Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Perform arithmetic and other operations on values, for GDB. |
1bac305b | 2 | |
42a4f53d | 3 | Copyright (C) 1986-2019 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "value.h" | |
22 | #include "symtab.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "expression.h" | |
25 | #include "target.h" | |
26 | #include "language.h" | |
70100014 | 27 | #include "target-float.h" |
04714b91 | 28 | #include "infcall.h" |
268a13a5 | 29 | #include "gdbsupport/byte-vector.h" |
0d12e84c | 30 | #include "gdbarch.h" |
c906108c SS |
31 | |
32 | /* Define whether or not the C operator '/' truncates towards zero for | |
581e13c1 | 33 | differently signed operands (truncation direction is undefined in C). */ |
c906108c SS |
34 | |
35 | #ifndef TRUNCATION_TOWARDS_ZERO | |
36 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
37 | #endif | |
38 | ||
ca439ad2 JI |
39 | /* Given a pointer, return the size of its target. |
40 | If the pointer type is void *, then return 1. | |
41 | If the target type is incomplete, then error out. | |
42 | This isn't a general purpose function, but just a | |
581e13c1 | 43 | helper for value_ptradd. */ |
ca439ad2 JI |
44 | |
45 | static LONGEST | |
46 | find_size_for_pointer_math (struct type *ptr_type) | |
47 | { | |
48 | LONGEST sz = -1; | |
49 | struct type *ptr_target; | |
50 | ||
89eef114 | 51 | gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR); |
ca439ad2 JI |
52 | ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type)); |
53 | ||
3ae385af | 54 | sz = type_length_units (ptr_target); |
ca439ad2 JI |
55 | if (sz == 0) |
56 | { | |
57 | if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID) | |
58 | sz = 1; | |
59 | else | |
60 | { | |
0d5cff50 | 61 | const char *name; |
ca439ad2 JI |
62 | |
63 | name = TYPE_NAME (ptr_target); | |
ca439ad2 | 64 | if (name == NULL) |
8a3fe4f8 AC |
65 | error (_("Cannot perform pointer math on incomplete types, " |
66 | "try casting to a known type, or void *.")); | |
ca439ad2 | 67 | else |
8a3fe4f8 AC |
68 | error (_("Cannot perform pointer math on incomplete type \"%s\", " |
69 | "try casting to a known type, or void *."), name); | |
ca439ad2 JI |
70 | } |
71 | } | |
72 | return sz; | |
73 | } | |
74 | ||
89eef114 UW |
75 | /* Given a pointer ARG1 and an integral value ARG2, return the |
76 | result of C-style pointer arithmetic ARG1 + ARG2. */ | |
77 | ||
f23631e4 | 78 | struct value * |
2497b498 | 79 | value_ptradd (struct value *arg1, LONGEST arg2) |
c906108c | 80 | { |
89eef114 | 81 | struct type *valptrtype; |
ca439ad2 | 82 | LONGEST sz; |
8cf6f0b1 | 83 | struct value *result; |
c906108c | 84 | |
994b9211 | 85 | arg1 = coerce_array (arg1); |
89eef114 UW |
86 | valptrtype = check_typedef (value_type (arg1)); |
87 | sz = find_size_for_pointer_math (valptrtype); | |
c906108c | 88 | |
8cf6f0b1 TT |
89 | result = value_from_pointer (valptrtype, |
90 | value_as_address (arg1) + sz * arg2); | |
91 | if (VALUE_LVAL (result) != lval_internalvar) | |
92 | set_value_component_location (result, arg1); | |
93 | return result; | |
c906108c SS |
94 | } |
95 | ||
89eef114 UW |
96 | /* Given two compatible pointer values ARG1 and ARG2, return the |
97 | result of C-style pointer arithmetic ARG1 - ARG2. */ | |
98 | ||
99 | LONGEST | |
100 | value_ptrdiff (struct value *arg1, struct value *arg2) | |
c906108c SS |
101 | { |
102 | struct type *type1, *type2; | |
89eef114 UW |
103 | LONGEST sz; |
104 | ||
994b9211 AC |
105 | arg1 = coerce_array (arg1); |
106 | arg2 = coerce_array (arg2); | |
df407dfe AC |
107 | type1 = check_typedef (value_type (arg1)); |
108 | type2 = check_typedef (value_type (arg2)); | |
c906108c | 109 | |
89eef114 UW |
110 | gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR); |
111 | gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR); | |
ca439ad2 | 112 | |
89eef114 UW |
113 | if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))) |
114 | != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2)))) | |
3e43a32a MS |
115 | error (_("First argument of `-' is a pointer and " |
116 | "second argument is neither\n" | |
117 | "an integer nor a pointer of the same type.")); | |
c906108c | 118 | |
3ae385af | 119 | sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1))); |
83b10087 CM |
120 | if (sz == 0) |
121 | { | |
122 | warning (_("Type size unknown, assuming 1. " | |
123 | "Try casting to a known type, or void *.")); | |
124 | sz = 1; | |
125 | } | |
126 | ||
89eef114 | 127 | return (value_as_long (arg1) - value_as_long (arg2)) / sz; |
c906108c SS |
128 | } |
129 | ||
130 | /* Return the value of ARRAY[IDX]. | |
afc05acb UW |
131 | |
132 | ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the | |
133 | current language supports C-style arrays, it may also be TYPE_CODE_PTR. | |
afc05acb | 134 | |
c906108c SS |
135 | See comments in value_coerce_array() for rationale for reason for |
136 | doing lower bounds adjustment here rather than there. | |
137 | FIXME: Perhaps we should validate that the index is valid and if | |
581e13c1 | 138 | verbosity is set, warn about invalid indices (but still use them). */ |
c906108c | 139 | |
f23631e4 | 140 | struct value * |
2497b498 | 141 | value_subscript (struct value *array, LONGEST index) |
c906108c | 142 | { |
c906108c SS |
143 | int c_style = current_language->c_style_arrays; |
144 | struct type *tarray; | |
145 | ||
994b9211 | 146 | array = coerce_ref (array); |
df407dfe | 147 | tarray = check_typedef (value_type (array)); |
c906108c SS |
148 | |
149 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
150 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
151 | { | |
152 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
153 | LONGEST lowerbound, upperbound; | |
c906108c | 154 | |
a109c7c1 | 155 | get_discrete_bounds (range_type, &lowerbound, &upperbound); |
c906108c | 156 | if (VALUE_LVAL (array) != lval_memory) |
2497b498 | 157 | return value_subscripted_rvalue (array, index, lowerbound); |
c906108c SS |
158 | |
159 | if (c_style == 0) | |
160 | { | |
c906108c | 161 | if (index >= lowerbound && index <= upperbound) |
2497b498 | 162 | return value_subscripted_rvalue (array, index, lowerbound); |
987504bb JJ |
163 | /* Emit warning unless we have an array of unknown size. |
164 | An array of unknown size has lowerbound 0 and upperbound -1. */ | |
165 | if (upperbound > -1) | |
8a3fe4f8 | 166 | warning (_("array or string index out of range")); |
c906108c SS |
167 | /* fall doing C stuff */ |
168 | c_style = 1; | |
169 | } | |
170 | ||
2497b498 | 171 | index -= lowerbound; |
c906108c SS |
172 | array = value_coerce_array (array); |
173 | } | |
174 | ||
c906108c | 175 | if (c_style) |
2497b498 | 176 | return value_ind (value_ptradd (array, index)); |
c906108c | 177 | else |
8a3fe4f8 | 178 | error (_("not an array or string")); |
c906108c SS |
179 | } |
180 | ||
181 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
182 | (eg, a vector register). This routine used to promote floats | |
183 | to doubles, but no longer does. */ | |
184 | ||
9eec4d1e | 185 | struct value * |
592f9d27 | 186 | value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound) |
c906108c | 187 | { |
df407dfe | 188 | struct type *array_type = check_typedef (value_type (array)); |
c906108c | 189 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); |
6b850546 | 190 | ULONGEST elt_size = type_length_units (elt_type); |
5bbd8269 AB |
191 | |
192 | /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits | |
193 | in a byte. */ | |
194 | LONGEST stride = TYPE_ARRAY_BIT_STRIDE (array_type); | |
195 | if (stride != 0) | |
196 | { | |
197 | struct gdbarch *arch = get_type_arch (elt_type); | |
198 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
199 | elt_size = stride / (unit_size * 8); | |
200 | } | |
201 | ||
6b850546 | 202 | ULONGEST elt_offs = elt_size * (index - lowerbound); |
c906108c | 203 | |
5ff2bbae AB |
204 | if (index < lowerbound |
205 | || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type) | |
206 | && elt_offs >= type_length_units (array_type)) | |
207 | || (VALUE_LVAL (array) != lval_memory | |
208 | && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type))) | |
3f2f83dd KB |
209 | { |
