2003-03-30 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4 2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1e698235 3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
f23631e4 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
fe898f56 36#include "block.h"
c906108c
SS
37
38#include <errno.h>
39#include "gdb_string.h"
4a1970e4 40#include "gdb_assert.h"
c906108c 41
c906108c
SS
42/* Flag indicating HP compilers were used; needed to correctly handle some
43 value operations with HP aCC code/runtime. */
44extern int hp_som_som_object_present;
45
070ad9f0 46extern int overload_debug;
c906108c
SS
47/* Local functions. */
48
ad2f7632
DJ
49static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
c906108c 51
389e51db 52static CORE_ADDR find_function_addr (struct value *, struct type **);
f23631e4 53static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c 54
389e51db 55
f23631e4 56static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 57
f23631e4 58static struct value *search_struct_field (char *, struct value *, int,
a14ed312 59 struct type *, int);
c906108c 60
f23631e4
AC
61static struct value *search_struct_method (char *, struct value **,
62 struct value **,
a14ed312 63 int, int *, struct type *);
c906108c 64
a14ed312 65static int check_field_in (struct type *, const char *);
c906108c 66
a14ed312 67static CORE_ADDR allocate_space_in_inferior (int);
c906108c 68
f23631e4 69static struct value *cast_into_complex (struct type *, struct value *);
c906108c 70
f23631e4 71static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 72 int offset,
a14ed312
KB
73 struct type *type, int *num_fns,
74 struct type **basetype,
75 int *boffset);
7a292a7a 76
a14ed312 77void _initialize_valops (void);
c906108c 78
c906108c
SS
79/* Flag for whether we want to abandon failed expression evals by default. */
80
81#if 0
82static int auto_abandon = 0;
83#endif
84
85int overload_resolution = 0;
242bfc55
FN
86
87/* This boolean tells what gdb should do if a signal is received while in
88 a function called from gdb (call dummy). If set, gdb unwinds the stack
89 and restore the context to what as it was before the call.
90 The default is to stop in the frame where the signal was received. */
91
92int unwind_on_signal_p = 0;
c906108c 93
1e698235
DJ
94/* How you should pass arguments to a function depends on whether it
95 was defined in K&R style or prototype style. If you define a
96 function using the K&R syntax that takes a `float' argument, then
97 callers must pass that argument as a `double'. If you define the
98 function using the prototype syntax, then you must pass the
99 argument as a `float', with no promotion.
100
101 Unfortunately, on certain older platforms, the debug info doesn't
102 indicate reliably how each function was defined. A function type's
103 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
104 defined in prototype style. When calling a function whose
105 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
106 what to do.
107
108 For modern targets, it is proper to assume that, if the prototype
109 flag is clear, that can be trusted: `float' arguments should be
110 promoted to `double'. For some older targets, if the prototype
111 flag is clear, that doesn't tell us anything. The default is to
112 trust the debug information; the user can override this behavior
113 with "set coerce-float-to-double 0". */
114
115static int coerce_float_to_double;
116\f
389e51db 117
c906108c
SS
118/* Find the address of function name NAME in the inferior. */
119
f23631e4 120struct value *
3bada2a2 121find_function_in_inferior (const char *name)
c906108c
SS
122{
123 register struct symbol *sym;
124 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
125 if (sym != NULL)
126 {
127 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
128 {
129 error ("\"%s\" exists in this program but is not a function.",
130 name);
131 }
132 return value_of_variable (sym, NULL);
133 }
134 else
135 {
c5aa993b 136 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
137 if (msymbol != NULL)
138 {
139 struct type *type;
4478b372 140 CORE_ADDR maddr;
c906108c
SS
141 type = lookup_pointer_type (builtin_type_char);
142 type = lookup_function_type (type);
143 type = lookup_pointer_type (type);
4478b372
JB
144 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
145 return value_from_pointer (type, maddr);
c906108c
SS
146 }
147 else
148 {
c5aa993b 149 if (!target_has_execution)
c906108c 150 error ("evaluation of this expression requires the target program to be active");
c5aa993b 151 else
c906108c
SS
152 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
153 }
154 }
155}
156
157/* Allocate NBYTES of space in the inferior using the inferior's malloc
158 and return a value that is a pointer to the allocated space. */
159
f23631e4 160struct value *
fba45db2 161value_allocate_space_in_inferior (int len)
c906108c 162{
f23631e4 163 struct value *blocklen;
5720643c 164 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
c906108c
SS
165
166 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
167 val = call_function_by_hand (val, 1, &blocklen);
168 if (value_logical_not (val))
169 {
170 if (!target_has_execution)
c5aa993b
JM
171 error ("No memory available to program now: you need to start the target first");
172 else
173 error ("No memory available to program: call to malloc failed");
c906108c
SS
174 }
175 return val;
176}
177
178static CORE_ADDR
fba45db2 179allocate_space_in_inferior (int len)
c906108c
SS
180{
181 return value_as_long (value_allocate_space_in_inferior (len));
182}
183
184/* Cast value ARG2 to type TYPE and return as a value.
