Thu Oct 13 15:51:20 1994 Jason Merrill (jason@phydeaux.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
bd5635a1 1/* Perform non-arithmetic operations on values, for GDB.
67e9b3b3
PS
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
bd5635a1
RP
4
5This file is part of GDB.
6
06b6c733 7This program is free software; you can redistribute it and/or modify
bd5635a1 8it under the terms of the GNU General Public License as published by
06b6c733
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
bd5635a1 11
06b6c733 12This program is distributed in the hope that it will be useful,
bd5635a1
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
06b6c733
JG
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
bd5635a1 20
bd5635a1 21#include "defs.h"
bd5635a1 22#include "symtab.h"
01be6913 23#include "gdbtypes.h"
bd5635a1
RP
24#include "value.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
2e4964ad 29#include "demangle.h"
54023465 30#include "language.h"
bd5635a1
RP
31
32#include <errno.h>
33
34/* Local functions. */
01be6913 35
a91a6192 36static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
01be6913 37
a91a6192 38static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
01be6913 39
a91a6192 40static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
01be6913 41
a91a6192 42static CORE_ADDR value_arg_push PARAMS ((CORE_ADDR, value_ptr));
01be6913 43
a91a6192
SS
44static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
45 struct type *, int));
01be6913 46
a91a6192
SS
47static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
48 value_ptr *,
49 int, int *, struct type *));
01be6913 50
a91a6192 51static int check_field_in PARAMS ((struct type *, const char *));
a163ddec 52
a91a6192 53static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
bd5635a1 54\f
a163ddec
MT
55/* Allocate NBYTES of space in the inferior using the inferior's malloc
56 and return a value that is a pointer to the allocated space. */
57
58static CORE_ADDR
59allocate_space_in_inferior (len)
60 int len;
61{
a91a6192 62 register value_ptr val;
a163ddec
MT
63 register struct symbol *sym;
64 struct minimal_symbol *msymbol;
65 struct type *type;
a91a6192 66 value_ptr blocklen;
a163ddec
MT
67 LONGEST maddr;
68
69 /* Find the address of malloc in the inferior. */
70
71 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
72 if (sym != NULL)
73 {
74 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
75 {
76 error ("\"malloc\" exists in this program but is not a function.");
77 }
479fdd26 78 val = value_of_variable (sym, NULL);
a163ddec
MT
79 }
80 else
81 {
82 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
83 if (msymbol != NULL)
84 {
85 type = lookup_pointer_type (builtin_type_char);
86 type = lookup_function_type (type);
87 type = lookup_pointer_type (type);
88 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
89 val = value_from_longest (type, maddr);
90 }
91 else
92 {
93 error ("evaluation of this expression requires the program to have a function \"malloc\".");
94 }
95 }
96
97 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
98 val = call_function_by_hand (val, 1, &blocklen);
99 if (value_logical_not (val))
100 {
101 error ("No memory available to program.");
102 }
103 return (value_as_long (val));
104}
105
bd5635a1
RP
106/* Cast value ARG2 to type TYPE and return as a value.
107 More general than a C cast: accepts any two types of the same length,
108 and if ARG2 is an lvalue it can be cast into anything at all. */
54023465 109/* In C++, casts may change pointer or object representations. */
bd5635a1 110
a91a6192 111value_ptr
bd5635a1
RP
112value_cast (type, arg2)
113 struct type *type;
a91a6192 114 register value_ptr arg2;
bd5635a1
RP
115{
116 register enum type_code code1;
117 register enum type_code code2;
118 register int scalar;
119
120 /* Coerce arrays but not enums. Enums will work as-is
121 and coercing them would cause an infinite recursion. */
122 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
123 COERCE_ARRAY (arg2);
124
125 code1 = TYPE_CODE (type);
126 code2 = TYPE_CODE (VALUE_TYPE (arg2));
127 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
128 || code2 == TYPE_CODE_ENUM);
129
54023465
JK
130 if ( code1 == TYPE_CODE_STRUCT
131 && code2 == TYPE_CODE_STRUCT
132 && TYPE_NAME (type) != 0)
133 {
134 /* Look in the type of the source to see if it contains the
135 type of the target as a superclass. If so, we'll need to
136 offset the object in addition to changing its type. */
a91a6192
SS
137 value_ptr v = search_struct_field (type_name_no_tag (type),
138 arg2, 0, VALUE_TYPE (arg2), 1);
54023465
JK
139 if (v)
140 {
141 VALUE_TYPE (v) = type;
142 return v;
143 }
144 }
bd5635a1
RP
145 if (code1 == TYPE_CODE_FLT && scalar)
146 return value_from_double (type, value_as_double (arg2));
147 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
148 && (scalar || code2 == TYPE_CODE_PTR))
06b6c733 149 return value_from_longest (type, value_as_long (arg2));
bd5635a1
RP
150 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
151 {
152 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
153 {
154 /* Look in the type of the source to see if it contains the
155 type of the target as a superclass. If so, we'll need to
156 offset the pointer rather than just change its type. */
157 struct type *t1 = TYPE_TARGET_TYPE (type);
158 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
2a5ec41d 159 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
bd5635a1
RP
160 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
161 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
162 {
a91a6192
SS
163 value_ptr v = search_struct_field (type_name_no_tag (t1),
164 value_ind (arg2), 0, t2, 1);
bd5635a1
RP
165 if (v)
166 {
167 v = value_addr (v);
168 VALUE_TYPE (v) = type;
169 return v;
170 }
171 }
172 /* No superclass found, just fall through to change ptr type. */
173 }
174 VALUE_TYPE (arg2) = type;
175 return arg2;
176 }
177 else if (VALUE_LVAL (arg2) == lval_memory)
178 {
179 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
180 }
d11c44f1
JG
181 else if (code1 == TYPE_CODE_VOID)
182 {
183 return value_zero (builtin_type_void, not_lval);
184 }
bd5635a1
RP
185 else
186 {
187 error ("Invalid cast.");
188 return 0;
189 }
190}
191
192/* Create a value of type TYPE that is zero, and return it. */
193
a91a6192 194value_ptr
bd5635a1
RP
195value_zero (type, lv)
196 struct type *type;
197 enum lval_type lv;
198{
a91a6192 199 register value_ptr val = allocate_value (type);
bd5635a1 200
4ed3a9ea 201 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
bd5635a1
RP
202 VALUE_LVAL (val) = lv;
203
204 return val;
205}
206
207/* Return a value with type TYPE located at ADDR.
208
209 Call value_at only if the data needs to be fetched immediately;
210 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
211 value_at_lazy instead. value_at_lazy simply records the address of
212 the data and sets the lazy-evaluation-required flag. The lazy flag
213 is tested in the VALUE_CONTENTS macro, which is used if and when
214 the contents are actually required. */
215
a91a6192 216value_ptr
bd5635a1
RP
217value_at (type, addr)
218 struct type *type;
219 CORE_ADDR addr;
220{
a91a6192
SS
221 register value_ptr val;
222
223 if (TYPE_CODE (type) == TYPE_CODE_VOID)
224 error ("Attempt to dereference a generic pointer.");
225
226 val = allocate_value (type);
bd5635a1
RP
227
228 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
229
230 VALUE_LVAL (val) = lval_memory;
231 VALUE_ADDRESS (val) = addr;
232
233 return val;
234}
235
236/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
237
a91a6192 238value_ptr
bd5635a1
RP
239value_at_lazy (type, addr)
240 struct type *type;
241 CORE_ADDR addr;
242{
a91a6192
SS
243 register value_ptr val;
244
245 if (TYPE_CODE (type) == TYPE_CODE_VOID)
246 error ("Attempt to dereference a generic pointer.");
247
248 val = allocate_value (type);
bd5635a1
RP
249
250 VALUE_LVAL (val) = lval_memory;
251 VALUE_ADDRESS (val) = addr;
252 VALUE_LAZY (val) = 1;
253
254 return val;
255}
256
257/* Called only from the VALUE_CONTENTS macro, if the current data for
258 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
259 data from the user's process, and clears the lazy flag to indicate
260 that the data in the buffer is valid.
261
9cb602e1
JG
262 If the value is zero-length, we avoid calling read_memory, which would
263 abort. We mark the value as fetched anyway -- all 0 bytes of it.
264
bd5635a1
RP
265 This function returns a value because it is used in the VALUE_CONTENTS
266 macro as part of an expression, where a void would not work. The
267 value is ignored. */
268
269int
270value_fetch_lazy (val)
a91a6192 271 register value_ptr val;
bd5635a1
RP
272{
273 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
274
9cb602e1
JG
275 if (TYPE_LENGTH (VALUE_TYPE (val)))
276 read_memory (addr, VALUE_CONTENTS_RAW (val),
277 TYPE_LENGTH (VALUE_TYPE (val)));
bd5635a1
RP
278 VALUE_LAZY (val) = 0;
279 return 0;
280}
281
282
283/* Store the contents of FROMVAL into the location of TOVAL.