210 | if (type_not_associated (array_type)) | |
211 | error (_("no such vector element (vector not associated)")); | |
212 | else if (type_not_allocated (array_type)) | |
213 | error (_("no such vector element (vector not allocated)")); | |
214 | else | |
215 | error (_("no such vector element")); | |
216 | } | |
c906108c | 217 | |
8f07e298 BH |
218 | if (is_dynamic_type (elt_type)) |
219 | { | |
220 | CORE_ADDR address; | |
221 | ||
222 | address = value_address (array) + elt_offs; | |
223 | elt_type = resolve_dynamic_type (elt_type, NULL, address); | |
224 | } | |
225 | ||
3fff9862 | 226 | return value_from_component (array, elt_type, elt_offs); |
c906108c | 227 | } |
afc05acb | 228 | |
c906108c | 229 | \f |
13d6656b JB |
230 | /* Check to see if either argument is a structure, or a reference to |
231 | one. This is called so we know whether to go ahead with the normal | |
232 | binop or look for a user defined function instead. | |
c906108c SS |
233 | |
234 | For now, we do not overload the `=' operator. */ | |
235 | ||
236 | int | |
be636754 PA |
237 | binop_types_user_defined_p (enum exp_opcode op, |
238 | struct type *type1, struct type *type2) | |
c906108c | 239 | { |
c906108c SS |
240 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) |
241 | return 0; | |
13d6656b | 242 | |
be636754 | 243 | type1 = check_typedef (type1); |
aa006118 | 244 | if (TYPE_IS_REFERENCE (type1)) |
13d6656b JB |
245 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
246 | ||
4e32eda7 | 247 | type2 = check_typedef (type2); |
aa006118 | 248 | if (TYPE_IS_REFERENCE (type2)) |
13d6656b JB |
249 | type2 = check_typedef (TYPE_TARGET_TYPE (type2)); |
250 | ||
c906108c | 251 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT |
13d6656b | 252 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT); |
c906108c SS |
253 | } |
254 | ||
be636754 PA |
255 | /* Check to see if either argument is a structure, or a reference to |
256 | one. This is called so we know whether to go ahead with the normal | |
257 | binop or look for a user defined function instead. | |
258 | ||
259 | For now, we do not overload the `=' operator. */ | |
260 | ||
261 | int | |
262 | binop_user_defined_p (enum exp_opcode op, | |
263 | struct value *arg1, struct value *arg2) | |
264 | { | |
265 | return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2)); | |
266 | } | |
267 | ||
c906108c SS |
268 | /* Check to see if argument is a structure. This is called so |
269 | we know whether to go ahead with the normal unop or look for a | |
270 | user defined function instead. | |
271 | ||
272 | For now, we do not overload the `&' operator. */ | |
273 | ||
c5aa993b | 274 | int |
f23631e4 | 275 | unop_user_defined_p (enum exp_opcode op, struct value *arg1) |
c906108c SS |
276 | { |
277 | struct type *type1; | |
a109c7c1 | 278 | |
c906108c SS |
279 | if (op == UNOP_ADDR) |
280 | return 0; | |
df407dfe | 281 | type1 = check_typedef (value_type (arg1)); |
aa006118 | 282 | if (TYPE_IS_REFERENCE (type1)) |
eeaafae2 JK |
283 | type1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
284 | return TYPE_CODE (type1) == TYPE_CODE_STRUCT; | |
c906108c SS |
285 | } |
286 | ||
4c3376c8 SW |
287 | /* Try to find an operator named OPERATOR which takes NARGS arguments |
288 | specified in ARGS. If the operator found is a static member operator | |
289 | *STATIC_MEMFUNP will be set to 1, and otherwise 0. | |
290 | The search if performed through find_overload_match which will handle | |
291 | member operators, non member operators, operators imported implicitly or | |
292 | explicitly, and perform correct overload resolution in all of the above | |
293 | situations or combinations thereof. */ | |
294 | ||
295 | static struct value * | |
6b1747cd | 296 | value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper, |
e66d4446 | 297 | int *static_memfuncp, enum noside noside) |
4c3376c8 SW |
298 | { |
299 | ||
300 | struct symbol *symp = NULL; | |
301 | struct value *valp = NULL; | |
4c3376c8 | 302 | |
6b1747cd | 303 | find_overload_match (args, oper, BOTH /* could be method */, |
28c64fc2 | 304 | &args[0] /* objp */, |
4c3376c8 | 305 | NULL /* pass NULL symbol since symbol is unknown */, |
e66d4446 | 306 | &valp, &symp, static_memfuncp, 0, noside); |
4c3376c8 SW |
307 | |
308 | if (valp) | |
309 | return valp; | |
310 | ||
311 | if (symp) | |
312 | { | |
313 | /* This is a non member function and does not | |
314 | expect a reference as its first argument | |
315 | rather the explicit structure. */ | |
316 | args[0] = value_ind (args[0]); | |
317 | return value_of_variable (symp, 0); | |
318 | } | |
319 | ||
fe978cb0 | 320 | error (_("Could not find %s."), oper); |
4c3376c8 SW |
321 | } |
322 | ||
323 | /* Lookup user defined operator NAME. Return a value representing the | |
324 | function, otherwise return NULL. */ | |
325 | ||
326 | static struct value * | |
6b1747cd PA |
327 | value_user_defined_op (struct value **argp, gdb::array_view<value *> args, |
328 | char *name, int *static_memfuncp, enum noside noside) | |
4c3376c8 SW |
329 | { |
330 | struct value *result = NULL; | |
331 | ||
332 | if (current_language->la_language == language_cplus) | |
e66d4446 | 333 | { |
6b1747cd | 334 | result = value_user_defined_cpp_op (args, name, static_memfuncp, |
e66d4446 SC |
335 | noside); |
336 | } | |
4c3376c8 | 337 | else |
6b1747cd PA |
338 | result = value_struct_elt (argp, args.data (), name, static_memfuncp, |
339 | "structure"); | |
4c3376c8 SW |
340 | |
341 | return result; | |
342 | } | |
343 | ||
c906108c SS |
344 | /* We know either arg1 or arg2 is a structure, so try to find the right |
345 | user defined function. Create an argument vector that calls | |
346 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
347 | binary operator which is legal for GNU C++). | |
348 | ||
30baf67b | 349 | OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP |
c906108c SS |
350 | is the opcode saying how to modify it. Otherwise, OTHEROP is |
351 | unused. */ | |
352 | ||
f23631e4 AC |
353 | struct value * |
354 | value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, | |
fba45db2 | 355 | enum exp_opcode otherop, enum noside noside) |
c906108c | 356 | { |
c906108c SS |
357 | char *ptr; |
358 | char tstr[13]; | |
359 | int static_memfuncp; | |
360 | ||
994b9211 AC |
361 | arg1 = coerce_ref (arg1); |
362 | arg2 = coerce_ref (arg2); | |
c906108c SS |
363 | |
364 | /* now we know that what we have to do is construct our | |
365 | arg vector and find the right function to call it with. */ | |
366 | ||
df407dfe | 367 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) |
8a3fe4f8 | 368 | error (_("Can't do that binary op on that type")); /* FIXME be explicit */ |
c906108c | 369 | |
6b1747cd PA |
370 | value *argvec_storage[3]; |
371 | gdb::array_view<value *> argvec = argvec_storage; | |
372 | ||
c906108c SS |
373 | argvec[1] = value_addr (arg1); |
374 | argvec[2] = arg2; | |
c906108c | 375 | |
581e13c1 | 376 | /* Make the right function name up. */ |
c5aa993b JM |
377 | strcpy (tstr, "operator__"); |
378 | ptr = tstr + 8; | |
c906108c SS |
379 | switch (op) |
380 | { | |
c5aa993b JM |
381 | case BINOP_ADD: |
382 | strcpy (ptr, "+"); | |
383 | break; | |
384 | case BINOP_SUB: | |
385 | strcpy (ptr, "-"); | |
386 | break; | |
387 | case BINOP_MUL: | |
388 | strcpy (ptr, "*"); | |
389 | break; | |
390 | case BINOP_DIV: | |
391 | strcpy (ptr, "/"); | |
392 | break; | |
393 | case BINOP_REM: | |
394 | strcpy (ptr, "%"); | |
395 | break; | |
396 | case BINOP_LSH: | |
397 | strcpy (ptr, "<<"); | |
398 | break; | |
399 | case BINOP_RSH: | |
400 | strcpy (ptr, ">>"); | |
401 | break; | |
402 | case BINOP_BITWISE_AND: | |
403 | strcpy (ptr, "&"); | |
404 | break; | |
405 | case BINOP_BITWISE_IOR: | |
406 | strcpy (ptr, "|"); | |
407 | break; | |
408 | case BINOP_BITWISE_XOR: | |
409 | strcpy (ptr, "^"); | |
410 | break; | |
411 | case BINOP_LOGICAL_AND: | |
412 | strcpy (ptr, "&&"); | |
413 | break; | |
414 | case BINOP_LOGICAL_OR: | |
415 | strcpy (ptr, "||"); | |
416 | break; | |
417 | case BINOP_MIN: | |
418 | strcpy (ptr, "<?"); | |
419 | break; | |
420 | case BINOP_MAX: | |
421 | strcpy (ptr, ">?"); | |
422 | break; | |
423 | case BINOP_ASSIGN: | |
424 | strcpy (ptr, "="); | |