185 More general than a C cast: accepts any two types of the same length,
186 and if ARG2 is an lvalue it can be cast into anything at all. */
187/* In C++, casts may change pointer or object representations. */
188
f23631e4
AC
189struct value *
190value_cast (struct type *type, struct value *arg2)
c906108c
SS
191{
192 register enum type_code code1;
193 register enum type_code code2;
194 register int scalar;
195 struct type *type2;
196
197 int convert_to_boolean = 0;
c5aa993b 198
c906108c
SS
199 if (VALUE_TYPE (arg2) == type)
200 return arg2;
201
202 CHECK_TYPEDEF (type);
203 code1 = TYPE_CODE (type);
c5aa993b 204 COERCE_REF (arg2);
c906108c
SS
205 type2 = check_typedef (VALUE_TYPE (arg2));
206
207 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
208 is treated like a cast to (TYPE [N])OBJECT,
209 where N is sizeof(OBJECT)/sizeof(TYPE). */
210 if (code1 == TYPE_CODE_ARRAY)
211 {
212 struct type *element_type = TYPE_TARGET_TYPE (type);
213 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
214 if (element_length > 0
c5aa993b 215 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
216 {
217 struct type *range_type = TYPE_INDEX_TYPE (type);
218 int val_length = TYPE_LENGTH (type2);
219 LONGEST low_bound, high_bound, new_length;
220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
221 low_bound = 0, high_bound = 0;
222 new_length = val_length / element_length;
223 if (val_length % element_length != 0)
c5aa993b 224 warning ("array element type size does not divide object size in cast");
c906108c
SS
225 /* FIXME-type-allocation: need a way to free this type when we are
226 done with it. */
227 range_type = create_range_type ((struct type *) NULL,
228 TYPE_TARGET_TYPE (range_type),
229 low_bound,
230 new_length + low_bound - 1);
231 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
232 element_type, range_type);
233 return arg2;
234 }
235 }
236
237 if (current_language->c_style_arrays
238 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
239 arg2 = value_coerce_array (arg2);
240
241 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
242 arg2 = value_coerce_function (arg2);
243
244 type2 = check_typedef (VALUE_TYPE (arg2));
245 COERCE_VARYING_ARRAY (arg2, type2);
246 code2 = TYPE_CODE (type2);
247
248 if (code1 == TYPE_CODE_COMPLEX)
249 return cast_into_complex (type, arg2);
250 if (code1 == TYPE_CODE_BOOL)
251 {
252 code1 = TYPE_CODE_INT;
253 convert_to_boolean = 1;
254 }
255 if (code1 == TYPE_CODE_CHAR)
256 code1 = TYPE_CODE_INT;
257 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
258 code2 = TYPE_CODE_INT;
259
260 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
261 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
262
c5aa993b 263 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
264 && code2 == TYPE_CODE_STRUCT
265 && TYPE_NAME (type) != 0)
266 {
267 /* Look in the type of the source to see if it contains the
7b83ea04
AC
268 type of the target as a superclass. If so, we'll need to
269 offset the object in addition to changing its type. */
f23631e4 270 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
271 arg2, 0, type2, 1);
272 if (v)
273 {
274 VALUE_TYPE (v) = type;
275 return v;
276 }
277 }
278 if (code1 == TYPE_CODE_FLT && scalar)
279 return value_from_double (type, value_as_double (arg2));
280 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
281 || code1 == TYPE_CODE_RANGE)
282 && (scalar || code2 == TYPE_CODE_PTR))
283 {
284 LONGEST longest;
c5aa993b
JM
285
286 if (hp_som_som_object_present && /* if target compiled by HP aCC */
287 (code2 == TYPE_CODE_PTR))
288 {
289 unsigned int *ptr;
f23631e4 290 struct value *retvalp;
c5aa993b
JM
291
292 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
293 {
294 /* With HP aCC, pointers to data members have a bias */
295 case TYPE_CODE_MEMBER:
296 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 297 /* force evaluation */
802db21b 298 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
299 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
300 return retvalp;
301
302 /* While pointers to methods don't really point to a function */
303 case TYPE_CODE_METHOD:
304 error ("Pointers to methods not supported with HP aCC");
305
306 default:
307 break; /* fall out and go to normal handling */
308 }
309 }
2bf1f4a1
JB
310
311 /* When we cast pointers to integers, we mustn't use
312 POINTER_TO_ADDRESS to find the address the pointer
313 represents, as value_as_long would. GDB should evaluate
314 expressions just as the compiler would --- and the compiler
315 sees a cast as a simple reinterpretation of the pointer's
316 bits. */
317 if (code2 == TYPE_CODE_PTR)
318 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
319 TYPE_LENGTH (type2));
320 else
321 longest = value_as_long (arg2);
802db21b 322 return value_from_longest (type, convert_to_boolean ?
716c501e 323 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 324 }
802db21b 325 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
326 code2 == TYPE_CODE_ENUM ||
327 code2 == TYPE_CODE_RANGE))
634acd5f 328 {
4603e466
DT
329 /* TYPE_LENGTH (type) is the length of a pointer, but we really
330 want the length of an address! -- we are really dealing with
331 addresses (i.e., gdb representations) not pointers (i.e.,
332 target representations) here.
333
334 This allows things like "print *(int *)0x01000234" to work
335 without printing a misleading message -- which would
336 otherwise occur when dealing with a target having two byte
337 pointers and four byte addresses. */
338
339 int addr_bit = TARGET_ADDR_BIT;
340
634acd5f 341 LONGEST longest = value_as_long (arg2);
4603e466 342 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 343 {
4603e466
DT
344 if (longest >= ((LONGEST) 1 << addr_bit)
345 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
346 warning ("value truncated");
347 }
348 return value_from_longest (type, longest);
349 }
c906108c
SS
350 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
351 {
352 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
353 {
354 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
355 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 356 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
357 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
358 && !value_logical_not (arg2))
359 {
f23631e4 360 struct value *v;
c906108c
SS
361
362 /* Look in the type of the source to see if it contains the
7b83ea04
AC
363 type of the target as a superclass. If so, we'll need to
364 offset the pointer rather than just change its type. */
c906108c
SS
365 if (TYPE_NAME (t1) != NULL)
366 {
367 v = search_struct_field (type_name_no_tag (t1),
368 value_ind (arg2), 0, t2, 1);
369 if (v)
370 {
371 v = value_addr (v);
372 VALUE_TYPE (v) = type;
373 return v;
374 }
375 }
376
377 /* Look in the type of the target to see if it contains the
7b83ea04
AC
378 type of the source as a superclass. If so, we'll need to
379 offset the pointer rather than just change its type.
380 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
381 if (TYPE_NAME (t2) != NULL)
382 {
383 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 384 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
385 if (v)
386 {
d174216d
JB
387 CORE_ADDR addr2 = value_as_address (arg2);
388 addr2 -= (VALUE_ADDRESS (v)
389 + VALUE_OFFSET (v)
390 + VALUE_EMBEDDED_OFFSET (v));
391 return value_from_pointer (type, addr2);
c906108c
SS
392 }
393 }
394 }
395 /* No superclass found, just fall through to change ptr type. */
396 }
397 VALUE_TYPE (arg2) = type;
2b127877 398 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 399 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
400 return arg2;
401 }
c906108c
SS
402 else if (VALUE_LVAL (arg2) == lval_memory)
403 {
404 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
405 VALUE_BFD_SECTION (arg2));
406 }
407 else if (code1 == TYPE_CODE_VOID)
408 {
409 return value_zero (builtin_type_void, not_lval);
410 }
411 else
412 {
413 error ("Invalid cast.");
414 return 0;
415 }
416}
417
418/* Create a value of type TYPE that is zero, and return it. */
419
f23631e4 420struct value *
fba45db2 421value_zero (struct type *type, enum lval_type lv)
c906108c 422{
f23631e4 423 struct value *val = allocate_value (type);
c906108c
SS
424
425 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
426 VALUE_LVAL (val) = lv;
427
428 return val;
429}
430
070ad9f0 431/* Return a value with type TYPE located at ADDR.