284 Return a new value with the location of TOVAL and contents of FROMVAL. */
285
a91a6192 286value_ptr
bd5635a1 287value_assign (toval, fromval)
a91a6192 288 register value_ptr toval, fromval;
bd5635a1 289{
67e9b3b3 290 register struct type *type;
a91a6192 291 register value_ptr val;
bd5635a1 292 char raw_buffer[MAX_REGISTER_RAW_SIZE];
bd5635a1
RP
293 int use_buffer = 0;
294
30974778
JK
295 if (!toval->modifiable)
296 error ("Left operand of assignment is not a modifiable lvalue.");
297
bd5635a1 298 COERCE_ARRAY (fromval);
8e9a3f3b 299 COERCE_REF (toval);
bd5635a1 300
67e9b3b3 301 type = VALUE_TYPE (toval);
bd5635a1
RP
302 if (VALUE_LVAL (toval) != lval_internalvar)
303 fromval = value_cast (type, fromval);
304
305 /* If TOVAL is a special machine register requiring conversion
306 of program values to a special raw format,
307 convert FROMVAL's contents now, with result in `raw_buffer',
308 and set USE_BUFFER to the number of bytes to write. */
309
ad09cb2b 310#ifdef REGISTER_CONVERTIBLE
bd5635a1
RP
311 if (VALUE_REGNO (toval) >= 0
312 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
313 {
314 int regno = VALUE_REGNO (toval);
ad09cb2b
PS
315 if (REGISTER_CONVERTIBLE (regno))
316 {
317 REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno,
318 VALUE_CONTENTS (fromval), raw_buffer);
319 use_buffer = REGISTER_RAW_SIZE (regno);
320 }
bd5635a1 321 }
ad09cb2b 322#endif
bd5635a1
RP
323
324 switch (VALUE_LVAL (toval))
325 {
326 case lval_internalvar:
327 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
328 break;
329
330 case lval_internalvar_component:
331 set_internalvar_component (VALUE_INTERNALVAR (toval),
332 VALUE_OFFSET (toval),
333 VALUE_BITPOS (toval),
334 VALUE_BITSIZE (toval),
335 fromval);
336 break;
337
338 case lval_memory:
339 if (VALUE_BITSIZE (toval))
340 {
4d52ec86
JK
341 char buffer[sizeof (LONGEST)];
342 /* We assume that the argument to read_memory is in units of
343 host chars. FIXME: Is that correct? */
344 int len = (VALUE_BITPOS (toval)
345 + VALUE_BITSIZE (toval)
346 + HOST_CHAR_BIT - 1)
347 / HOST_CHAR_BIT;
ad09cb2b 348
4d52ec86 349 if (len > sizeof (LONGEST))
ad09cb2b
PS
350 error ("Can't handle bitfields which don't fit in a %d bit word.",
351 sizeof (LONGEST) * HOST_CHAR_BIT);
4d52ec86 352
bd5635a1 353 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
4d52ec86
JK
354 buffer, len);
355 modify_field (buffer, value_as_long (fromval),
bd5635a1
RP
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
4d52ec86 358 buffer, len);
bd5635a1
RP
359 }
360 else if (use_buffer)
361 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
363 else
364 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
365 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
366 break;
367
368 case lval_register:
369 if (VALUE_BITSIZE (toval))
370 {
ad09cb2b 371 char buffer[sizeof (LONGEST)];
4d52ec86 372 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
ad09cb2b
PS
373
374 if (len > sizeof (LONGEST))
375 error ("Can't handle bitfields in registers larger than %d bits.",
376 sizeof (LONGEST) * HOST_CHAR_BIT);
377
378 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
379 > len * HOST_CHAR_BIT)
380 /* Getting this right would involve being very careful about
381 byte order. */
382 error ("\
383Can't handle bitfield which doesn't fit in a single register.");
384
4d52ec86
JK
385 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
386 buffer, len);
387 modify_field (buffer, value_as_long (fromval),
388 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
389 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
390 buffer, len);
bd5635a1
RP
391 }
392 else if (use_buffer)
393 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
394 raw_buffer, use_buffer);
395 else
54023465
JK
396 {
397 /* Do any conversion necessary when storing this type to more
398 than one register. */
399#ifdef REGISTER_CONVERT_FROM_TYPE
400 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
401 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
402 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
403 raw_buffer, TYPE_LENGTH (type));
404#else
405 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
406 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
407#endif
408 }
79971d11
JK
409 /* Assigning to the stack pointer, frame pointer, and other
410 (architecture and calling convention specific) registers may
411 cause the frame cache to be out of date. We just do this
412 on all assignments to registers for simplicity; I doubt the slowdown
413 matters. */
414 reinit_frame_cache ();
bd5635a1
RP
415 break;
416
417 case lval_reg_frame_relative:
418 {
419 /* value is stored in a series of registers in the frame
420 specified by the structure. Copy that value out, modify
421 it, and copy it back in. */
422 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
423 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
424 int byte_offset = VALUE_OFFSET (toval) % reg_size;
425 int reg_offset = VALUE_OFFSET (toval) / reg_size;
426 int amount_copied;
4d52ec86
JK
427
428 /* Make the buffer large enough in all cases. */
429 char *buffer = (char *) alloca (amount_to_copy
430 + sizeof (LONGEST)
431 + MAX_REGISTER_RAW_SIZE);
432
bd5635a1
RP
433 int regno;
434 FRAME frame;
435
436 /* Figure out which frame this is in currently. */
437 for (frame = get_current_frame ();
438 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
439 frame = get_prev_frame (frame))
440 ;
441
442 if (!frame)
443 error ("Value being assigned to is no longer active.");
444
445 amount_to_copy += (reg_size - amount_to_copy % reg_size);
446
447 /* Copy it out. */
448 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
449 amount_copied = 0);
450 amount_copied < amount_to_copy;
451 amount_copied += reg_size, regno++)
452 {
453 get_saved_register (buffer + amount_copied,
51b57ded 454 (int *)NULL, (CORE_ADDR *)NULL,
bd5635a1
RP
455 frame, regno, (enum lval_type *)NULL);
456 }
457
458 /* Modify what needs to be modified. */
459 if (VALUE_BITSIZE (toval))
460 modify_field (buffer + byte_offset,
479fdd26 461 value_as_long (fromval),
bd5635a1
RP
462 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
463 else if (use_buffer)
4ed3a9ea 464 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
bd5635a1 465 else
4ed3a9ea
FF
466 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
467 TYPE_LENGTH (type));
bd5635a1
RP
468
469 /* Copy it back. */
470 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
471 amount_copied = 0);
472 amount_copied < amount_to_copy;
473 amount_copied += reg_size, regno++)
474 {
475 enum lval_type lval;
476 CORE_ADDR addr;
477 int optim;
478
479 /* Just find out where to put it. */
480 get_saved_register ((char *)NULL,
481 &optim, &addr, frame, regno, &lval);
482
483 if (optim)
484 error ("Attempt to assign to a value that was optimized out.");
485 if (lval == lval_memory)
486 write_memory (addr, buffer + amount_copied, reg_size);
487 else if (lval == lval_register)
488 write_register_bytes (addr, buffer + amount_copied, reg_size);
489 else
490 error ("Attempt to assign to an unmodifiable value.");
491 }
492 }
493 break;
494
495
496 default:
30974778 497 error ("Left operand of assignment is not an lvalue.");
bd5635a1
RP
498 }
499
500 /* Return a value just like TOVAL except with the contents of FROMVAL
501 (except in the case of the type if TOVAL is an internalvar). */
502
503 if (VALUE_LVAL (toval) == lval_internalvar
504 || VALUE_LVAL (toval) == lval_internalvar_component)
505 {
506 type = VALUE_TYPE (fromval);
507 }
508
509 val = allocate_value (type);
4ed3a9ea
FF
510 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
511 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
512 TYPE_LENGTH (type));
bd5635a1
RP
513 VALUE_TYPE (val) = type;
514
515 return val;
516}
517
518/* Extend a value VAL to COUNT repetitions of its type. */
519
a91a6192 520value_ptr
bd5635a1 521value_repeat (arg1, count)
a91a6192 522 value_ptr arg1;
bd5635a1
RP
523 int count;
524{
a91a6192 525 register value_ptr val;
bd5635a1
RP
526
527 if (VALUE_LVAL (arg1) != lval_memory)
528 error ("Only values in memory can be extended with '@'.");
529 if (count < 1)
530 error ("Invalid number %d of repetitions.", count);
531
532 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
533
534 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
535 VALUE_CONTENTS_RAW (val),
536 TYPE_LENGTH (VALUE_TYPE (val)) * count);
537 VALUE_LVAL (val) = lval_memory;
538 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
539
540 return val;
541}
542
a91a6192 543value_ptr
479fdd26 544value_of_variable (var, b)
bd5635a1 545 struct symbol *var;
479fdd26 546 struct block *b;
bd5635a1 547{
a91a6192 548 value_ptr val;
479fdd26 549 FRAME fr;
bd5635a1 550
479fdd26
JK
551 if (b == NULL)
552 /* Use selected frame. */
553 fr = NULL;
554 else
555 {
556 fr = block_innermost_frame (b);
443abae1 557 if (fr == NULL && symbol_read_needs_frame (var))
479fdd26
JK
558 {
559 if (BLOCK_FUNCTION (b) != NULL
560 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
561 error ("No frame is currently executing in block %s.",
562 SYMBOL_NAME (BLOCK_FUNCTION (b)));
563 else
564 error ("No frame is currently executing in specified block");
565 }
566 }
567 val = read_var_value (var, fr);
bd5635a1 568 if (val == 0)
2e4964ad 569 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
bd5635a1
RP
570 return val;
571}
572
a163ddec
MT
573/* Given a value which is an array, return a value which is a pointer to its
574 first element, regardless of whether or not the array has a nonzero lower
575 bound.
