import gdb-1999-12-21 snapshot
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c
SS
1/* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 89, 90, 91, 92, 95, 96, 1998 Free Software Foundation, Inc.
3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include <ctype.h>
23#include "gdb_string.h"
c2c6d25f 24#include "event-top.h"
c906108c
SS
25
26#ifdef HAVE_CURSES_H
27#include <curses.h>
28#endif
29#ifdef HAVE_TERM_H
30#include <term.h>
31#endif
32
33/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
34#ifdef reg
35#undef reg
36#endif
37
38#include "signals.h"
39#include "gdbcmd.h"
40#include "serial.h"
41#include "bfd.h"
42#include "target.h"
43#include "demangle.h"
44#include "expression.h"
45#include "language.h"
46#include "annotate.h"
47
48#include <readline/readline.h>
49
917317f4
JM
50#undef XMALLOC
51#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
52
c906108c
SS
53/* readline defines this. */
54#undef savestring
55
56void (*error_begin_hook) PARAMS ((void));
57
2acceee2
JM
58/* Holds the last error message issued by gdb */
59
60static GDB_FILE *gdb_lasterr;
61
c906108c
SS
62/* Prototypes for local functions */
63
64static void vfprintf_maybe_filtered PARAMS ((GDB_FILE *, const char *,
65 va_list, int));
66
67static void fputs_maybe_filtered PARAMS ((const char *, GDB_FILE *, int));
68
69#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
70static void malloc_botch PARAMS ((void));
71#endif
72
c906108c
SS
73static void
74prompt_for_continue PARAMS ((void));
75
c5aa993b 76static void
c906108c
SS
77set_width_command PARAMS ((char *, int, struct cmd_list_element *));
78
79static void
80set_width PARAMS ((void));
81
c906108c 82#ifndef GDB_FILE_ISATTY
c5aa993b 83#define GDB_FILE_ISATTY(GDB_FILE_PTR) (gdb_file_isatty(GDB_FILE_PTR))
c906108c
SS
84#endif
85
86/* Chain of cleanup actions established with make_cleanup,
87 to be executed if an error happens. */
88
c5aa993b
JM
89static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
90static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
91static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
92static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
93/* cleaned up on each error from within an execution command */
94static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
95
96/* Pointer to what is left to do for an execution command after the
97 target stops. Used only in asynchronous mode, by targets that
98 support async execution. The finish and until commands use it. So
99 does the target extended-remote command. */
100struct continuation *cmd_continuation;
c2d11a7d 101struct continuation *intermediate_continuation;
c906108c
SS
102
103/* Nonzero if we have job control. */
104
105int job_control;
106
107/* Nonzero means a quit has been requested. */
108
109int quit_flag;
110
111/* Nonzero means quit immediately if Control-C is typed now, rather
112 than waiting until QUIT is executed. Be careful in setting this;
113 code which executes with immediate_quit set has to be very careful
114 about being able to deal with being interrupted at any time. It is
115 almost always better to use QUIT; the only exception I can think of
116 is being able to quit out of a system call (using EINTR loses if
117 the SIGINT happens between the previous QUIT and the system call).
118 To immediately quit in the case in which a SIGINT happens between
119 the previous QUIT and setting immediate_quit (desirable anytime we
120 expect to block), call QUIT after setting immediate_quit. */
121
122int immediate_quit;
123
124/* Nonzero means that encoded C++ names should be printed out in their
125 C++ form rather than raw. */
126
127int demangle = 1;
128
129/* Nonzero means that encoded C++ names should be printed out in their
130 C++ form even in assembler language displays. If this is set, but
131 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
132
133int asm_demangle = 0;
134
135/* Nonzero means that strings with character values >0x7F should be printed
136 as octal escapes. Zero means just print the value (e.g. it's an
137 international character, and the terminal or window can cope.) */
138
139int sevenbit_strings = 0;
140
141/* String to be printed before error messages, if any. */
142
143char *error_pre_print;
144
145/* String to be printed before quit messages, if any. */
146
147char *quit_pre_print;
148
149/* String to be printed before warning messages, if any. */
150
151char *warning_pre_print = "\nwarning: ";
152
153int pagination_enabled = 1;
c906108c 154\f
c5aa993b 155
c906108c
SS
156/* Add a new cleanup to the cleanup_chain,
157 and return the previous chain pointer
158 to be passed later to do_cleanups or discard_cleanups.
159 Args are FUNCTION to clean up with, and ARG to pass to it. */
160
161struct cleanup *
162make_cleanup (function, arg)
163 void (*function) PARAMS ((PTR));
164 PTR arg;
165{
c5aa993b 166 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
167}
168
169struct cleanup *
170make_final_cleanup (function, arg)
171 void (*function) PARAMS ((PTR));
172 PTR arg;
173{
c5aa993b 174 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 175}
7a292a7a 176
c906108c
SS
177struct cleanup *
178make_run_cleanup (function, arg)
179 void (*function) PARAMS ((PTR));
180 PTR arg;
181{
c5aa993b 182 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 183}
7a292a7a 184
43ff13b4
JM
185struct cleanup *
186make_exec_cleanup (function, arg)
187 void (*function) PARAMS ((PTR));
188 PTR arg;
189{
c5aa993b 190 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
191}
192
6426a772
JM
193struct cleanup *
194make_exec_error_cleanup (function, arg)
195 void (*function) PARAMS ((PTR));
196 PTR arg;
197{
198 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
199}
200
7a292a7a
SS
201static void
202do_freeargv (arg)
203 void *arg;
204{
c5aa993b 205 freeargv ((char **) arg);
7a292a7a
SS
206}
207
208struct cleanup *
209make_cleanup_freeargv (arg)
210 char **arg;
211{
212 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
213}
214
11cf8741
JM
215static void
216do_gdb_file_delete (void *arg)
217{
218 gdb_file_delete (arg);
219}
220
221struct cleanup *
222make_cleanup_gdb_file_delete (struct gdb_file *arg)
223{
224 return make_my_cleanup (&cleanup_chain, do_gdb_file_delete, arg);
225}
226
c906108c
SS
227struct cleanup *
228make_my_cleanup (pmy_chain, function, arg)
229 struct cleanup **pmy_chain;
230 void (*function) PARAMS ((PTR));
231 PTR arg;
232{
233 register struct cleanup *new
c5aa993b 234 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
235 register struct cleanup *old_chain = *pmy_chain;
236
237 new->next = *pmy_chain;
238 new->function = function;
239 new->arg = arg;
240 *pmy_chain = new;
241
242 return old_chain;
243}
244
245/* Discard cleanups and do the actions they describe
246 until we get back to the point OLD_CHAIN in the cleanup_chain. */
247
248void
249do_cleanups (old_chain)
250 register struct cleanup *old_chain;
251{
c5aa993b 252 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
253}
254
255void
256do_final_cleanups (old_chain)
257 register struct cleanup *old_chain;
258{
c5aa993b 259 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
260}
261
262void
263do_run_cleanups (old_chain)
264 register struct cleanup *old_chain;
265{
c5aa993b 266 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
267}
268
43ff13b4
JM
269void
270do_exec_cleanups (old_chain)
271 register struct cleanup *old_chain;
272{
c5aa993b 273 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
274}
275
6426a772
JM
276void
277do_exec_error_cleanups (old_chain)
278 register struct cleanup *old_chain;
279{
280 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
281}
282
c906108c
SS
283void
284do_my_cleanups (pmy_chain, old_chain)
285 register struct cleanup **pmy_chain;
286 register struct cleanup *old_chain;
287{
288 register struct cleanup *ptr;
289 while ((ptr = *pmy_chain) != old_chain)
290 {
291 *pmy_chain = ptr->next; /* Do this first incase recursion */
292 (*ptr->function) (ptr->arg);
293 free (ptr);
294 }
295}
296
297/* Discard cleanups, not doing the actions they describe,
298 until we get back to the point OLD_CHAIN in the cleanup_chain. */
299
300void
301discard_cleanups (old_chain)
302 register struct cleanup *old_chain;
303{
c5aa993b 304 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
305}
306
307void
308discard_final_cleanups (old_chain)
309 register struct cleanup *old_chain;
310{
c5aa993b 311 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
312}
313
6426a772
JM
314void
315discard_exec_error_cleanups (old_chain)
316 register struct cleanup *old_chain;
317{
318 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
319}
320
c906108c
SS
321void
322discard_my_cleanups (pmy_chain, old_chain)
323 register struct cleanup **pmy_chain;
324 register struct cleanup *old_chain;
325{
326 register struct cleanup *ptr;
327 while ((ptr = *pmy_chain) != old_chain)
328 {
329 *pmy_chain = ptr->next;
c5aa993b 330 free ((PTR) ptr);
c906108c
SS
331 }
332}
333
334/* Set the cleanup_chain to 0, and return the old cleanup chain. */
335struct cleanup *
336save_cleanups ()
337{
c5aa993b 338 return save_my_cleanups (&cleanup_chain);
c906108c
SS
339}
340
341struct cleanup *
342save_final_cleanups ()
343{
c5aa993b 344 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
345}
346
347struct cleanup *
348save_my_cleanups (pmy_chain)
c5aa993b 349 struct cleanup **pmy_chain;
c906108c
SS
350{
351 struct cleanup *old_chain = *pmy_chain;
352
353 *pmy_chain = 0;
354 return old_chain;
355}
356
357/* Restore the cleanup chain from a previously saved chain. */
358void
359restore_cleanups (chain)
360 struct cleanup *chain;
361{
c5aa993b 362 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
363}
364
365void
366restore_final_cleanups (chain)
367 struct cleanup *chain;
368{
c5aa993b 369 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
370}
371
372void
373restore_my_cleanups (pmy_chain, chain)
374 struct cleanup **pmy_chain;
375 struct cleanup *chain;
376{
377 *pmy_chain = chain;
378}
379
380/* This function is useful for cleanups.
381 Do
382
c5aa993b
JM
383 foo = xmalloc (...);
384 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
385
386 to arrange to free the object thus allocated. */
387
388void
389free_current_contents (location)
390 char **location;
391{
392 free (*location);
393}
394
395/* Provide a known function that does nothing, to use as a base for
396 for a possibly long chain of cleanups. This is useful where we
397 use the cleanup chain for handling normal cleanups as well as dealing
398 with cleanups that need to be done as a result of a call to error().
399 In such cases, we may not be certain where the first cleanup is, unless
400 we have a do-nothing one to always use as the base. */
401
402/* ARGSUSED */
403void
404null_cleanup (arg)
c5aa993b 405 PTR arg;
c906108c
SS
406{
407}
408
43ff13b4 409/* Add a continuation to the continuation list, the gloabl list
c2d11a7d 410 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4
JM
411void
412add_continuation (continuation_hook, arg_list)
c5aa993b
JM
413 void (*continuation_hook) PARAMS ((struct continuation_arg *));
414 struct continuation_arg *arg_list;
43ff13b4 415{
c5aa993b 416 struct continuation *continuation_ptr;
43ff13b4 417
c5aa993b
JM
418 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
419 continuation_ptr->continuation_hook = continuation_hook;
420 continuation_ptr->arg_list = arg_list;
421 continuation_ptr->next = cmd_continuation;
422 cmd_continuation = continuation_ptr;
43ff13b4
JM
423}
424
425/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
426 continuations. There is a problem though. In some cases new
427 continuations may be added while we are in the middle of this
428 loop. If this happens they will be added in the front, and done
429 before we have a chance of exhausting those that were already
430 there. We need to then save the beginning of the list in a pointer
431 and do the continuations from there on, instead of using the
432 global beginning of list as our iteration pointer.*/
c5aa993b 433void
43ff13b4 434do_all_continuations ()
c2d11a7d
JM
435{
436 struct continuation *continuation_ptr;
437 struct continuation *saved_continuation;
438
439 /* Copy the list header into another pointer, and set the global
440 list header to null, so that the global list can change as a side
441 effect of invoking the continuations and the processing of
442 the preexisting continuations will not be affected. */
443 continuation_ptr = cmd_continuation;
444 cmd_continuation = NULL;
445
446 /* Work now on the list we have set aside. */
447 while (continuation_ptr)
448 {
449 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
450 saved_continuation = continuation_ptr;
451 continuation_ptr = continuation_ptr->next;
452 free (saved_continuation);
453 }
454}
455
456/* Walk down the cmd_continuation list, and get rid of all the
457 continuations. */
458void
459discard_all_continuations ()
43ff13b4 460{
c5aa993b 461 struct continuation *continuation_ptr;
43ff13b4 462
c5aa993b
JM
463 while (cmd_continuation)
464 {
c5aa993b
JM
465 continuation_ptr = cmd_continuation;
466 cmd_continuation = continuation_ptr->next;
467 free (continuation_ptr);
468 }
43ff13b4 469}
c2c6d25f 470
c2d11a7d
JM
471/* Add a continuation to the continuation list, the gloabl list
472 intermediate_continuation. The new continuation will be added at the front.*/
473void
474add_intermediate_continuation (continuation_hook, arg_list)
475 void (*continuation_hook) PARAMS ((struct continuation_arg *));
476 struct continuation_arg *arg_list;
477{
478 struct continuation *continuation_ptr;
479
480 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
481 continuation_ptr->continuation_hook = continuation_hook;
482 continuation_ptr->arg_list = arg_list;
483 continuation_ptr->next = intermediate_continuation;
484 intermediate_continuation = continuation_ptr;
485}
486
487/* Walk down the cmd_continuation list, and execute all the
488 continuations. There is a problem though. In some cases new
489 continuations may be added while we are in the middle of this
490 loop. If this happens they will be added in the front, and done
491 before we have a chance of exhausting those that were already
492 there. We need to then save the beginning of the list in a pointer
493 and do the continuations from there on, instead of using the
494 global beginning of list as our iteration pointer.*/
495void
496do_all_intermediate_continuations ()
497{
498 struct continuation *continuation_ptr;
499 struct continuation *saved_continuation;
500
501 /* Copy the list header into another pointer, and set the global
502 list header to null, so that the global list can change as a side
503 effect of invoking the continuations and the processing of
504 the preexisting continuations will not be affected. */
505 continuation_ptr = intermediate_continuation;
506 intermediate_continuation = NULL;
507
508 /* Work now on the list we have set aside. */
509 while (continuation_ptr)
510 {
511 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
512 saved_continuation = continuation_ptr;
513 continuation_ptr = continuation_ptr->next;
514 free (saved_continuation);
515 }
516}
517
c2c6d25f
JM
518/* Walk down the cmd_continuation list, and get rid of all the
519 continuations. */
520void
c2d11a7d 521discard_all_intermediate_continuations ()
c2c6d25f
JM
522{
523 struct continuation *continuation_ptr;
524
c2d11a7d 525 while (intermediate_continuation)
c2c6d25f 526 {
c2d11a7d
JM
527 continuation_ptr = intermediate_continuation;
528 intermediate_continuation = continuation_ptr->next;
c2c6d25f
JM
529 free (continuation_ptr);
530 }
531}
532
c906108c 533\f
c5aa993b 534
c906108c
SS
535/* Print a warning message. Way to use this is to call warning_begin,
536 output the warning message (use unfiltered output to gdb_stderr),
537 ending in a newline. There is not currently a warning_end that you
538 call afterwards, but such a thing might be added if it is useful
539 for a GUI to separate warning messages from other output.