425 | break; | |
426 | case BINOP_ASSIGN_MODIFY: | |
c906108c SS |
427 | switch (otherop) |
428 | { | |
c5aa993b JM |
429 | case BINOP_ADD: |
430 | strcpy (ptr, "+="); | |
431 | break; | |
432 | case BINOP_SUB: | |
433 | strcpy (ptr, "-="); | |
434 | break; | |
435 | case BINOP_MUL: | |
436 | strcpy (ptr, "*="); | |
437 | break; | |
438 | case BINOP_DIV: | |
439 | strcpy (ptr, "/="); | |
440 | break; | |
441 | case BINOP_REM: | |
442 | strcpy (ptr, "%="); | |
443 | break; | |
444 | case BINOP_BITWISE_AND: | |
445 | strcpy (ptr, "&="); | |
446 | break; | |
447 | case BINOP_BITWISE_IOR: | |
448 | strcpy (ptr, "|="); | |
449 | break; | |
450 | case BINOP_BITWISE_XOR: | |
451 | strcpy (ptr, "^="); | |
452 | break; | |
453 | case BINOP_MOD: /* invalid */ | |
c906108c | 454 | default: |
8a3fe4f8 | 455 | error (_("Invalid binary operation specified.")); |
c906108c SS |
456 | } |
457 | break; | |
c5aa993b JM |
458 | case BINOP_SUBSCRIPT: |
459 | strcpy (ptr, "[]"); | |
460 | break; | |
461 | case BINOP_EQUAL: | |
462 | strcpy (ptr, "=="); | |
463 | break; | |
464 | case BINOP_NOTEQUAL: | |
465 | strcpy (ptr, "!="); | |
466 | break; | |
467 | case BINOP_LESS: | |
468 | strcpy (ptr, "<"); | |
469 | break; | |
470 | case BINOP_GTR: | |
471 | strcpy (ptr, ">"); | |
472 | break; | |
473 | case BINOP_GEQ: | |
474 | strcpy (ptr, ">="); | |
475 | break; | |
476 | case BINOP_LEQ: | |
477 | strcpy (ptr, "<="); | |
478 | break; | |
479 | case BINOP_MOD: /* invalid */ | |
c906108c | 480 | default: |
8a3fe4f8 | 481 | error (_("Invalid binary operation specified.")); |
c906108c SS |
482 | } |
483 | ||
6b1747cd PA |
484 | argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr, |
485 | &static_memfuncp, noside); | |
c5aa993b | 486 | |
c906108c SS |
487 | if (argvec[0]) |
488 | { | |
489 | if (static_memfuncp) | |
490 | { | |
491 | argvec[1] = argvec[0]; | |
6b1747cd | 492 | argvec = argvec.slice (1); |
c906108c | 493 | } |
2ce1cdbf DE |
494 | if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) |
495 | { | |
496 | /* Static xmethods are not supported yet. */ | |
497 | gdb_assert (static_memfuncp == 0); | |
498 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
499 | { | |
500 | struct type *return_type | |
6b1747cd | 501 | = result_type_of_xmethod (argvec[0], argvec.slice (1)); |
2ce1cdbf DE |
502 | |
503 | if (return_type == NULL) | |
504 | error (_("Xmethod is missing return type.")); | |
505 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
506 | } | |
6b1747cd | 507 | return call_xmethod (argvec[0], argvec.slice (1)); |
2ce1cdbf | 508 | } |
c906108c SS |
509 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
510 | { | |
511 | struct type *return_type; | |
a109c7c1 | 512 | |
c906108c | 513 | return_type |
df407dfe | 514 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); |
c906108c SS |
515 | return value_zero (return_type, VALUE_LVAL (arg1)); |
516 | } | |
e71585ff | 517 | return call_function_by_hand (argvec[0], NULL, |
6b1747cd | 518 | argvec.slice (1, 2 - static_memfuncp)); |
c906108c | 519 | } |
79afc5ef SW |
520 | throw_error (NOT_FOUND_ERROR, |
521 | _("member function %s not found"), tstr); | |
c906108c SS |
522 | } |
523 | ||
524 | /* We know that arg1 is a structure, so try to find a unary user | |
581e13c1 | 525 | defined operator that matches the operator in question. |
c906108c SS |
526 | Create an argument vector that calls arg1.operator @ (arg1) |
527 | and return that value (where '@' is (almost) any unary operator which | |
528 | is legal for GNU C++). */ | |
529 | ||
f23631e4 AC |
530 | struct value * |
531 | value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) | |
c906108c | 532 | { |
50810684 | 533 | struct gdbarch *gdbarch = get_type_arch (value_type (arg1)); |
5799c0b9 | 534 | char *ptr; |
c906108c | 535 | char tstr[13], mangle_tstr[13]; |
491b8946 | 536 | int static_memfuncp, nargs; |
c906108c | 537 | |
994b9211 | 538 | arg1 = coerce_ref (arg1); |
c906108c SS |
539 | |
540 | /* now we know that what we have to do is construct our | |
541 | arg vector and find the right function to call it with. */ | |
542 | ||
df407dfe | 543 | if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT) |
8a3fe4f8 | 544 | error (_("Can't do that unary op on that type")); /* FIXME be explicit */ |
c906108c | 545 | |
6b1747cd PA |
546 | value *argvec_storage[3]; |
547 | gdb::array_view<value *> argvec = argvec_storage; | |
548 | ||
c906108c SS |
549 | argvec[1] = value_addr (arg1); |
550 | argvec[2] = 0; | |
551 | ||
491b8946 DJ |
552 | nargs = 1; |
553 | ||
581e13c1 | 554 | /* Make the right function name up. */ |
c5aa993b JM |
555 | strcpy (tstr, "operator__"); |
556 | ptr = tstr + 8; | |
557 | strcpy (mangle_tstr, "__"); | |
c906108c SS |
558 | switch (op) |
559 | { | |
c5aa993b JM |
560 | case UNOP_PREINCREMENT: |
561 | strcpy (ptr, "++"); | |
562 | break; | |
563 | case UNOP_PREDECREMENT: | |
491b8946 | 564 | strcpy (ptr, "--"); |
c5aa993b JM |
565 | break; |
566 | case UNOP_POSTINCREMENT: | |
567 | strcpy (ptr, "++"); | |
22601c15 | 568 | argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); |
491b8946 | 569 | nargs ++; |
c5aa993b JM |
570 | break; |
571 | case UNOP_POSTDECREMENT: | |
491b8946 | 572 | strcpy (ptr, "--"); |
22601c15 | 573 | argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); |
491b8946 | 574 | nargs ++; |
c5aa993b JM |
575 | break; |
576 | case UNOP_LOGICAL_NOT: | |
577 | strcpy (ptr, "!"); | |
578 | break; | |
579 | case UNOP_COMPLEMENT: | |
580 | strcpy (ptr, "~"); | |
581 | break; | |
582 | case UNOP_NEG: | |
583 | strcpy (ptr, "-"); | |
584 | break; | |
36e9969c NS |
585 | case UNOP_PLUS: |
586 | strcpy (ptr, "+"); | |
587 | break; | |
c5aa993b JM |
588 | case UNOP_IND: |
589 | strcpy (ptr, "*"); | |
590 | break; | |
79afc5ef SW |
591 | case STRUCTOP_PTR: |
592 | strcpy (ptr, "->"); | |
593 | break; | |
c906108c | 594 | default: |
8a3fe4f8 | 595 | error (_("Invalid unary operation specified.")); |
c906108c SS |
596 | } |
597 | ||
6b1747cd PA |
598 | argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr, |
599 | &static_memfuncp, noside); | |
c906108c SS |
600 | |
601 | if (argvec[0]) | |
602 | { | |
603 | if (static_memfuncp) | |
604 | { | |
605 | argvec[1] = argvec[0]; | |
6b1747cd | 606 | argvec = argvec.slice (1); |
c906108c | 607 | } |
2ce1cdbf DE |
608 | if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD) |
609 | { | |
610 | /* Static xmethods are not supported yet. */ | |
611 | gdb_assert (static_memfuncp == 0); | |
612 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
613 | { | |
614 | struct type *return_type | |
6b1747cd | 615 | = result_type_of_xmethod (argvec[0], argvec[1]); |
2ce1cdbf DE |
616 | |
617 | if (return_type == NULL) | |
618 | error (_("Xmethod is missing return type.")); | |
619 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
620 | } | |
6b1747cd | 621 | return call_xmethod (argvec[0], argvec[1]); |
2ce1cdbf | 622 | } |
c906108c SS |
623 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
624 | { | |
625 | struct type *return_type; | |
a109c7c1 | 626 | |
c906108c | 627 | return_type |
df407dfe | 628 | = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0]))); |
c906108c SS |
629 | return value_zero (return_type, VALUE_LVAL (arg1)); |
630 | } | |
e71585ff | 631 | return call_function_by_hand (argvec[0], NULL, |
6b1747cd | 632 | argvec.slice (1, nargs)); |
c906108c | 633 | } |
79afc5ef SW |
634 | throw_error (NOT_FOUND_ERROR, |
635 | _("member function %s not found"), tstr); | |
c906108c | 636 | } |
c906108c | 637 | \f |
c5aa993b | 638 | |
c906108c SS |
639 | /* Concatenate two values with the following conditions: |
640 | ||
c5aa993b JM |
641 | (1) Both values must be either bitstring values or character string |
642 | values and the resulting value consists of the concatenation of | |
643 | ARG1 followed by ARG2. | |
c906108c | 644 | |
c5aa993b | 645 | or |
c906108c | 646 | |
c5aa993b JM |
647 | One value must be an integer value and the other value must be |
648 | either a bitstring value or character string value, which is | |
649 | to be repeated by the number of times specified by the integer | |
650 | value. | |
c906108c SS |
651 | |
652 | ||
c5aa993b JM |