576
577 FIXME: A previous comment here indicated that this routine should be
578 substracting the array's lower bound. It's not clear to me that this
579 is correct. Given an array subscripting operation, it would certainly
580 work to do the adjustment here, essentially computing:
581
582 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
583
584 However I believe a more appropriate and logical place to account for
585 the lower bound is to do so in value_subscript, essentially computing:
586
587 (&array[0] + ((index - lowerbound) * sizeof array[0]))
588
589 As further evidence consider what would happen with operations other
590 than array subscripting, where the caller would get back a value that
591 had an address somewhere before the actual first element of the array,
592 and the information about the lower bound would be lost because of
593 the coercion to pointer type.
594 */
bd5635a1 595
a91a6192 596value_ptr
bd5635a1 597value_coerce_array (arg1)
a91a6192 598 value_ptr arg1;
bd5635a1
RP
599{
600 register struct type *type;
bd5635a1
RP
601
602 if (VALUE_LVAL (arg1) != lval_memory)
603 error ("Attempt to take address of value not located in memory.");
604
605 /* Get type of elements. */
852b3831
PB
606 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY
607 || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING)
bd5635a1
RP
608 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
609 else
610 /* A phony array made by value_repeat.
611 Its type is the type of the elements, not an array type. */
612 type = VALUE_TYPE (arg1);
613
06b6c733 614 return value_from_longest (lookup_pointer_type (type),
bd5635a1 615 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
bd5635a1
RP
616}
617
618/* Given a value which is a function, return a value which is a pointer
619 to it. */
620
a91a6192 621value_ptr
bd5635a1 622value_coerce_function (arg1)
a91a6192 623 value_ptr arg1;
bd5635a1 624{
bd5635a1
RP
625
626 if (VALUE_LVAL (arg1) != lval_memory)
627 error ("Attempt to take address of value not located in memory.");
628
06b6c733 629 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
bd5635a1 630 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
bd5635a1
RP
631}
632
633/* Return a pointer value for the object for which ARG1 is the contents. */
634
a91a6192 635value_ptr
bd5635a1 636value_addr (arg1)
a91a6192 637 value_ptr arg1;
bd5635a1 638{
8e9a3f3b
PB
639 struct type *type = VALUE_TYPE (arg1);
640 if (TYPE_CODE (type) == TYPE_CODE_REF)
641 {
642 /* Copy the value, but change the type from (T&) to (T*).
643 We keep the same location information, which is efficient,
644 and allows &(&X) to get the location containing the reference. */
a91a6192 645 value_ptr arg2 = value_copy (arg1);
8e9a3f3b
PB
646 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
647 return arg2;
648 }
bd5635a1 649 if (VALUE_REPEATED (arg1)
8e9a3f3b 650 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
bd5635a1 651 return value_coerce_array (arg1);
8e9a3f3b 652 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
bd5635a1
RP
653 return value_coerce_function (arg1);
654
655 if (VALUE_LVAL (arg1) != lval_memory)
656 error ("Attempt to take address of value not located in memory.");
657
8e9a3f3b 658 return value_from_longest (lookup_pointer_type (type),
bd5635a1 659 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
bd5635a1
RP
660}
661
662/* Given a value of a pointer type, apply the C unary * operator to it. */
663
a91a6192 664value_ptr
bd5635a1 665value_ind (arg1)
a91a6192 666 value_ptr arg1;
bd5635a1
RP
667{
668 COERCE_ARRAY (arg1);
669
670 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
671 error ("not implemented: member types in value_ind");
672
673 /* Allow * on an integer so we can cast it to whatever we want.
674 This returns an int, which seems like the most C-like thing
675 to do. "long long" variables are rare enough that
676 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
677 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
678 return value_at (builtin_type_int,
679 (CORE_ADDR) value_as_long (arg1));
680 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
681 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
d11c44f1 682 value_as_pointer (arg1));
bd5635a1
RP
683 error ("Attempt to take contents of a non-pointer value.");
684 return 0; /* For lint -- never reached */
685}
686\f
687/* Pushing small parts of stack frames. */
688
689/* Push one word (the size of object that a register holds). */
690
691CORE_ADDR
34df79fc 692push_word (sp, word)
bd5635a1 693 CORE_ADDR sp;
67e9b3b3 694 unsigned LONGEST word;
bd5635a1 695{
67e9b3b3 696 register int len = REGISTER_SIZE;
479fdd26 697 char buffer[MAX_REGISTER_RAW_SIZE];
bd5635a1 698
479fdd26 699 store_unsigned_integer (buffer, len, word);
bd5635a1
RP
700#if 1 INNER_THAN 2
701 sp -= len;
479fdd26 702 write_memory (sp, buffer, len);
bd5635a1 703#else /* stack grows upward */
479fdd26 704 write_memory (sp, buffer, len);
bd5635a1
RP
705 sp += len;
706#endif /* stack grows upward */
707
708 return sp;
709}
710
711/* Push LEN bytes with data at BUFFER. */
712
713CORE_ADDR
714push_bytes (sp, buffer, len)
715 CORE_ADDR sp;
716 char *buffer;
717 int len;
718{
719#if 1 INNER_THAN 2
720 sp -= len;
721 write_memory (sp, buffer, len);
722#else /* stack grows upward */
723 write_memory (sp, buffer, len);
724 sp += len;
725#endif /* stack grows upward */
726
727 return sp;
728}
729
730/* Push onto the stack the specified value VALUE. */
731
01be6913 732static CORE_ADDR
bd5635a1
RP
733value_push (sp, arg)
734 register CORE_ADDR sp;
a91a6192 735 value_ptr arg;
bd5635a1
RP
736{
737 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
738
739#if 1 INNER_THAN 2
740 sp -= len;
741 write_memory (sp, VALUE_CONTENTS (arg), len);
742#else /* stack grows upward */
743 write_memory (sp, VALUE_CONTENTS (arg), len);
744 sp += len;
745#endif /* stack grows upward */
746
747 return sp;
748}
749
750/* Perform the standard coercions that are specified
751 for arguments to be passed to C functions. */
752
a91a6192 753value_ptr
bd5635a1 754value_arg_coerce (arg)
a91a6192 755 value_ptr arg;
bd5635a1
RP
756{
757 register struct type *type;
758
479fdd26
JK
759 /* FIXME: We should coerce this according to the prototype (if we have
760 one). Right now we do a little bit of this in typecmp(), but that
761 doesn't always get called. For example, if passing a ref to a function
762 without a prototype, we probably should de-reference it. Currently
763 we don't. */
764
765 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
766 arg = value_cast (builtin_type_unsigned_int, arg);
767
b5728692
SG
768#if 1 /* FIXME: This is only a temporary patch. -fnf */
769 if (VALUE_REPEATED (arg)
770 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
771 arg = value_coerce_array (arg);
772 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
773 arg = value_coerce_function (arg);
774#endif
bd5635a1
RP
775
776 type = VALUE_TYPE (arg);
777
778 if (TYPE_CODE (type) == TYPE_CODE_INT
2a5ec41d 779 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
bd5635a1
RP
780 return value_cast (builtin_type_int, arg);
781
2a5ec41d
JG
782 if (TYPE_CODE (type) == TYPE_CODE_FLT
783 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
bd5635a1
RP
784 return value_cast (builtin_type_double, arg);
785
786 return arg;
787}
788
789/* Push the value ARG, first coercing it as an argument
790 to a C function. */
791
01be6913 792static CORE_ADDR
bd5635a1
RP
793value_arg_push (sp, arg)
794 register CORE_ADDR sp;
a91a6192 795 value_ptr arg;
bd5635a1
RP
796{
797 return value_push (sp, value_arg_coerce (arg));
798}
799
800/* Determine a function's address and its return type from its value.
801 Calls error() if the function is not valid for calling. */
802
01be6913 803static CORE_ADDR
bd5635a1 804find_function_addr (function, retval_type)
a91a6192 805 value_ptr function;
bd5635a1
RP
806 struct type **retval_type;
807{
808 register struct type *ftype = VALUE_TYPE (function);
809 register enum type_code code = TYPE_CODE (ftype);
810 struct type *value_type;
811 CORE_ADDR funaddr;
812
813 /* If it's a member function, just look at the function
814 part of it. */
815
816 /* Determine address to call. */
817 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
818 {
819 funaddr = VALUE_ADDRESS (function);
820 value_type = TYPE_TARGET_TYPE (ftype);
821 }
822 else if (code == TYPE_CODE_PTR)
823 {
d11c44f1 824 funaddr = value_as_pointer (function);
bd5635a1
RP
825 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
826 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
827 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
828 else
829 value_type = builtin_type_int;
830 }
831 else if (code == TYPE_CODE_INT)
832 {
833 /* Handle the case of functions lacking debugging info.