540
541 FIXME: Why do warnings use unfiltered output and errors filtered?
542 Is this anything other than a historical accident? */
543
544void
545warning_begin ()
546{
547 target_terminal_ours ();
c5aa993b 548 wrap_here (""); /* Force out any buffered output */
c906108c
SS
549 gdb_flush (gdb_stdout);
550 if (warning_pre_print)
551 fprintf_unfiltered (gdb_stderr, warning_pre_print);
552}
553
554/* Print a warning message.
555 The first argument STRING is the warning message, used as a fprintf string,
556 and the remaining args are passed as arguments to it.
557 The primary difference between warnings and errors is that a warning
558 does not force the return to command level. */
559
c906108c 560void
c5aa993b 561warning (const char *string,...)
c906108c
SS
562{
563 va_list args;
c906108c 564 va_start (args, string);
c906108c
SS
565 if (warning_hook)
566 (*warning_hook) (string, args);
567 else
c5aa993b
JM
568 {
569 warning_begin ();
570 vfprintf_unfiltered (gdb_stderr, string, args);
571 fprintf_unfiltered (gdb_stderr, "\n");
572 va_end (args);
573 }
c906108c
SS
574}
575
576/* Start the printing of an error message. Way to use this is to call
577 this, output the error message (use filtered output to gdb_stderr
578 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
579 in a newline, and then call return_to_top_level (RETURN_ERROR).
580 error() provides a convenient way to do this for the special case
581 that the error message can be formatted with a single printf call,
582 but this is more general. */
583void
584error_begin ()
585{
586 if (error_begin_hook)
587 error_begin_hook ();
588
589 target_terminal_ours ();
c5aa993b 590 wrap_here (""); /* Force out any buffered output */
c906108c
SS
591 gdb_flush (gdb_stdout);
592
593 annotate_error_begin ();
594
595 if (error_pre_print)
596 fprintf_filtered (gdb_stderr, error_pre_print);
597}
598
599/* Print an error message and return to command level.
600 The first argument STRING is the error message, used as a fprintf string,
601 and the remaining args are passed as arguments to it. */
602
4ce44c66
JM
603NORETURN void
604verror (const char *string, va_list args)
605{
c2d11a7d
JM
606 char *err_string;
607 struct cleanup *err_string_cleanup;
4ce44c66
JM
608 /* FIXME: cagney/1999-11-10: All error calls should come here.
609 Unfortunatly some code uses the sequence: error_begin(); print
610 error message; return_to_top_level. That code should be
611 flushed. */
612 error_begin ();
c2d11a7d
JM
613 /* NOTE: It's tempting to just do the following...
614 vfprintf_filtered (gdb_stderr, string, args);
615 and then follow with a similar looking statement to cause the message
616 to also go to gdb_lasterr. But if we do this, we'll be traversing the
617 va_list twice which works on some platforms and fails miserably on
618 others. */
619 /* Save it as the last error */
4ce44c66
JM
620 gdb_file_rewind (gdb_lasterr);
621 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
622 /* Retrieve the last error and print it to gdb_stderr */
623 err_string = error_last_message ();
624 err_string_cleanup = make_cleanup (free, err_string);
625 fputs_filtered (err_string, gdb_stderr);
626 fprintf_filtered (gdb_stderr, "\n");
627 do_cleanups (err_string_cleanup);
4ce44c66
JM
628 return_to_top_level (RETURN_ERROR);
629}
630
c906108c 631NORETURN void
c5aa993b 632error (const char *string,...)
c906108c
SS
633{
634 va_list args;
c906108c 635 va_start (args, string);
4ce44c66
JM
636 verror (string, args);
637 va_end (args);
c906108c
SS
638}
639
2acceee2
JM
640NORETURN void
641error_stream (GDB_FILE *stream)
642{
4ce44c66
JM
643 long size;
644 char *msg = gdb_file_xstrdup (stream, &size);
645 make_cleanup (free, msg);
646 error ("%s", msg);
2acceee2
JM
647}
648
649/* Get the last error message issued by gdb */
650
651char *
652error_last_message (void)
653{
4ce44c66
JM
654 long len;
655 return gdb_file_xstrdup (gdb_lasterr, &len);
2acceee2 656}
4ce44c66 657
2acceee2
JM
658/* This is to be called by main() at the very beginning */
659
660void
661error_init (void)
662{
4ce44c66 663 gdb_lasterr = mem_fileopen ();
2acceee2 664}
c906108c 665
96baa820
JM
666/* Print a message reporting an internal error. Ask the user if they
667 want to continue, dump core, or just exit. */
c906108c 668
c906108c 669NORETURN void
4ce44c66 670internal_verror (const char *fmt, va_list ap)
c906108c 671{
96baa820
JM
672 static char msg[] = "Internal GDB error: recursive internal error.\n";
673 static int dejavu = 0;
7be570e7
JM
674 int continue_p;
675 int dump_core_p;
c906108c 676
96baa820
JM
677 /* don't allow infinite error recursion. */
678 switch (dejavu)
679 {
680 case 0:
681 dejavu = 1;
682 break;
683 case 1:
684 dejavu = 2;
685 fputs_unfiltered (msg, gdb_stderr);
686 abort ();
687 default:
688 dejavu = 3;
689 write (STDERR_FILENO, msg, sizeof (msg));
690 exit (1);
691 }
c906108c 692
96baa820 693 /* Try to get the message out */
7be570e7 694 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
4ce44c66 695 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 696 fputs_unfiltered ("\n", gdb_stderr);
c906108c 697
7be570e7
JM
698 /* Default (no case) is to quit GDB. When in batch mode this
699 lessens the likelhood of GDB going into an infinate loop. */
700 continue_p = query ("\
701An internal GDB error was detected. This may make make further\n\
702debugging unreliable. Continue this debugging session? ");
703
704 /* Default (no case) is to not dump core. Lessen the chance of GDB
705 leaving random core files around. */
706 dump_core_p = query ("\
707Create a core file containing the current state of GDB? ");
708
709 if (continue_p)
710 {
711 if (dump_core_p)
712 {
713 if (fork () == 0)
714 abort ();
715 }
716 }
717 else
718 {
719 if (dump_core_p)
720 abort ();
721 else
722 exit (1);
723 }
96baa820
JM
724
725 dejavu = 0;
726 return_to_top_level (RETURN_ERROR);
c906108c
SS
727}
728
4ce44c66
JM
729NORETURN void
730internal_error (char *string, ...)
731{
732 va_list ap;
733 va_start (ap, string);
734 internal_verror (string, ap);
735 va_end (ap);
736}
737
c906108c
SS
738/* The strerror() function can return NULL for errno values that are
739 out of range. Provide a "safe" version that always returns a
740 printable string. */
741
742char *
743safe_strerror (errnum)
744 int errnum;
745{
746 char *msg;
747 static char buf[32];
748
749 if ((msg = strerror (errnum)) == NULL)
750 {
751 sprintf (buf, "(undocumented errno %d)", errnum);
752 msg = buf;
753 }
754 return (msg);
755}
756
757/* The strsignal() function can return NULL for signal values that are
758 out of range. Provide a "safe" version that always returns a
759 printable string. */
760
761char *
762safe_strsignal (signo)
763 int signo;
764{
765 char *msg;
766 static char buf[32];
767
768 if ((msg = strsignal (signo)) == NULL)
769 {
770 sprintf (buf, "(undocumented signal %d)", signo);
771 msg = buf;
772 }
773 return (msg);
774}
775
776
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
782perror_with_name (string)
783 char *string;
784{
785 char *err;
786 char *combined;
787
788 err = safe_strerror (errno);
789 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
790 strcpy (combined, string);
791 strcat (combined, ": ");
792 strcat (combined, err);
793
794 /* I understand setting these is a matter of taste. Still, some people
795 may clear errno but not know about bfd_error. Doing this here is not
796 unreasonable. */
797 bfd_set_error (bfd_error_no_error);
798 errno = 0;
799
c5aa993b 800 error ("%s.", combined);
c906108c
SS
801}
802
803/* Print the system error message for ERRCODE, and also mention STRING
804 as the file name for which the error was encountered. */
805
806void
807print_sys_errmsg (string, errcode)
808 char *string;
809 int errcode;
810{
811 char *err;
812 char *combined;
813
814 err = safe_strerror (errcode);
815 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
816 strcpy (combined, string);
817 strcat (combined, ": ");
818 strcat (combined, err);
819
820 /* We want anything which was printed on stdout to come out first, before
821 this message. */
822 gdb_flush (gdb_stdout);
823 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
824}
825
826/* Control C eventually causes this to be called, at a convenient time. */
827
828void
829quit ()
830{
831 serial_t gdb_stdout_serial = serial_fdopen (1);
832
833 target_terminal_ours ();
834
835 /* We want all output to appear now, before we print "Quit". We
836 have 3 levels of buffering we have to flush (it's possible that
837 some of these should be changed to flush the lower-level ones
838 too): */
839
840 /* 1. The _filtered buffer. */
c5aa993b 841 wrap_here ((char *) 0);
c906108c
SS
842
843 /* 2. The stdio buffer. */
844 gdb_flush (gdb_stdout);
845 gdb_flush (gdb_stderr);
846
847 /* 3. The system-level buffer. */
848 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
849 SERIAL_UN_FDOPEN (gdb_stdout_serial);
850
851 annotate_error_begin ();
852
853 /* Don't use *_filtered; we don't want to prompt the user to continue. */
854 if (quit_pre_print)
855 fprintf_unfiltered (gdb_stderr, quit_pre_print);
856
7be570e7
JM
857#ifdef __MSDOS__
858 /* No steenking SIGINT will ever be coming our way when the
859 program is resumed. Don't lie. */
860 fprintf_unfiltered (gdb_stderr, "Quit\n");
861#else
c906108c 862 if (job_control
c5aa993b
JM
863 /* If there is no terminal switching for this target, then we can't
864 possibly get screwed by the lack of job control. */
c906108c
SS
865 || current_target.to_terminal_ours == NULL)
866 fprintf_unfiltered (gdb_stderr, "Quit\n");
867 else
868 fprintf_unfiltered (gdb_stderr,
c5aa993b 869 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 870#endif
c906108c
SS
871 return_to_top_level (RETURN_QUIT);
872}
873
874
7be570e7 875#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
876
877/*
878 * Windows translates all keyboard and mouse events
879 * into a message which is appended to the message
880 * queue for the process.
881 */
882
c5aa993b
JM
883void
884notice_quit ()
c906108c 885{
c5aa993b 886 int k = win32pollquit ();
c906108c
SS
887 if (k == 1)
888 quit_flag = 1;
889 else if (k == 2)
890 immediate_quit = 1;
891}
892
4ce44c66 893#else /* !defined(_MSC_VER) */
c906108c 894
c5aa993b
JM
895void
896notice_quit ()
c906108c
SS
897{
898 /* Done by signals */
899}
900
4ce44c66 901#endif /* !defined(_MSC_VER) */
c906108c 902
c906108c 903/* Control C comes here */
c906108c
SS
904void
905request_quit (signo)
906 int signo;
907{
908 quit_flag = 1;
909 /* Restore the signal handler. Harmless with BSD-style signals, needed
910 for System V-style signals. So just always do it, rather than worrying
911 about USG defines and stuff like that. */
912 signal (signo, request_quit);
913
914#ifdef REQUEST_QUIT
915 REQUEST_QUIT;
916#else
c5aa993b 917 if (immediate_quit)
c906108c
SS
918 quit ();
919#endif
920}
c906108c
SS
921\f
922/* Memory management stuff (malloc friends). */
923
924/* Make a substitute size_t for non-ANSI compilers. */
925
926#ifndef HAVE_STDDEF_H
927#ifndef size_t
928#define size_t unsigned int
929#endif
930#endif
931
932#if !defined (USE_MMALLOC)
933
ed9a39eb
JM
934void *
935mcalloc (void *md, size_t number, size_t size)
936{
937 return calloc (number, size);
938}
939
c906108c
SS
940PTR
941mmalloc (md, size)
942 PTR md;
943 size_t size;
944{
945 return malloc (size);
946}
947
948PTR
949mrealloc (md, ptr, size)
950 PTR md;
951 PTR ptr;
952 size_t size;
953{
c5aa993b 954 if (ptr == 0) /* Guard against old realloc's */
c906108c
SS
955 return malloc (size);
956 else
957 return realloc (ptr, size);
958}
959
960void
961mfree (md, ptr)
962 PTR md;
963 PTR ptr;
964{
965 free (ptr);
966}
967
c5aa993b 968#endif /* USE_MMALLOC */
c906108c
SS
969
970#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
971
972void
973init_malloc (md)
974 PTR md;
975{
976}
977
978#else /* Have mmalloc and want corruption checking */
979
980static void
981malloc_botch ()
982{
96baa820
JM
983 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
984 abort ();
c906108c
SS
985}
986
987/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
988 by MD, to detect memory corruption. Note that MD may be NULL to specify
989 the default heap that grows via sbrk.
990
991 Note that for freshly created regions, we must call mmcheckf prior to any
992 mallocs in the region. Otherwise, any region which was allocated prior to
993 installing the checking hooks, which is later reallocated or freed, will
994 fail the checks! The mmcheck function only allows initial hooks to be
995 installed before the first mmalloc. However, anytime after we have called
996 mmcheck the first time to install the checking hooks, we can call it again
997 to update the function pointer to the memory corruption handler.
