ptr)));
1175}
1176
1177void
1178print_spaces (n, file)
1179 register int n;
d9fcf2fb 1180 register struct ui_file *file;
c906108c 1181{
392a587b 1182 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1183}
1184
1185/* Print a host address. */
1186
1187void
d9fcf2fb 1188gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1189{
1190
1191 /* We could use the %p conversion specifier to fprintf if we had any
1192 way of knowing whether this host supports it. But the following
1193 should work on the Alpha and on 32 bit machines. */
1194
c5aa993b 1195 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1196}
1197
1198/* Ask user a y-or-n question and return 1 iff answer is yes.
1199 Takes three args which are given to printf to print the question.
1200 The first, a control string, should end in "? ".
1201 It should not say how to answer, because we do that. */
1202
1203/* VARARGS */
1204int
c5aa993b 1205query (char *ctlstr,...)
c906108c
SS
1206{
1207 va_list args;
1208 register int answer;
1209 register int ans2;
1210 int retval;
1211
c906108c 1212 va_start (args, ctlstr);
c906108c
SS
1213
1214 if (query_hook)
1215 {
1216 return query_hook (ctlstr, args);
1217 }
1218
1219 /* Automatically answer "yes" if input is not from a terminal. */
1220 if (!input_from_terminal_p ())
1221 return 1;
1222#ifdef MPW
1223 /* FIXME Automatically answer "yes" if called from MacGDB. */
1224 if (mac_app)
1225 return 1;
1226#endif /* MPW */
1227
1228 while (1)
1229 {
1230 wrap_here (""); /* Flush any buffered output */
1231 gdb_flush (gdb_stdout);
1232
1233 if (annotation_level > 1)
1234 printf_filtered ("\n\032\032pre-query\n");
1235
1236 vfprintf_filtered (gdb_stdout, ctlstr, args);
1237 printf_filtered ("(y or n) ");
1238
1239 if (annotation_level > 1)
1240 printf_filtered ("\n\032\032query\n");
1241
1242#ifdef MPW
1243 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1244 have a prompt on the front of it. */
c906108c
SS
1245 if (!mac_app)
1246 fputs_unfiltered ("\n", gdb_stdout);
1247#endif /* MPW */
1248
c5aa993b 1249 wrap_here ("");
c906108c
SS
1250 gdb_flush (gdb_stdout);
1251
1252#if defined(TUI)
c5aa993b 1253 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1254#endif
1255 answer = fgetc (stdin);
1256#if defined(TUI)
1257 else
c5aa993b 1258 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1259
1260#endif
1261 clearerr (stdin); /* in case of C-d */
1262 if (answer == EOF) /* C-d */
c5aa993b 1263 {
c906108c
SS
1264 retval = 1;
1265 break;
1266 }
1267 /* Eat rest of input line, to EOF or newline */
1268 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1269 do
c906108c
SS
1270 {
1271#if defined(TUI)
c5aa993b 1272 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1273#endif
1274 ans2 = fgetc (stdin);
1275#if defined(TUI)
1276 else
c5aa993b 1277 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1278#endif
1279 clearerr (stdin);
1280 }
c5aa993b
JM
1281 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1282 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1283
1284 if (answer >= 'a')
1285 answer -= 040;
1286 if (answer == 'Y')
1287 {
1288 retval = 1;
1289 break;
1290 }
1291 if (answer == 'N')
1292 {
1293 retval = 0;
1294 break;
1295 }
1296 printf_filtered ("Please answer y or n.\n");
1297 }
1298
1299 if (annotation_level > 1)
1300 printf_filtered ("\n\032\032post-query\n");
1301 return retval;
1302}
c906108c 1303\f
c5aa993b 1304
c906108c
SS
1305/* Parse a C escape sequence. STRING_PTR points to a variable
1306 containing a pointer to the string to parse. That pointer
1307 should point to the character after the \. That pointer
1308 is updated past the characters we use. The value of the
1309 escape sequence is returned.
1310
1311 A negative value means the sequence \ newline was seen,
1312 which is supposed to be equivalent to nothing at all.
1313
1314 If \ is followed by a null character, we return a negative
1315 value and leave the string pointer pointing at the null character.
1316
1317 If \ is followed by 000, we return 0 and leave the string pointer
1318 after the zeros. A value of 0 does not mean end of string. */
1319
1320int
1321parse_escape (string_ptr)
1322 char **string_ptr;
1323{
1324 register int c = *(*string_ptr)++;
1325 switch (c)
1326 {
1327 case 'a':
1328 return 007; /* Bell (alert) char */
1329 case 'b':
1330 return '\b';
1331 case 'e': /* Escape character */
1332 return 033;
1333 case 'f':
1334 return '\f';
1335 case 'n':
1336 return '\n';
1337 case 'r':
1338 return '\r';
1339 case 't':
1340 return '\t';
1341 case 'v':
1342 return '\v';
1343 case '\n':
1344 return -2;
1345 case 0:
1346 (*string_ptr)--;
1347 return 0;
1348 case '^':
1349 c = *(*string_ptr)++;
1350 if (c == '\\')
1351 c = parse_escape (string_ptr);
1352 if (c == '?')