834 Their values are characters since their addresses are char */
835 if (TYPE_LENGTH (ftype) == 1)
d11c44f1 836 funaddr = value_as_pointer (value_addr (function));
bd5635a1
RP
837 else
838 /* Handle integer used as address of a function. */
d11c44f1 839 funaddr = (CORE_ADDR) value_as_long (function);
bd5635a1
RP
840
841 value_type = builtin_type_int;
842 }
843 else
844 error ("Invalid data type for function to be called.");
845
846 *retval_type = value_type;
847 return funaddr;
848}
849
850#if defined (CALL_DUMMY)
851/* All this stuff with a dummy frame may seem unnecessarily complicated
852 (why not just save registers in GDB?). The purpose of pushing a dummy
853 frame which looks just like a real frame is so that if you call a
854 function and then hit a breakpoint (get a signal, etc), "backtrace"
855 will look right. Whether the backtrace needs to actually show the
856 stack at the time the inferior function was called is debatable, but
857 it certainly needs to not display garbage. So if you are contemplating
858 making dummy frames be different from normal frames, consider that. */
859
860/* Perform a function call in the inferior.
861 ARGS is a vector of values of arguments (NARGS of them).
862 FUNCTION is a value, the function to be called.
863 Returns a value representing what the function returned.
864 May fail to return, if a breakpoint or signal is hit
865 during the execution of the function. */
866
a91a6192 867value_ptr
bd5635a1 868call_function_by_hand (function, nargs, args)
a91a6192 869 value_ptr function;
bd5635a1 870 int nargs;
a91a6192 871 value_ptr *args;
bd5635a1
RP
872{
873 register CORE_ADDR sp;
874 register int i;
875 CORE_ADDR start_sp;
67e9b3b3
PS
876 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
877 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
878 and remove any extra bytes which might exist because unsigned LONGEST is
879 bigger than REGISTER_SIZE. */
880 static unsigned LONGEST dummy[] = CALL_DUMMY;
881 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
bd5635a1
RP
882 CORE_ADDR old_sp;
883 struct type *value_type;
884 unsigned char struct_return;
885 CORE_ADDR struct_addr;
886 struct inferior_status inf_status;
887 struct cleanup *old_chain;
888 CORE_ADDR funaddr;
889 int using_gcc;
9f739abd 890 CORE_ADDR real_pc;
bd5635a1 891
e17960fb
JG
892 if (!target_has_execution)
893 noprocess();
894
bd5635a1
RP
895 save_inferior_status (&inf_status, 1);
896 old_chain = make_cleanup (restore_inferior_status, &inf_status);
897
898 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
899 (and POP_FRAME for restoring them). (At least on most machines)
900 they are saved on the stack in the inferior. */
901 PUSH_DUMMY_FRAME;
902
54023465 903 old_sp = sp = read_sp ();
bd5635a1
RP
904
905#if 1 INNER_THAN 2 /* Stack grows down */
906 sp -= sizeof dummy;
907 start_sp = sp;
908#else /* Stack grows up */
909 start_sp = sp;
910 sp += sizeof dummy;
911#endif
912
913 funaddr = find_function_addr (function, &value_type);
914
915 {
916 struct block *b = block_for_pc (funaddr);
917 /* If compiled without -g, assume GCC. */
918 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
919 }
920
921 /* Are we returning a value using a structure return or a normal
922 value return? */
923
924 struct_return = using_struct_return (function, funaddr, value_type,
925 using_gcc);
926
927 /* Create a call sequence customized for this function
928 and the number of arguments for it. */
67e9b3b3
PS
929 for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++)
930 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
931 REGISTER_SIZE,
34df79fc 932 (unsigned LONGEST)dummy[i]);
9f739abd
SG
933
934#ifdef GDB_TARGET_IS_HPPA
b5728692
SG
935 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
936 value_type, using_gcc);
9f739abd 937#else
bd5635a1
RP
938 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
939 value_type, using_gcc);
9f739abd
SG
940 real_pc = start_sp;
941#endif
bd5635a1
RP
942
943#if CALL_DUMMY_LOCATION == ON_STACK
944 write_memory (start_sp, (char *)dummy1, sizeof dummy);
cef4c2e7 945#endif /* On stack. */
bd5635a1 946
bd5635a1
RP
947#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
948 /* Convex Unix prohibits executing in the stack segment. */
949 /* Hope there is empty room at the top of the text segment. */
950 {
84d82b1c 951 extern CORE_ADDR text_end;
bd5635a1
RP
952 static checked = 0;
953 if (!checked)
954 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
955 if (read_memory_integer (start_sp, 1) != 0)
956 error ("text segment full -- no place to put call");
957 checked = 1;
958 sp = old_sp;
30d20d15
PS
959 real_pc = text_end - sizeof dummy;
960 write_memory (real_pc, (char *)dummy1, sizeof dummy);
bd5635a1 961 }
cef4c2e7
PS
962#endif /* Before text_end. */
963
964#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
bd5635a1 965 {
84d82b1c 966 extern CORE_ADDR text_end;
bd5635a1
RP
967 int errcode;
968 sp = old_sp;
30d20d15
PS
969 real_pc = text_end;
970 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy);
bd5635a1
RP
971 if (errcode != 0)
972 error ("Cannot write text segment -- call_function failed");
973 }
974#endif /* After text_end. */
cef4c2e7
PS
975
976#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
977 real_pc = funaddr;
978#endif /* At entry point. */
bd5635a1
RP
979
980#ifdef lint
981 sp = old_sp; /* It really is used, for some ifdef's... */
982#endif
983
984#ifdef STACK_ALIGN
985 /* If stack grows down, we must leave a hole at the top. */
986 {
987 int len = 0;
988
989 /* Reserve space for the return structure to be written on the
990 stack, if necessary */
991
992 if (struct_return)
993 len += TYPE_LENGTH (value_type);
994
995 for (i = nargs - 1; i >= 0; i--)
996 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
997#ifdef CALL_DUMMY_STACK_ADJUST
998 len += CALL_DUMMY_STACK_ADJUST;
999#endif
1000#if 1 INNER_THAN 2
1001 sp -= STACK_ALIGN (len) - len;
1002#else
1003 sp += STACK_ALIGN (len) - len;
1004#endif
1005 }
1006#endif /* STACK_ALIGN */
1007
1008 /* Reserve space for the return structure to be written on the
1009 stack, if necessary */
1010
1011 if (struct_return)
1012 {
1013#if 1 INNER_THAN 2
1014 sp -= TYPE_LENGTH (value_type);
1015 struct_addr = sp;
1016#else
1017 struct_addr = sp;
1018 sp += TYPE_LENGTH (value_type);
1019#endif
1020 }
1021
1022#if defined (REG_STRUCT_HAS_ADDR)
1023 {
a91a6192 1024 /* This is a machine like the sparc, where we may need to pass a pointer
bd5635a1 1025 to the structure, not the structure itself. */
a91a6192
SS
1026 for (i = nargs - 1; i >= 0; i--)
1027 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT
1028 && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i])))
1029 {
1030 CORE_ADDR addr;
bd5635a1 1031#if !(1 INNER_THAN 2)
a91a6192
SS
1032 /* The stack grows up, so the address of the thing we push
1033 is the stack pointer before we push it. */
1034 addr = sp;
bd5635a1 1035#endif
a91a6192
SS
1036 /* Push the structure. */
1037 sp = value_push (sp, args[i]);
bd5635a1 1038#if 1 INNER_THAN 2
a91a6192
SS
1039 /* The stack grows down, so the address of the thing we push
1040 is the stack pointer after we push it. */
1041 addr = sp;
bd5635a1 1042#endif
a91a6192
SS
1043 /* The value we're going to pass is the address of the thing
1044 we just pushed. */
1045 args[i] = value_from_longest (lookup_pointer_type (value_type),
1046 (LONGEST) addr);
1047 }
bd5635a1
RP
1048 }
1049#endif /* REG_STRUCT_HAS_ADDR. */
1050
1051#ifdef PUSH_ARGUMENTS
1052 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1053#else /* !PUSH_ARGUMENTS */
1054 for (i = nargs - 1; i >= 0; i--)
1055 sp = value_arg_push (sp, args[i]);
1056#endif /* !PUSH_ARGUMENTS */
1057
1058#ifdef CALL_DUMMY_STACK_ADJUST
1059#if 1 INNER_THAN 2
1060 sp -= CALL_DUMMY_STACK_ADJUST;
1061#else
1062 sp += CALL_DUMMY_STACK_ADJUST;
1063#endif
1064#endif /* CALL_DUMMY_STACK_ADJUST */
1065
1066 /* Store the address at which the structure is supposed to be
1067 written. Note that this (and the code which reserved the space
1068 above) assumes that gcc was used to compile this function. Since
1069 it doesn't cost us anything but space and if the function is pcc
1070 it will ignore this value, we will make that assumption.