c906108c
SS
432
433 Call value_at only if the data needs to be fetched immediately;
434 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
435 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
436 the data and sets the lazy-evaluation-required flag. The lazy flag
437 is tested in the VALUE_CONTENTS macro, which is used if and when
438 the contents are actually required.
c906108c
SS
439
440 Note: value_at does *NOT* handle embedded offsets; perform such
441 adjustments before or after calling it. */
442
f23631e4 443struct value *
fba45db2 444value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 445{
f23631e4 446 struct value *val;
c906108c
SS
447
448 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
449 error ("Attempt to dereference a generic pointer.");
450
451 val = allocate_value (type);
452
75af7f68 453 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
454
455 VALUE_LVAL (val) = lval_memory;
456 VALUE_ADDRESS (val) = addr;
457 VALUE_BFD_SECTION (val) = sect;
458
459 return val;
460}
461
462/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
463
f23631e4 464struct value *
fba45db2 465value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 466{
f23631e4 467 struct value *val;
c906108c
SS
468
469 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
470 error ("Attempt to dereference a generic pointer.");
471
472 val = allocate_value (type);
473
474 VALUE_LVAL (val) = lval_memory;
475 VALUE_ADDRESS (val) = addr;
476 VALUE_LAZY (val) = 1;
477 VALUE_BFD_SECTION (val) = sect;
478
479 return val;
480}
481
070ad9f0
DB
482/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
483 if the current data for a variable needs to be loaded into
484 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
485 clears the lazy flag to indicate that the data in the buffer is valid.
486
487 If the value is zero-length, we avoid calling read_memory, which would
488 abort. We mark the value as fetched anyway -- all 0 bytes of it.
489
490 This function returns a value because it is used in the VALUE_CONTENTS
491 macro as part of an expression, where a void would not work. The
492 value is ignored. */
493
494int
f23631e4 495value_fetch_lazy (struct value *val)
c906108c
SS
496{
497 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
498 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
499
c5aa993b 500 struct type *type = VALUE_TYPE (val);
75af7f68 501 if (length)
d4b2399a 502 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 503
c906108c
SS
504 VALUE_LAZY (val) = 0;
505 return 0;
506}
507
508
509/* Store the contents of FROMVAL into the location of TOVAL.
510 Return a new value with the location of TOVAL and contents of FROMVAL. */
511
f23631e4
AC
512struct value *
513value_assign (struct value *toval, struct value *fromval)
c906108c
SS
514{
515 register struct type *type;
f23631e4 516 struct value *val;
e6cbd02a 517 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c 518 int use_buffer = 0;
cb741690 519 struct frame_id old_frame;
c906108c
SS
520
521 if (!toval->modifiable)
522 error ("Left operand of assignment is not a modifiable lvalue.");
523
524 COERCE_REF (toval);
525
526 type = VALUE_TYPE (toval);
527 if (VALUE_LVAL (toval) != lval_internalvar)
528 fromval = value_cast (type, fromval);
529 else
530 COERCE_ARRAY (fromval);
531 CHECK_TYPEDEF (type);
532
533 /* If TOVAL is a special machine register requiring conversion
534 of program values to a special raw format,
535 convert FROMVAL's contents now, with result in `raw_buffer',
536 and set USE_BUFFER to the number of bytes to write. */
537
ac9a91a7 538 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
539 {
540 int regno = VALUE_REGNO (toval);
13d01224 541 if (CONVERT_REGISTER_P (regno))
c906108c
SS
542 {
543 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 544 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
545 use_buffer = REGISTER_RAW_SIZE (regno);
546 }
547 }
c906108c 548
cb741690
DJ
549 /* Since modifying a register can trash the frame chain, and modifying memory
550 can trash the frame cache, we save the old frame and then restore the new