998
999 Returns zero on failure, non-zero on success. */
1000
1001#ifndef MMCHECK_FORCE
1002#define MMCHECK_FORCE 0
1003#endif
1004
1005void
1006init_malloc (md)
1007 PTR md;
1008{
1009 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1010 {
1011 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
1012 to something other than dummy_target, until after
1013 initialize_all_files(). */
c906108c
SS
1014
1015 fprintf_unfiltered
1016 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1017 fprintf_unfiltered
1018 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1019 }
1020
1021 mmtrace ();
1022}
1023
1024#endif /* Have mmalloc and want corruption checking */
1025
1026/* Called when a memory allocation fails, with the number of bytes of
1027 memory requested in SIZE. */
1028
1029NORETURN void
1030nomem (size)
1031 long size;
1032{
1033 if (size > 0)
1034 {
96baa820 1035 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1036 }
1037 else
1038 {
96baa820 1039 internal_error ("virtual memory exhausted.");
c906108c
SS
1040 }
1041}
1042
1043/* Like mmalloc but get error if no storage available, and protect against
1044 the caller wanting to allocate zero bytes. Whether to return NULL for
1045 a zero byte request, or translate the request into a request for one
1046 byte of zero'd storage, is a religious issue. */
1047
1048PTR
1049xmmalloc (md, size)
1050 PTR md;
1051 long size;
1052{
1053 register PTR val;
1054
1055 if (size == 0)
1056 {
1057 val = NULL;
1058 }
1059 else if ((val = mmalloc (md, size)) == NULL)
1060 {
1061 nomem (size);
1062 }
1063 return (val);
1064}
1065
1066/* Like mrealloc but get error if no storage available. */
1067
1068PTR
1069xmrealloc (md, ptr, size)
1070 PTR md;
1071 PTR ptr;
1072 long size;
1073{
1074 register PTR val;
1075
1076 if (ptr != NULL)
1077 {
1078 val = mrealloc (md, ptr, size);
1079 }
1080 else
1081 {
1082 val = mmalloc (md, size);
1083 }
1084 if (val == NULL)
1085 {
1086 nomem (size);
1087 }
1088 return (val);
1089}
1090
1091/* Like malloc but get error if no storage available, and protect against
1092 the caller wanting to allocate zero bytes. */
1093
1094PTR
1095xmalloc (size)
1096 size_t size;
1097{
1098 return (xmmalloc ((PTR) NULL, size));
1099}
1100
ed9a39eb
JM
1101/* Like calloc but get error if no storage available */
1102
1103PTR
1104xcalloc (size_t number, size_t size)
1105{
1106 void *mem = mcalloc (NULL, number, size);
1107 if (mem == NULL)
1108 nomem (number * size);
1109 return mem;
1110}
1111
c906108c
SS
1112/* Like mrealloc but get error if no storage available. */
1113
1114PTR
1115xrealloc (ptr, size)
1116 PTR ptr;
1117 size_t size;
1118{
1119 return (xmrealloc ((PTR) NULL, ptr, size));
1120}
c906108c 1121\f
c5aa993b 1122
c906108c
SS
1123/* My replacement for the read system call.
1124 Used like `read' but keeps going if `read' returns too soon. */
1125
1126int
1127myread (desc, addr, len)
1128 int desc;
1129 char *addr;
1130 int len;
1131{
1132 register int val;
1133 int orglen = len;
1134
1135 while (len > 0)
1136 {
1137 val = read (desc, addr, len);
1138 if (val < 0)
1139 return val;
1140 if (val == 0)
1141 return orglen - len;
1142 len -= val;
1143 addr += val;
1144 }
1145 return orglen;
1146}
1147\f
1148/* Make a copy of the string at PTR with SIZE characters
1149 (and add a null character at the end in the copy).
1150 Uses malloc to get the space. Returns the address of the copy. */
1151
1152char *
1153savestring (ptr, size)
1154 const char *ptr;
1155 int size;
1156{
1157 register char *p = (char *) xmalloc (size + 1);
1158 memcpy (p, ptr, size);
1159 p[size] = 0;
1160 return p;
1161}
1162
1163char *
1164msavestring (md, ptr, size)
1165 PTR md;
1166 const char *ptr;
1167 int size;
1168{
1169 register char *p = (char *) xmmalloc (md, size + 1);
1170 memcpy (p, ptr, size);
1171 p[size] = 0;
1172 return p;
1173}
1174
1175/* The "const" is so it compiles under DGUX (which prototypes strsave
1176 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1177 Doesn't real strsave return NULL if out of memory? */
1178char *
1179strsave (ptr)
1180 const char *ptr;
1181{
1182 return savestring (ptr, strlen (ptr));
1183}
1184
1185char *
1186mstrsave (md, ptr)
1187 PTR md;
1188 const char *ptr;
1189{
1190 return (msavestring (md, ptr, strlen (ptr)));
1191}
1192
1193void
1194print_spaces (n, file)
1195 register int n;
1196 register GDB_FILE *file;
1197{
392a587b 1198 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1199}
1200
1201/* Print a host address. */
1202
1203void
d4f3574e 1204gdb_print_host_address (void *addr, struct gdb_file *stream)
c906108c
SS
1205{
1206
1207 /* We could use the %p conversion specifier to fprintf if we had any
1208 way of knowing whether this host supports it. But the following
1209 should work on the Alpha and on 32 bit machines. */
1210
c5aa993b 1211 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1212}
1213
1214/* Ask user a y-or-n question and return 1 iff answer is yes.
1215 Takes three args which are given to printf to print the question.
1216 The first, a control string, should end in "? ".
1217 It should not say how to answer, because we do that. */
1218
1219/* VARARGS */
1220int
c5aa993b 1221query (char *ctlstr,...)
c906108c
SS
1222{
1223 va_list args;
1224 register int answer;
1225 register int ans2;
1226 int retval;
1227
c906108c 1228 va_start (args, ctlstr);
c906108c
SS
1229
1230 if (query_hook)
1231 {
1232 return query_hook (ctlstr, args);
1233 }
1234
1235 /* Automatically answer "yes" if input is not from a terminal. */
1236 if (!input_from_terminal_p ())
1237 return 1;
1238#ifdef MPW
1239 /* FIXME Automatically answer "yes" if called from MacGDB. */
1240 if (mac_app)
1241 return 1;
1242#endif /* MPW */
1243
1244 while (1)
1245 {
1246 wrap_here (""); /* Flush any buffered output */
1247 gdb_flush (gdb_stdout);
1248
1249 if (annotation_level > 1)
1250 printf_filtered ("\n\032\032pre-query\n");
1251
1252 vfprintf_filtered (gdb_stdout, ctlstr, args);
1253 printf_filtered ("(y or n) ");
1254
1255 if (annotation_level > 1)
1256 printf_filtered ("\n\032\032query\n");
1257
1258#ifdef MPW
1259 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1260 have a prompt on the front of it. */
c906108c
SS
1261 if (!mac_app)
1262 fputs_unfiltered ("\n", gdb_stdout);
1263#endif /* MPW */
1264
c5aa993b 1265 wrap_here ("");
c906108c
SS
1266 gdb_flush (gdb_stdout);
1267
1268#if defined(TUI)
c5aa993b 1269 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1270#endif
1271 answer = fgetc (stdin);
1272#if defined(TUI)
1273 else
c5aa993b 1274 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1275
1276#endif
1277 clearerr (stdin); /* in case of C-d */
1278 if (answer == EOF) /* C-d */
c5aa993b 1279 {
c906108c
SS
1280 retval = 1;
1281 break;
1282 }
1283 /* Eat rest of input line, to EOF or newline */
1284 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1285 do
c906108c
SS
1286 {
1287#if defined(TUI)
c5aa993b 1288 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1289#endif
1290 ans2 = fgetc (stdin);
1291#if defined(TUI)
1292 else
c5aa993b 1293 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1294#endif
1295 clearerr (stdin);
1296 }
c5aa993b
JM
1297 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1298 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1299
1300 if (answer >= 'a')
1301 answer -= 040;
1302 if (answer == 'Y')
1303 {
1304 retval = 1;
1305 break;
1306 }
1307 if (answer == 'N')
1308 {
1309 retval = 0;
1310 break;
1311 }
1312 printf_filtered ("Please answer y or n.\n");
1313 }
1314
1315 if (annotation_level > 1)
1316 printf_filtered ("\n\032\032post-query\n");
1317 return retval;
1318}
c906108c 1319\f
c5aa993b 1320
c906108c
SS
1321/* Parse a C escape sequence. STRING_PTR points to a variable
1322 containing a pointer to the string to parse. That pointer
1323 should point to the character after the \. That pointer
1324 is updated past the characters we use. The value of the
1325 escape sequence is returned.
1326
1327 A negative value means the sequence \ newline was seen,
1328 which is supposed to be equivalent to nothing at all.
1329
1330 If \ is followed by a null character, we return a negative
1331 value and leave the string pointer pointing at the null character.
1332
1333 If \ is followed by 000, we return 0 and leave the string pointer
1334 after the zeros. A value of 0 does not mean end of string. */
1335
1336int
1337parse_escape (string_ptr)
1338 char **string_ptr;
1339{
1340 register int c = *(*string_ptr)++;
1341 switch (c)
1342 {
1343 case 'a':
1344 return 007; /* Bell (alert) char */
1345 case 'b':
1346 return '\b';
1347 case 'e': /* Escape character */
1348 return 033;
1349 case 'f':
1350 return '\f';
1351 case 'n':
1352 return '\n';
1353 case 'r':
1354 return '\r';
1355 case 't':
1356 return '\t';
1357 case 'v':
1358 return '\v';
1359 case '\n':
1360 return -2;
1361 case 0:
1362 (*string_ptr)--;
1363 return 0;
1364 case '^':
1365 c = *(*string_ptr)++;
1366 if (c == '\\')
1367 c = parse_escape (string_ptr);
1368 if (c == '?')
1369 return 0177;
1370 return (c & 0200) | (c & 037);
c5aa993b 1371
c906108c
SS
1372 case '0':
1373 case '1':
1374 case '2':
1375 case '3':
1376 case '4':
1377 case '5':
1378 case '6':
1379 case '7':
1380 {
1381 register int i = c - '0';
1382 register int count = 0;
1383 while (++count < 3)
1384 {
1385 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1386 {
1387 i *= 8;
1388 i += c - '0';
1389 }
1390 else
1391 {
1392 (*string_ptr)--;
1393 break;
1394 }
1395 }
1396 return i;
1397 }
1398 default:
1399 return c;
1400 }
1401}
1402\f
1403/* Print the character C on STREAM as part of the contents of a literal
1404 string whose delimiter is QUOTER. Note that this routine should only
1405 be call for printing things which are independent of the language
1406 of the program being debugged. */
1407
43e526b9
JM
1408static void printchar PARAMS ((int c, void (*do_fputs) (const char *, GDB_FILE*), void (*do_fprintf) (GDB_FILE*, const char *, ...), GDB_FILE *stream, int quoter));
1409
1410static void
1411printchar (c, do_fputs, do_fprintf, stream, quoter)
1412 int c;
1413 void (*do_fputs) PARAMS ((const char *, GDB_FILE*));
1414 void (*do_fprintf) PARAMS ((GDB_FILE*, const char *, ...));
c906108c
SS
1415 GDB_FILE *stream;
1416 int quoter;
1417{
1418
1419 c &= 0xFF; /* Avoid sign bit follies */
1420
c5aa993b
JM
1421 if (c < 0x20 || /* Low control chars */
1422 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1423 (sevenbit_strings && c >= 0x80))
1424 { /* high order bit set */
1425 switch (c)
1426 {
1427 case '\n':
43e526b9 1428 do_fputs ("\\n", stream);
c5aa993b
JM
1429 break;
1430 case '\b':
43e526b9 1431 do_fputs ("\\b", stream);
c5aa993b
JM
1432 break;
1433 case '\t':
43e526b9 1434 do_fputs ("\\t", stream);
c5aa993b
JM
1435 break;
1436 case '\f':
43e526b9 1437 do_fputs ("\\f", stream);
c5aa993b
JM
1438 break;
1439 case '\r':
43e526b9 1440 do_fputs ("\\r", stream);
c5aa993b
JM
1441 break;
1442 case '\033':
43e526b9 1443 do_fputs ("\\e", stream);
c5aa993b
JM
1444 break;
1445 case '\007':
43e526b9 1446 do_fputs ("\\a", stream);
c5aa993b
JM
1447 break;
1448 default:
43e526b9 1449 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1450 break;
1451 }
1452 }
1453 else
1454 {
1455 if (c == '\\' || c == quoter)
43e526b9
JM
1456 do_fputs ("\\", stream);
1457 do_fprintf (stream, "%c", c);
c5aa993b 1458 }
c906108c 1459}
43e526b9
JM
1460
1461/* Print the character C on STREAM as part of the contents of a
1462 literal string whose delimiter is QUOTER. Note that these routines
1463 should only be call for printing things which are independent of
1464 the language of the program being debugged. */
1465
1466void
1467fputstr_filtered (str, quoter, stream)
1468 const char *str;
1469 int quoter;
1470 GDB_FILE *stream;
1471{
1472 while (*str)
1473 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1474}
1475
1476void
1477fputstr_unfiltered (str, quoter, stream)
1478 const char *str;
1479 int quoter;
1480 GDB_FILE *stream;
1481{
1482 while (*str)
1483 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1484}
1485
1486void
1487fputstrn_unfiltered (str, n, quoter, stream)
1488 const char *str;
1489 int n;
1490 int quoter;
1491 GDB_FILE *stream;
1492{
1493 int i;
1494 for (i = 0; i < n; i++)
1495 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1496}
1497
c906108c 1498\f
c5aa993b 1499
c906108c
SS
1500/* Number of lines per page or UINT_MAX if paging is disabled. */
1501static unsigned int lines_per_page;
e514a9d6 1502/* Number of chars per line or UNIT_MAX if line folding is disabled. */
c906108c
SS
1503static unsigned int chars_per_line;
1504/* Current count of lines printed on this page, chars on this line. */
1505static unsigned int lines_printed, chars_printed;
1506
1507/* Buffer and start column of buffered text, for doing smarter word-
1508 wrapping. When someone calls wrap_here(), we start buffering output
1509 that comes through fputs_filtered(). If we see a newline, we just
1510 spit it out and forget about the wrap_here(). If we see another
1511 wrap_here(), we spit it out and remember the newer one. If we see
1512 the end of the line, we spit out a newline, the indent, and then
1513 the buffered output. */
1514
1515/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1516 are waiting to be output (they have already been counted in chars_printed).