1071
1072 Also note that on some machines (like the sparc) pcc uses a
1073 convention like gcc's. */
1074
1075 if (struct_return)
1076 STORE_STRUCT_RETURN (struct_addr, sp);
1077
1078 /* Write the stack pointer. This is here because the statements above
1079 might fool with it. On SPARC, this write also stores the register
1080 window into the right place in the new stack frame, which otherwise
5632cd56 1081 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
54023465 1082 write_sp (sp);
bd5635a1 1083
bd5635a1
RP
1084 {
1085 char retbuf[REGISTER_BYTES];
54023465
JK
1086 char *name;
1087 struct symbol *symbol;
1088
1089 name = NULL;
1090 symbol = find_pc_function (funaddr);
1091 if (symbol)
1092 {
1093 name = SYMBOL_SOURCE_NAME (symbol);
1094 }
1095 else
1096 {
1097 /* Try the minimal symbols. */
1098 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1099
1100 if (msymbol)
1101 {
1102 name = SYMBOL_SOURCE_NAME (msymbol);
1103 }
1104 }
1105 if (name == NULL)
1106 {
1107 char format[80];
1108 sprintf (format, "at %s", local_hex_format ());
1109 name = alloca (80);
30974778 1110 /* FIXME-32x64: assumes funaddr fits in a long. */
cef4c2e7 1111 sprintf (name, format, (unsigned long) funaddr);
54023465 1112 }
bd5635a1
RP
1113
1114 /* Execute the stack dummy routine, calling FUNCTION.
1115 When it is done, discard the empty frame
1116 after storing the contents of all regs into retbuf. */
860a1754
JK
1117 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1118 {
1119 /* We stopped somewhere besides the call dummy. */
1120
1121 /* If we did the cleanups, we would print a spurious error message
1122 (Unable to restore previously selected frame), would write the
1123 registers from the inf_status (which is wrong), and would do other
1124 wrong things (like set stop_bpstat to the wrong thing). */
1125 discard_cleanups (old_chain);
1126 /* Prevent memory leak. */
30d20d15 1127 bpstat_clear (&inf_status.stop_bpstat);
860a1754
JK
1128
1129 /* The following error message used to say "The expression
1130 which contained the function call has been discarded." It
1131 is a hard concept to explain in a few words. Ideally, GDB
1132 would be able to resume evaluation of the expression when
1133 the function finally is done executing. Perhaps someday
1134 this will be implemented (it would not be easy). */
1135
1136 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1137 a C++ name with arguments and stuff. */
1138 error ("\
1139The program being debugged stopped while in a function called from GDB.\n\
1140When the function (%s) is done executing, GDB will silently\n\
1141stop (instead of continuing to evaluate the expression containing\n\
1142the function call).", name);
1143 }
bd5635a1
RP
1144
1145 do_cleanups (old_chain);
1146
860a1754 1147 /* Figure out the value returned by the function. */
bd5635a1
RP
1148 return value_being_returned (value_type, retbuf, struct_return);
1149 }
1150}
1151#else /* no CALL_DUMMY. */
a91a6192 1152value_ptr
bd5635a1 1153call_function_by_hand (function, nargs, args)
a91a6192 1154 value_ptr function;
bd5635a1 1155 int nargs;
a91a6192 1156 value_ptr *args;
bd5635a1
RP
1157{
1158 error ("Cannot invoke functions on this machine.");
1159}
1160#endif /* no CALL_DUMMY. */
a163ddec 1161
bd5635a1 1162\f
a163ddec
MT
1163/* Create a value for an array by allocating space in the inferior, copying
1164 the data into that space, and then setting up an array value.
1165
1166 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1167 populated from the values passed in ELEMVEC.
1168
1169 The element type of the array is inherited from the type of the
1170 first element, and all elements must have the same size (though we
1171 don't currently enforce any restriction on their types). */
bd5635a1 1172
a91a6192 1173value_ptr
a163ddec
MT
1174value_array (lowbound, highbound, elemvec)
1175 int lowbound;
1176 int highbound;
a91a6192 1177 value_ptr *elemvec;
bd5635a1 1178{
a163ddec
MT
1179 int nelem;
1180 int idx;
1181 int typelength;
a91a6192 1182 value_ptr val;
a163ddec
MT
1183 struct type *rangetype;
1184 struct type *arraytype;
1185 CORE_ADDR addr;
bd5635a1 1186
a163ddec
MT
1187 /* Validate that the bounds are reasonable and that each of the elements
1188 have the same size. */
bd5635a1 1189
a163ddec
MT
1190 nelem = highbound - lowbound + 1;
1191 if (nelem <= 0)
bd5635a1 1192 {
a163ddec 1193 error ("bad array bounds (%d, %d)", lowbound, highbound);
bd5635a1 1194 }
a163ddec
MT
1195 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1196 for (idx = 0; idx < nelem; idx++)
bd5635a1 1197 {
a163ddec
MT
1198 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1199 {
1200 error ("array elements must all be the same size");
1201 }
bd5635a1
RP
1202 }
1203
a163ddec
MT
1204 /* Allocate space to store the array in the inferior, and then initialize
1205 it by copying in each element. FIXME: Is it worth it to create a
1206 local buffer in which to collect each value and then write all the
1207 bytes in one operation? */
1208
1209 addr = allocate_space_in_inferior (nelem * typelength);
1210 for (idx = 0; idx < nelem; idx++)
1211 {
1212 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1213 typelength);
1214 }
1215
1216 /* Create the array type and set up an array value to be evaluated lazily. */
1217
1218 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1219 lowbound, highbound);
1220 arraytype = create_array_type ((struct type *) NULL,
1221 VALUE_TYPE (elemvec[0]), rangetype);
1222 val = value_at_lazy (arraytype, addr);
1223 return (val);
1224}
1225
1226/* Create a value for a string constant by allocating space in the inferior,
1227 copying the data into that space, and returning the address with type
1228 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1229 of characters.
1230 Note that string types are like array of char types with a lower bound of
1231 zero and an upper bound of LEN - 1. Also note that the string may contain
1232 embedded null bytes. */
1233
a91a6192 1234value_ptr
a163ddec
MT
1235value_string (ptr, len)
1236 char *ptr;
1237 int len;
1238{
a91a6192 1239 value_ptr val;
a163ddec
MT
1240 struct type *rangetype;
1241 struct type *stringtype;
1242 CORE_ADDR addr;
1243
1244 /* Allocate space to store the string in the inferior, and then
1245 copy LEN bytes from PTR in gdb to that address in the inferior. */
1246
1247 addr = allocate_space_in_inferior (len);
1248 write_memory (addr, ptr, len);
1249
1250 /* Create the string type and set up a string value to be evaluated
1251 lazily. */
1252
1253 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1254 0, len - 1);
1255 stringtype = create_string_type ((struct type *) NULL, rangetype);
1256 val = value_at_lazy (stringtype, addr);
1257 return (val);
bd5635a1
RP
1258}
1259\f
479fdd26
JK
1260/* See if we can pass arguments in T2 to a function which takes arguments
1261 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1262 arguments need coercion of some sort, then the coerced values are written
1263 into T2. Return value is 0 if the arguments could be matched, or the
1264 position at which they differ if not.
a163ddec
MT
1265
1266 STATICP is nonzero if the T1 argument list came from a
1267 static member function.
1268
1269 For non-static member functions, we ignore the first argument,
1270 which is the type of the instance variable. This is because we want
1271 to handle calls with objects from derived classes. This is not
1272 entirely correct: we should actually check to make sure that a
1273 requested operation is type secure, shouldn't we? FIXME. */
1274
1275static int
1276typecmp (staticp, t1, t2)
1277 int staticp;
1278 struct type *t1[];
a91a6192 1279 value_ptr t2[];
a163ddec
MT
1280{
1281 int i;
1282
1283 if (t2 == 0)
1284 return 1;
1285 if (staticp && t1 == 0)
1286 return t2[1] != 0;
1287 if (t1 == 0)
1288 return 1;
1289 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1290 if (t1[!staticp] == 0) return 0;
1291 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1292 {
40620258 1293 struct type *tt1, *tt2;
a163ddec
MT
1294 if (! t2[i])
1295 return i+1;
40620258
KH
1296 tt1 = t1[i];
1297 tt2 = VALUE_TYPE(t2[i]);
1298 if (TYPE_CODE (tt1) == TYPE_CODE_REF
479fdd26 1299 /* We should be doing hairy argument matching, as below. */
40620258 1300 && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2)))
479fdd26
JK
1301 {
1302 t2[i] = value_addr (t2[i]);
1303 continue;
1304 }
1305
40620258
KH
1306 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1307 && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR))
1308 {
1309 tt1 = TYPE_TARGET_TYPE(tt1);
1310 tt2 = TYPE_TARGET_TYPE(tt2);
1311 }
1312 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1313 /* Array to pointer is a `trivial conversion' according to the ARM. */
479fdd26
JK
1314
1315 /* We should be doing much hairier argument matching (see section 13.2
1316 of the ARM), but as a quick kludge, just check for the same type
1317 code. */
a163ddec
MT
1318 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1319 return i+1;
1320 }
1321 if (!t1[i]) return 0;
1322 return t2[i] ? i+1 : 0;
1323}
1324
bd5635a1
RP
1325/* Helper function used by value_struct_elt to recurse through baseclasses.