653 | (2) Boolean values are also allowed and are treated as bit string |
654 | values of length 1. | |
c906108c | 655 | |
c5aa993b | 656 | (3) Character values are also allowed and are treated as character |
581e13c1 | 657 | string values of length 1. */ |
c906108c | 658 | |
f23631e4 AC |
659 | struct value * |
660 | value_concat (struct value *arg1, struct value *arg2) | |
c906108c | 661 | { |
f23631e4 AC |
662 | struct value *inval1; |
663 | struct value *inval2; | |
664 | struct value *outval = NULL; | |
c906108c SS |
665 | int inval1len, inval2len; |
666 | int count, idx; | |
c906108c | 667 | char inchar; |
df407dfe AC |
668 | struct type *type1 = check_typedef (value_type (arg1)); |
669 | struct type *type2 = check_typedef (value_type (arg2)); | |
3b7538c0 | 670 | struct type *char_type; |
c906108c | 671 | |
c906108c SS |
672 | /* First figure out if we are dealing with two values to be concatenated |
673 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
674 | first of two concatenated values, or the repeat count. INVAL2 is set | |
675 | to the second of the two concatenated values or the value to be | |
581e13c1 | 676 | repeated. */ |
c906108c SS |
677 | |
678 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
679 | { | |
680 | struct type *tmp = type1; | |
a109c7c1 | 681 | |
c906108c SS |
682 | type1 = tmp; |
683 | tmp = type2; | |
684 | inval1 = arg2; | |
685 | inval2 = arg1; | |
686 | } | |
687 | else | |
688 | { | |
689 | inval1 = arg1; | |
690 | inval2 = arg2; | |
691 | } | |
692 | ||
581e13c1 | 693 | /* Now process the input values. */ |
c906108c SS |
694 | |
695 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
696 | { | |
697 | /* We have a repeat count. Validate the second value and then | |
581e13c1 | 698 | construct a value repeated that many times. */ |
c906108c SS |
699 | if (TYPE_CODE (type2) == TYPE_CODE_STRING |
700 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
701 | { | |
702 | count = longest_to_int (value_as_long (inval1)); | |
703 | inval2len = TYPE_LENGTH (type2); | |
26fcd5d7 | 704 | std::vector<char> ptr (count * inval2len); |
c906108c SS |
705 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) |
706 | { | |
3b7538c0 | 707 | char_type = type2; |
a109c7c1 | 708 | |
c906108c | 709 | inchar = (char) unpack_long (type2, |
0fd88904 | 710 | value_contents (inval2)); |
c906108c SS |
711 | for (idx = 0; idx < count; idx++) |
712 | { | |
26fcd5d7 | 713 | ptr[idx] = inchar; |
c906108c SS |
714 | } |
715 | } | |
716 | else | |
717 | { | |
3b7538c0 | 718 | char_type = TYPE_TARGET_TYPE (type2); |
a109c7c1 | 719 | |
c906108c SS |
720 | for (idx = 0; idx < count; idx++) |
721 | { | |
26fcd5d7 | 722 | memcpy (&ptr[idx * inval2len], value_contents (inval2), |
c906108c SS |
723 | inval2len); |
724 | } | |
725 | } | |
26fcd5d7 | 726 | outval = value_string (ptr.data (), count * inval2len, char_type); |
c906108c | 727 | } |
6b1755ce | 728 | else if (TYPE_CODE (type2) == TYPE_CODE_BOOL) |
c906108c | 729 | { |
6b1755ce | 730 | error (_("unimplemented support for boolean repeats")); |
c906108c SS |
731 | } |
732 | else | |
733 | { | |
8a3fe4f8 | 734 | error (_("can't repeat values of that type")); |
c906108c SS |
735 | } |
736 | } | |
737 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
c5aa993b | 738 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) |
c906108c | 739 | { |
581e13c1 | 740 | /* We have two character strings to concatenate. */ |
c906108c SS |
741 | if (TYPE_CODE (type2) != TYPE_CODE_STRING |
742 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
743 | { | |
8a3fe4f8 | 744 | error (_("Strings can only be concatenated with other strings.")); |
c906108c SS |
745 | } |
746 | inval1len = TYPE_LENGTH (type1); | |
747 | inval2len = TYPE_LENGTH (type2); | |
26fcd5d7 | 748 | std::vector<char> ptr (inval1len + inval2len); |
c906108c SS |
749 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) |
750 | { | |
3b7538c0 | 751 | char_type = type1; |
a109c7c1 | 752 | |
26fcd5d7 | 753 | ptr[0] = (char) unpack_long (type1, value_contents (inval1)); |
c906108c SS |
754 | } |
755 | else | |
756 | { | |
3b7538c0 | 757 | char_type = TYPE_TARGET_TYPE (type1); |
a109c7c1 | 758 | |
26fcd5d7 | 759 | memcpy (ptr.data (), value_contents (inval1), inval1len); |
c906108c SS |
760 | } |
761 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
762 | { | |
26fcd5d7 | 763 | ptr[inval1len] = |
0fd88904 | 764 | (char) unpack_long (type2, value_contents (inval2)); |
c906108c SS |
765 | } |
766 | else | |
767 | { | |
26fcd5d7 | 768 | memcpy (&ptr[inval1len], value_contents (inval2), inval2len); |
c906108c | 769 | } |
26fcd5d7 | 770 | outval = value_string (ptr.data (), inval1len + inval2len, char_type); |
c906108c | 771 | } |
6b1755ce | 772 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL) |
c906108c | 773 | { |
581e13c1 | 774 | /* We have two bitstrings to concatenate. */ |
6b1755ce | 775 | if (TYPE_CODE (type2) != TYPE_CODE_BOOL) |
c906108c | 776 | { |
6b1755ce | 777 | error (_("Booleans can only be concatenated " |
3e43a32a | 778 | "with other bitstrings or booleans.")); |
c906108c | 779 | } |
6b1755ce | 780 | error (_("unimplemented support for boolean concatenation.")); |
c5aa993b | 781 | } |
c906108c SS |
782 | else |
783 | { | |
581e13c1 | 784 | /* We don't know how to concatenate these operands. */ |
8a3fe4f8 | 785 | error (_("illegal operands for concatenation.")); |
c906108c SS |
786 | } |
787 | return (outval); | |
788 | } | |
c906108c | 789 | \f |
d118ef87 PH |
790 | /* Integer exponentiation: V1**V2, where both arguments are |
791 | integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ | |
581e13c1 | 792 | |
d118ef87 PH |
793 | static LONGEST |
794 | integer_pow (LONGEST v1, LONGEST v2) | |
795 | { | |
796 | if (v2 < 0) | |
797 | { | |
798 | if (v1 == 0) | |
799 | error (_("Attempt to raise 0 to negative power.")); | |
800 | else | |
801 | return 0; | |
802 | } | |
803 | else | |
804 | { | |
581e13c1 | 805 | /* The Russian Peasant's Algorithm. */ |
d118ef87 PH |
806 | LONGEST v; |
807 | ||
808 | v = 1; | |
809 | for (;;) | |
810 | { | |
811 | if (v2 & 1L) | |
812 | v *= v1; | |
813 | v2 >>= 1; | |
814 | if (v2 == 0) | |
815 | return v; | |
816 | v1 *= v1; | |
817 | } | |
818 | } | |
819 | } | |
820 | ||
821 | /* Integer exponentiation: V1**V2, where both arguments are | |
822 | integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */ | |
581e13c1 | 823 | |
d118ef87 PH |
824 | static ULONGEST |
825 | uinteger_pow (ULONGEST v1, LONGEST v2) | |
826 | { | |
827 | if (v2 < 0) | |
828 | { | |
829 | if (v1 == 0) | |
830 | error (_("Attempt to raise 0 to negative power.")); | |
831 | else | |
832 | return 0; | |
833 | } | |
834 | else | |
835 | { | |
581e13c1 | 836 | /* The Russian Peasant's Algorithm. */ |
d118ef87 PH |
837 | ULONGEST v; |
838 | ||
839 | v = 1; | |
840 | for (;;) | |
841 | { | |
842 | if (v2 & 1L) | |
843 | v *= v1; | |
844 | v2 >>= 1; | |
845 | if (v2 == 0) | |
846 | return v; | |
847 | v1 *= v1; | |
848 | } | |
849 | } | |
850 | } | |
851 | ||
66c02b9e UW |
852 | /* Obtain argument values for binary operation, converting from |
853 | other types if one of them is not floating point. */ | |
4ef30785 | 854 | static void |
66c02b9e UW |
855 | value_args_as_target_float (struct value *arg1, struct value *arg2, |
856 | gdb_byte *x, struct type **eff_type_x, | |
857 | gdb_byte *y, struct type **eff_type_y) | |
4ef30785 TJB |
858 | { |
859 | struct type *type1, *type2; | |
860 | ||
861 | type1 = check_typedef (value_type (arg1)); | |
862 | type2 = check_typedef (value_type (arg2)); | |
863 | ||
66c02b9e UW |
864 | /* At least one of the arguments must be of floating-point type. */ |
865 | gdb_assert (is_floating_type (type1) || is_floating_type (type2)); | |
4ef30785 | 866 | |
66c02b9e UW |
867 | if (is_floating_type (type1) && is_floating_type (type2) |
868 | && TYPE_CODE (type1) != TYPE_CODE (type2)) | |
4ef30785 TJB |
869 | /* The DFP extension to the C language does not allow mixing of |
870 | * decimal float types with other float types in expressions | |
871 | * (see WDTR 24732, page 12). */ | |
3e43a32a MS |
872 | error (_("Mixing decimal floating types with " |
873 | "other floating types is not allowed.")); | |
4ef30785 | 874 | |