1517 When wrap_buffer[0] is null, the buffer is empty. */
1518static char *wrap_buffer;
1519
1520/* Pointer in wrap_buffer to the next character to fill. */
1521static char *wrap_pointer;
1522
1523/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1524 is non-zero. */
1525static char *wrap_indent;
1526
1527/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1528 is not in effect. */
1529static int wrap_column;
c906108c 1530\f
c5aa993b 1531
c906108c
SS
1532/* Inialize the lines and chars per page */
1533void
c5aa993b 1534init_page_info ()
c906108c
SS
1535{
1536#if defined(TUI)
c5aa993b 1537 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1538 {
1539 lines_per_page = cmdWin->generic.height;
1540 chars_per_line = cmdWin->generic.width;
1541 }
1542 else
1543#endif
1544 {
1545 /* These defaults will be used if we are unable to get the correct
1546 values from termcap. */
1547#if defined(__GO32__)
c5aa993b
JM
1548 lines_per_page = ScreenRows ();
1549 chars_per_line = ScreenCols ();
1550#else
c906108c
SS
1551 lines_per_page = 24;
1552 chars_per_line = 80;
1553
1554#if !defined (MPW) && !defined (_WIN32)
1555 /* No termcap under MPW, although might be cool to do something
1556 by looking at worksheet or console window sizes. */
1557 /* Initialize the screen height and width from termcap. */
1558 {
c5aa993b 1559 char *termtype = getenv ("TERM");
c906108c 1560
c5aa993b
JM
1561 /* Positive means success, nonpositive means failure. */
1562 int status;
c906108c 1563
c5aa993b
JM
1564 /* 2048 is large enough for all known terminals, according to the
1565 GNU termcap manual. */
1566 char term_buffer[2048];
c906108c 1567
c5aa993b
JM
1568 if (termtype)
1569 {
c906108c
SS
1570 status = tgetent (term_buffer, termtype);
1571 if (status > 0)
1572 {
c5aa993b 1573 int val;
c906108c 1574 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1575
1576 val = tgetnum ("li");
1577 if (val >= 0 && !running_in_emacs)
1578 lines_per_page = val;
1579 else
1580 /* The number of lines per page is not mentioned
c906108c
SS
1581 in the terminal description. This probably means
1582 that paging is not useful (e.g. emacs shell window),
1583 so disable paging. */
c5aa993b
JM
1584 lines_per_page = UINT_MAX;
1585
1586 val = tgetnum ("co");
1587 if (val >= 0)
1588 chars_per_line = val;
c906108c 1589 }
c5aa993b 1590 }
c906108c
SS
1591 }
1592#endif /* MPW */
1593
1594#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1595
1596 /* If there is a better way to determine the window size, use it. */
1597 SIGWINCH_HANDLER (SIGWINCH);
1598#endif
1599#endif
1600 /* If the output is not a terminal, don't paginate it. */
1601 if (!GDB_FILE_ISATTY (gdb_stdout))
c5aa993b
JM
1602 lines_per_page = UINT_MAX;
1603 } /* the command_line_version */
1604 set_width ();
c906108c
SS
1605}
1606
1607static void
c5aa993b 1608set_width ()
c906108c
SS
1609{
1610 if (chars_per_line == 0)
c5aa993b 1611 init_page_info ();
c906108c
SS
1612
1613 if (!wrap_buffer)
1614 {
1615 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1616 wrap_buffer[0] = '\0';
1617 }
1618 else
1619 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1620 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1621}
1622
1623/* ARGSUSED */
c5aa993b 1624static void
c906108c
SS
1625set_width_command (args, from_tty, c)
1626 char *args;
1627 int from_tty;
1628 struct cmd_list_element *c;
1629{
1630 set_width ();
1631}
1632
1633/* Wait, so the user can read what's on the screen. Prompt the user
1634 to continue by pressing RETURN. */
1635
1636static void
1637prompt_for_continue ()
1638{
1639 char *ignore;
1640 char cont_prompt[120];
1641
1642 if (annotation_level > 1)
1643 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1644
1645 strcpy (cont_prompt,
1646 "---Type <return> to continue, or q <return> to quit---");
1647 if (annotation_level > 1)
1648 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1649
1650 /* We must do this *before* we call gdb_readline, else it will eventually
1651 call us -- thinking that we're trying to print beyond the end of the
1652 screen. */
1653 reinitialize_more_filter ();
1654
1655 immediate_quit++;
1656 /* On a real operating system, the user can quit with SIGINT.
1657 But not on GO32.
1658
1659 'q' is provided on all systems so users don't have to change habits
1660 from system to system, and because telling them what to do in
1661 the prompt is more user-friendly than expecting them to think of
1662 SIGINT. */
1663 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1664 whereas control-C to gdb_readline will cause the user to get dumped
1665 out to DOS. */
1666 ignore = readline (cont_prompt);
1667
1668 if (annotation_level > 1)
1669 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1670
1671 if (ignore)
1672 {
1673 char *p = ignore;
1674 while (*p == ' ' || *p == '\t')
1675 ++p;
1676 if (p[0] == 'q')
0f71a2f6 1677 {
6426a772 1678 if (!event_loop_p)
0f71a2f6
JM
1679 request_quit (SIGINT);
1680 else
c5aa993b 1681 async_request_quit (0);
0f71a2f6 1682 }
c906108c
SS
1683 free (ignore);
1684 }
1685 immediate_quit--;
1686
1687 /* Now we have to do this again, so that GDB will know that it doesn't
1688 need to save the ---Type <return>--- line at the top of the screen. */
1689 reinitialize_more_filter ();
1690
1691 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1692}
1693
1694/* Reinitialize filter; ie. tell it to reset to original values. */
1695
1696void
1697reinitialize_more_filter ()
1698{
1699 lines_printed = 0;
1700 chars_printed = 0;
1701}
1702
1703/* Indicate that if the next sequence of characters overflows the line,
1704 a newline should be inserted here rather than when it hits the end.
1705 If INDENT is non-null, it is a string to be printed to indent the
1706 wrapped part on the next line. INDENT must remain accessible until
1707 the next call to wrap_here() or until a newline is printed through
1708 fputs_filtered().
1709
1710 If the line is already overfull, we immediately print a newline and
1711 the indentation, and disable further wrapping.
1712
1713 If we don't know the width of lines, but we know the page height,
1714 we must not wrap words, but should still keep track of newlines
1715 that were explicitly printed.
1716
1717 INDENT should not contain tabs, as that will mess up the char count
1718 on the next line. FIXME.
1719
1720 This routine is guaranteed to force out any output which has been
1721 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1722 used to force out output from the wrap_buffer. */
1723
1724void
c5aa993b 1725wrap_here (indent)
c906108c
SS
1726 char *indent;
1727{
1728 /* This should have been allocated, but be paranoid anyway. */
1729 if (!wrap_buffer)
1730 abort ();
1731
1732 if (wrap_buffer[0])
1733 {
1734 *wrap_pointer = '\0';
1735 fputs_unfiltered (wrap_buffer, gdb_stdout);
1736 }
1737 wrap_pointer = wrap_buffer;
1738 wrap_buffer[0] = '\0';
c5aa993b 1739 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1740 {
1741 wrap_column = 0;
1742 }
1743 else if (chars_printed >= chars_per_line)
1744 {
1745 puts_filtered ("\n");
1746 if (indent != NULL)
1747 puts_filtered (indent);
1748 wrap_column = 0;
1749 }
1750 else
1751 {
1752 wrap_column = chars_printed;
1753 if (indent == NULL)
1754 wrap_indent = "";
1755 else
1756 wrap_indent = indent;
1757 }
1758}
1759
1760/* Ensure that whatever gets printed next, using the filtered output
1761 commands, starts at the beginning of the line. I.E. if there is
1762 any pending output for the current line, flush it and start a new
1763 line. Otherwise do nothing. */
1764
1765void
1766begin_line ()
1767{
1768 if (chars_printed > 0)
1769 {
1770 puts_filtered ("\n");
1771 }
1772}
1773
ac9a91a7
JM
1774
1775/* ``struct gdb_file'' implementation that maps directly onto
1776 <stdio.h>'s FILE. */
1777
11cf8741 1778static gdb_file_write_ftype stdio_file_write;
ac9a91a7
JM
1779static gdb_file_fputs_ftype stdio_file_fputs;
1780static gdb_file_isatty_ftype stdio_file_isatty;
1781static gdb_file_delete_ftype stdio_file_delete;
c5aa993b 1782static struct gdb_file *stdio_file_new PARAMS ((FILE * file, int close_p));
ac9a91a7
JM
1783static gdb_file_flush_ftype stdio_file_flush;
1784
1785static int stdio_file_magic;
1786
1787struct stdio_file
c5aa993b
JM
1788 {
1789 int *magic;
1790 FILE *file;
1791 int close_p;
1792 };
ac9a91a7
JM
1793
1794static struct gdb_file *
1795stdio_file_new (file, close_p)
1796 FILE *file;
1797 int close_p;
1798{
1799 struct gdb_file *gdb_file = gdb_file_new ();
1800 struct stdio_file *stdio = xmalloc (sizeof (struct stdio_file));
1801 stdio->magic = &stdio_file_magic;
1802 stdio->file = file;
1803 stdio->close_p = close_p;
1804 set_gdb_file_data (gdb_file, stdio, stdio_file_delete);
1805 set_gdb_file_flush (gdb_file, stdio_file_flush);
11cf8741 1806 set_gdb_file_write (gdb_file, stdio_file_write);
ac9a91a7
JM
1807 set_gdb_file_fputs (gdb_file, stdio_file_fputs);
1808 set_gdb_file_isatty (gdb_file, stdio_file_isatty);
1809 return gdb_file;
1810}
1811
1812static void
1813stdio_file_delete (file)
1814 struct gdb_file *file;
1815{
1816 struct stdio_file *stdio = gdb_file_data (file);
1817 if (stdio->magic != &stdio_file_magic)
11cf8741 1818 internal_error ("stdio_file_delete: bad magic number");
ac9a91a7
JM
1819 if (stdio->close_p)
1820 {
1821 fclose (stdio->file);
1822 }
1823 free (stdio);
1824}
1825
1826static void
1827stdio_file_flush (file)
1828 struct gdb_file *file;
c906108c 1829{
ac9a91a7
JM
1830 struct stdio_file *stdio = gdb_file_data (file);
1831 if (stdio->magic != &stdio_file_magic)
11cf8741 1832 internal_error ("stdio_file_flush: bad magic number");
ac9a91a7
JM
1833 fflush (stdio->file);
1834}
1835
11cf8741
JM
1836static void
1837stdio_file_write (struct gdb_file *file, const char *buf, long length_buf)
1838{
1839 struct stdio_file *stdio = gdb_file_data (file);
1840 if (stdio->magic != &stdio_file_magic)
1841 internal_error ("stdio_file_write: bad magic number");
1842 fwrite (buf, length_buf, 1, stdio->file);
1843}
1844
ac9a91a7
JM
1845static void
1846stdio_file_fputs (linebuffer, file)
1847 const char *linebuffer;
1848 struct gdb_file *file;
1849{
1850 struct stdio_file *stdio = gdb_file_data (file);
1851 if (stdio->magic != &stdio_file_magic)
11cf8741 1852 internal_error ("stdio_file_fputs: bad magic number");
ac9a91a7
JM
1853 fputs (linebuffer, stdio->file);
1854}
1855
1856static int
1857stdio_file_isatty (file)
1858 struct gdb_file *file;
1859{
1860 struct stdio_file *stdio = gdb_file_data (file);
1861 if (stdio->magic != &stdio_file_magic)
11cf8741 1862 internal_error ("stdio_file_isatty: bad magic number");
ac9a91a7
JM
1863 return (isatty (fileno (stdio->file)));
1864}
1865
1866/* Like fdopen(). Create a gdb_file from a previously opened FILE. */
1867
1868struct gdb_file *
1869stdio_fileopen (file)
1870 FILE *file;
1871{
1872 return stdio_file_new (file, 0);
1873}
1874
1875
917317f4 1876/* A pure memory based ``struct gdb_file'' that can be used an output
4ce44c66
JM
1877 buffer. The buffers accumulated contents are available via
1878 gdb_file_put(). */
917317f4
JM
1879
1880struct mem_file
1881 {
1882 int *magic;
1883 char *buffer;
1884 int sizeof_buffer;
4ce44c66 1885 int length_buffer;
917317f4
JM
1886 };
1887
917317f4
JM
1888static gdb_file_rewind_ftype mem_file_rewind;
1889static gdb_file_put_ftype mem_file_put;
4ce44c66 1890static gdb_file_write_ftype mem_file_write;
917317f4
JM
1891static gdb_file_delete_ftype mem_file_delete;
1892static struct gdb_file *mem_file_new PARAMS ((void));
1893static int mem_file_magic;
1894
1895static struct gdb_file *
1896mem_file_new (void)
1897{
1898 struct mem_file *stream = XMALLOC (struct mem_file);
1899 struct gdb_file *file = gdb_file_new ();
1900 set_gdb_file_data (file, stream, mem_file_delete);
917317f4
JM
1901 set_gdb_file_rewind (file, mem_file_rewind);
1902 set_gdb_file_put (file, mem_file_put);
4ce44c66 1903 set_gdb_file_write (file, mem_file_write);
917317f4
JM
1904 stream->magic = &mem_file_magic;
1905 stream->buffer = NULL;
1906 stream->sizeof_buffer = 0;
4ce44c66 1907 stream->length_buffer = 0;
917317f4
JM
1908 return file;
1909}
1910
1911static void
1912mem_file_delete (struct gdb_file *file)
1913{
1914 struct mem_file *stream = gdb_file_data (file);
1915 if (stream->magic != &mem_file_magic)
1916 internal_error ("mem_file_delete: bad magic number");
1917 if (stream->buffer != NULL)
1918 free (stream->buffer);
1919 free (stream);