1353 return 0177;
1354 return (c & 0200) | (c & 037);
c5aa993b 1355
c906108c
SS
1356 case '0':
1357 case '1':
1358 case '2':
1359 case '3':
1360 case '4':
1361 case '5':
1362 case '6':
1363 case '7':
1364 {
1365 register int i = c - '0';
1366 register int count = 0;
1367 while (++count < 3)
1368 {
1369 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1370 {
1371 i *= 8;
1372 i += c - '0';
1373 }
1374 else
1375 {
1376 (*string_ptr)--;
1377 break;
1378 }
1379 }
1380 return i;
1381 }
1382 default:
1383 return c;
1384 }
1385}
1386\f
1387/* Print the character C on STREAM as part of the contents of a literal
1388 string whose delimiter is QUOTER. Note that this routine should only
1389 be call for printing things which are independent of the language
1390 of the program being debugged. */
1391
d9fcf2fb 1392static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
43e526b9
JM
1393
1394static void
1395printchar (c, do_fputs, do_fprintf, stream, quoter)
1396 int c;
d9fcf2fb
JM
1397 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1398 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1399 struct ui_file *stream;
c906108c
SS
1400 int quoter;
1401{
1402
1403 c &= 0xFF; /* Avoid sign bit follies */
1404
c5aa993b
JM
1405 if (c < 0x20 || /* Low control chars */
1406 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1407 (sevenbit_strings && c >= 0x80))
1408 { /* high order bit set */
1409 switch (c)
1410 {
1411 case '\n':
43e526b9 1412 do_fputs ("\\n", stream);
c5aa993b
JM
1413 break;
1414 case '\b':
43e526b9 1415 do_fputs ("\\b", stream);
c5aa993b
JM
1416 break;
1417 case '\t':
43e526b9 1418 do_fputs ("\\t", stream);
c5aa993b
JM
1419 break;
1420 case '\f':
43e526b9 1421 do_fputs ("\\f", stream);
c5aa993b
JM
1422 break;
1423 case '\r':
43e526b9 1424 do_fputs ("\\r", stream);
c5aa993b
JM
1425 break;
1426 case '\033':
43e526b9 1427 do_fputs ("\\e", stream);
c5aa993b
JM
1428 break;
1429 case '\007':
43e526b9 1430 do_fputs ("\\a", stream);
c5aa993b
JM
1431 break;
1432 default:
43e526b9 1433 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1434 break;
1435 }
1436 }
1437 else
1438 {
1439 if (c == '\\' || c == quoter)
43e526b9
JM
1440 do_fputs ("\\", stream);
1441 do_fprintf (stream, "%c", c);
c5aa993b 1442 }
c906108c 1443}
43e526b9
JM
1444
1445/* Print the character C on STREAM as part of the contents of a
1446 literal string whose delimiter is QUOTER. Note that these routines
1447 should only be call for printing things which are independent of
1448 the language of the program being debugged. */
1449
1450void
1451fputstr_filtered (str, quoter, stream)
1452 const char *str;
1453 int quoter;
d9fcf2fb 1454 struct ui_file *stream;
43e526b9
JM
1455{
1456 while (*str)
1457 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1458}
1459
1460void
1461fputstr_unfiltered (str, quoter, stream)
1462 const char *str;
1463 int quoter;
d9fcf2fb 1464 struct ui_file *stream;
43e526b9
JM
1465{
1466 while (*str)
1467 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1468}
1469
1470void
1471fputstrn_unfiltered (str, n, quoter, stream)
1472 const char *str;
1473 int n;
1474 int quoter;
d9fcf2fb 1475 struct ui_file *stream;
43e526b9
JM
1476{
1477 int i;
1478 for (i = 0; i < n; i++)
1479 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1480}
1481
c906108c 1482\f
c5aa993b 1483
c906108c
SS
1484/* Number of lines per page or UINT_MAX if paging is disabled. */
1485static unsigned int lines_per_page;
e514a9d6 1486/* Number of chars per line or UNIT_MAX if line folding is disabled. */
c906108c
SS
1487static unsigned int chars_per_line;
1488/* Current count of lines printed on this page, chars on this line. */
1489static unsigned int lines_printed, chars_printed;
1490
1491/* Buffer and start column of buffered text, for doing smarter word-
1492 wrapping. When someone calls wrap_here(), we start buffering output
1493 that comes through fputs_filtered(). If we see a newline, we just
1494 spit it out and forget about the wrap_here(). If we see another
1495 wrap_here(), we spit it out and remember the newer one. If we see
1496 the end of the line, we spit out a newline, the indent, and then
1497 the buffered output. */
1498
1499/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1500 are waiting to be output (they have already been counted in chars_printed).
1501 When wrap_buffer[0] is null, the buffer is empty. */
1502static char *wrap_buffer;
1503
1504/* Pointer in wrap_buffer to the next character to fill. */
1505static char *wrap_pointer;
1506
1507/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1508 is non-zero. */
1509static char *wrap_indent;
1510
1511/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1512 is not in effect. */
1513static int wrap_column;
c906108c 1514\f
c5aa993b 1515
c906108c
SS
1516/* Inialize the lines and chars per page */
1517void
c5aa993b 1518init_page_info ()
c906108c
SS
1519{
1520#if defined(TUI)
c5aa993b 1521 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1522 {
1523 lines_per_page = cmdWin->generic.height;
1524 chars_per_line = cmdWin->generic.width;
1525 }
1526 else
1527#endif
1528 {
1529 /* These defaults will be used if we are unable to get the correct
1530 values from termcap. */
1531#if defined(__GO32__)
c5aa993b
JM
1532 lines_per_page = ScreenRows ();
1533 chars_per_line = ScreenCols ();
1534#else
c906108c
SS
1535 lines_per_page = 24;
1536 chars_per_line = 80;
1537
1538#if !defined (MPW) && !defined (_WIN32)
1539 /* No termcap under MPW, although might be cool to do something
1540 by looking at worksheet or console window sizes. */
1541 /* Initialize the screen height and width from termcap. */
1542 {
c5aa993b 1543 char *termtype = getenv ("TERM");
c906108c 1544
c5aa993b
JM
1545 /* Positive means success, nonpositive means failure. */
1546 int status;
c906108c 1547
c5aa993b
JM
1548 /* 2048 is large enough for all known terminals, according to the
1549 GNU termcap manual. */
1550 char term_buffer[2048];
c906108c 1551
c5aa993b
JM
1552 if (termtype)
1553 {
c906108c
SS
1554 status = tgetent (term_buffer, termtype);
1555 if (status > 0)
1556 {
c5aa993b 1557 int val;
c906108c 1558 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1559
1560 val = tgetnum ("li");
1561 if (val >= 0 && !running_in_emacs)
1562 lines_per_page = val;
1563 else
1564 /* The number of lines per page is not mentioned
c906108c
SS
1565 in the terminal description. This probably means
1566 that paging is not useful (e.g. emacs shell window),
1567 so disable paging. */
c5aa993b
JM
1568 lines_per_page = UINT_MAX;
1569
1570 val = tgetnum ("co");
1571 if (val >= 0)
1572 chars_per_line = val;
c906108c 1573 }
c5aa993b 1574 }
c906108c
SS
1575 }
1576#endif /* MPW */
1577
1578#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1579
1580 /* If there is a better way to determine the window size, use it. */
1581 SIGWINCH_HANDLER (SIGWINCH);
1582#endif
1583#endif
1584 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1585 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1586 lines_per_page = UINT_MAX;
1587 } /* the command_line_version */
1588 set_width ();
c906108c
SS
1589}
1590
1591static void
c5aa993b 1592set_width ()
c906108c
SS
1593{
1594 if (chars_per_line == 0)
c5aa993b 1595 init_page_info ();
c906108c
SS
1596
1597 if (!wrap_buffer)
1598 {
1599 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1600 wrap_buffer[0] = '\0';
1601 }
1602 else
1603 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1604 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1605}
1606
1607/* ARGSUSED */
c5aa993b 1608static void
c906108c
SS
1609set_width_command (args, from_tty, c)
1610 char *args;
1611 int from_tty;
1612 struct cmd_list_element *c;
1613{
1614 set_width ();
1615}
1616
1617/* Wait, so the user can read what's on the screen. Prompt the user
1618 to continue by pressing RETURN. */
1619
1620static void
1621prompt_for_continue ()
1622{
1623 char *ignore;
1624 char cont_prompt[120];
1625
1626 if (annotation_level > 1)
1627 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1628
1629 strcpy (cont_prompt,
1630 "---Type <return> to continue, or q <return> to quit---");
1631 if (annotation_level > 1)
1632 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1633
1634 /* We must do this *before* we call gdb_readline, else it will eventually
1635 call us -- thinking that we're trying to print beyond the end of the
1636 screen. */
1637 reinitialize_more_filter ();
1638
1639 immediate_quit++;
1640 /* On a real operating system, the user can quit with SIGINT.