66c02b9e | 875 | /* Obtain value of arg1, converting from other types if necessary. */ |
4ef30785 | 876 | |
66c02b9e | 877 | if (is_floating_type (type1)) |
4ef30785 | 878 | { |
66c02b9e UW |
879 | *eff_type_x = type1; |
880 | memcpy (x, value_contents (arg1), TYPE_LENGTH (type1)); | |
4ef30785 TJB |
881 | } |
882 | else if (is_integral_type (type1)) | |
883 | { | |
66c02b9e | 884 | *eff_type_x = type2; |
3b4b2f16 | 885 | if (TYPE_UNSIGNED (type1)) |
66c02b9e | 886 | target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1)); |
3b4b2f16 | 887 | else |
66c02b9e | 888 | target_float_from_longest (x, *eff_type_x, value_as_long (arg1)); |
4ef30785 TJB |
889 | } |
890 | else | |
891 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
892 | TYPE_NAME (type2)); | |
893 | ||
66c02b9e | 894 | /* Obtain value of arg2, converting from other types if necessary. */ |
4ef30785 | 895 | |
66c02b9e | 896 | if (is_floating_type (type2)) |
4ef30785 | 897 | { |
66c02b9e UW |
898 | *eff_type_y = type2; |
899 | memcpy (y, value_contents (arg2), TYPE_LENGTH (type2)); | |
4ef30785 TJB |
900 | } |
901 | else if (is_integral_type (type2)) | |
902 | { | |
66c02b9e | 903 | *eff_type_y = type1; |
3b4b2f16 | 904 | if (TYPE_UNSIGNED (type2)) |
66c02b9e | 905 | target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2)); |
3b4b2f16 | 906 | else |
66c02b9e | 907 | target_float_from_longest (y, *eff_type_y, value_as_long (arg2)); |
4ef30785 TJB |
908 | } |
909 | else | |
910 | error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1), | |
911 | TYPE_NAME (type2)); | |
912 | } | |
c5aa993b | 913 | |
c906108c SS |
914 | /* Perform a binary operation on two operands which have reasonable |
915 | representations as integers or floats. This includes booleans, | |
916 | characters, integers, or floats. | |
917 | Does not support addition and subtraction on pointers; | |
89eef114 | 918 | use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */ |
c906108c | 919 | |
7346b668 KW |
920 | static struct value * |
921 | scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
c906108c | 922 | { |
f23631e4 | 923 | struct value *val; |
4066e646 UW |
924 | struct type *type1, *type2, *result_type; |
925 | ||
994b9211 AC |
926 | arg1 = coerce_ref (arg1); |
927 | arg2 = coerce_ref (arg2); | |
c906108c | 928 | |
4066e646 UW |
929 | type1 = check_typedef (value_type (arg1)); |
930 | type2 = check_typedef (value_type (arg2)); | |
931 | ||
66c02b9e UW |
932 | if ((!is_floating_value (arg1) && !is_integral_type (type1)) |
933 | || (!is_floating_value (arg2) && !is_integral_type (type2))) | |
4066e646 | 934 | error (_("Argument to arithmetic operation not a number or boolean.")); |
c906108c | 935 | |
66c02b9e | 936 | if (is_floating_type (type1) || is_floating_type (type2)) |
4ef30785 | 937 | { |
66c02b9e | 938 | /* If only one type is floating-point, use its type. |
289bd67a | 939 | Otherwise use the bigger type. */ |
66c02b9e | 940 | if (!is_floating_type (type1)) |
289bd67a | 941 | result_type = type2; |
66c02b9e | 942 | else if (!is_floating_type (type2)) |
4066e646 UW |
943 | result_type = type1; |
944 | else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) | |
945 | result_type = type2; | |
946 | else | |
947 | result_type = type1; | |
948 | ||
301f0ecf | 949 | val = allocate_value (result_type); |
66c02b9e UW |
950 | |
951 | struct type *eff_type_v1, *eff_type_v2; | |
952 | gdb::byte_vector v1, v2; | |
953 | v1.resize (TYPE_LENGTH (result_type)); | |
954 | v2.resize (TYPE_LENGTH (result_type)); | |
955 | ||
956 | value_args_as_target_float (arg1, arg2, | |
957 | v1.data (), &eff_type_v1, | |
958 | v2.data (), &eff_type_v2); | |
959 | target_float_binop (op, v1.data (), eff_type_v1, | |
960 | v2.data (), eff_type_v2, | |
961 | value_contents_raw (val), result_type); | |
c906108c | 962 | } |
4066e646 UW |
963 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL |
964 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
c5aa993b | 965 | { |
c4093a6a | 966 | LONGEST v1, v2, v = 0; |
a109c7c1 | 967 | |
c5aa993b JM |
968 | v1 = value_as_long (arg1); |
969 | v2 = value_as_long (arg2); | |
970 | ||
971 | switch (op) | |
972 | { | |
973 | case BINOP_BITWISE_AND: | |
974 | v = v1 & v2; | |
975 | break; | |
976 | ||
977 | case BINOP_BITWISE_IOR: | |
978 | v = v1 | v2; | |
979 | break; | |
980 | ||
981 | case BINOP_BITWISE_XOR: | |
982 | v = v1 ^ v2; | |
c4093a6a JM |
983 | break; |
984 | ||
985 | case BINOP_EQUAL: | |
986 | v = v1 == v2; | |
987 | break; | |
988 | ||
989 | case BINOP_NOTEQUAL: | |
990 | v = v1 != v2; | |
c5aa993b JM |
991 | break; |
992 | ||
993 | default: | |
8a3fe4f8 | 994 | error (_("Invalid operation on booleans.")); |
c5aa993b JM |
995 | } |
996 | ||
4066e646 UW |
997 | result_type = type1; |
998 | ||
301f0ecf | 999 | val = allocate_value (result_type); |
990a07ab | 1000 | store_signed_integer (value_contents_raw (val), |
301f0ecf | 1001 | TYPE_LENGTH (result_type), |
34877895 | 1002 | type_byte_order (result_type), |
c5aa993b JM |
1003 | v); |
1004 | } | |
c906108c SS |
1005 | else |
1006 | /* Integral operations here. */ | |
c906108c | 1007 | { |
4066e646 UW |
1008 | /* Determine type length of the result, and if the operation should |
1009 | be done unsigned. For exponentiation and shift operators, | |
1010 | use the length and type of the left operand. Otherwise, | |
1011 | use the signedness of the operand with the greater length. | |
1012 | If both operands are of equal length, use unsigned operation | |
1013 | if one of the operands is unsigned. */ | |
1014 | if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) | |
1015 | result_type = type1; | |
1016 | else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)) | |
1017 | result_type = type1; | |
1018 | else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1)) | |
1019 | result_type = type2; | |
1020 | else if (TYPE_UNSIGNED (type1)) | |
1021 | result_type = type1; | |
1022 | else if (TYPE_UNSIGNED (type2)) | |
1023 | result_type = type2; | |
1024 | else | |
1025 | result_type = type1; | |
c906108c | 1026 | |
4066e646 | 1027 | if (TYPE_UNSIGNED (result_type)) |
c906108c | 1028 | { |
d118ef87 | 1029 | LONGEST v2_signed = value_as_long (arg2); |
c4093a6a | 1030 | ULONGEST v1, v2, v = 0; |
a109c7c1 | 1031 | |
c906108c | 1032 | v1 = (ULONGEST) value_as_long (arg1); |
d118ef87 | 1033 | v2 = (ULONGEST) v2_signed; |
c906108c | 1034 | |
c906108c SS |
1035 | switch (op) |
1036 | { | |
1037 | case BINOP_ADD: | |
1038 | v = v1 + v2; | |
1039 | break; | |
c5aa993b | 1040 | |
c906108c SS |
1041 | case BINOP_SUB: |
1042 | v = v1 - v2; | |
1043 | break; | |
c5aa993b | 1044 | |
c906108c SS |
1045 | case BINOP_MUL: |
1046 | v = v1 * v2; | |
1047 | break; | |
c5aa993b | 1048 | |
c906108c | 1049 | case BINOP_DIV: |
ef80d18e | 1050 | case BINOP_INTDIV: |
c3940723 PM |
1051 | if (v2 != 0) |
1052 | v = v1 / v2; | |
1053 | else | |
1054 | error (_("Division by zero")); | |
c906108c | 1055 | break; |
c5aa993b | 1056 | |
bd49c137 | 1057 | case BINOP_EXP: |
d118ef87 | 1058 | v = uinteger_pow (v1, v2_signed); |
bd49c137 | 1059 | break; |
c4093a6a | 1060 | |
c906108c | 1061 | case BINOP_REM: |
f8597ac3 DE |
1062 | if (v2 != 0) |
1063 | v = v1 % v2; | |
1064 | else | |
1065 | error (_("Division by zero")); | |
c906108c | 1066 | break; |
c5aa993b | 1067 | |
c906108c SS |
1068 | case BINOP_MOD: |
1069 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
581e13c1 | 1070 | v1 mod 0 has a defined value, v1. */ |
c906108c SS |
1071 | if (v2 == 0) |
1072 | { | |
1073 | v = v1; | |
1074 | } | |
1075 | else | |
1076 | { | |
c5aa993b | 1077 | v = v1 / v2; |
581e13c1 | 1078 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ |
c906108c SS |
1079 | v = v1 - (v2 * v); |
1080 | } | |
1081 | break; | |
c5aa993b | 1082 | |
c906108c SS |
1083 | case BINOP_LSH: |
1084 | v = v1 << v2; | |
1085 | break; | |
c5aa993b | 1086 | |
c906108c SS |
1087 | case BINOP_RSH: |
1088 | v = v1 >> v2; | |
1089 | break; | |
c5aa993b | 1090 | |
c906108c SS |
1091 | case BINOP_BITWISE_AND: |
1092 | v = v1 & v2; | |
1093 | break; | |
c5aa993b | 1094 | |
c906108c SS |
1095 | case BINOP_BITWISE_IOR: |
1096 | v = v1 | v2; | |
1097 | break; | |
c5aa993b | 1098 | |
c906108c SS |
1099 | case BINOP_BITWISE_XOR: |
1100 | v = v1 ^ v2; | |