1920}
1921
1922struct gdb_file *
1923mem_fileopen (void)
1924{
1925 return mem_file_new ();
1926}
1927
1928static void
1929mem_file_rewind (struct gdb_file *file)
1930{
1931 struct mem_file *stream = gdb_file_data (file);
1932 if (stream->magic != &mem_file_magic)
1933 internal_error ("mem_file_rewind: bad magic number");
4ce44c66 1934 stream->length_buffer = 0;
917317f4
JM
1935}
1936
1937static void
4ce44c66
JM
1938mem_file_put (struct gdb_file *file,
1939 gdb_file_put_method_ftype *write,
1940 void *dest)
917317f4
JM
1941{
1942 struct mem_file *stream = gdb_file_data (file);
1943 if (stream->magic != &mem_file_magic)
1944 internal_error ("mem_file_put: bad magic number");
4ce44c66
JM
1945 if (stream->length_buffer > 0)
1946 write (dest, stream->buffer, stream->length_buffer);
917317f4
JM
1947}
1948
1949void
4ce44c66
JM
1950mem_file_write (struct gdb_file *file,
1951 const char *buffer,
1952 long length_buffer)
917317f4
JM
1953{
1954 struct mem_file *stream = gdb_file_data (file);
1955 if (stream->magic != &mem_file_magic)
4ce44c66 1956 internal_error ("mem_file_write: bad magic number");
917317f4
JM
1957 if (stream->buffer == NULL)
1958 {
4ce44c66
JM
1959 stream->length_buffer = length_buffer;
1960 stream->sizeof_buffer = length_buffer;
917317f4 1961 stream->buffer = xmalloc (stream->sizeof_buffer);
4ce44c66 1962 memcpy (stream->buffer, buffer, length_buffer);
917317f4
JM
1963 }
1964 else
1965 {
4ce44c66
JM
1966 int new_length = stream->length_buffer + length_buffer;
1967 if (new_length >= stream->sizeof_buffer)
917317f4 1968 {
4ce44c66 1969 stream->sizeof_buffer = new_length;
917317f4
JM
1970 stream->buffer = xrealloc (stream->buffer, stream->sizeof_buffer);
1971 }
4ce44c66
JM
1972 memcpy (stream->buffer + stream->length_buffer, buffer, length_buffer);
1973 stream->length_buffer = new_length;
917317f4
JM
1974 }
1975}
1976
ac9a91a7
JM
1977/* A ``struct gdb_file'' that is compatible with all the legacy
1978 code. */
c906108c 1979
104c1213
JM
1980/* new */
1981enum streamtype
1982{
1983 afile,
1984 astring
1985};
1986
1987/* new */
1988struct tui_stream
1989{
1990 int *ts_magic;
1991 enum streamtype ts_streamtype;
1992 FILE *ts_filestream;
1993 char *ts_strbuf;
1994 int ts_buflen;
1995};
1996
ac9a91a7
JM
1997static gdb_file_flush_ftype tui_file_flush;
1998extern gdb_file_fputs_ftype tui_file_fputs;
1999static gdb_file_isatty_ftype tui_file_isatty;
0f71a2f6
JM
2000static gdb_file_rewind_ftype tui_file_rewind;
2001static gdb_file_put_ftype tui_file_put;
ac9a91a7
JM
2002static gdb_file_delete_ftype tui_file_delete;
2003static struct gdb_file *tui_file_new PARAMS ((void));
2004static int tui_file_magic;
2005
2006static struct gdb_file *
2007tui_file_new ()
2008{
2009 struct tui_stream *tui = xmalloc (sizeof (struct tui_stream));
2010 struct gdb_file *file = gdb_file_new ();
2011 set_gdb_file_data (file, tui, tui_file_delete);
2012 set_gdb_file_flush (file, tui_file_flush);
2013 set_gdb_file_fputs (file, tui_file_fputs);
2014 set_gdb_file_isatty (file, tui_file_isatty);
0f71a2f6
JM
2015 set_gdb_file_rewind (file, tui_file_rewind);
2016 set_gdb_file_put (file, tui_file_put);
ac9a91a7
JM
2017 tui->ts_magic = &tui_file_magic;
2018 return file;
2019}
2020
2021static void
2022tui_file_delete (file)
2023 struct gdb_file *file;
2024{
2025 struct tui_stream *tmpstream = gdb_file_data (file);
2026 if (tmpstream->ts_magic != &tui_file_magic)
11cf8741 2027 internal_error ("tui_file_delete: bad magic number");
ac9a91a7 2028 if ((tmpstream->ts_streamtype == astring) &&
c5aa993b 2029 (tmpstream->ts_strbuf != NULL))
ac9a91a7
JM
2030 {
2031 free (tmpstream->ts_strbuf);
2032 }
2033 free (tmpstream);
2034}
2035
2036struct gdb_file *
2037tui_fileopen (stream)
2038 FILE *stream;
2039{
2040 struct gdb_file *file = tui_file_new ();
2041 struct tui_stream *tmpstream = gdb_file_data (file);
2042 tmpstream->ts_streamtype = afile;
2043 tmpstream->ts_filestream = stream;
2044 tmpstream->ts_strbuf = NULL;
2045 tmpstream->ts_buflen = 0;
2046 return file;
2047}
2048
2acceee2
JM
2049struct gdb_file *
2050tui_sfileopen (n)
2051 int n;
2052{
2053 struct gdb_file *file = tui_file_new ();
2054 struct tui_stream *tmpstream = gdb_file_data (file);
2055 tmpstream->ts_streamtype = astring;
2056 tmpstream->ts_filestream = NULL;
2057 if (n > 0)
2058 {
2059 tmpstream->ts_strbuf = xmalloc ((n + 1) * sizeof (char));
2060 tmpstream->ts_strbuf[0] = '\0';
2061 }
2062 else
2063 /* Do not allocate the buffer now. The first time something is printed
11cf8741 2064 one will be allocated by tui_file_adjust_strbuf() */
2acceee2
JM
2065 tmpstream->ts_strbuf = NULL;
2066 tmpstream->ts_buflen = n;
2067 return file;
2068}
2069
c5aa993b 2070static int
ac9a91a7 2071tui_file_isatty (file)
c5aa993b 2072 struct gdb_file *file;
ac9a91a7
JM
2073{
2074 struct tui_stream *stream = gdb_file_data (file);
2075 if (stream->ts_magic != &tui_file_magic)
11cf8741 2076 internal_error ("tui_file_isatty: bad magic number");
c906108c 2077 if (stream->ts_streamtype == afile)
c5aa993b
JM
2078 return (isatty (fileno (stream->ts_filestream)));
2079 else
2080 return 0;
c906108c
SS
2081}
2082
0f71a2f6
JM
2083static void
2084tui_file_rewind (file)
c5aa993b 2085 struct gdb_file *file;
0f71a2f6
JM
2086{
2087 struct tui_stream *stream = gdb_file_data (file);
2088 if (stream->ts_magic != &tui_file_magic)
11cf8741 2089 internal_error ("tui_file_rewind: bad magic number");
0f71a2f6
JM
2090 stream->ts_strbuf[0] = '\0';
2091}
2092
2093static void
4ce44c66
JM
2094tui_file_put (struct gdb_file *file,
2095 gdb_file_put_method_ftype *write,
2096 void *dest)
0f71a2f6
JM
2097{
2098 struct tui_stream *stream = gdb_file_data (file);
2099 if (stream->ts_magic != &tui_file_magic)
11cf8741 2100 internal_error ("tui_file_put: bad magic number");
0f71a2f6 2101 if (stream->ts_streamtype == astring)
4ce44c66 2102 write (dest, stream->ts_strbuf, strlen (stream->ts_strbuf));
0f71a2f6
JM
2103}
2104
104c1213
JM
2105/* All TUI I/O sent to the *_filtered and *_unfiltered functions
2106 eventually ends up here. The fputs_unfiltered_hook is primarily
2107 used by GUIs to collect all output and send it to the GUI, instead
2108 of the controlling terminal. Only output to gdb_stdout and
2109 gdb_stderr are sent to the hook. Everything else is sent on to
2110 fputs to allow file I/O to be handled appropriately. */
2111
2112/* FIXME: Should be broken up and moved to a TUI specific file. */
2113
2114void
2115tui_file_fputs (linebuffer, file)
2116 const char *linebuffer;
2117 GDB_FILE *file;
2118{
2119 struct tui_stream *stream = gdb_file_data (file);
2120#if defined(TUI)
2121 extern int tui_owns_terminal;
2122#endif
917317f4
JM
2123 /* NOTE: cagney/1999-10-13: The use of fputs_unfiltered_hook is
2124 seriously discouraged. Those wanting to hook output should
2125 instead implement their own gdb_file object and install that. See
2126 also tui_file_flush(). */
104c1213
JM
2127 if (fputs_unfiltered_hook
2128 && (file == gdb_stdout
2129 || file == gdb_stderr))
2130 fputs_unfiltered_hook (linebuffer, file);
2131 else
2132 {
2133#if defined(TUI)
2134 if (tui_version && tui_owns_terminal)
2135 {
2136 /* If we get here somehow while updating the TUI (from
2137 * within a tuiDo(), then we need to temporarily
2138 * set up the terminal for GDB output. This probably just
2139 * happens on error output.
2140 */
2141
2142 if (stream->ts_streamtype == astring)
2143 {
11cf8741 2144 tui_file_adjust_strbuf (strlen (linebuffer), stream);
104c1213
JM
2145 strcat (stream->ts_strbuf, linebuffer);
2146 }
2147 else
2148 {
2149 tuiTermUnsetup (0, (tui_version) ? cmdWin->detail.commandInfo.curch : 0);
2150 fputs (linebuffer, stream->ts_filestream);
2151 tuiTermSetup (0);
2152 if (linebuffer[strlen (linebuffer) - 1] == '\n')
2153 tuiClearCommandCharCount ();
2154 else
2155 tuiIncrCommandCharCountBy (strlen (linebuffer));
2156 }
2157 }
2158 else
2159 {
2160 /* The normal case - just do a fputs() */
2161 if (stream->ts_streamtype == astring)
2162 {
11cf8741 2163 tui_file_adjust_strbuf (strlen (linebuffer), stream);
104c1213
JM
2164 strcat (stream->ts_strbuf, linebuffer);
2165 }
2166 else
2167 fputs (linebuffer, stream->ts_filestream);
2168 }
2169
2170
2171#else
2172 if (stream->ts_streamtype == astring)
2173 {
11cf8741 2174 tui_file_adjust_strbuf (strlen (linebuffer), file);
104c1213
JM
2175 strcat (stream->ts_strbuf, linebuffer);
2176 }
2177 else
2178 fputs (linebuffer, stream->ts_filestream);
2179#endif
2180 }
2181}
2182
c906108c 2183char *
11cf8741 2184tui_file_get_strbuf (struct gdb_file *file)
c906108c 2185{
ac9a91a7
JM
2186 struct tui_stream *stream = gdb_file_data (file);
2187 if (stream->ts_magic != &tui_file_magic)
11cf8741 2188 internal_error ("tui_file_get_strbuf: bad magic number");
c906108c
SS
2189 return (stream->ts_strbuf);
2190}
2191
2192/* adjust the length of the buffer by the amount necessary
2193 to accomodate appending a string of length N to the buffer contents */
2194void
11cf8741 2195tui_file_adjust_strbuf (int n, struct gdb_file *file)
c906108c 2196{
ac9a91a7 2197 struct tui_stream *stream = gdb_file_data (file);
c906108c 2198 int non_null_chars;
ac9a91a7 2199 if (stream->ts_magic != &tui_file_magic)
11cf8741 2200 internal_error ("tui_file_adjust_strbuf: bad magic number");
392a587b
JM
2201
2202 if (stream->ts_streamtype != astring)
2203 return;
c5aa993b 2204
392a587b 2205 if (stream->ts_strbuf)
c906108c 2206 {
392a587b 2207 /* There is already a buffer allocated */
c5aa993b
JM
2208 non_null_chars = strlen (stream->ts_strbuf);
2209
2210 if (n > (stream->ts_buflen - non_null_chars - 1))
2211 {
2212 stream->ts_buflen = n + non_null_chars + 1;
2213 stream->ts_strbuf = xrealloc (stream->ts_strbuf, stream->ts_buflen);
2214 }
2215 }
392a587b
JM
2216 else
2217 /* No buffer yet, so allocate one of the desired size */
2218 stream->ts_strbuf = xmalloc ((n + 1) * sizeof (char));
c5aa993b 2219}
c906108c
SS
2220
2221GDB_FILE *
2222gdb_fopen (name, mode)
c5aa993b
JM
2223 char *name;
2224 char *mode;
c906108c 2225{
ac9a91a7
JM
2226 FILE *f = fopen (name, mode);
2227 if (f == NULL)
2228 return NULL;
2229 return stdio_file_new (f, 1);
c906108c
SS
2230}
2231
ac9a91a7
JM
2232static void
2233tui_file_flush (file)
2234 GDB_FILE *file;
c906108c 2235{
ac9a91a7
JM
2236 struct tui_stream *stream = gdb_file_data (file);
2237 if (stream->ts_magic != &tui_file_magic)
917317f4
JM
2238 internal_error ("tui_file_flush: bad magic number");
2239
2240 /* NOTE: cagney/1999-10-12: If we've been linked with code that uses
2241 fputs_unfiltered_hook then we assume that it doesn't need to know
2242 about flushes. Code that does need to know about flushes can
2243 implement a proper gdb_file object. */
2244 if (fputs_unfiltered_hook)
2245 return;
2246
2247 switch (stream->ts_streamtype)
c906108c 2248 {
917317f4
JM
2249 case astring:
2250 break;
2251 case afile:
2252 fflush (stream->ts_filestream);
2253 break;
c906108c 2254 }
c906108c
SS
2255}
2256
ac9a91a7
JM
2257/* Implement the ``struct gdb_file'' object. */
2258
2259static gdb_file_isatty_ftype null_file_isatty;
11cf8741 2260static gdb_file_write_ftype null_file_write;
ac9a91a7
JM
2261static gdb_file_fputs_ftype null_file_fputs;
2262static gdb_file_flush_ftype null_file_flush;
2263static gdb_file_delete_ftype null_file_delete;
0f71a2f6
JM
2264static gdb_file_rewind_ftype null_file_rewind;
2265static gdb_file_put_ftype null_file_put;
ac9a91a7
JM
2266
2267struct gdb_file
c5aa993b 2268 {
4ce44c66 2269 int *magic;
c5aa993b 2270 gdb_file_flush_ftype *to_flush;
11cf8741 2271 gdb_file_write_ftype *to_write;
c5aa993b
JM
2272 gdb_file_fputs_ftype *to_fputs;
2273 gdb_file_delete_ftype *to_delete;
2274 gdb_file_isatty_ftype *to_isatty;
2275 gdb_file_rewind_ftype *to_rewind;
2276 gdb_file_put_ftype *to_put;
2277 void *to_data;
2278 };
4ce44c66 2279int gdb_file_magic;
ac9a91a7
JM
2280
2281struct gdb_file *
2282gdb_file_new ()
2283{
2284 struct gdb_file *file = xmalloc (sizeof (struct gdb_file));
4ce44c66 2285 file->magic = &gdb_file_magic;
ac9a91a7
JM
2286 set_gdb_file_data (file, NULL, null_file_delete);
2287 set_gdb_file_flush (file, null_file_flush);
11cf8741 2288 set_gdb_file_write (file, null_file_write);
ac9a91a7
JM
2289 set_gdb_file_fputs (file, null_file_fputs);
2290 set_gdb_file_isatty (file, null_file_isatty);
0f71a2f6
JM
2291 set_gdb_file_rewind (file, null_file_rewind);
2292 set_gdb_file_put (file, null_file_put);
ac9a91a7
JM
2293 return file;