1326 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2a5ec41d 1327 and search in it assuming it has (class) type TYPE.
d3bab255
JK
1328 If found, return value, else return NULL.
1329
1330 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1331 look for a baseclass named NAME. */
bd5635a1 1332
a91a6192 1333static value_ptr
d3bab255 1334search_struct_field (name, arg1, offset, type, looking_for_baseclass)
bd5635a1 1335 char *name;
a91a6192 1336 register value_ptr arg1;
bd5635a1
RP
1337 int offset;
1338 register struct type *type;
d3bab255 1339 int looking_for_baseclass;
bd5635a1
RP
1340{
1341 int i;
1342
1343 check_stub_type (type);
1344
d3bab255
JK
1345 if (! looking_for_baseclass)
1346 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1347 {
1348 char *t_field_name = TYPE_FIELD_NAME (type, i);
1349
2e4964ad 1350 if (t_field_name && STREQ (t_field_name, name))
d3bab255 1351 {
a91a6192 1352 value_ptr v;
01be6913
PB
1353 if (TYPE_FIELD_STATIC (type, i))
1354 {
1355 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1356 struct symbol *sym =
2e4964ad
FF
1357 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1358 if (sym == NULL)
1359 error ("Internal error: could not find physical static variable named %s",
1360 phys_name);
01be6913
PB
1361 v = value_at (TYPE_FIELD_TYPE (type, i),
1362 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1363 }
1364 else
1365 v = value_primitive_field (arg1, offset, i, type);
d3bab255
JK
1366 if (v == 0)
1367 error("there is no field named %s", name);
1368 return v;
1369 }
1370 }
bd5635a1
RP
1371
1372 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1373 {
a91a6192 1374 value_ptr v;
bd5635a1 1375 /* If we are looking for baseclasses, this is what we get when we
54023465
JK
1376 hit them. But it could happen that the base part's member name
1377 is not yet filled in. */
d3bab255 1378 int found_baseclass = (looking_for_baseclass
54023465 1379 && TYPE_BASECLASS_NAME (type, i) != NULL
2e4964ad 1380 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
bd5635a1
RP
1381
1382 if (BASETYPE_VIA_VIRTUAL (type, i))
1383 {
a91a6192 1384 value_ptr v2;
bac89d6c 1385 /* Fix to use baseclass_offset instead. FIXME */
d11c44f1
JG
1386 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1387 &v2, (int *)NULL);
bd5635a1
RP
1388 if (v2 == 0)
1389 error ("virtual baseclass botch");
1390 if (found_baseclass)
1391 return v2;
d3bab255
JK
1392 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1393 looking_for_baseclass);
bd5635a1 1394 }
01be6913 1395 else if (found_baseclass)
bd5635a1
RP
1396 v = value_primitive_field (arg1, offset, i, type);
1397 else
1398 v = search_struct_field (name, arg1,
1399 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
d3bab255
JK
1400 TYPE_BASECLASS (type, i),
1401 looking_for_baseclass);
bd5635a1
RP
1402 if (v) return v;
1403 }
1404 return NULL;
1405}
1406
1407/* Helper function used by value_struct_elt to recurse through baseclasses.
1408 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2a5ec41d 1409 and search in it assuming it has (class) type TYPE.
cef4c2e7 1410 If found, return value, else if name matched and args not return (value)-1,
5b5c6d94 1411 else return NULL. */
bd5635a1 1412
a91a6192 1413static value_ptr
bac89d6c 1414search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
bd5635a1 1415 char *name;
a91a6192 1416 register value_ptr *arg1p, *args;
bd5635a1
RP
1417 int offset, *static_memfuncp;
1418 register struct type *type;
1419{
1420 int i;
a91a6192 1421 value_ptr v;
67e9b3b3 1422 int name_matched = 0;
6ebc9cdd 1423 char dem_opname[64];
bd5635a1
RP
1424
1425 check_stub_type (type);
1426 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1427 {
1428 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
6ebc9cdd
KH
1429 if (strncmp(t_field_name, "__", 2)==0 ||
1430 strncmp(t_field_name, "op", 2)==0 ||
1431 strncmp(t_field_name, "type", 4)==0 )
1432 {
1433 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1434 t_field_name = dem_opname;
1435 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1436 t_field_name = dem_opname;
1437 }
2e4964ad 1438 if (t_field_name && STREQ (t_field_name, name))
bd5635a1 1439 {
d3bab255 1440 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
bd5635a1 1441 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
5b5c6d94 1442 name_matched = 1;
bd5635a1 1443
d3bab255
JK
1444 if (j > 0 && args == 0)
1445 error ("cannot resolve overloaded method `%s'", name);
1446 while (j >= 0)
bd5635a1 1447 {
8e9a3f3b 1448 if (TYPE_FN_FIELD_STUB (f, j))
bd5635a1
RP
1449 check_stub_method (type, i, j);
1450 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1451 TYPE_FN_FIELD_ARGS (f, j), args))
1452 {
1453 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
a91a6192 1454 return value_virtual_fn_field (arg1p, f, j, type, offset);
bd5635a1
RP
1455 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1456 *static_memfuncp = 1;
a91a6192
SS
1457 v = value_fn_field (arg1p, f, j, type, offset);
1458 if (v != NULL) return v;
bd5635a1 1459 }
d3bab255 1460 j--;
bd5635a1
RP
1461 }
1462 }
1463 }
1464
1465 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1466 {
01be6913 1467 int base_offset;
bd5635a1
RP
1468
1469 if (BASETYPE_VIA_VIRTUAL (type, i))
1470 {
9f739abd 1471 base_offset = baseclass_offset (type, i, *arg1p, offset);
bac89d6c 1472 if (base_offset == -1)
bd5635a1 1473 error ("virtual baseclass botch");
bd5635a1 1474 }
01be6913
PB
1475 else
1476 {
01be6913
PB
1477 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1478 }
bac89d6c 1479 v = search_struct_method (name, arg1p, args, base_offset + offset,
bd5635a1 1480 static_memfuncp, TYPE_BASECLASS (type, i));
a91a6192 1481 if (v == (value_ptr) -1)
5b5c6d94
KH
1482 {
1483 name_matched = 1;
1484 }
1485 else if (v)
bac89d6c
FF
1486 {
1487/* FIXME-bothner: Why is this commented out? Why is it here? */
1488/* *arg1p = arg1_tmp;*/
1489 return v;
1490 }
bd5635a1 1491 }
a91a6192 1492 if (name_matched) return (value_ptr) -1;
5b5c6d94 1493 else return NULL;
bd5635a1
RP
1494}
1495
1496/* Given *ARGP, a value of type (pointer to a)* structure/union,
1497 extract the component named NAME from the ultimate target structure/union
1498 and return it as a value with its appropriate type.
1499 ERR is used in the error message if *ARGP's type is wrong.
1500
1501 C++: ARGS is a list of argument types to aid in the selection of
1502 an appropriate method. Also, handle derived types.
1503
1504 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1505 where the truthvalue of whether the function that was resolved was
1506 a static member function or not is stored.