1641 But not on GO32.
1642
1643 'q' is provided on all systems so users don't have to change habits
1644 from system to system, and because telling them what to do in
1645 the prompt is more user-friendly than expecting them to think of
1646 SIGINT. */
1647 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1648 whereas control-C to gdb_readline will cause the user to get dumped
1649 out to DOS. */
1650 ignore = readline (cont_prompt);
1651
1652 if (annotation_level > 1)
1653 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1654
1655 if (ignore)
1656 {
1657 char *p = ignore;
1658 while (*p == ' ' || *p == '\t')
1659 ++p;
1660 if (p[0] == 'q')
0f71a2f6 1661 {
6426a772 1662 if (!event_loop_p)
0f71a2f6
JM
1663 request_quit (SIGINT);
1664 else
c5aa993b 1665 async_request_quit (0);
0f71a2f6 1666 }
c906108c
SS
1667 free (ignore);
1668 }
1669 immediate_quit--;
1670
1671 /* Now we have to do this again, so that GDB will know that it doesn't
1672 need to save the ---Type <return>--- line at the top of the screen. */
1673 reinitialize_more_filter ();
1674
1675 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1676}
1677
1678/* Reinitialize filter; ie. tell it to reset to original values. */
1679
1680void
1681reinitialize_more_filter ()
1682{
1683 lines_printed = 0;
1684 chars_printed = 0;
1685}
1686
1687/* Indicate that if the next sequence of characters overflows the line,
1688 a newline should be inserted here rather than when it hits the end.
1689 If INDENT is non-null, it is a string to be printed to indent the
1690 wrapped part on the next line. INDENT must remain accessible until
1691 the next call to wrap_here() or until a newline is printed through
1692 fputs_filtered().
1693
1694 If the line is already overfull, we immediately print a newline and
1695 the indentation, and disable further wrapping.
1696
1697 If we don't know the width of lines, but we know the page height,
1698 we must not wrap words, but should still keep track of newlines
1699 that were explicitly printed.
1700
1701 INDENT should not contain tabs, as that will mess up the char count
1702 on the next line. FIXME.
1703
1704 This routine is guaranteed to force out any output which has been
1705 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1706 used to force out output from the wrap_buffer. */
1707
1708void
c5aa993b 1709wrap_here (indent)
c906108c
SS
1710 char *indent;
1711{
1712 /* This should have been allocated, but be paranoid anyway. */
1713 if (!wrap_buffer)
1714 abort ();
1715
1716 if (wrap_buffer[0])
1717 {
1718 *wrap_pointer = '\0';
1719 fputs_unfiltered (wrap_buffer, gdb_stdout);
1720 }
1721 wrap_pointer = wrap_buffer;
1722 wrap_buffer[0] = '\0';
c5aa993b 1723 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1724 {
1725 wrap_column = 0;
1726 }
1727 else if (chars_printed >= chars_per_line)
1728 {
1729 puts_filtered ("\n");
1730 if (indent != NULL)
1731 puts_filtered (indent);
1732 wrap_column = 0;
1733 }
1734 else
1735 {
1736 wrap_column = chars_printed;
1737 if (indent == NULL)
1738 wrap_indent = "";
1739 else
1740 wrap_indent = indent;
1741 }
1742}
1743
1744/* Ensure that whatever gets printed next, using the filtered output
1745 commands, starts at the beginning of the line. I.E. if there is
1746 any pending output for the current line, flush it and start a new
1747 line. Otherwise do nothing. */
1748
1749void
1750begin_line ()
1751{
1752 if (chars_printed > 0)
1753 {
1754 puts_filtered ("\n");
1755 }
1756}
1757
ac9a91a7 1758
c906108c
SS
1759/* Like fputs but if FILTER is true, pause after every screenful.
1760
1761 Regardless of FILTER can wrap at points other than the final
1762 character of a line.
1763
1764 Unlike fputs, fputs_maybe_filtered does not return a value.
1765 It is OK for LINEBUFFER to be NULL, in which case just don't print
1766 anything.
1767
1768 Note that a longjmp to top level may occur in this routine (only if
1769 FILTER is true) (since prompt_for_continue may do so) so this
1770 routine should not be called when cleanups are not in place. */
1771
1772static void
1773fputs_maybe_filtered (linebuffer, stream, filter)
1774 const char *linebuffer;
d9fcf2fb 1775 struct ui_file *stream;
c906108c
SS
1776 int filter;
1777{
1778 const char *lineptr;
1779
1780 if (linebuffer == 0)
1781 return;
1782
1783 /* Don't do any filtering if it is disabled. */
7a292a7a 1784 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1785 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1786 {
1787 fputs_unfiltered (linebuffer, stream);
1788 return;
1789 }
1790
1791 /* Go through and output each character. Show line extension
1792 when this is necessary; prompt user for new page when this is
1793 necessary. */
c5aa993b 1794
c906108c
SS
1795 lineptr = linebuffer;
1796 while (*lineptr)
1797 {
1798 /* Possible new page. */
1799 if (filter &&
1800 (lines_printed >= lines_per_page - 1))
1801 prompt_for_continue ();
1802
1803 while (*lineptr && *lineptr != '\n')
1804 {
1805 /* Print a single line. */
1806 if (*lineptr == '\t')
1807 {
1808 if (wrap_column)
1809 *wrap_pointer++ = '\t';
1810 else
1811 fputc_unfiltered ('\t', stream);
1812 /* Shifting right by 3 produces the number of tab stops
1813 we have already passed, and then adding one and
c5aa993b 1814 shifting left 3 advances to the next tab stop. */
c906108c
SS
1815 chars_printed = ((chars_printed >> 3) + 1) << 3;
1816 lineptr++;
1817 }
1818 else
1819 {
1820 if (wrap_column)
1821 *wrap_pointer++ = *lineptr;
1822 else
c5aa993b 1823 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1824 chars_printed++;
1825 lineptr++;
1826 }
c5aa993b 1827
c906108c
SS
1828 if (chars_printed >= chars_per_line)
1829 {
1830 unsigned int save_chars = chars_printed;
1831
1832 chars_printed = 0;
1833 lines_printed++;
1834 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1835 if chars_per_line is right, we probably just overflowed
1836 anyway; if it's wrong, let us keep going. */
c906108c
SS
1837 if (wrap_column)
1838 fputc_unfiltered ('\n', stream);
1839
1840 /* Possible new page. */
1841 if (lines_printed >= lines_per_page - 1)
1842 prompt_for_continue ();
1843
1844 /* Now output indentation and wrapped string */
1845 if (wrap_column)
1846 {
1847 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1848 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1849 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1850 /* FIXME, this strlen is what prevents wrap_indent from
1851 containing tabs. However, if we recurse to print it
1852 and count its chars, we risk trouble if wrap_indent is
1853 longer than (the user settable) chars_per_line.