2294}
c906108c 2295
ac9a91a7
JM
2296void
2297gdb_file_delete (file)
2298 struct gdb_file *file;
2299{
2300 file->to_delete (file);
2301 free (file);
2302}
2303
2304static int
2305null_file_isatty (file)
2306 struct gdb_file *file;
2307{
2308 return 0;
2309}
2310
0f71a2f6
JM
2311static void
2312null_file_rewind (file)
2313 struct gdb_file *file;
2314{
2315 return;
2316}
2317
2318static void
4ce44c66
JM
2319null_file_put (struct gdb_file *file,
2320 gdb_file_put_method_ftype *write,
2321 void *dest)
0f71a2f6
JM
2322{
2323 return;
2324}
2325
ac9a91a7
JM
2326static void
2327null_file_flush (file)
2328 struct gdb_file *file;
2329{
2330 return;
2331}
2332
11cf8741
JM
2333static void
2334null_file_write (struct gdb_file *file,
2335 const char *buf,
2336 long sizeof_buf)
2337{
2338 if (file->to_fputs == null_file_fputs)
2339 /* Both the write and fputs methods are null. Discard the
2340 request. */
2341 return;
2342 else
2343 {
2344 /* The fputs method isn't null, slowly pass the write request
2345 onto that. FYI, this isn't as bad as it may look - the
2346 current (as of 1999-11-07) printf_* function calls fputc and
2347 fputc does exactly the below. By having a write function it
2348 is possible to clean up that code. */
2349 int i;
2350 char b[2];
2351 b[1] = '\0';
2352 for (i = 0; i < sizeof_buf; i++)
2353 {
2354 b[0] = buf[i];
2355 file->to_fputs (b, file);
2356 }
2357 return;
2358 }
2359}
2360
ac9a91a7
JM
2361static void
2362null_file_fputs (buf, file)
2363 const char *buf;
2364 struct gdb_file *file;
2365{
11cf8741
JM
2366 if (file->to_write == null_file_write)
2367 /* Both the write and fputs methods are null. Discard the
2368 request. */
2369 return;
2370 else
2371 {
2372 /* The write method was implemented, use that. */
2373 file->to_write (file, buf, strlen (buf));
2374 }
ac9a91a7
JM
2375}
2376
2377static void
2378null_file_delete (file)
2379 struct gdb_file *file;
2380{
2381 return;
2382}
2383
2384void *
2385gdb_file_data (file)
2386 struct gdb_file *file;
2387{
4ce44c66
JM
2388 if (file->magic != &gdb_file_magic)
2389 internal_error ("gdb_file_data: bad magic number");
ac9a91a7
JM
2390 return file->to_data;
2391}
2392
2393void
2394gdb_flush (file)
2395 struct gdb_file *file;
2396{
2397 file->to_flush (file);
2398}
2399
2400int
2401gdb_file_isatty (file)
2402 struct gdb_file *file;
2403{
2404 return file->to_isatty (file);
2405}
2406
0f71a2f6
JM
2407void
2408gdb_file_rewind (file)
2409 struct gdb_file *file;
2410{
085dd6e6 2411 file->to_rewind (file);
0f71a2f6
JM
2412}
2413
2414void
4ce44c66
JM
2415gdb_file_put (struct gdb_file *file,
2416 gdb_file_put_method_ftype *write,
2417 void *dest)
0f71a2f6 2418{
4ce44c66 2419 file->to_put (file, write, dest);
0f71a2f6
JM
2420}
2421
11cf8741
JM
2422void
2423gdb_file_write (struct gdb_file *file,
2424 const char *buf,
2425 long length_buf)
2426{
2427 file->to_write (file, buf, length_buf);
2428}
2429
ac9a91a7
JM
2430void
2431fputs_unfiltered (buf, file)
2432 const char *buf;
2433 struct gdb_file *file;
2434{
2435 file->to_fputs (buf, file);
2436}
2437
2438void
2439set_gdb_file_flush (file, flush)
2440 struct gdb_file *file;
2441 gdb_file_flush_ftype *flush;
2442{
2443 file->to_flush = flush;
2444}
2445
2446void
2447set_gdb_file_isatty (file, isatty)
2448 struct gdb_file *file;
2449 gdb_file_isatty_ftype *isatty;
2450{
2451 file->to_isatty = isatty;
2452}
2453
0f71a2f6
JM
2454void
2455set_gdb_file_rewind (file, rewind)
2456 struct gdb_file *file;
2457 gdb_file_rewind_ftype *rewind;
2458{
2459 file->to_rewind = rewind;
2460}
2461
2462void
2463set_gdb_file_put (file, put)
2464 struct gdb_file *file;
2465 gdb_file_put_ftype *put;
2466{
2467 file->to_put = put;
2468}
2469
11cf8741
JM
2470void
2471set_gdb_file_write (struct gdb_file *file,
2472 gdb_file_write_ftype *write)
2473{
2474 file->to_write = write;
2475}
2476
ac9a91a7
JM
2477void
2478set_gdb_file_fputs (file, fputs)
2479 struct gdb_file *file;
2480 gdb_file_fputs_ftype *fputs;
2481{
2482 file->to_fputs = fputs;
2483}
2484
2485void
2486set_gdb_file_data (file, data, delete)
2487 struct gdb_file *file;
2488 void *data;
2489 gdb_file_delete_ftype *delete;
2490{
2491 file->to_data = data;
2492 file->to_delete = delete;
c906108c
SS
2493}
2494
4ce44c66
JM
2495/* gdb_file utility function for converting a ``struct gdb_file'' into
2496 a memory buffer''. */
2497
2498struct accumulated_gdb_file
2499{
2500 char *buffer;
2501 long length;
2502};
2503
2504static void
2505do_gdb_file_xstrdup (void *context, const char *buffer, long length)
2506{
2507 struct accumulated_gdb_file *acc = context;
2508 if (acc->buffer == NULL)
2509 acc->buffer = xmalloc (length + 1);
2510 else
2511 acc->buffer = xrealloc (acc->buffer, acc->length + length + 1);
2512 memcpy (acc->buffer + acc->length, buffer, length);
2513 acc->length += length;
2514 acc->buffer[acc->length] = '\0';
2515}
2516
2517char *
2518gdb_file_xstrdup (struct gdb_file *file,
2519 long *length)
2520{
2521 struct accumulated_gdb_file acc;
2522 acc.buffer = NULL;
2523 acc.length = 0;
2524 gdb_file_put (file, do_gdb_file_xstrdup, &acc);
2525 if (acc.buffer == NULL)
2526 acc.buffer = xstrdup ("");
2527 *length = acc.length;
2528 return acc.buffer;
2529}
2530
2531
c906108c
SS
2532/* Like fputs but if FILTER is true, pause after every screenful.
2533
2534 Regardless of FILTER can wrap at points other than the final
2535 character of a line.
2536
2537 Unlike fputs, fputs_maybe_filtered does not return a value.
2538 It is OK for LINEBUFFER to be NULL, in which case just don't print
2539 anything.
2540
2541 Note that a longjmp to top level may occur in this routine (only if
2542 FILTER is true) (since prompt_for_continue may do so) so this
2543 routine should not be called when cleanups are not in place. */
2544
2545static void
2546fputs_maybe_filtered (linebuffer, stream, filter)
2547 const char *linebuffer;
2548 GDB_FILE *stream;
2549 int filter;
2550{
2551 const char *lineptr;
2552
2553 if (linebuffer == 0)
2554 return;
2555
2556 /* Don't do any filtering if it is disabled. */
7a292a7a 2557 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 2558 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
2559 {
2560 fputs_unfiltered (linebuffer, stream);
2561 return;
2562 }
2563
2564 /* Go through and output each character. Show line extension
2565 when this is necessary; prompt user for new page when this is
2566 necessary. */
c5aa993b 2567
c906108c
SS
2568 lineptr = linebuffer;
2569 while (*lineptr)
2570 {
2571 /* Possible new page. */
2572 if (filter &&
2573 (lines_printed >= lines_per_page - 1))
2574 prompt_for_continue ();
2575
2576 while (*lineptr && *lineptr != '\n')
2577 {
2578 /* Print a single line. */
2579 if (*lineptr == '\t')
2580 {
2581 if (wrap_column)
2582 *wrap_pointer++ = '\t';
2583 else
2584 fputc_unfiltered ('\t', stream);
2585 /* Shifting right by 3 produces the number of tab stops
2586 we have already passed, and then adding one and
c5aa993b 2587 shifting left 3 advances to the next tab stop. */
c906108c
SS
2588 chars_printed = ((chars_printed >> 3) + 1) << 3;
2589 lineptr++;
2590 }
2591 else
2592 {
2593 if (wrap_column)
2594 *wrap_pointer++ = *lineptr;
2595 else
c5aa993b 2596 fputc_unfiltered (*lineptr, stream);
c906108c
SS
2597 chars_printed++;
2598 lineptr++;
2599 }
c5aa993b 2600
c906108c
SS
2601 if (chars_printed >= chars_per_line)
2602 {
2603 unsigned int save_chars = chars_printed;
2604
2605 chars_printed = 0;
2606 lines_printed++;
2607 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
2608 if chars_per_line is right, we probably just overflowed
2609 anyway; if it's wrong, let us keep going. */
c906108c
SS
2610 if (wrap_column)
2611 fputc_unfiltered ('\n', stream);
2612
2613 /* Possible new page. */
2614 if (lines_printed >= lines_per_page - 1)
2615 prompt_for_continue ();
2616
2617 /* Now output indentation and wrapped string */
2618 if (wrap_column)
2619 {
2620 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
2621 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
2622 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
2623 /* FIXME, this strlen is what prevents wrap_indent from
2624 containing tabs. However, if we recurse to print it
2625 and count its chars, we risk trouble if wrap_indent is
2626 longer than (the user settable) chars_per_line.
2627 Note also that this can set chars_printed > chars_per_line
2628 if we are printing a long string. */
2629 chars_printed = strlen (wrap_indent)
c5aa993b 2630 + (save_chars - wrap_column);
c906108c
SS
2631 wrap_pointer = wrap_buffer; /* Reset buffer */
2632 wrap_buffer[0] = '\0';
c5aa993b
JM
2633 wrap_column = 0; /* And disable fancy wrap */
2634 }
c906108c
SS
2635 }
2636 }
2637
2638 if (*lineptr == '\n')
2639 {
2640 chars_printed = 0;
c5aa993b 2641 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
2642 lines_printed++;
2643 fputc_unfiltered ('\n', stream);
2644 lineptr++;
2645 }
2646 }
2647}
2648
2649void
2650fputs_filtered (linebuffer, stream)
2651 const char *linebuffer;
2652 GDB_FILE *stream;
2653{
2654 fputs_maybe_filtered (linebuffer, stream, 1);
2655}
2656
2657int
2658putchar_unfiltered (c)
2659 int c;
2660{
11cf8741
JM
2661 char buf = c;
2662 gdb_file_write (gdb_stdout, &buf, 1);
c906108c
SS
2663 return c;
2664}
2665
2666int
2667fputc_unfiltered (c, stream)
2668 int c;
c5aa993b 2669 GDB_FILE *stream;
c906108c 2670{
11cf8741
JM
2671 char buf = c;
2672 gdb_file_write (stream, &buf, 1);
c906108c
SS
2673 return c;
2674}
2675
2676int
2677fputc_filtered (c, stream)
2678 int c;
c5aa993b 2679 GDB_FILE *stream;
c906108c
SS
2680{
2681 char buf[2];
2682
2683 buf[0] = c;
2684 buf[1] = 0;
2685 fputs_filtered (buf, stream);
2686 return c;
2687}
2688
2689/* puts_debug is like fputs_unfiltered, except it prints special
2690 characters in printable fashion. */
2691
2692void
2693puts_debug (prefix, string, suffix)
2694 char *prefix;
2695 char *string;
2696 char *suffix;
2697{
2698 int ch;
2699
2700 /* Print prefix and suffix after each line. */
2701 static int new_line = 1;
2702 static int return_p = 0;
2703 static char *prev_prefix = "";
2704 static char *prev_suffix = "";
2705
2706 if (*string == '\n')
2707 return_p = 0;
2708
2709 /* If the prefix is changing, print the previous suffix, a new line,
2710 and the new prefix. */
c5aa993b 2711 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 2712 {
9846de1b
JM
2713 fputs_unfiltered (prev_suffix, gdb_stdlog);
2714 fputs_unfiltered ("\n", gdb_stdlog);
2715 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
2716 }
2717
2718 /* Print prefix if we printed a newline during the previous call. */
2719 if (new_line)
2720 {
2721 new_line = 0;
9846de1b 2722 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
2723 }
2724
2725 prev_prefix = prefix;
2726 prev_suffix = suffix;
2727
2728 /* Output characters in a printable format. */
2729 while ((ch = *string++) != '\0')
2730 {
2731 switch (ch)
c5aa993b 2732 {
c906108c
SS
2733 default:
2734 if (isprint (ch))
9846de1b 2735 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
2736
2737 else
9846de1b 2738 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
2739 break;
2740
c5aa993b
JM
2741 case '\\':
2742 fputs_unfiltered ("\\\\", gdb_stdlog);
2743 break;
2744 case '\b':
2745 fputs_unfiltered ("\\b", gdb_stdlog);
2746 break;
2747 case '\f':
2748 fputs_unfiltered ("\\f", gdb_stdlog);
2749 break;
2750 case '\n':
2751 new_line = 1;
2752 fputs_unfiltered ("\\n", gdb_stdlog);
2753 break;
2754 case '\r':
2755 fputs_unfiltered ("\\r", gdb_stdlog);
2756 break;
2757 case '\t':
2758 fputs_unfiltered ("\\t", gdb_stdlog);
2759 break;
2760 case '\v':
2761 fputs_unfiltered ("\\v", gdb_stdlog);
2762 break;
2763 }
c906108c
SS
2764
2765 return_p = ch == '\r';
2766 }
2767
2768 /* Print suffix if we printed a newline. */
2769 if (new_line)
2770 {
9846de1b
JM
2771 fputs_unfiltered (suffix, gdb_stdlog);
2772 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2773 }
2774}
2775
2776
2777/* Print a variable number of ARGS using format FORMAT. If this
2778 information is going to put the amount written (since the last call
2779 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2780 call prompt_for_continue to get the users permision to continue.
2781
2782 Unlike fprintf, this function does not return a value.
2783
2784 We implement three variants, vfprintf (takes a vararg list and stream),
2785 fprintf (takes a stream to write on), and printf (the usual).