1507
1508 ERR is an error message to be printed in case the field is not found. */
1509
a91a6192 1510value_ptr
bd5635a1 1511value_struct_elt (argp, args, name, static_memfuncp, err)
a91a6192 1512 register value_ptr *argp, *args;
bd5635a1
RP
1513 char *name;
1514 int *static_memfuncp;
1515 char *err;
1516{
1517 register struct type *t;
a91a6192 1518 value_ptr v;
bd5635a1
RP
1519
1520 COERCE_ARRAY (*argp);
1521
1522 t = VALUE_TYPE (*argp);
1523
1524 /* Follow pointers until we get to a non-pointer. */
1525
1526 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1527 {
bd5635a1 1528 *argp = value_ind (*argp);
f2ebc25f
JK
1529 /* Don't coerce fn pointer to fn and then back again! */
1530 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1531 COERCE_ARRAY (*argp);
bd5635a1
RP
1532 t = VALUE_TYPE (*argp);
1533 }
1534
1535 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1536 error ("not implemented: member type in value_struct_elt");
1537
2a5ec41d 1538 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
bd5635a1
RP
1539 && TYPE_CODE (t) != TYPE_CODE_UNION)
1540 error ("Attempt to extract a component of a value that is not a %s.", err);
1541
1542 /* Assume it's not, unless we see that it is. */
1543 if (static_memfuncp)
1544 *static_memfuncp =0;
1545
1546 if (!args)
1547 {
1548 /* if there are no arguments ...do this... */
1549
d3bab255 1550 /* Try as a field first, because if we succeed, there
bd5635a1 1551 is less work to be done. */
d3bab255 1552 v = search_struct_field (name, *argp, 0, t, 0);
bd5635a1
RP
1553 if (v)
1554 return v;
1555
1556 /* C++: If it was not found as a data field, then try to
1557 return it as a pointer to a method. */
1558
1559 if (destructor_name_p (name, t))
1560 error ("Cannot get value of destructor");
1561
bac89d6c 1562 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
bd5635a1 1563
a91a6192 1564 if (v == (value_ptr) -1)
67e9b3b3
PS
1565 error ("Cannot take address of a method");
1566 else if (v == 0)
bd5635a1
RP
1567 {
1568 if (TYPE_NFN_FIELDS (t))
1569 error ("There is no member or method named %s.", name);
1570 else
1571 error ("There is no member named %s.", name);
1572 }
1573 return v;
1574 }
1575
1576 if (destructor_name_p (name, t))
1577 {
1578 if (!args[1])
1579 {
1580 /* destructors are a special case. */
a91a6192
SS
1581 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1582 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
40620258
KH
1583 if (!v) error("could not find destructor function named %s.", name);
1584 else return v;
bd5635a1
RP
1585 }
1586 else
1587 {
1588 error ("destructor should not have any argument");
1589 }
1590 }
1591 else
bac89d6c 1592 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
bd5635a1 1593
a91a6192 1594 if (v == (value_ptr) -1)
5b5c6d94
KH
1595 {
1596 error("Argument list of %s mismatch with component in the structure.", name);
1597 }
1598 else if (v == 0)
bd5635a1
RP
1599 {
1600 /* See if user tried to invoke data as function. If so,
1601 hand it back. If it's not callable (i.e., a pointer to function),
1602 gdb should give an error. */
d3bab255 1603 v = search_struct_field (name, *argp, 0, t, 0);
bd5635a1
RP
1604 }
1605
1606 if (!v)
1607 error ("Structure has no component named %s.", name);
1608 return v;
1609}
1610
1611/* C++: return 1 is NAME is a legitimate name for the destructor
1612 of type TYPE. If TYPE does not have a destructor, or
1613 if NAME is inappropriate for TYPE, an error is signaled. */
1614int
1615destructor_name_p (name, type)
7919c3ed
JG
1616 const char *name;
1617 const struct type *type;
bd5635a1
RP
1618{
1619 /* destructors are a special case. */
1620
1621 if (name[0] == '~')
1622 {
1623 char *dname = type_name_no_tag (type);
2e4964ad 1624 if (!STREQ (dname, name+1))
bd5635a1
RP
1625 error ("name of destructor must equal name of class");
1626 else
1627 return 1;
1628 }
1629 return 0;
1630}
1631
1632/* Helper function for check_field: Given TYPE, a structure/union,
1633 return 1 if the component named NAME from the ultimate
1634 target structure/union is defined, otherwise, return 0. */
1635
1636static int
1637check_field_in (type, name)
1638 register struct type *type;
01be6913 1639 const char *name;
bd5635a1
RP
1640{
1641 register int i;
1642
1643 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1644 {
1645 char *t_field_name = TYPE_FIELD_NAME (type, i);
2e4964ad 1646 if (t_field_name && STREQ (t_field_name, name))
bd5635a1
RP
1647 return 1;
1648 }
1649
1650 /* C++: If it was not found as a data field, then try to
1651 return it as a pointer to a method. */
1652
1653 /* Destructors are a special case. */
1654 if (destructor_name_p (name, type))
1655 return 1;
1656
1657 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1658 {
2e4964ad 1659 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
bd5635a1
RP
1660 return 1;
1661 }
1662
1663 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1664 if (check_field_in (TYPE_BASECLASS (type, i), name))
1665 return 1;
1666
1667 return 0;
1668}
1669
1670
1671/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1672 return 1 if the component named NAME from the ultimate
1673 target structure/union is defined, otherwise, return 0. */
1674
1675int
1676check_field (arg1, name)
a91a6192 1677 register value_ptr arg1;
7919c3ed 1678 const char *name;
bd5635a1
RP
1679{
1680 register struct type *t;
1681
1682 COERCE_ARRAY (arg1);
1683
1684 t = VALUE_TYPE (arg1);
1685
1686 /* Follow pointers until we get to a non-pointer. */
1687
1688 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1689 t = TYPE_TARGET_TYPE (t);
1690
1691 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1692 error ("not implemented: member type in check_field");
1693
2a5ec41d 1694 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
bd5635a1
RP
1695 && TYPE_CODE (t) != TYPE_CODE_UNION)
1696 error ("Internal error: `this' is not an aggregate");
1697
1698 return check_field_in (t, name);
1699}
1700
01be6913 1701/* C++: Given an aggregate type CURTYPE, and a member name NAME,
2a5ec41d 1702 return the address of this member as a "pointer to member"
bd5635a1
RP
1703 type. If INTYPE is non-null, then it will be the type
1704 of the member we are looking for. This will help us resolve
01be6913
PB
1705 "pointers to member functions". This function is used
1706 to resolve user expressions of the form "DOMAIN::NAME". */
bd5635a1 1707
a91a6192 1708value_ptr
51b57ded 1709value_struct_elt_for_reference (domain, offset, curtype, name, intype)
01be6913 1710 struct type *domain, *curtype, *intype;
51b57ded 1711 int offset;
bd5635a1
RP
1712 char *name;
1713{
01be6913 1714 register struct type *t = curtype;
bd5635a1 1715 register int i;
a91a6192 1716 value_ptr v;
bd5635a1 1717
2a5ec41d 1718 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
bd5635a1 1719 && TYPE_CODE (t) != TYPE_CODE_UNION)
01be6913 1720 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
bd5635a1 1721
01be6913 1722 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
bd5635a1 1723 {
01be6913
PB
1724 char *t_field_name = TYPE_FIELD_NAME (t, i);
1725
2e4964ad 1726 if (t_field_name && STREQ (t_field_name, name))
bd5635a1 1727 {
01be6913 1728 if (TYPE_FIELD_STATIC (t, i))
bd5635a1 1729 {
01be6913
PB
1730 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1731 struct symbol *sym =
1732 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
2e4964ad
FF
1733 if (sym == NULL)
1734 error ("Internal error: could not find physical static variable named %s",
01be6913
PB
1735 phys_name);
1736 return value_at (SYMBOL_TYPE (sym),
1737 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
bd5635a1 1738 }
01be6913
PB
1739 if (TYPE_FIELD_PACKED (t, i))
1740 error ("pointers to bitfield members not allowed");
1741
1742 return value_from_longest
1743 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1744 domain)),
51b57ded 1745 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
bd5635a1 1746 }
bd5635a1
RP
1747 }
1748
1749 /* C++: If it was not found as a data field, then try to
1750 return it as a pointer to a method. */
bd5635a1
RP
1751
1752 /* Destructors are a special case. */
1753 if (destructor_name_p (name, t))
1754 {
2a5ec41d 1755 error ("member pointers to destructors not implemented yet");
bd5635a1
RP
1756 }
1757
1758 /* Perform all necessary dereferencing. */
1759 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1760 intype = TYPE_TARGET_TYPE (intype);
1761
01be6913 1762 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
bd5635a1 1763 {
852b3831
PB
1764 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
1765 char dem_opname[64];
1766
1767 if (strncmp(t_field_name, "__", 2)==0 ||
1768 strncmp(t_field_name, "op", 2)==0 ||
1769 strncmp(t_field_name, "type", 4)==0 )
1770 {
1771 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1772 t_field_name = dem_opname;
1773 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1774 t_field_name = dem_opname;
1775 }
1776 if (t_field_name && STREQ (t_field_name, name))
bd5635a1 1777 {
01be6913
PB
1778 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1779 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1780
1781 if (intype == 0 && j > 1)
1782 error ("non-unique member `%s' requires type instantiation", name);
1783 if (intype)
bd5635a1 1784 {
01be6913
PB
1785 while (j--)
1786 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1787 break;
1788 if (j < 0)
1789 error ("no member function matches that type instantiation");
1790 }
1791 else
1792 j = 0;
1793
1794 if (TYPE_FN_FIELD_STUB (f, j))
1795 check_stub_method (t, i, j);
1796 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1797 {
1798 return value_from_longest
1799 (lookup_reference_type
1800 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1801 domain)),
bac89d6c
FF
1802 (LONGEST) METHOD_PTR_FROM_VOFFSET
1803 (TYPE_FN_FIELD_VOFFSET (f, j)));
01be6913
PB
1804 }
1805 else
1806 {
1807 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1808 0, VAR_NAMESPACE, 0, NULL);
35fcebce
PB
1809 if (s == NULL)
1810 {
1811 v = 0;
1812 }
1813 else
1814 {
1815 v = read_var_value (s, 0);
01be6913 1816#if 0
35fcebce
PB
1817 VALUE_TYPE (v) = lookup_reference_type
1818 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1819 domain));
01be6913 1820#endif
bd5635a1 1821 }
35fcebce 1822 return v;
bd5635a1
RP
1823 }
1824 }
35fcebce 1825 }
01be6913
PB
1826 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1827 {
a91a6192 1828 value_ptr v;
51b57ded
FF
1829 int base_offset;
1830
1831 if (BASETYPE_VIA_VIRTUAL (t, i))
1832 base_offset = 0;
1833 else
1834 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
01be6913 1835 v = value_struct_elt_for_reference (domain,
51b57ded 1836 offset + base_offset,
01be6913
PB
1837 TYPE_BASECLASS (t, i),
1838 name,
1839 intype);
1840 if (v)
1841 return v;
bd5635a1
RP
1842 }
1843 return 0;
1844}
1845
bd5635a1
RP
1846/* C++: return the value of the class instance variable, if one exists.