1854 Note also that this can set chars_printed > chars_per_line
1855 if we are printing a long string. */
1856 chars_printed = strlen (wrap_indent)
c5aa993b 1857 + (save_chars - wrap_column);
c906108c
SS
1858 wrap_pointer = wrap_buffer; /* Reset buffer */
1859 wrap_buffer[0] = '\0';
c5aa993b
JM
1860 wrap_column = 0; /* And disable fancy wrap */
1861 }
c906108c
SS
1862 }
1863 }
1864
1865 if (*lineptr == '\n')
1866 {
1867 chars_printed = 0;
c5aa993b 1868 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1869 lines_printed++;
1870 fputc_unfiltered ('\n', stream);
1871 lineptr++;
1872 }
1873 }
1874}
1875
1876void
1877fputs_filtered (linebuffer, stream)
1878 const char *linebuffer;
d9fcf2fb 1879 struct ui_file *stream;
c906108c
SS
1880{
1881 fputs_maybe_filtered (linebuffer, stream, 1);
1882}
1883
1884int
1885putchar_unfiltered (c)
1886 int c;
1887{
11cf8741 1888 char buf = c;
d9fcf2fb 1889 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1890 return c;
1891}
1892
1893int
1894fputc_unfiltered (c, stream)
1895 int c;
d9fcf2fb 1896 struct ui_file *stream;
c906108c 1897{
11cf8741 1898 char buf = c;
d9fcf2fb 1899 ui_file_write (stream, &buf, 1);
c906108c
SS
1900 return c;
1901}
1902
1903int
1904fputc_filtered (c, stream)
1905 int c;
d9fcf2fb 1906 struct ui_file *stream;
c906108c
SS
1907{
1908 char buf[2];
1909
1910 buf[0] = c;
1911 buf[1] = 0;
1912 fputs_filtered (buf, stream);
1913 return c;
1914}
1915
1916/* puts_debug is like fputs_unfiltered, except it prints special
1917 characters in printable fashion. */
1918
1919void
1920puts_debug (prefix, string, suffix)
1921 char *prefix;
1922 char *string;
1923 char *suffix;
1924{
1925 int ch;
1926
1927 /* Print prefix and suffix after each line. */
1928 static int new_line = 1;
1929 static int return_p = 0;
1930 static char *prev_prefix = "";
1931 static char *prev_suffix = "";
1932
1933 if (*string == '\n')
1934 return_p = 0;
1935
1936 /* If the prefix is changing, print the previous suffix, a new line,
1937 and the new prefix. */
c5aa993b 1938 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1939 {
9846de1b
JM
1940 fputs_unfiltered (prev_suffix, gdb_stdlog);
1941 fputs_unfiltered ("\n", gdb_stdlog);
1942 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1943 }
1944
1945 /* Print prefix if we printed a newline during the previous call. */
1946 if (new_line)
1947 {
1948 new_line = 0;
9846de1b 1949 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1950 }
1951
1952 prev_prefix = prefix;
1953 prev_suffix = suffix;
1954
1955 /* Output characters in a printable format. */
1956 while ((ch = *string++) != '\0')
1957 {
1958 switch (ch)
c5aa993b 1959 {
c906108c
SS
1960 default:
1961 if (isprint (ch))
9846de1b 1962 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1963
1964 else
9846de1b 1965 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1966 break;
1967
c5aa993b
JM
1968 case '\\':
1969 fputs_unfiltered ("\\\\", gdb_stdlog);
1970 break;
1971 case '\b':
1972 fputs_unfiltered ("\\b", gdb_stdlog);
1973 break;
1974 case '\f':
1975 fputs_unfiltered ("\\f", gdb_stdlog);
1976 break;
1977 case '\n':
1978 new_line = 1;
1979 fputs_unfiltered ("\\n", gdb_stdlog);
1980 break;
1981 case '\r':
1982 fputs_unfiltered ("\\r", gdb_stdlog);
1983 break;
1984 case '\t':
1985 fputs_unfiltered ("\\t", gdb_stdlog);
1986 break;
1987 case '\v':
1988 fputs_unfiltered ("\\v", gdb_stdlog);
1989 break;
1990 }
c906108c
SS
1991
1992 return_p = ch == '\r';
1993 }
1994
1995 /* Print suffix if we printed a newline. */
1996 if (new_line)
1997 {
9846de1b
JM
1998 fputs_unfiltered (suffix, gdb_stdlog);
1999 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2000 }
2001}
2002
2003
2004/* Print a variable number of ARGS using format FORMAT. If this
2005 information is going to put the amount written (since the last call
2006 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2007 call prompt_for_continue to get the users permision to continue.
2008
2009 Unlike fprintf, this function does not return a value.
2010
2011 We implement three variants, vfprintf (takes a vararg list and stream),
2012 fprintf (takes a stream to write on), and printf (the usual).
2013
2014 Note also that a longjmp to top level may occur in this routine
2015 (since prompt_for_continue may do so) so this routine should not be
2016 called when cleanups are not in place. */
2017
2018static void
2019vfprintf_maybe_filtered (stream, format, args, filter)
d9fcf2fb 2020 struct ui_file *stream;
c906108c
SS
2021 const char *format;
2022 va_list args;
2023 int filter;
2024{
2025 char *linebuffer;
2026 struct cleanup *old_cleanups;
2027
2028 vasprintf (&linebuffer, format, args);
2029 if (linebuffer == NULL)
2030 {
2031 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2032 exit (1);
2033 }
2034 old_cleanups = make_cleanup (free, linebuffer);
2035 fputs_maybe_filtered (linebuffer, stream, filter);
2036 do_cleanups (old_cleanups);
2037}
2038
2039
2040void
2041vfprintf_filtered (stream, format, args)
d9fcf2fb 2042 struct ui_file *stream;
c906108c
SS
2043 const char *format;
2044 va_list args;
2045{
2046 vfprintf_maybe_filtered (stream, format, args, 1);
2047}
2048
2049void
2050vfprintf_unfiltered (stream, format, args)
d9fcf2fb 2051 struct ui_file *stream;
c906108c
SS
2052 const char *format;
2053 va_list args;
2054{
2055 char *linebuffer;
2056 struct cleanup *old_cleanups;
2057
2058 vasprintf (&linebuffer, format, args);
2059 if (linebuffer == NULL)
2060 {
2061 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2062 exit (1);
2063 }
2064 old_cleanups = make_cleanup (free, linebuffer);
2065 fputs_unfiltered (linebuffer, stream);
2066 do_cleanups (old_cleanups);
2067}
2068
2069void
2070vprintf_filtered (format, args)
2071 const char *format;
2072 va_list args;
2073{
2074 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2075}
2076
2077void
2078vprintf_unfiltered (format, args)
2079 const char *format;
2080 va_list args;
2081{
2082 vfprintf_unfiltered (gdb_stdout, format, args);
2083}
2084
c906108c 2085void
d9fcf2fb 2086fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2087{
2088 va_list args;
c906108c 2089 va_start (args, format);
c906108c
SS
2090 vfprintf_filtered (stream, format, args);
2091 va_end (args);
2092}
2093
c906108c 2094void
d9fcf2fb 2095fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2096{
2097 va_list args;
c906108c 2098 va_start (args, format);
c906108c
SS
2099 vfprintf_unfiltered (stream, format, args);
2100 va_end (args);
2101}
2102
2103/* Like fprintf_filtered, but prints its result indented.