2786
2787 Note also that a longjmp to top level may occur in this routine
2788 (since prompt_for_continue may do so) so this routine should not be
2789 called when cleanups are not in place. */
2790
2791static void
2792vfprintf_maybe_filtered (stream, format, args, filter)
2793 GDB_FILE *stream;
2794 const char *format;
2795 va_list args;
2796 int filter;
2797{
2798 char *linebuffer;
2799 struct cleanup *old_cleanups;
2800
2801 vasprintf (&linebuffer, format, args);
2802 if (linebuffer == NULL)
2803 {
2804 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2805 exit (1);
2806 }
2807 old_cleanups = make_cleanup (free, linebuffer);
2808 fputs_maybe_filtered (linebuffer, stream, filter);
2809 do_cleanups (old_cleanups);
2810}
2811
2812
2813void
2814vfprintf_filtered (stream, format, args)
2815 GDB_FILE *stream;
2816 const char *format;
2817 va_list args;
2818{
2819 vfprintf_maybe_filtered (stream, format, args, 1);
2820}
2821
2822void
2823vfprintf_unfiltered (stream, format, args)
2824 GDB_FILE *stream;
2825 const char *format;
2826 va_list args;
2827{
2828 char *linebuffer;
2829 struct cleanup *old_cleanups;
2830
2831 vasprintf (&linebuffer, format, args);
2832 if (linebuffer == NULL)
2833 {
2834 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2835 exit (1);
2836 }
2837 old_cleanups = make_cleanup (free, linebuffer);
2838 fputs_unfiltered (linebuffer, stream);
2839 do_cleanups (old_cleanups);
2840}
2841
2842void
2843vprintf_filtered (format, args)
2844 const char *format;
2845 va_list args;
2846{
2847 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2848}
2849
2850void
2851vprintf_unfiltered (format, args)
2852 const char *format;
2853 va_list args;
2854{
2855 vfprintf_unfiltered (gdb_stdout, format, args);
2856}
2857
c906108c 2858void
c5aa993b 2859fprintf_filtered (GDB_FILE * stream, const char *format,...)
c906108c
SS
2860{
2861 va_list args;
c906108c 2862 va_start (args, format);
c906108c
SS
2863 vfprintf_filtered (stream, format, args);
2864 va_end (args);
2865}
2866
c906108c 2867void
c5aa993b 2868fprintf_unfiltered (GDB_FILE * stream, const char *format,...)
c906108c
SS
2869{
2870 va_list args;
c906108c 2871 va_start (args, format);
c906108c
SS
2872 vfprintf_unfiltered (stream, format, args);
2873 va_end (args);
2874}
2875
2876/* Like fprintf_filtered, but prints its result indented.
2877 Called as fprintfi_filtered (spaces, stream, format, ...); */
2878
c906108c 2879void
c5aa993b 2880fprintfi_filtered (int spaces, GDB_FILE * stream, const char *format,...)
c906108c
SS
2881{
2882 va_list args;
c906108c 2883 va_start (args, format);
c906108c
SS
2884 print_spaces_filtered (spaces, stream);
2885
2886 vfprintf_filtered (stream, format, args);
2887 va_end (args);
2888}
2889
2890
c906108c 2891void
c5aa993b 2892printf_filtered (const char *format,...)
c906108c
SS
2893{
2894 va_list args;
c906108c 2895 va_start (args, format);
c906108c
SS
2896 vfprintf_filtered (gdb_stdout, format, args);
2897 va_end (args);
2898}
2899
2900
c906108c 2901void
c5aa993b 2902printf_unfiltered (const char *format,...)
c906108c
SS
2903{
2904 va_list args;
c906108c 2905 va_start (args, format);
c906108c
SS
2906 vfprintf_unfiltered (gdb_stdout, format, args);
2907 va_end (args);
2908}
2909
2910/* Like printf_filtered, but prints it's result indented.
2911 Called as printfi_filtered (spaces, format, ...); */
2912
c906108c 2913void
c5aa993b 2914printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2915{
2916 va_list args;
c906108c 2917 va_start (args, format);
c906108c
SS
2918 print_spaces_filtered (spaces, gdb_stdout);
2919 vfprintf_filtered (gdb_stdout, format, args);
2920 va_end (args);
2921}
2922
2923/* Easy -- but watch out!
2924
2925 This routine is *not* a replacement for puts()! puts() appends a newline.
2926 This one doesn't, and had better not! */
2927
2928void
2929puts_filtered (string)
2930 const char *string;
2931{
2932 fputs_filtered (string, gdb_stdout);
2933}
2934
2935void
2936puts_unfiltered (string)
2937 const char *string;
2938{
2939 fputs_unfiltered (string, gdb_stdout);
2940}
2941
2942/* Return a pointer to N spaces and a null. The pointer is good
2943 until the next call to here. */
2944char *
2945n_spaces (n)
2946 int n;
2947{
392a587b
JM
2948 char *t;
2949 static char *spaces = 0;
2950 static int max_spaces = -1;
c906108c
SS
2951
2952 if (n > max_spaces)
2953 {
2954 if (spaces)
2955 free (spaces);
c5aa993b
JM
2956 spaces = (char *) xmalloc (n + 1);
2957 for (t = spaces + n; t != spaces;)
c906108c
SS
2958 *--t = ' ';
2959 spaces[n] = '\0';
2960 max_spaces = n;
2961 }
2962
2963 return spaces + max_spaces - n;
2964}
2965
2966/* Print N spaces. */
2967void
2968print_spaces_filtered (n, stream)
2969 int n;
2970 GDB_FILE *stream;
2971{
2972 fputs_filtered (n_spaces (n), stream);
2973}
2974\f
2975/* C++ demangler stuff. */
2976
2977/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2978 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2979 If the name is not mangled, or the language for the name is unknown, or
2980 demangling is off, the name is printed in its "raw" form. */
2981
2982void
2983fprintf_symbol_filtered (stream, name, lang, arg_mode)
2984 GDB_FILE *stream;
2985 char *name;
2986 enum language lang;
2987 int arg_mode;
2988{
2989 char *demangled;
2990
2991 if (name != NULL)
2992 {
2993 /* If user wants to see raw output, no problem. */
2994 if (!demangle)
2995 {
2996 fputs_filtered (name, stream);
2997 }
2998 else
2999 {
3000 switch (lang)
3001 {
3002 case language_cplus:
3003 demangled = cplus_demangle (name, arg_mode);
3004 break;
3005 case language_java:
3006 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
3007 break;
3008 case language_chill:
3009 demangled = chill_demangle (name);
3010 break;
3011 default:
3012 demangled = NULL;
3013 break;
3014 }
3015 fputs_filtered (demangled ? demangled : name, stream);
3016 if (demangled != NULL)
3017 {
3018 free (demangled);
3019 }
3020 }
3021 }
3022}
3023
3024/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
3025 differences in whitespace. Returns 0 if they match, non-zero if they
3026 don't (slightly different than strcmp()'s range of return values).
c5aa993b 3027
c906108c
SS
3028 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
3029 This "feature" is useful when searching for matching C++ function names
3030 (such as if the user types 'break FOO', where FOO is a mangled C++
3031 function). */
3032
3033int
3034strcmp_iw (string1, string2)
3035 const char *string1;
3036 const char *string2;
3037{
3038 while ((*string1 != '\0') && (*string2 != '\0'))
3039 {
3040 while (isspace (*string1))
3041 {
3042 string1++;
3043 }
3044 while (isspace (*string2))
3045 {
3046 string2++;
3047 }
3048 if (*string1 != *string2)
3049 {
3050 break;
3051 }
3052 if (*string1 != '\0')
3053 {
3054 string1++;
3055 string2++;
3056 }
3057 }
3058 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
3059}
c906108c 3060\f
c5aa993b 3061
c906108c 3062/*
c5aa993b
JM
3063 ** subset_compare()
3064 ** Answer whether string_to_compare is a full or partial match to
3065 ** template_string. The partial match must be in sequence starting
3066 ** at index 0.
3067 */
c906108c 3068int
7a292a7a 3069subset_compare (string_to_compare, template_string)
c5aa993b
JM
3070 char *string_to_compare;
3071 char *template_string;
7a292a7a
SS
3072{
3073 int match;
c5aa993b
JM
3074 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
3075 strlen (string_to_compare) <= strlen (template_string))
3076 match = (strncmp (template_string,
3077 string_to_compare,
3078 strlen (string_to_compare)) == 0);
7a292a7a
SS
3079 else
3080 match = 0;
3081 return match;
3082}
c906108c
SS
3083
3084
7a292a7a
SS
3085static void pagination_on_command PARAMS ((char *arg, int from_tty));
3086static void
3087pagination_on_command (arg, from_tty)
c5aa993b
JM
3088 char *arg;
3089 int from_tty;
c906108c
SS
3090{
3091 pagination_enabled = 1;
3092}
3093
7a292a7a
SS
3094static void pagination_on_command PARAMS ((char *arg, int from_tty));
3095static void
3096pagination_off_command (arg, from_tty)
c5aa993b
JM
3097 char *arg;
3098 int from_tty;
c906108c
SS
3099{
3100 pagination_enabled = 0;
3101}
c906108c 3102\f
c5aa993b 3103
c906108c
SS
3104void
3105initialize_utils ()
3106{
3107 struct cmd_list_element *c;
3108
c5aa993b
JM
3109 c = add_set_cmd ("width", class_support, var_uinteger,
3110 (char *) &chars_per_line,
3111 "Set number of characters gdb thinks are in a line.",
3112 &setlist);
c906108c
SS
3113 add_show_from_set (c, &showlist);
3114 c->function.sfunc = set_width_command;
3115
3116 add_show_from_set
3117 (add_set_cmd ("height", class_support,
c5aa993b 3118 var_uinteger, (char *) &lines_per_page,
c906108c
SS
3119 "Set number of lines gdb thinks are in a page.", &setlist),
3120 &showlist);
c5aa993b 3121
c906108c
SS
3122 init_page_info ();
3123
3124 /* If the output is not a terminal, don't paginate it. */
3125 if (!GDB_FILE_ISATTY (gdb_stdout))
3126 lines_per_page = UINT_MAX;
3127
c5aa993b 3128 set_width_command ((char *) NULL, 0, c);
c906108c
SS
3129
3130 add_show_from_set
c5aa993b
JM
3131 (add_set_cmd ("demangle", class_support, var_boolean,
3132 (char *) &demangle,
3133 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
3134 &setprintlist),
3135 &showprintlist);
3136
3137 add_show_from_set
3138 (add_set_cmd ("pagination", class_support,
c5aa993b 3139 var_boolean, (char *) &pagination_enabled,
c906108c
SS
3140 "Set state of pagination.", &setlist),
3141 &showlist);
3142 if (xdb_commands)
3143 {
c5aa993b
JM
3144 add_com ("am", class_support, pagination_on_command,
3145 "Enable pagination");
3146 add_com ("sm", class_support, pagination_off_command,
3147 "Disable pagination");
c906108c
SS
3148 }
3149
3150 add_show_from_set
c5aa993b
JM
3151 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
3152 (char *) &sevenbit_strings,
3153 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
3154 &setprintlist),
3155 &showprintlist);
3156
3157 add_show_from_set
c5aa993b
JM
3158 (add_set_cmd ("asm-demangle", class_support, var_boolean,
3159 (char *) &asm_demangle,
3160 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
3161 &setprintlist),
3162 &showprintlist);
3163}
3164
3165/* Machine specific function to handle SIGWINCH signal. */
3166
3167#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 3168SIGWINCH_HANDLER_BODY
c906108c
SS
3169#endif
3170\f
3171/* Support for converting target fp numbers into host DOUBLEST format. */
3172
3173/* XXX - This code should really be in libiberty/floatformat.c, however
3174 configuration issues with libiberty made this very difficult to do in the
3175 available time. */
3176
3177#include "floatformat.h"
3178#include <math.h> /* ldexp */
3179
3180/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
3181 going to bother with trying to muck around with whether it is defined in
3182 a system header, what we do if not, etc. */
3183#define FLOATFORMAT_CHAR_BIT 8
3184
3185static unsigned long get_field PARAMS ((unsigned char *,
3186 enum floatformat_byteorders,
3187 unsigned int,
3188 unsigned int,
3189 unsigned int));
3190
3191/* Extract a field which starts at START and is LEN bytes long. DATA and
3192 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
3193static unsigned long
3194get_field (data, order, total_len, start, len)
3195 unsigned char *data;
3196 enum floatformat_byteorders order;
3197 unsigned int total_len;
3198 unsigned int start;
3199 unsigned int len;
3200{
3201 unsigned long result;
3202 unsigned int cur_byte;
3203 int cur_bitshift;
3204
3205 /* Start at the least significant part of the field. */
3206 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
3207 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3208 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
3209 cur_bitshift =
3210 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
3211 result = *(data + cur_byte) >> (-cur_bitshift);
3212 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3213 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3214 ++cur_byte;
3215 else
3216 --cur_byte;
3217
3218 /* Move towards the most significant part of the field. */
3219 while (cur_bitshift < len)
3220 {
3221 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
3222 /* This is the last byte; zero out the bits which are not part of
3223 this field. */
3224 result |=
3225 (*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
c5aa993b 3226 << cur_bitshift;
c906108c
SS
3227 else
3228 result |= *(data + cur_byte) << cur_bitshift;
3229 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3230 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3231 ++cur_byte;
3232 else
3233 --cur_byte;
3234 }
3235 return result;
3236}
c5aa993b 3237
c906108c
SS
3238/* Convert from FMT to a DOUBLEST.
3239 FROM is the address of the extended float.
3240 Store the DOUBLEST in *TO. */
3241
3242void
3243floatformat_to_doublest (fmt, from, to)
3244 const struct floatformat *fmt;
3245 char *from;
3246 DOUBLEST *to;
3247{
c5aa993b 3248 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
3249 DOUBLEST dto;
3250 long exponent;
3251 unsigned long mant;
3252 unsigned int mant_bits, mant_off;
3253 int mant_bits_left;
3254 int special_exponent; /* It's a NaN, denorm or zero */
3255
3256 /* If the mantissa bits are not contiguous from one end of the
3257 mantissa to the other, we need to make a private copy of the
3258 source bytes that is in the right order since the unpacking
3259 algorithm assumes that the bits are contiguous.