1101 | break; | |
c5aa993b | 1102 | |
c906108c SS |
1103 | case BINOP_LOGICAL_AND: |
1104 | v = v1 && v2; | |
1105 | break; | |
c5aa993b | 1106 | |
c906108c SS |
1107 | case BINOP_LOGICAL_OR: |
1108 | v = v1 || v2; | |
1109 | break; | |
c5aa993b | 1110 | |
c906108c SS |
1111 | case BINOP_MIN: |
1112 | v = v1 < v2 ? v1 : v2; | |
1113 | break; | |
c5aa993b | 1114 | |
c906108c SS |
1115 | case BINOP_MAX: |
1116 | v = v1 > v2 ? v1 : v2; | |
1117 | break; | |
1118 | ||
1119 | case BINOP_EQUAL: | |
1120 | v = v1 == v2; | |
1121 | break; | |
1122 | ||
c4093a6a JM |
1123 | case BINOP_NOTEQUAL: |
1124 | v = v1 != v2; | |
1125 | break; | |
1126 | ||
c906108c SS |
1127 | case BINOP_LESS: |
1128 | v = v1 < v2; | |
1129 | break; | |
c5aa993b | 1130 | |
b966cb8a TT |
1131 | case BINOP_GTR: |
1132 | v = v1 > v2; | |
1133 | break; | |
1134 | ||
1135 | case BINOP_LEQ: | |
1136 | v = v1 <= v2; | |
1137 | break; | |
1138 | ||
1139 | case BINOP_GEQ: | |
1140 | v = v1 >= v2; | |
1141 | break; | |
1142 | ||
c906108c | 1143 | default: |
8a3fe4f8 | 1144 | error (_("Invalid binary operation on numbers.")); |
c906108c SS |
1145 | } |
1146 | ||
301f0ecf | 1147 | val = allocate_value (result_type); |
990a07ab | 1148 | store_unsigned_integer (value_contents_raw (val), |
df407dfe | 1149 | TYPE_LENGTH (value_type (val)), |
34877895 | 1150 | type_byte_order (result_type), |
c906108c SS |
1151 | v); |
1152 | } | |
1153 | else | |
1154 | { | |
c4093a6a | 1155 | LONGEST v1, v2, v = 0; |
a109c7c1 | 1156 | |
c906108c SS |
1157 | v1 = value_as_long (arg1); |
1158 | v2 = value_as_long (arg2); | |
c5aa993b | 1159 | |
c906108c SS |
1160 | switch (op) |
1161 | { | |
1162 | case BINOP_ADD: | |
1163 | v = v1 + v2; | |
1164 | break; | |
c5aa993b | 1165 | |
c906108c SS |
1166 | case BINOP_SUB: |
1167 | v = v1 - v2; | |
1168 | break; | |
c5aa993b | 1169 | |
c906108c SS |
1170 | case BINOP_MUL: |
1171 | v = v1 * v2; | |
1172 | break; | |
c5aa993b | 1173 | |
c906108c | 1174 | case BINOP_DIV: |
ef80d18e | 1175 | case BINOP_INTDIV: |
399cfac6 DL |
1176 | if (v2 != 0) |
1177 | v = v1 / v2; | |
1178 | else | |
8a3fe4f8 | 1179 | error (_("Division by zero")); |
c4093a6a JM |
1180 | break; |
1181 | ||
bd49c137 | 1182 | case BINOP_EXP: |
d118ef87 | 1183 | v = integer_pow (v1, v2); |
c906108c | 1184 | break; |
c5aa993b | 1185 | |
c906108c | 1186 | case BINOP_REM: |
399cfac6 DL |
1187 | if (v2 != 0) |
1188 | v = v1 % v2; | |
1189 | else | |
8a3fe4f8 | 1190 | error (_("Division by zero")); |
c906108c | 1191 | break; |
c5aa993b | 1192 | |
c906108c SS |
1193 | case BINOP_MOD: |
1194 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
581e13c1 | 1195 | X mod 0 has a defined value, X. */ |
c906108c SS |
1196 | if (v2 == 0) |
1197 | { | |
1198 | v = v1; | |
1199 | } | |
1200 | else | |
1201 | { | |
c5aa993b | 1202 | v = v1 / v2; |
581e13c1 | 1203 | /* Compute floor. */ |
c906108c SS |
1204 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) |
1205 | { | |
1206 | v--; | |
1207 | } | |
1208 | v = v1 - (v2 * v); | |
1209 | } | |
1210 | break; | |
c5aa993b | 1211 | |
c906108c SS |
1212 | case BINOP_LSH: |
1213 | v = v1 << v2; | |
1214 | break; | |
c5aa993b | 1215 | |
c906108c SS |
1216 | case BINOP_RSH: |
1217 | v = v1 >> v2; | |
1218 | break; | |
c5aa993b | 1219 | |
c906108c SS |
1220 | case BINOP_BITWISE_AND: |
1221 | v = v1 & v2; | |
1222 | break; | |
c5aa993b | 1223 | |
c906108c SS |
1224 | case BINOP_BITWISE_IOR: |
1225 | v = v1 | v2; | |
1226 | break; | |
c5aa993b | 1227 | |
c906108c SS |
1228 | case BINOP_BITWISE_XOR: |
1229 | v = v1 ^ v2; | |
1230 | break; | |
c5aa993b | 1231 | |
c906108c SS |
1232 | case BINOP_LOGICAL_AND: |
1233 | v = v1 && v2; | |
1234 | break; | |
c5aa993b | 1235 | |
c906108c SS |
1236 | case BINOP_LOGICAL_OR: |
1237 | v = v1 || v2; | |
1238 | break; | |
c5aa993b | 1239 | |
c906108c SS |
1240 | case BINOP_MIN: |
1241 | v = v1 < v2 ? v1 : v2; | |
1242 | break; | |
c5aa993b | 1243 | |
c906108c SS |
1244 | case BINOP_MAX: |
1245 | v = v1 > v2 ? v1 : v2; | |
1246 | break; | |
1247 | ||
1248 | case BINOP_EQUAL: | |
1249 | v = v1 == v2; | |
1250 | break; | |
1251 | ||
b966cb8a TT |
1252 | case BINOP_NOTEQUAL: |
1253 | v = v1 != v2; | |
1254 | break; | |
1255 | ||
c906108c SS |
1256 | case BINOP_LESS: |
1257 | v = v1 < v2; | |
1258 | break; | |
c5aa993b | 1259 | |
b966cb8a TT |
1260 | case BINOP_GTR: |
1261 | v = v1 > v2; | |
1262 | break; | |
1263 | ||
1264 | case BINOP_LEQ: | |
1265 | v = v1 <= v2; | |
1266 | break; | |
1267 | ||
1268 | case BINOP_GEQ: | |
1269 | v = v1 >= v2; | |
1270 | break; | |
1271 | ||
c906108c | 1272 | default: |
8a3fe4f8 | 1273 | error (_("Invalid binary operation on numbers.")); |
c906108c SS |
1274 | } |
1275 | ||
301f0ecf | 1276 | val = allocate_value (result_type); |
990a07ab | 1277 | store_signed_integer (value_contents_raw (val), |
df407dfe | 1278 | TYPE_LENGTH (value_type (val)), |
34877895 | 1279 | type_byte_order (result_type), |
c906108c SS |
1280 | v); |
1281 | } | |
1282 | } | |
1283 | ||
1284 | return val; | |
1285 | } | |
7346b668 | 1286 | |
8954db33 AB |
1287 | /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by |
1288 | replicating SCALAR_VALUE for each element of the vector. Only scalar | |
1289 | types that can be cast to the type of one element of the vector are | |
1290 | acceptable. The newly created vector value is returned upon success, | |
1291 | otherwise an error is thrown. */ | |
1292 | ||
1293 | struct value * | |
1294 | value_vector_widen (struct value *scalar_value, struct type *vector_type) | |
1295 | { | |
1296 | /* Widen the scalar to a vector. */ | |
1297 | struct type *eltype, *scalar_type; | |
1298 | struct value *val, *elval; | |
1299 | LONGEST low_bound, high_bound; | |
1300 | int i; | |
1301 | ||
f168693b | 1302 | vector_type = check_typedef (vector_type); |
8954db33 AB |
1303 | |
1304 | gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY | |
1305 | && TYPE_VECTOR (vector_type)); | |
1306 | ||
1307 | if (!get_array_bounds (vector_type, &low_bound, &high_bound)) | |
1308 | error (_("Could not determine the vector bounds")); | |
1309 | ||
1310 | eltype = check_typedef (TYPE_TARGET_TYPE (vector_type)); | |
1311 | elval = value_cast (eltype, scalar_value); | |
1312 | ||
1313 | scalar_type = check_typedef (value_type (scalar_value)); | |
1314 | ||
1315 | /* If we reduced the length of the scalar then check we didn't loose any | |
1316 | important bits. */ | |
1317 | if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type) | |
1318 | && !value_equal (elval, scalar_value)) | |
1319 | error (_("conversion of scalar to vector involves truncation")); | |
1320 | ||
1321 | val = allocate_value (vector_type); | |
1322 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
1323 | /* Duplicate the contents of elval into the destination vector. */ | |
1324 | memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)), | |
1325 | value_contents_all (elval), TYPE_LENGTH (eltype)); | |
1326 | ||
1327 | return val; | |
1328 | } | |
1329 | ||
7346b668 KW |
1330 | /* Performs a binary operation on two vector operands by calling scalar_binop |
1331 | for each pair of vector components. */ | |
1332 | ||
1333 | static struct value * | |
1334 | vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) | |
1335 | { | |
1336 | struct value *val, *tmp, *mark; | |
22e048c9 | 1337 | struct type *type1, *type2, *eltype1, *eltype2; |
dbc98a8b KW |
1338 | int t1_is_vec, t2_is_vec, elsize, i; |
1339 | LONGEST low_bound1, high_bound1, low_bound2, high_bound2; | |
7346b668 KW |
1340 | |
1341 | type1 = check_typedef (value_type (val1)); | |
1342 | type2 = check_typedef (value_type (val2)); | |
1343 | ||
1344 | t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY | |
1345 | && TYPE_VECTOR (type1)) ? 1 : 0; | |
1346 | t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
1347 | && TYPE_VECTOR (type2)) ? 1 : 0; | |
1348 | ||
1349 | if (!t1_is_vec || !t2_is_vec) | |
1350 | error (_("Vector operations are only supported among vectors")); | |
1351 | ||
dbc98a8b KW |
1352 | if (!get_array_bounds (type1, &low_bound1, &high_bound1) |
1353 | || !get_array_bounds (type2, &low_bound2, &high_bound2)) | |
1354 | error (_("Could not determine the vector bounds")); | |
1355 | ||
7346b668 KW |