2104 Called as fprintfi_filtered (spaces, stream, format, ...); */
2105
c906108c 2106void
d9fcf2fb 2107fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2108{
2109 va_list args;
c906108c 2110 va_start (args, format);
c906108c
SS
2111 print_spaces_filtered (spaces, stream);
2112
2113 vfprintf_filtered (stream, format, args);
2114 va_end (args);
2115}
2116
2117
c906108c 2118void
c5aa993b 2119printf_filtered (const char *format,...)
c906108c
SS
2120{
2121 va_list args;
c906108c 2122 va_start (args, format);
c906108c
SS
2123 vfprintf_filtered (gdb_stdout, format, args);
2124 va_end (args);
2125}
2126
2127
c906108c 2128void
c5aa993b 2129printf_unfiltered (const char *format,...)
c906108c
SS
2130{
2131 va_list args;
c906108c 2132 va_start (args, format);
c906108c
SS
2133 vfprintf_unfiltered (gdb_stdout, format, args);
2134 va_end (args);
2135}
2136
2137/* Like printf_filtered, but prints it's result indented.
2138 Called as printfi_filtered (spaces, format, ...); */
2139
c906108c 2140void
c5aa993b 2141printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2142{
2143 va_list args;
c906108c 2144 va_start (args, format);
c906108c
SS
2145 print_spaces_filtered (spaces, gdb_stdout);
2146 vfprintf_filtered (gdb_stdout, format, args);
2147 va_end (args);
2148}
2149
2150/* Easy -- but watch out!
2151
2152 This routine is *not* a replacement for puts()! puts() appends a newline.
2153 This one doesn't, and had better not! */
2154
2155void
2156puts_filtered (string)
2157 const char *string;
2158{
2159 fputs_filtered (string, gdb_stdout);
2160}
2161
2162void
2163puts_unfiltered (string)
2164 const char *string;
2165{
2166 fputs_unfiltered (string, gdb_stdout);
2167}
2168
2169/* Return a pointer to N spaces and a null. The pointer is good
2170 until the next call to here. */
2171char *
2172n_spaces (n)
2173 int n;
2174{
392a587b
JM
2175 char *t;
2176 static char *spaces = 0;
2177 static int max_spaces = -1;
c906108c
SS
2178
2179 if (n > max_spaces)
2180 {
2181 if (spaces)
2182 free (spaces);
c5aa993b
JM
2183 spaces = (char *) xmalloc (n + 1);
2184 for (t = spaces + n; t != spaces;)
c906108c
SS
2185 *--t = ' ';
2186 spaces[n] = '\0';
2187 max_spaces = n;
2188 }
2189
2190 return spaces + max_spaces - n;
2191}
2192
2193/* Print N spaces. */
2194void
2195print_spaces_filtered (n, stream)
2196 int n;
d9fcf2fb 2197 struct ui_file *stream;
c906108c
SS
2198{
2199 fputs_filtered (n_spaces (n), stream);
2200}
2201\f
2202/* C++ demangler stuff. */
2203
2204/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2205 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2206 If the name is not mangled, or the language for the name is unknown, or
2207 demangling is off, the name is printed in its "raw" form. */
2208
2209void
2210fprintf_symbol_filtered (stream, name, lang, arg_mode)
d9fcf2fb 2211 struct ui_file *stream;
c906108c
SS
2212 char *name;
2213 enum language lang;
2214 int arg_mode;
2215{
2216 char *demangled;
2217
2218 if (name != NULL)
2219 {
2220 /* If user wants to see raw output, no problem. */
2221 if (!demangle)
2222 {
2223 fputs_filtered (name, stream);
2224 }
2225 else
2226 {
2227 switch (lang)
2228 {
2229 case language_cplus:
2230 demangled = cplus_demangle (name, arg_mode);
2231 break;
2232 case language_java:
2233 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2234 break;
2235 case language_chill:
2236 demangled = chill_demangle (name);
2237 break;
2238 default:
2239 demangled = NULL;
2240 break;
2241 }
2242 fputs_filtered (demangled ? demangled : name, stream);
2243 if (demangled != NULL)
2244 {
2245 free (demangled);
2246 }
2247 }
2248 }
2249}
2250
2251/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2252 differences in whitespace. Returns 0 if they match, non-zero if they
2253 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2254
c906108c
SS
2255 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2256 This "feature" is useful when searching for matching C++ function names
2257 (such as if the user types 'break FOO', where FOO is a mangled C++
2258 function). */
2259
2260int
2261strcmp_iw (string1, string2)
2262 const char *string1;
2263 const char *string2;
2264{
2265 while ((*string1 != '\0') && (*string2 != '\0'))
2266 {
2267 while (isspace (*string1))
2268 {
2269 string1++;
2270 }
2271 while (isspace (*string2))
2272 {
2273 string2++;
2274 }
2275 if (*string1 != *string2)
2276 {
2277 break;
2278 }
2279 if (*string1 != '\0')
2280 {
2281 string1++;
2282 string2++;
2283 }
2284 }
2285 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2286}
c906108c 2287\f
c5aa993b 2288
c906108c 2289/*
c5aa993b
JM
2290 ** subset_compare()
2291 ** Answer whether string_to_compare is a full or partial match to
2292 ** template_string. The partial match must be in sequence starting
2293 ** at index 0.