3260
3261 Swap the bytes individually rather than accessing them through
3262 "long *" since we have no guarantee that they start on a long
3263 alignment, and also sizeof(long) for the host could be different
3264 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
3265 for the target is 4. */
3266
c5aa993b 3267 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
3268 {
3269 static unsigned char *newfrom;
3270 unsigned char *swapin, *swapout;
3271 int longswaps;
3272
c5aa993b 3273 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 3274 longswaps >>= 3;
c5aa993b 3275
c906108c
SS
3276 if (newfrom == NULL)
3277 {
c5aa993b 3278 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
3279 }
3280 swapout = newfrom;
3281 swapin = ufrom;
3282 ufrom = newfrom;
3283 while (longswaps-- > 0)
3284 {
3285 /* This is ugly, but efficient */
3286 *swapout++ = swapin[4];
3287 *swapout++ = swapin[5];
3288 *swapout++ = swapin[6];
3289 *swapout++ = swapin[7];
3290 *swapout++ = swapin[0];
3291 *swapout++ = swapin[1];
3292 *swapout++ = swapin[2];
3293 *swapout++ = swapin[3];
3294 swapin += 8;
3295 }
3296 }
3297
3298 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
3299 fmt->exp_start, fmt->exp_len);
3300 /* Note that if exponent indicates a NaN, we can't really do anything useful
3301 (not knowing if the host has NaN's, or how to build one). So it will
3302 end up as an infinity or something close; that is OK. */
3303
3304 mant_bits_left = fmt->man_len;
3305 mant_off = fmt->man_start;
3306 dto = 0.0;
3307
3308 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
3309
11cf8741
JM
3310/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
3311 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
3312 if (!special_exponent)
3313 exponent -= fmt->exp_bias;
11cf8741
JM
3314 else if (exponent == 0)
3315 exponent = 1 - fmt->exp_bias;
c906108c
SS
3316
3317 /* Build the result algebraically. Might go infinite, underflow, etc;
3318 who cares. */
3319
3320/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
3321 increment the exponent by one to account for the integer bit. */
3322
3323 if (!special_exponent)
7a292a7a
SS
3324 {
3325 if (fmt->intbit == floatformat_intbit_no)
3326 dto = ldexp (1.0, exponent);
3327 else
3328 exponent++;
3329 }
c906108c
SS
3330
3331 while (mant_bits_left > 0)
3332 {
3333 mant_bits = min (mant_bits_left, 32);
3334
3335 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 3336 mant_off, mant_bits);
c906108c 3337
c5aa993b 3338 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
3339 exponent -= mant_bits;
3340 mant_off += mant_bits;
3341 mant_bits_left -= mant_bits;
3342 }
3343
3344 /* Negate it if negative. */
3345 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
3346 dto = -dto;
3347 *to = dto;
3348}
3349\f
3350static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
3351 unsigned int,
3352 unsigned int,
3353 unsigned int,
3354 unsigned long));
3355
3356/* Set a field which starts at START and is LEN bytes long. DATA and
3357 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
3358static void
3359put_field (data, order, total_len, start, len, stuff_to_put)
3360 unsigned char *data;
3361 enum floatformat_byteorders order;
3362 unsigned int total_len;
3363 unsigned int start;
3364 unsigned int len;
3365 unsigned long stuff_to_put;
3366{
3367 unsigned int cur_byte;
3368 int cur_bitshift;
3369
3370 /* Start at the least significant part of the field. */
3371 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
3372 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3373 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
3374 cur_bitshift =
3375 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
3376 *(data + cur_byte) &=
3377 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift));
3378 *(data + cur_byte) |=
3379 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
3380 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3381 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3382 ++cur_byte;
3383 else
3384 --cur_byte;
3385
3386 /* Move towards the most significant part of the field. */
3387 while (cur_bitshift < len)
3388 {
3389 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
3390 {
3391 /* This is the last byte. */
3392 *(data + cur_byte) &=
3393 ~((1 << (len - cur_bitshift)) - 1);
3394 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
3395 }
3396 else
3397 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
3398 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
3399 cur_bitshift += FLOATFORMAT_CHAR_BIT;
3400 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
3401 ++cur_byte;
3402 else
3403 --cur_byte;
3404 }
3405}
3406
3407#ifdef HAVE_LONG_DOUBLE
3408/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
3409 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
3410 frexp, but operates on the long double data type. */
3411
3412static long double ldfrexp PARAMS ((long double value, int *eptr));
3413
3414static long double
3415ldfrexp (value, eptr)
3416 long double value;
3417 int *eptr;
3418{
3419 long double tmp;
3420 int exp;
3421
3422 /* Unfortunately, there are no portable functions for extracting the exponent
3423 of a long double, so we have to do it iteratively by multiplying or dividing
3424 by two until the fraction is between 0.5 and 1.0. */
3425
3426 if (value < 0.0l)
3427 value = -value;
3428
3429 tmp = 1.0l;
3430 exp = 0;
3431
3432 if (value >= tmp) /* Value >= 1.0 */
3433 while (value >= tmp)
3434 {
3435 tmp *= 2.0l;
3436 exp++;
3437 }
3438 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
3439 {
3440 while (value < tmp)
3441 {
3442 tmp /= 2.0l;
3443 exp--;
3444 }
3445 tmp *= 2.0l;
3446 exp++;
3447 }
3448
3449 *eptr = exp;
c5aa993b 3450 return value / tmp;
c906108c
SS
3451}
3452#endif /* HAVE_LONG_DOUBLE */
3453
3454
3455/* The converse: convert the DOUBLEST *FROM to an extended float
3456 and store where TO points. Neither FROM nor TO have any alignment
3457 restrictions. */
3458
3459void
3460floatformat_from_doublest (fmt, from, to)
3461 CONST struct floatformat *fmt;
3462 DOUBLEST *from;
3463 char *to;
3464{
3465 DOUBLEST dfrom;
3466 int exponent;
3467 DOUBLEST mant;
3468 unsigned int mant_bits, mant_off;
3469 int mant_bits_left;
c5aa993b 3470 unsigned char *uto = (unsigned char *) to;
c906108c
SS
3471
3472 memcpy (&dfrom, from, sizeof (dfrom));
3473 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
3474 if (dfrom == 0)
3475 return; /* Result is zero */
3476 if (dfrom != dfrom) /* Result is NaN */
3477 {
3478 /* From is NaN */
3479 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
3480 fmt->exp_len, fmt->exp_nan);
3481 /* Be sure it's not infinity, but NaN value is irrel */
3482 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
3483 32, 1);
3484 return;
3485 }
3486
3487 /* If negative, set the sign bit. */
3488 if (dfrom < 0)
3489 {
3490 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
3491 dfrom = -dfrom;
3492 }
3493
3494 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
3495 {
3496 /* Infinity exponent is same as NaN's. */
3497 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
3498 fmt->exp_len, fmt->exp_nan);
3499 /* Infinity mantissa is all zeroes. */
3500 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
3501 fmt->man_len, 0);
3502 return;
3503 }
3504
3505#ifdef HAVE_LONG_DOUBLE
3506 mant = ldfrexp (dfrom, &exponent);
3507#else
3508 mant = frexp (dfrom, &exponent);
3509#endif
3510
3511 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
3512 exponent + fmt->exp_bias - 1);
3513
3514 mant_bits_left = fmt->man_len;
3515 mant_off = fmt->man_start;
3516 while (mant_bits_left > 0)
3517 {
3518 unsigned long mant_long;
3519 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
3520
3521 mant *= 4294967296.0;
c5aa993b 3522 mant_long = (unsigned long) mant;
c906108c
SS
3523 mant -= mant_long;
3524
3525 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
3526 If we are discarding a zero, we should be (but are not) creating
3527 a denormalized number which means adjusting the exponent
3528 (I think). */
c906108c
SS
3529 if (mant_bits_left == fmt->man_len
3530 && fmt->intbit == floatformat_intbit_no)
3531 {
3532 mant_long <<= 1;
3533 mant_bits -= 1;
3534 }
3535
3536 if (mant_bits < 32)
3537 {
3538 /* The bits we want are in the most significant MANT_BITS bits of
3539 mant_long. Move them to the least significant. */
3540 mant_long >>= 32 - mant_bits;
3541 }
3542
3543 put_field (uto, fmt->byteorder, fmt->totalsize,
3544 mant_off, mant_bits, mant_long);
3545 mant_off += mant_bits;
3546 mant_bits_left -= mant_bits;
3547 }
c5aa993b 3548 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
3549 {
3550 int count;
3551 unsigned char *swaplow = uto;
3552 unsigned char *swaphigh = uto + 4;
3553 unsigned char tmp;
3554
3555 for (count = 0; count < 4; count++)
3556 {
3557 tmp = *swaplow;
3558 *swaplow++ = *swaphigh;
3559 *swaphigh++ = tmp;
3560 }
3561 }
3562}
3563
3564/* temporary storage using circular buffer */
3565#define NUMCELLS 16
3566#define CELLSIZE 32
c5aa993b
JM
3567static char *
3568get_cell ()
c906108c
SS
3569{
3570 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
3571 static int cell = 0;
3572 if (++cell >= NUMCELLS)
3573 cell = 0;
c906108c
SS
3574 return buf[cell];
3575}
3576
3577/* print routines to handle variable size regs, etc.
3578
3579 FIXME: Note that t_addr is a bfd_vma, which is currently either an
3580 unsigned long or unsigned long long, determined at configure time.
3581 If t_addr is an unsigned long long and sizeof (unsigned long long)
3582 is greater than sizeof (unsigned long), then I believe this code will
3583 probably lose, at least for little endian machines. I believe that
3584 it would also be better to eliminate the switch on the absolute size
3585 of t_addr and replace it with a sequence of if statements that compare
3586 sizeof t_addr with sizeof the various types and do the right thing,
3587 which includes knowing whether or not the host supports long long.
3588 -fnf
3589
3590 */
3591
d4f3574e
SS
3592int
3593strlen_paddr (void)
3594{
3595 return (TARGET_PTR_BIT / 8 * 2);
3596}
3597
3598
104c1213
JM
3599/* eliminate warning from compiler on 32-bit systems */
3600static int thirty_two = 32;
c906108c 3601
c5aa993b 3602char *
104c1213 3603paddr (CORE_ADDR addr)
c906108c 3604{
c5aa993b 3605 char *paddr_str = get_cell ();
104c1213 3606 switch (TARGET_PTR_BIT / 8)
c906108c 3607 {
c5aa993b
JM
3608 case 8:
3609 sprintf (paddr_str, "%08lx%08lx",
3610 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
3611 break;
3612 case 4:
3613 sprintf (paddr_str, "%08lx", (unsigned long) addr);
3614 break;
3615 case 2:
3616 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
3617 break;
3618 default:
3619 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
3620 }
3621 return paddr_str;
3622}
3623
c5aa993b 3624char *
104c1213 3625paddr_nz (CORE_ADDR addr)
c906108c 3626{
c5aa993b 3627 char *paddr_str = get_cell ();
104c1213 3628 switch (TARGET_PTR_BIT / 8)
c906108c 3629 {
c5aa993b
JM
3630 case 8:
3631 {
3632 unsigned long high = (unsigned long) (addr >> thirty_two);
3633 if (high == 0)
3634 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
3635 else
3636 sprintf (paddr_str, "%lx%08lx",
3637 high, (unsigned long) (addr & 0xffffffff));
c906108c 3638 break;
c5aa993b
JM
3639 }
3640 case 4:
3641 sprintf (paddr_str, "%lx", (unsigned long) addr);
3642 break;
3643 case 2:
3644 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
3645 break;
3646 default:
3647 sprintf (paddr_str, "%lx", (unsigned long) addr);
c906108c
SS
3648 }
3649 return paddr_str;
3650}
3651
104c1213
JM
3652static void
3653decimal2str (char *paddr_str, char *sign, ULONGEST addr)
3654{
3655 /* steal code from valprint.c:print_decimal(). Should this worry
3656 about the real size of addr as the above does? */
3657 unsigned long temp[3];
3658 int i = 0;
3659 do
3660 {
3661 temp[i] = addr % (1000 * 1000 * 1000);
3662 addr /= (1000 * 1000 * 1000);
3663 i++;
3664 }
3665 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
3666 switch (i)
3667 {
3668 case 1:
3669 sprintf (paddr_str, "%s%lu",
3670 sign, temp[0]);
3671 break;
3672 case 2:
3673 sprintf (paddr_str, "%s%lu%09lu",
3674 sign, temp[1], temp[0]);
3675 break;
3676 case 3:
3677 sprintf (paddr_str, "%s%lu%09lu%09lu",
3678 sign, temp[2], temp[1], temp[0]);
3679 break;
3680 default:
3681 abort ();
3682 }
3683}
3684
3685char *
3686paddr_u (CORE_ADDR addr)
3687{
3688 char *paddr_str = get_cell ();
3689 decimal2str (paddr_str, "", addr);
3690 return paddr_str;
3691}
3692
3693char *
3694paddr_d (LONGEST addr)
3695{
3696 char *paddr_str = get_cell ();
3697 if (addr < 0)
3698 decimal2str (paddr_str, "-", -addr);
3699 else
3700 decimal2str (paddr_str, "", addr);
3701 return paddr_str;
3702}
3703
3704char *
3705preg (reg)
3706 t_reg reg;
3707{
3708 char *preg_str = get_cell ();
3709 switch (sizeof (t_reg))
3710 {
3711 case 8:
3712 sprintf (preg_str, "%08lx%08lx",
3713 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
3714 break;
3715 case 4:
3716 sprintf (preg_str, "%08lx", (unsigned long) reg);
3717 break;
3718 case 2:
3719 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
3720 break;
3721 default:
3722 sprintf (preg_str, "%lx", (unsigned long) reg);
3723 }
3724 return preg_str;
3725}
3726
c5aa993b
JM
3727char *
3728preg_nz (reg)
3729 t_reg reg;
c906108c 3730{
c5aa993b
JM
3731 char *preg_str = get_cell ();
3732 switch (sizeof (t_reg))
c906108c 3733 {
c5aa993b
JM
3734 case 8:
3735 {
3736 unsigned long high = (unsigned long) (reg >> thirty_two);
3737 if (high == 0)
3738 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
3739 else
3740 sprintf (preg_str, "%lx%08lx",
3741 high, (unsigned long) (reg & 0xffffffff));
c906108c 3742 break;
c5aa993b
JM
3743 }
3744 case 4:
3745 sprintf (preg_str, "%lx", (unsigned long) reg);
3746 break;
3747 case 2:
3748 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3749 break;
3750 default:
3751 sprintf (preg_str, "%lx", (unsigned long) reg);
c906108c
SS
3752 }
3753 return preg_str;
3754}
392a587b
JM
3755
3756/* Helper functions for INNER_THAN */
3757int
3758core_addr_lessthan (lhs, rhs)
3759 CORE_ADDR lhs;
3760 CORE_ADDR rhs;
3761{
3762 return (lhs < rhs);
3763}
3764
3765int
3766core_addr_greaterthan (lhs, rhs)
3767 CORE_ADDR lhs;
3768 CORE_ADDR rhs;
3769{
3770 return (lhs > rhs);
3771}
This page took 0.193906 seconds and 4 git commands to generate.