1356 | eltype1 = check_typedef (TYPE_TARGET_TYPE (type1)); |
1357 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
dbc98a8b | 1358 | elsize = TYPE_LENGTH (eltype1); |
7346b668 KW |
1359 | |
1360 | if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2) | |
dbc98a8b KW |
1361 | || elsize != TYPE_LENGTH (eltype2) |
1362 | || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2) | |
1363 | || low_bound1 != low_bound2 || high_bound1 != high_bound2) | |
7346b668 KW |
1364 | error (_("Cannot perform operation on vectors with different types")); |
1365 | ||
7346b668 KW |
1366 | val = allocate_value (type1); |
1367 | mark = value_mark (); | |
dbc98a8b | 1368 | for (i = 0; i < high_bound1 - low_bound1 + 1; i++) |
7346b668 KW |
1369 | { |
1370 | tmp = value_binop (value_subscript (val1, i), | |
1371 | value_subscript (val2, i), op); | |
1372 | memcpy (value_contents_writeable (val) + i * elsize, | |
1373 | value_contents_all (tmp), | |
1374 | elsize); | |
1375 | } | |
1376 | value_free_to_mark (mark); | |
1377 | ||
1378 | return val; | |
1379 | } | |
1380 | ||
1381 | /* Perform a binary operation on two operands. */ | |
1382 | ||
1383 | struct value * | |
1384 | value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
1385 | { | |
3bdf2bbd | 1386 | struct value *val; |
7346b668 KW |
1387 | struct type *type1 = check_typedef (value_type (arg1)); |
1388 | struct type *type2 = check_typedef (value_type (arg2)); | |
3bdf2bbd KW |
1389 | int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY |
1390 | && TYPE_VECTOR (type1)); | |
1391 | int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
1392 | && TYPE_VECTOR (type2)); | |
1393 | ||
1394 | if (!t1_is_vec && !t2_is_vec) | |
1395 | val = scalar_binop (arg1, arg2, op); | |
1396 | else if (t1_is_vec && t2_is_vec) | |
1397 | val = vector_binop (arg1, arg2, op); | |
7346b668 | 1398 | else |
3bdf2bbd KW |
1399 | { |
1400 | /* Widen the scalar operand to a vector. */ | |
1401 | struct value **v = t1_is_vec ? &arg2 : &arg1; | |
1402 | struct type *t = t1_is_vec ? type2 : type1; | |
1403 | ||
1404 | if (TYPE_CODE (t) != TYPE_CODE_FLT | |
1405 | && TYPE_CODE (t) != TYPE_CODE_DECFLOAT | |
1406 | && !is_integral_type (t)) | |
1407 | error (_("Argument to operation not a number or boolean.")); | |
1408 | ||
8954db33 AB |
1409 | /* Replicate the scalar value to make a vector value. */ |
1410 | *v = value_vector_widen (*v, t1_is_vec ? type1 : type2); | |
1411 | ||
3bdf2bbd KW |
1412 | val = vector_binop (arg1, arg2, op); |
1413 | } | |
1414 | ||
1415 | return val; | |
7346b668 | 1416 | } |
c906108c SS |
1417 | \f |
1418 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1419 | ||
1420 | int | |
f23631e4 | 1421 | value_logical_not (struct value *arg1) |
c906108c | 1422 | { |
52f0bd74 | 1423 | int len; |
fc1a4b47 | 1424 | const gdb_byte *p; |
c906108c SS |
1425 | struct type *type1; |
1426 | ||
0ab7ba45 | 1427 | arg1 = coerce_array (arg1); |
df407dfe | 1428 | type1 = check_typedef (value_type (arg1)); |
c906108c | 1429 | |
70100014 UW |
1430 | if (is_floating_value (arg1)) |
1431 | return target_float_is_zero (value_contents (arg1), type1); | |
c906108c SS |
1432 | |
1433 | len = TYPE_LENGTH (type1); | |
0fd88904 | 1434 | p = value_contents (arg1); |
c906108c SS |
1435 | |
1436 | while (--len >= 0) | |
1437 | { | |
1438 | if (*p++) | |
1439 | break; | |
1440 | } | |
1441 | ||
1442 | return len < 0; | |
1443 | } | |
1444 | ||
c4093a6a | 1445 | /* Perform a comparison on two string values (whose content are not |
581e13c1 | 1446 | necessarily null terminated) based on their length. */ |
c4093a6a JM |
1447 | |
1448 | static int | |
f23631e4 | 1449 | value_strcmp (struct value *arg1, struct value *arg2) |
c4093a6a | 1450 | { |
df407dfe AC |
1451 | int len1 = TYPE_LENGTH (value_type (arg1)); |
1452 | int len2 = TYPE_LENGTH (value_type (arg2)); | |
fc1a4b47 AC |
1453 | const gdb_byte *s1 = value_contents (arg1); |
1454 | const gdb_byte *s2 = value_contents (arg2); | |
c4093a6a JM |
1455 | int i, len = len1 < len2 ? len1 : len2; |
1456 | ||
1457 | for (i = 0; i < len; i++) | |
1458 | { | |
1459 | if (s1[i] < s2[i]) | |
1460 | return -1; | |
1461 | else if (s1[i] > s2[i]) | |
1462 | return 1; | |
1463 | else | |
1464 | continue; | |
1465 | } | |
1466 | ||
1467 | if (len1 < len2) | |
1468 | return -1; | |
1469 | else if (len1 > len2) | |
1470 | return 1; | |
1471 | else | |
1472 | return 0; | |
1473 | } | |
1474 | ||
c906108c SS |
1475 | /* Simulate the C operator == by returning a 1 |
1476 | iff ARG1 and ARG2 have equal contents. */ | |
1477 | ||
1478 | int | |
f23631e4 | 1479 | value_equal (struct value *arg1, struct value *arg2) |
c906108c | 1480 | { |
52f0bd74 | 1481 | int len; |
fc1a4b47 AC |
1482 | const gdb_byte *p1; |
1483 | const gdb_byte *p2; | |
c906108c SS |
1484 | struct type *type1, *type2; |
1485 | enum type_code code1; | |
1486 | enum type_code code2; | |
2de41bce | 1487 | int is_int1, is_int2; |
c906108c | 1488 | |
994b9211 AC |
1489 | arg1 = coerce_array (arg1); |
1490 | arg2 = coerce_array (arg2); | |
c906108c | 1491 | |
df407dfe AC |
1492 | type1 = check_typedef (value_type (arg1)); |
1493 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
1494 | code1 = TYPE_CODE (type1); |
1495 | code2 = TYPE_CODE (type2); | |
2de41bce PH |
1496 | is_int1 = is_integral_type (type1); |
1497 | is_int2 = is_integral_type (type2); | |
c906108c | 1498 | |
2de41bce | 1499 | if (is_int1 && is_int2) |
c906108c SS |
1500 | return longest_to_int (value_as_long (value_binop (arg1, arg2, |
1501 | BINOP_EQUAL))); | |
66c02b9e UW |
1502 | else if ((is_floating_value (arg1) || is_int1) |
1503 | && (is_floating_value (arg2) || is_int2)) | |
4ef30785 | 1504 | { |
66c02b9e UW |
1505 | struct type *eff_type_v1, *eff_type_v2; |
1506 | gdb::byte_vector v1, v2; | |
1507 | v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1508 | v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
4ef30785 | 1509 | |
66c02b9e UW |
1510 | value_args_as_target_float (arg1, arg2, |
1511 | v1.data (), &eff_type_v1, | |
1512 | v2.data (), &eff_type_v2); | |
4ef30785 | 1513 | |
66c02b9e UW |
1514 | return target_float_compare (v1.data (), eff_type_v1, |
1515 | v2.data (), eff_type_v2) == 0; | |
4ef30785 | 1516 | } |
c906108c SS |
1517 | |
1518 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1519 | is bigger. */ | |
2de41bce | 1520 | else if (code1 == TYPE_CODE_PTR && is_int2) |
1aa20aa8 | 1521 | return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); |
2de41bce | 1522 | else if (code2 == TYPE_CODE_PTR && is_int1) |
1aa20aa8 | 1523 | return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); |
c906108c SS |
1524 | |
1525 | else if (code1 == code2 | |
1526 | && ((len = (int) TYPE_LENGTH (type1)) | |
1527 | == (int) TYPE_LENGTH (type2))) | |
1528 | { | |
0fd88904 AC |
1529 | p1 = value_contents (arg1); |
1530 | p2 = value_contents (arg2); | |
c906108c SS |
1531 | while (--len >= 0) |
1532 | { | |
1533 | if (*p1++ != *p2++) | |
1534 | break; | |
1535 | } | |
1536 | return len < 0; | |
1537 | } | |
c4093a6a JM |
1538 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1539 | { | |
1540 | return value_strcmp (arg1, arg2) == 0; | |
1541 | } | |
c906108c | 1542 | else |
dba7455e | 1543 | error (_("Invalid type combination in equality test.")); |
c906108c SS |
1544 | } |
1545 | ||
218d2fc6 TJB |
1546 | /* Compare values based on their raw contents. Useful for arrays since |
1547 | value_equal coerces them to pointers, thus comparing just the address | |
1548 | of the array instead of its contents. */ | |
1549 | ||
1550 | int | |
1551 | value_equal_contents (struct value *arg1, struct value *arg2) | |
1552 | { | |
1553 | struct type *type1, *type2; | |
1554 | ||
1555 | type1 = check_typedef (value_type (arg1)); | |
1556 | type2 = check_typedef (value_type (arg2)); | |
1557 | ||
1558 | return (TYPE_CODE (type1) == TYPE_CODE (type2) | |
1559 | && TYPE_LENGTH (type1) == TYPE_LENGTH (type2) | |
1560 | && memcmp (value_contents (arg1), value_contents (arg2), | |
1561 | TYPE_LENGTH (type1)) == 0); | |
1562 | } | |
1563 | ||
c906108c SS |
1564 | /* Simulate the C operator < by returning 1 |
1565 | iff ARG1's contents are less than ARG2's. */ | |
1566 | ||
1567 | int | |
f23631e4 | 1568 | value_less (struct value *arg1, struct value *arg2) |