2294 */
c906108c 2295int
7a292a7a 2296subset_compare (string_to_compare, template_string)
c5aa993b
JM
2297 char *string_to_compare;
2298 char *template_string;
7a292a7a
SS
2299{
2300 int match;
c5aa993b
JM
2301 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2302 strlen (string_to_compare) <= strlen (template_string))
2303 match = (strncmp (template_string,
2304 string_to_compare,
2305 strlen (string_to_compare)) == 0);
7a292a7a
SS
2306 else
2307 match = 0;
2308 return match;
2309}
c906108c
SS
2310
2311
7a292a7a
SS
2312static void pagination_on_command PARAMS ((char *arg, int from_tty));
2313static void
2314pagination_on_command (arg, from_tty)
c5aa993b
JM
2315 char *arg;
2316 int from_tty;
c906108c
SS
2317{
2318 pagination_enabled = 1;
2319}
2320
7a292a7a
SS
2321static void pagination_on_command PARAMS ((char *arg, int from_tty));
2322static void
2323pagination_off_command (arg, from_tty)
c5aa993b
JM
2324 char *arg;
2325 int from_tty;
c906108c
SS
2326{
2327 pagination_enabled = 0;
2328}
c906108c 2329\f
c5aa993b 2330
c906108c
SS
2331void
2332initialize_utils ()
2333{
2334 struct cmd_list_element *c;
2335
c5aa993b
JM
2336 c = add_set_cmd ("width", class_support, var_uinteger,
2337 (char *) &chars_per_line,
2338 "Set number of characters gdb thinks are in a line.",
2339 &setlist);
c906108c
SS
2340 add_show_from_set (c, &showlist);
2341 c->function.sfunc = set_width_command;
2342
2343 add_show_from_set
2344 (add_set_cmd ("height", class_support,
c5aa993b 2345 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2346 "Set number of lines gdb thinks are in a page.", &setlist),
2347 &showlist);
c5aa993b 2348
c906108c
SS
2349 init_page_info ();
2350
2351 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2352 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2353 lines_per_page = UINT_MAX;
2354
c5aa993b 2355 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2356
2357 add_show_from_set
c5aa993b
JM
2358 (add_set_cmd ("demangle", class_support, var_boolean,
2359 (char *) &demangle,
2360 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2361 &setprintlist),
2362 &showprintlist);
2363
2364 add_show_from_set
2365 (add_set_cmd ("pagination", class_support,
c5aa993b 2366 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2367 "Set state of pagination.", &setlist),
2368 &showlist);
4261bedc 2369
c906108c
SS
2370 if (xdb_commands)
2371 {
c5aa993b
JM
2372 add_com ("am", class_support, pagination_on_command,
2373 "Enable pagination");
2374 add_com ("sm", class_support, pagination_off_command,
2375 "Disable pagination");
c906108c
SS
2376 }
2377
2378 add_show_from_set
c5aa993b
JM
2379 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2380 (char *) &sevenbit_strings,
2381 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2382 &setprintlist),
2383 &showprintlist);
2384
2385 add_show_from_set
c5aa993b
JM
2386 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2387 (char *) &asm_demangle,
2388 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2389 &setprintlist),
2390 &showprintlist);
2391}
2392
2393/* Machine specific function to handle SIGWINCH signal. */
2394
2395#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2396SIGWINCH_HANDLER_BODY
c906108c
SS
2397#endif
2398\f
2399/* Support for converting target fp numbers into host DOUBLEST format. */
2400
2401/* XXX - This code should really be in libiberty/floatformat.c, however
2402 configuration issues with libiberty made this very difficult to do in the
2403 available time. */
2404
2405#include "floatformat.h"
2406#include <math.h> /* ldexp */
2407
2408/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2409 going to bother with trying to muck around with whether it is defined in
2410 a system header, what we do if not, etc. */
2411#define FLOATFORMAT_CHAR_BIT 8
2412
2413static unsigned long get_field PARAMS ((unsigned char *,
2414 enum floatformat_byteorders,
2415 unsigned int,
2416 unsigned int,
2417 unsigned int));
2418
2419/* Extract a field which starts at START and is LEN bytes long. DATA and
2420 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2421static unsigned long
2422get_field (data, order, total_len, start, len)
2423 unsigned char *data;
2424 enum floatformat_byteorders order;
2425 unsigned int total_len;
2426 unsigned int start;
2427 unsigned int len;
2428{
2429 unsigned long result;
2430 unsigned int cur_byte;
2431 int cur_bitshift;
2432
2433 /* Start at the least significant part of the field. */
c906108c 2434 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2435 {
2436 /* We start counting from the other end (i.e, from the high bytes
2437 rather than the low bytes). As such, we need to be concerned
2438 with what happens if bit 0 doesn't start on a byte boundary.
2439 I.e, we need to properly handle the case where total_len is
2440 not evenly divisible by 8. So we compute ``excess'' which
2441 represents the number of bits from the end of our starting
2442 byte needed to get to bit 0. */
2443 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2444 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2445 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2446 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2447 - FLOATFORMAT_CHAR_BIT;
2448 }
2449 else
2450 {
2451 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2452 cur_bitshift =
2453 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2454 }
2455 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2456 result = *(data + cur_byte) >> (-cur_bitshift);
2457 else
2458 result = 0;
c906108c
SS
2459 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2460 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2461 ++cur_byte;
2462 else
2463 --cur_byte;
2464
2465 /* Move towards the most significant part of the field. */
2466 while (cur_bitshift < len)
2467 {
0fda6bd2 2468 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2469 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2470 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2471 ++cur_byte;
2472 else
2473 --cur_byte;
2474 }
0fda6bd2
JM
2475 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2476 /* Mask out bits which are not part of the field */
2477 result &= ((1UL << len) - 1);
c906108c
SS
2478 return result;
2479}
c5aa993b 2480
c906108c
SS
2481/* Convert from FMT to a DOUBLEST.
2482 FROM is the address of the extended float.
2483 Store the DOUBLEST in *TO. */
2484
2485void
2486floatformat_to_doublest (fmt, from, to)
2487 const struct floatformat *fmt;
2488 char *from;
2489 DOUBLEST *to;
2490{
c5aa993b 2491 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2492 DOUBLEST dto;
2493 long exponent;
2494 unsigned long mant;
2495 unsigned int mant_bits, mant_off;
2496 int mant_bits_left;
2497 int special_exponent; /* It's a NaN, denorm or zero */
2498
2499 /* If the mantissa bits are not contiguous from one end of the
2500 mantissa to the other, we need to make a private copy of the
2501 source bytes that is in the right order since the unpacking
2502 algorithm assumes that the bits are contiguous.