1847 Flag COMPLAIN signals an error if the request is made in an
1848 inappropriate context. */
a91a6192 1849value_ptr
bd5635a1
RP
1850value_of_this (complain)
1851 int complain;
1852{
1853 extern FRAME selected_frame;
1854 struct symbol *func, *sym;
1855 struct block *b;
1856 int i;
1857 static const char funny_this[] = "this";
a91a6192 1858 value_ptr this;
bd5635a1
RP
1859
1860 if (selected_frame == 0)
1861 if (complain)
1862 error ("no frame selected");
1863 else return 0;
1864
1865 func = get_frame_function (selected_frame);
1866 if (!func)
1867 {
1868 if (complain)
1869 error ("no `this' in nameless context");
1870 else return 0;
1871 }
1872
1873 b = SYMBOL_BLOCK_VALUE (func);
1874 i = BLOCK_NSYMS (b);
1875 if (i <= 0)
1876 if (complain)
1877 error ("no args, no `this'");
1878 else return 0;
1879
1880 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1881 symbol instead of the LOC_ARG one (if both exist). */
1882 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1883 if (sym == NULL)
1884 {
1885 if (complain)
1886 error ("current stack frame not in method");
1887 else
1888 return NULL;
1889 }
1890
1891 this = read_var_value (sym, selected_frame);
1892 if (this == 0 && complain)
1893 error ("`this' argument at unknown address");
1894 return this;
1895}
a91a6192
SS
1896
1897/* Create a value for a literal string. We copy data into a local
1898 (NOT inferior's memory) buffer, and then set up an array value.
1899
1900 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1901 populated from the values passed in ELEMVEC.
1902
1903 The element type of the array is inherited from the type of the
1904 first element, and all elements must have the same size (though we
1905 don't currently enforce any restriction on their types). */
1906
1907value_ptr
1908f77_value_literal_string (lowbound, highbound, elemvec)
1909 int lowbound;
1910 int highbound;
1911 value_ptr *elemvec;
1912{
1913 int nelem;
1914 int idx;
1915 int typelength;
1916 register value_ptr val;
1917 struct type *rangetype;
1918 struct type *arraytype;
1919 CORE_ADDR addr;
1920
1921 /* Validate that the bounds are reasonable and that each of the elements
1922 have the same size. */
1923
1924 nelem = highbound - lowbound + 1;
1925 if (nelem <= 0)
1926 error ("bad array bounds (%d, %d)", lowbound, highbound);
1927 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1928 for (idx = 0; idx < nelem; idx++)
1929 {
1930 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1931 error ("array elements must all be the same size");
1932 }
1933
1934 /* Make sure we are dealing with characters */
1935
1936 if (typelength != 1)
1937 error ("Found a non character type in a literal string ");
1938
1939 /* Allocate space to store the array */
1940
1941 addr = malloc (nelem);
1942 for (idx = 0; idx < nelem; idx++)
1943 {
1944 memcpy (addr + (idx), VALUE_CONTENTS (elemvec[idx]), 1);
1945 }
1946
1947 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1948 lowbound, highbound);
1949
1950 arraytype = f77_create_literal_string_type ((struct type *) NULL,
1951 rangetype);
1952
1953 val = allocate_value (arraytype);
1954
1955 /* Make sure that this the rest of the world knows that this is
1956 a standard literal string, not one that is a substring of
1957 some base */
1958
1959 VALUE_SUBSTRING_START (val) = NULL;
1960
1961 VALUE_LAZY (val) = 0;
1962 VALUE_LITERAL_DATA (val) = addr;
1963
1964 /* Since this is a standard literal string with no real lval,
1965 make sure that value_lval indicates this fact */
1966
1967 VALUE_LVAL (val) = not_lval;
1968 return val;
1969}
1970
1971/* Create a value for a substring. We copy data into a local
1972 (NOT inferior's memory) buffer, and then set up an array value.
1973
1974 The array bounds for the string are (1:(to-from +1))
1975 The elements of the string are all characters. */
1976
1977value_ptr
1978f77_value_substring (str, from, to)
1979 value_ptr str;
1980 int from;
1981 int to;
1982{
1983 int nelem;
1984 register value_ptr val;
1985 struct type *rangetype;
1986 struct type *arraytype;
1987 struct internalvar *var;
1988 CORE_ADDR addr;
1989
1990 /* Validate that the bounds are reasonable. */
1991
1992 nelem = to - from + 1;
1993 if (nelem <= 0)
1994 error ("bad substring bounds (%d, %d)", from, to);
1995
1996 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1997 1, nelem);
1998
1999 arraytype = f77_create_literal_string_type ((struct type *) NULL,
2000 rangetype);
2001
2002 val = allocate_value (arraytype);
2003
2004 /* Allocate space to store the substring array */
2005
2006 addr = malloc (nelem);
2007
2008 /* Copy over the data */
2009
2010 /* In case we ever try to use this substring on the LHS of an assignment
2011 remember where the SOURCE substring begins, for lval_memory
2012 types this ptr is to a location in legal inferior memory,
2013 for lval_internalvars it is a ptr. to superior memory. This
2014 helps us out later when we do assigments like:
2015
2016 set var ARR(2:3) = 'ab'
2017
2018 */
2019
2020
2021 if (VALUE_LVAL (str) == lval_memory)
2022 {
2023 if (VALUE_SUBSTRING_START (str) == NULL)
2024 {
2025 /* This is a regular lval_memory string located in the
2026 inferior */
2027
2028 VALUE_SUBSTRING_START (val) = VALUE_ADDRESS (str) + (from - 1);
2029 target_read_memory (VALUE_SUBSTRING_START (val), addr, nelem);
2030 }
2031 else
2032 {
2033
2034#if 0
2035 /* str is a substring allocated in the superior. Just
2036 do a memcpy */
2037
2038 VALUE_SUBSTRING_START(val) = VALUE_LITERAL_DATA(str)+(from - 1);
2039 memcpy(addr,VALUE_SUBSTRING_START(val),nelem);
2040#else
2041 error ("Cannot get substrings of substrings");
2042#endif
2043 }
2044 }
2045 else
2046 if (VALUE_LVAL(str) == lval_internalvar)
2047 {
2048 /* Internal variables of type TYPE_CODE_LITERAL_STRING
2049 have their data located in the superior
2050 process not the inferior */
2051
2052 var = VALUE_INTERNALVAR (str);
2053
2054 if (VALUE_SUBSTRING_START (str) == NULL)
2055 VALUE_SUBSTRING_START (val) =
2056 VALUE_LITERAL_DATA (var->value) + (from - 1);
2057 else
2058#if 0
2059 VALUE_SUBSTRING_START(val)=VALUE_LITERAL_DATA(str)+(from -1);
2060#else
2061 error ("Cannot get substrings of substrings");
2062#endif
2063 memcpy (addr, VALUE_SUBSTRING_START (val), nelem);
2064 }
2065 else
2066 error ("Substrings can not be applied to this data item");
2067
2068 VALUE_LAZY (val) = 0;
2069 VALUE_LITERAL_DATA (val) = addr;
2070
2071 /* This literal string's *data* is located in the superior BUT
2072 we do need to know where it came from (i.e. was the source
2073 string an internalvar or a regular lval_memory variable), so
2074 we set the lval field to indicate this. This will be useful
2075 when we use this value on the LHS of an expr. */
2076
2077 VALUE_LVAL (val) = VALUE_LVAL (str);
2078 return val;
2079}
2080
2081/* Create a value for a FORTRAN complex number. Currently most of
2082 the time values are coerced to COMPLEX*16 (i.e. a complex number
2083 composed of 2 doubles. This really should be a smarter routine
2084 that figures out precision inteligently as opposed to assuming
2085 doubles. FIXME: fmb */
2086
2087value_ptr
2088f77_value_literal_complex (arg1, arg2, size)
2089 value_ptr arg1;
2090 value_ptr arg2;
2091 int size;
2092{
2093 struct type *complex_type;
2094 register value_ptr val;
2095 char *addr;
2096
2097 if (size != 8 && size != 16 && size != 32)
2098 error ("Cannot create number of type 'complex*%d'", size);
2099
2100 /* If either value comprising a complex number is a non-floating
2101 type, cast to double. */
2102
2103 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT)
2104 arg1 = value_cast (builtin_type_f_real_s8, arg1);
2105
2106 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT)
2107 arg2 = value_cast (builtin_type_f_real_s8, arg2);
2108
2109 complex_type = f77_create_literal_complex_type (VALUE_TYPE (arg1),
2110 VALUE_TYPE (arg2),
2111 size);
2112
2113 val = allocate_value (complex_type);
2114
2115 /* Now create a pointer to enough memory to hold the the two args */
2116
2117 addr = malloc (TYPE_LENGTH (complex_type));
2118
2119 /* Copy over the two components */
2120
2121 memcpy (addr, VALUE_CONTENTS_RAW (arg1), TYPE_LENGTH (VALUE_TYPE (arg1)));
2122
2123 memcpy (addr + TYPE_LENGTH (VALUE_TYPE (arg1)), VALUE_CONTENTS_RAW (arg2),
2124 TYPE_LENGTH (VALUE_TYPE (arg2)));
2125
2126 VALUE_ADDRESS (val) = 0; /* Not located in the inferior */
2127 VALUE_LAZY (val) = 0;
2128 VALUE_LITERAL_DATA (val) = addr;
2129
2130 /* Since this is a literal value, make sure that value_lval indicates
2131 this fact */
2132
2133 VALUE_LVAL (val) = not_lval;
2134 return val;
2135}
This page took 0.302218 seconds and 4 git commands to generate.