c906108c | 1569 | { |
52f0bd74 AC |
1570 | enum type_code code1; |
1571 | enum type_code code2; | |
c906108c | 1572 | struct type *type1, *type2; |
2de41bce | 1573 | int is_int1, is_int2; |
c906108c | 1574 | |
994b9211 AC |
1575 | arg1 = coerce_array (arg1); |
1576 | arg2 = coerce_array (arg2); | |
c906108c | 1577 | |
df407dfe AC |
1578 | type1 = check_typedef (value_type (arg1)); |
1579 | type2 = check_typedef (value_type (arg2)); | |
c906108c SS |
1580 | code1 = TYPE_CODE (type1); |
1581 | code2 = TYPE_CODE (type2); | |
2de41bce PH |
1582 | is_int1 = is_integral_type (type1); |
1583 | is_int2 = is_integral_type (type2); | |
c906108c | 1584 | |
2de41bce | 1585 | if (is_int1 && is_int2) |
c906108c SS |
1586 | return longest_to_int (value_as_long (value_binop (arg1, arg2, |
1587 | BINOP_LESS))); | |
66c02b9e UW |
1588 | else if ((is_floating_value (arg1) || is_int1) |
1589 | && (is_floating_value (arg2) || is_int2)) | |
d067a990 | 1590 | { |
66c02b9e UW |
1591 | struct type *eff_type_v1, *eff_type_v2; |
1592 | gdb::byte_vector v1, v2; | |
1593 | v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
1594 | v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2))); | |
a109c7c1 | 1595 | |
66c02b9e UW |
1596 | value_args_as_target_float (arg1, arg2, |
1597 | v1.data (), &eff_type_v1, | |
1598 | v2.data (), &eff_type_v2); | |
4ef30785 | 1599 | |
66c02b9e UW |
1600 | return target_float_compare (v1.data (), eff_type_v1, |
1601 | v2.data (), eff_type_v2) == -1; | |
4ef30785 | 1602 | } |
c906108c | 1603 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) |
1aa20aa8 | 1604 | return value_as_address (arg1) < value_as_address (arg2); |
c906108c SS |
1605 | |
1606 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1607 | is bigger. */ | |
2de41bce | 1608 | else if (code1 == TYPE_CODE_PTR && is_int2) |
1aa20aa8 | 1609 | return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); |
2de41bce | 1610 | else if (code2 == TYPE_CODE_PTR && is_int1) |
1aa20aa8 | 1611 | return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); |
c4093a6a JM |
1612 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1613 | return value_strcmp (arg1, arg2) < 0; | |
c906108c SS |
1614 | else |
1615 | { | |
8a3fe4f8 | 1616 | error (_("Invalid type combination in ordering comparison.")); |
c906108c SS |
1617 | return 0; |
1618 | } | |
1619 | } | |
1620 | \f | |
36e9969c NS |
1621 | /* The unary operators +, - and ~. They free the argument ARG1. */ |
1622 | ||
1623 | struct value * | |
1624 | value_pos (struct value *arg1) | |
1625 | { | |
1626 | struct type *type; | |
4066e646 | 1627 | |
36e9969c | 1628 | arg1 = coerce_ref (arg1); |
36e9969c NS |
1629 | type = check_typedef (value_type (arg1)); |
1630 | ||
66c02b9e UW |
1631 | if (is_integral_type (type) || is_floating_value (arg1) |
1632 | || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))) | |
1633 | return value_from_contents (type, value_contents (arg1)); | |
36e9969c | 1634 | else |
dba7455e | 1635 | error (_("Argument to positive operation not a number.")); |
36e9969c | 1636 | } |
c906108c | 1637 | |
f23631e4 AC |
1638 | struct value * |
1639 | value_neg (struct value *arg1) | |
c906108c | 1640 | { |
52f0bd74 | 1641 | struct type *type; |
4066e646 | 1642 | |
994b9211 | 1643 | arg1 = coerce_ref (arg1); |
df407dfe | 1644 | type = check_typedef (value_type (arg1)); |
c906108c | 1645 | |
66c02b9e UW |
1646 | if (is_integral_type (type) || is_floating_type (type)) |
1647 | return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB); | |
120bd360 KW |
1648 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) |
1649 | { | |
1650 | struct value *tmp, *val = allocate_value (type); | |
1651 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
cfa6f054 KW |
1652 | int i; |
1653 | LONGEST low_bound, high_bound; | |
120bd360 | 1654 | |
cfa6f054 KW |
1655 | if (!get_array_bounds (type, &low_bound, &high_bound)) |
1656 | error (_("Could not determine the vector bounds")); | |
1657 | ||
1658 | for (i = 0; i < high_bound - low_bound + 1; i++) | |
120bd360 KW |
1659 | { |
1660 | tmp = value_neg (value_subscript (arg1, i)); | |
1661 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
1662 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
1663 | } | |
1664 | return val; | |
1665 | } | |
c5aa993b | 1666 | else |
dba7455e | 1667 | error (_("Argument to negate operation not a number.")); |
c906108c SS |
1668 | } |
1669 | ||
f23631e4 AC |
1670 | struct value * |
1671 | value_complement (struct value *arg1) | |
c906108c | 1672 | { |
52f0bd74 | 1673 | struct type *type; |
120bd360 | 1674 | struct value *val; |
4066e646 | 1675 | |
994b9211 | 1676 | arg1 = coerce_ref (arg1); |
df407dfe | 1677 | type = check_typedef (value_type (arg1)); |
c906108c | 1678 | |
120bd360 KW |
1679 | if (is_integral_type (type)) |
1680 | val = value_from_longest (type, ~value_as_long (arg1)); | |
1681 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)) | |
1682 | { | |
1683 | struct value *tmp; | |
1684 | struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type)); | |
cfa6f054 KW |
1685 | int i; |
1686 | LONGEST low_bound, high_bound; | |
1687 | ||
1688 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
1689 | error (_("Could not determine the vector bounds")); | |
120bd360 KW |
1690 | |
1691 | val = allocate_value (type); | |
cfa6f054 | 1692 | for (i = 0; i < high_bound - low_bound + 1; i++) |
120bd360 KW |
1693 | { |
1694 | tmp = value_complement (value_subscript (arg1, i)); | |
1695 | memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype), | |
1696 | value_contents_all (tmp), TYPE_LENGTH (eltype)); | |
1697 | } | |
1698 | } | |
1699 | else | |
1700 | error (_("Argument to complement operation not an integer, boolean.")); | |
c906108c | 1701 | |
120bd360 | 1702 | return val; |
c906108c SS |
1703 | } |
1704 | \f | |
df407dfe | 1705 | /* The INDEX'th bit of SET value whose value_type is TYPE, |
0fd88904 | 1706 | and whose value_contents is valaddr. |
581e13c1 | 1707 | Return -1 if out of range, -2 other error. */ |
c906108c SS |
1708 | |
1709 | int | |
fc1a4b47 | 1710 | value_bit_index (struct type *type, const gdb_byte *valaddr, int index) |
c906108c | 1711 | { |
50810684 | 1712 | struct gdbarch *gdbarch = get_type_arch (type); |
c906108c SS |
1713 | LONGEST low_bound, high_bound; |
1714 | LONGEST word; | |
1715 | unsigned rel_index; | |
262452ec | 1716 | struct type *range = TYPE_INDEX_TYPE (type); |
a109c7c1 | 1717 | |
c906108c SS |
1718 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) |
1719 | return -2; | |
1720 | if (index < low_bound || index > high_bound) | |
1721 | return -1; | |
1722 | rel_index = index - low_bound; | |
e17a4113 | 1723 | word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1, |
34877895 | 1724 | type_byte_order (type)); |
c906108c | 1725 | rel_index %= TARGET_CHAR_BIT; |
d5a22e77 | 1726 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
c906108c SS |
1727 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; |
1728 | return (word >> rel_index) & 1; | |
1729 | } | |
1730 | ||
fbb06eb1 | 1731 | int |
f23631e4 | 1732 | value_in (struct value *element, struct value *set) |
c906108c SS |
1733 | { |
1734 | int member; | |
df407dfe AC |
1735 | struct type *settype = check_typedef (value_type (set)); |
1736 | struct type *eltype = check_typedef (value_type (element)); | |
a109c7c1 | 1737 | |
c906108c SS |
1738 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) |
1739 | eltype = TYPE_TARGET_TYPE (eltype); | |
1740 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
8a3fe4f8 | 1741 | error (_("Second argument of 'IN' has wrong type")); |
c906108c SS |
1742 | if (TYPE_CODE (eltype) != TYPE_CODE_INT |
1743 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1744 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1745 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
8a3fe4f8 | 1746 | error (_("First argument of 'IN' has wrong type")); |
0fd88904 | 1747 | member = value_bit_index (settype, value_contents (set), |
c906108c SS |
1748 | value_as_long (element)); |
1749 | if (member < 0) | |
8a3fe4f8 | 1750 | error (_("First argument of 'IN' not in range")); |
fbb06eb1 | 1751 | return member; |
c906108c | 1752 | } |