2503
2504 Swap the bytes individually rather than accessing them through
2505 "long *" since we have no guarantee that they start on a long
2506 alignment, and also sizeof(long) for the host could be different
2507 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2508 for the target is 4. */
2509
c5aa993b 2510 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2511 {
2512 static unsigned char *newfrom;
2513 unsigned char *swapin, *swapout;
2514 int longswaps;
2515
c5aa993b 2516 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2517 longswaps >>= 3;
c5aa993b 2518
c906108c
SS
2519 if (newfrom == NULL)
2520 {
c5aa993b 2521 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2522 }
2523 swapout = newfrom;
2524 swapin = ufrom;
2525 ufrom = newfrom;
2526 while (longswaps-- > 0)
2527 {
2528 /* This is ugly, but efficient */
2529 *swapout++ = swapin[4];
2530 *swapout++ = swapin[5];
2531 *swapout++ = swapin[6];
2532 *swapout++ = swapin[7];
2533 *swapout++ = swapin[0];
2534 *swapout++ = swapin[1];
2535 *swapout++ = swapin[2];
2536 *swapout++ = swapin[3];
2537 swapin += 8;
2538 }
2539 }
2540
2541 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2542 fmt->exp_start, fmt->exp_len);
2543 /* Note that if exponent indicates a NaN, we can't really do anything useful
2544 (not knowing if the host has NaN's, or how to build one). So it will
2545 end up as an infinity or something close; that is OK. */
2546
2547 mant_bits_left = fmt->man_len;
2548 mant_off = fmt->man_start;
2549 dto = 0.0;
2550
2551 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2552
11cf8741
JM
2553/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2554 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2555 if (!special_exponent)
2556 exponent -= fmt->exp_bias;
11cf8741
JM
2557 else if (exponent == 0)
2558 exponent = 1 - fmt->exp_bias;
c906108c
SS
2559
2560 /* Build the result algebraically. Might go infinite, underflow, etc;
2561 who cares. */
2562
2563/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2564 increment the exponent by one to account for the integer bit. */
2565
2566 if (!special_exponent)
7a292a7a
SS
2567 {
2568 if (fmt->intbit == floatformat_intbit_no)
2569 dto = ldexp (1.0, exponent);
2570 else
2571 exponent++;
2572 }
c906108c
SS
2573
2574 while (mant_bits_left > 0)
2575 {
2576 mant_bits = min (mant_bits_left, 32);
2577
2578 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2579 mant_off, mant_bits);
c906108c 2580
c5aa993b 2581 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2582 exponent -= mant_bits;
2583 mant_off += mant_bits;
2584 mant_bits_left -= mant_bits;
2585 }
2586
2587 /* Negate it if negative. */
2588 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2589 dto = -dto;
2590 *to = dto;
2591}
2592\f
2593static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2594 unsigned int,
2595 unsigned int,
2596 unsigned int,
2597 unsigned long));
2598
2599/* Set a field which starts at START and is LEN bytes long. DATA and
2600 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2601static void
2602put_field (data, order, total_len, start, len, stuff_to_put)
2603 unsigned char *data;
2604 enum floatformat_byteorders order;
2605 unsigned int total_len;
2606 unsigned int start;
2607 unsigned int len;
2608 unsigned long stuff_to_put;
2609{
2610 unsigned int cur_byte;
2611 int cur_bitshift;
2612
2613 /* Start at the least significant part of the field. */
c906108c 2614 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2615 {
2616 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2617 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2618 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2619 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2620 - FLOATFORMAT_CHAR_BIT;
2621 }
2622 else
2623 {
2624 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2625 cur_bitshift =
2626 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2627 }
2628 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2629 {
2630 *(data + cur_byte) &=
2631 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2632 << (-cur_bitshift));
2633 *(data + cur_byte) |=
2634 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2635 }
c906108c
SS
2636 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2637 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2638 ++cur_byte;
2639 else
2640 --cur_byte;
2641
2642 /* Move towards the most significant part of the field. */
2643 while (cur_bitshift < len)
2644 {
2645 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2646 {
2647 /* This is the last byte. */
2648 *(data + cur_byte) &=
2649 ~((1 << (len - cur_bitshift)) - 1);
2650 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2651 }
2652 else
2653 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2654 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2655 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2656 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2657 ++cur_byte;
2658 else
2659 --cur_byte;
2660 }
2661}
2662
2663#ifdef HAVE_LONG_DOUBLE
2664/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2665 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2666 frexp, but operates on the long double data type. */
2667
2668static long double ldfrexp PARAMS ((long double value, int *eptr));
2669
2670static long double
2671ldfrexp (value, eptr)
2672 long double value;
2673 int *eptr;
2674{
2675 long double tmp;
2676 int exp;
2677
2678 /* Unfortunately, there are no portable functions for extracting the exponent
2679 of a long double, so we have to do it iteratively by multiplying or dividing
2680 by two until the fraction is between 0.5 and 1.0. */
2681
2682 if (value < 0.0l)
2683 value = -value;
2684
2685 tmp = 1.0l;
2686 exp = 0;
2687
2688 if (value >= tmp) /* Value >= 1.0 */
2689 while (value >= tmp)
2690 {
2691 tmp *= 2.0l;
2692 exp++;
2693 }
2694 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2695 {
2696 while (value < tmp)
2697 {
2698 tmp /= 2.0l;
2699 exp--;
2700 }
2701 tmp *= 2.0l;
2702 exp++;
2703 }
2704
2705 *eptr = exp;
c5aa993b 2706 return value / tmp;
c906108c
SS
2707}
2708#endif /* HAVE_LONG_DOUBLE */
2709
2710
2711/* The converse: convert the DOUBLEST *FROM to an extended float
2712 and store where TO points. Neither FROM nor TO have any alignment
2713 restrictions. */
2714
2715void
2716floatformat_from_doublest (fmt, from, to)
2717 CONST struct floatformat *fmt;
2718 DOUBLEST *from;
2719 char *to;
2720{
2721 DOUBLEST dfrom;
2722 int exponent;
2723 DOUBLEST mant;
2724 unsigned int mant_bits, mant_off;
2725 int mant_bits_left;
c5aa993b 2726 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2727
2728 memcpy (&dfrom, from, sizeof (dfrom));
ba8966d6
KB
2729 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2730 / FLOATFORMAT_CHAR_BIT);
c906108c
SS
2731 if (dfrom == 0)
2732 return; /* Result is zero */
2733 if (dfrom != dfrom) /* Result is NaN */
2734 {
2735 /* From is NaN */
2736 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2737 fmt->exp_len, fmt->exp_nan);
2738 /* Be sure it's not infinity, but NaN value is irrel */
2739 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2740 32, 1);
2741 return;
2742 }
2743
2744 /* If negative, set the sign bit. */
2745 if (dfrom < 0)
2746 {
2747 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2748 dfrom = -dfrom;
2749 }
2750
2751 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2752 {
2753 /* Infinity exponent is same as NaN's. */
2754 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2755 fmt->exp_len, fmt->exp_nan);
2756 /* Infinity mantissa is all zeroes. */
2757 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2758 fmt->man_len, 0);
2759 return;
2760 }
2761
2762#ifdef HAVE_LONG_DOUBLE
2763 mant = ldfrexp (dfrom, &exponent);
2764#else
2765 mant = frexp (dfrom, &exponent);
2766#endif
2767
2768 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2769 exponent + fmt->exp_bias - 1);
2770
2771 mant_bits_left = fmt->man_len;
2772 mant_off = fmt->man_start;
2773 while (mant_bits_left > 0)
2774 {
2775 unsigned long mant_long;
2776 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2777
2778 mant *= 4294967296.0;
ba8966d6 2779 mant_long = ((unsigned long) mant) & 0xffffffffL;
c906108c
SS
2780 mant -= mant_long;
2781
2782 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2783 If we are discarding a zero, we should be (but are not) creating
2784 a denormalized number which means adjusting the exponent
2785 (I think). */
c906108c
SS
2786 if (mant_bits_left == fmt->man_len
2787 && fmt->intbit == floatformat_intbit_no)
2788 {
2789 mant_long <<= 1;
ba8966d6 2790 mant_long &= 0xffffffffL;
c906108c
SS
2791 mant_bits -= 1;
2792 }
2793
2794 if (mant_bits < 32)
2795 {
2796 /* The bits we want are in the most significant MANT_BITS bits of
2797 mant_long. Move them to the least significant. */
2798 mant_long >>= 32 - mant_bits;
2799 }
2800
2801 put_field (uto, fmt->byteorder, fmt->totalsize,
2802 mant_off, mant_bits, mant_long);
2803 mant_off += mant_bits;
2804 mant_bits_left -= mant_bits;
2805 }
c5aa993b 2806 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2807 {
2808 int count;
2809 unsigned char *swaplow = uto;
2810 unsigned char *swaphigh = uto + 4;
2811 unsigned char tmp;
2812
2813 for (count = 0; count < 4; count++)
2814 {
2815 tmp = *swaplow;
2816 *swaplow++ = *swaphigh;
2817 *swaphigh++ = tmp;
2818 }
2819 }
2820}
2821
2822/* temporary storage using circular buffer */
2823#define NUMCELLS 16
2824#define CELLSIZE 32
c5aa993b
JM
2825static char *
2826get_cell ()
c906108c
SS
2827{
2828 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2829 static int cell = 0;
2830 if (++cell >= NUMCELLS)
2831 cell = 0;
c906108c
SS
2832 return buf[cell];
2833}
2834
2835/* print routines to handle variable size regs, etc.
2836
2837 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2838 unsigned long or unsigned long long, determined at configure time.
2839 If t_addr is an unsigned long long and sizeof (unsigned long long)
2840 is greater than sizeof (unsigned long), then I believe this code will
2841 probably lose, at least for little endian machines. I believe that
2842 it would also be better to eliminate the switch on the absolute size
2843 of t_addr and replace it with a sequence of if statements that compare
2844 sizeof t_addr with sizeof the various types and do the right thing,
2845 which includes knowing whether or not the host supports long long.
2846 -fnf
2847
2848 */
2849
d4f3574e
SS
2850int
2851strlen_paddr (void)
2852{
2853 return (TARGET_PTR_BIT / 8 * 2);
2854}
2855
2856
104c1213
JM
2857/* eliminate warning from compiler on 32-bit systems */
2858static int thirty_two = 32;
c906108c 2859
c5aa993b 2860char *
104c1213 2861paddr (CORE_ADDR addr)
c906108c 2862{
c5aa993b 2863 char *paddr_str = get_cell ();
104c1213 2864 switch (TARGET_PTR_BIT / 8)
c906108c 2865 {
c5aa993b
JM
2866 case 8:
2867 sprintf (paddr_str, "%08lx%08lx",
2868 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2869 break;
2870 case 4:
2871 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2872 break;
2873 case 2:
2874 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2875 break;
2876 default:
2877 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2878 }
2879 return paddr_str;
2880}
2881
c5aa993b 2882char *
104c1213 2883paddr_nz (CORE_ADDR addr)
c906108c 2884{
c5aa993b 2885 char *paddr_str = get_cell ();
104c1213 2886 switch (TARGET_PTR_BIT / 8)
c906108c 2887 {
c5aa993b
JM
2888 case 8:
2889 {
2890 unsigned long high = (unsigned long) (addr >> thirty_two);
2891 if (high == 0)
2892 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2893 else
2894 sprintf (paddr_str, "%lx%08lx",
2895 high, (unsigned long) (addr & 0xffffffff));
c906108c 2896 break;
c5aa993b
JM
2897 }
2898 case 4:
2899 sprintf (paddr_str, "%lx", (unsigned long) addr);
2900 break;
2901 case 2:
2902 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2903 break;
2904 default:
2905 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
2906 }
2907 return paddr_str;
2908}
2909
104c1213
JM
2910static void
2911decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2912{
2913 /* steal code from valprint.c:print_decimal(). Should this worry
2914 about the real size of addr as the above does? */
2915 unsigned long temp[3];
2916 int i = 0;
2917 do
2918 {
2919 temp[i] = addr % (1000 * 1000 * 1000);
2920 addr /= (1000 * 1000 * 1000);
2921 i++;
2922 }
2923 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2924 switch (i)
2925 {
2926 case 1:
2927 sprintf (paddr_str, "%s%lu",
2928 sign, temp[0]);
2929 break;
2930 case 2:
2931 sprintf (paddr_str, "%s%lu%09lu",
2932 sign, temp[1], temp[0]);
2933 break;
2934 case 3:
2935 sprintf (paddr_str, "%s%lu%09lu%09lu",
2936 sign, temp[2], temp[1], temp[0]);
2937 break;
2938 default:
2939 abort ();
2940 }
2941}
2942
2943char *
2944paddr_u (CORE_ADDR addr)
2945{
2946 char *paddr_str = get_cell ();
2947 decimal2str (paddr_str, "", addr);
2948 return paddr_str;
2949}
2950
2951char *
2952paddr_d (LONGEST addr)
2953{
2954 char *paddr_str = get_cell ();
2955 if (addr < 0)
2956 decimal2str (paddr_str, "-", -addr);
2957 else
2958 decimal2str (paddr_str, "", addr);
2959 return paddr_str;
2960}
2961
2962char *
2963preg (reg)
2964 t_reg reg;
2965{
2966 char *preg_str = get_cell ();
2967 switch (sizeof (t_reg))
2968 {
2969 case 8:
2970 sprintf (preg_str, "%08lx%08lx",
2971 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2972 break;
2973 case 4:
2974 sprintf (preg_str, "%08lx", (unsigned long) reg);
2975 break;
2976 case 2:
2977 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2978 break;
2979 default:
2980 sprintf (preg_str, "%lx", (unsigned long) reg);
2981 }
2982 return preg_str;
2983}
2984
c5aa993b
JM
2985char *
2986preg_nz (reg)
2987 t_reg reg;
c906108c 2988{
c5aa993b
JM
2989 char *preg_str = get_cell ();
2990 switch (sizeof (t_reg))
c906108c 2991 {
c5aa993b
JM
2992 case 8:
2993 {
2994 unsigned long high = (unsigned long) (reg >> thirty_two);
2995 if (high == 0)
2996 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2997 else
2998 sprintf (preg_str, "%lx%08lx",
2999 high, (unsigned long) (reg & 0xffffffff));
c906108c 3000 break;
c5aa993b
JM
3001 }
3002 case 4:
3003 sprintf (preg_str, "%lx", (unsigned long) reg);
3004 break;
3005 case 2:
3006 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3007 break;
3008 default:
3009 sprintf (preg_str, "%lx", (unsigned long) reg);
c906108c
SS
3010 }
3011 return preg_str;
3012}
392a587b
JM
3013
3014/* Helper functions for INNER_THAN */
3015int
3016core_addr_lessthan (lhs, rhs)
3017 CORE_ADDR lhs;
3018 CORE_ADDR rhs;
3019{
3020 return (lhs < rhs);
3021}
3022
3023int
3024core_addr_greaterthan (lhs, rhs)
3025 CORE_ADDR lhs;
3026 CORE_ADDR rhs;
3027{
3028 return (lhs > rhs);
3029}
This page took 0.274957 seconds and 4 git commands to generate.