551 frame afterwards. */
552 old_frame = get_frame_id (deprecated_selected_frame);
553
c906108c
SS
554 switch (VALUE_LVAL (toval))
555 {
556 case lval_internalvar:
557 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
558 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 559 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
560 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
561 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
562 return val;
563
564 case lval_internalvar_component:
565 set_internalvar_component (VALUE_INTERNALVAR (toval),
566 VALUE_OFFSET (toval),
567 VALUE_BITPOS (toval),
568 VALUE_BITSIZE (toval),
569 fromval);
570 break;
571
572 case lval_memory:
573 {
574 char *dest_buffer;
c5aa993b
JM
575 CORE_ADDR changed_addr;
576 int changed_len;
c906108c 577
c5aa993b
JM
578 if (VALUE_BITSIZE (toval))
579 {
c906108c
SS
580 char buffer[sizeof (LONGEST)];
581 /* We assume that the argument to read_memory is in units of
582 host chars. FIXME: Is that correct? */
583 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
584 + VALUE_BITSIZE (toval)
585 + HOST_CHAR_BIT - 1)
586 / HOST_CHAR_BIT;
c906108c
SS
587
588 if (changed_len > (int) sizeof (LONGEST))
589 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 590 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
591
592 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
593 buffer, changed_len);
594 modify_field (buffer, value_as_long (fromval),
595 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
596 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
597 dest_buffer = buffer;
598 }
599 else if (use_buffer)
600 {
601 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
602 changed_len = use_buffer;
603 dest_buffer = raw_buffer;
604 }
605 else
606 {
607 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
608 changed_len = TYPE_LENGTH (type);
609 dest_buffer = VALUE_CONTENTS (fromval);
610 }
611
612 write_memory (changed_addr, dest_buffer, changed_len);
613 if (memory_changed_hook)
614 memory_changed_hook (changed_addr, changed_len);
e23792cc 615 target_changed_event ();
c906108c
SS
616 }
617 break;
618
c906108c 619 case lval_reg_frame_relative:
492254e9 620 case lval_register:
c906108c
SS
621 {
622 /* value is stored in a series of registers in the frame
623 specified by the structure. Copy that value out, modify
624 it, and copy it back in. */
c906108c 625 int amount_copied;
492254e9
AC
626 int amount_to_copy;
627 char *buffer;
628 int value_reg;
629 int reg_offset;
630 int byte_offset;
c906108c
SS
631 int regno;
632 struct frame_info *frame;
633
634 /* Figure out which frame this is in currently. */
492254e9
AC
635 if (VALUE_LVAL (toval) == lval_register)
636 {
637 frame = get_current_frame ();
638 value_reg = VALUE_REGNO (toval);
639 }
640 else
641 {
642 for (frame = get_current_frame ();
c193f6ac 643 frame && get_frame_base (frame) != VALUE_FRAME (toval);
492254e9
AC
644 frame = get_prev_frame (frame))
645 ;
646 value_reg = VALUE_FRAME_REGNUM (toval);
647 }
c906108c
SS
648
649 if (!frame)
650 error ("Value being assigned to is no longer active.");
651
492254e9
AC
652 /* Locate the first register that falls in the value that
653 needs to be transfered. Compute the offset of the value in
654 that register. */
655 {
656 int offset;
657 for (reg_offset = value_reg, offset = 0;
658 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
659 reg_offset++);
660 byte_offset = VALUE_OFFSET (toval) - offset;
661 }
662
663 /* Compute the number of register aligned values that need to
664 be copied. */
665 if (VALUE_BITSIZE (toval))
666 amount_to_copy = byte_offset + 1;
667 else
668 amount_to_copy = byte_offset + TYPE_LENGTH (type);
669
670 /* And a bounce buffer. Be slightly over generous. */
671 buffer = (char *) alloca (amount_to_copy
672 + MAX_REGISTER_RAW_SIZE);
c906108c 673
492254e9
AC
674 /* Copy it in. */
675 for (regno = reg_offset, amount_copied = 0;
c906108c 676 amount_copied < amount_to_copy;
492254e9 677 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c 678 {
492254e9 679 frame_register_read (frame, regno, buffer + amount_copied);
c906108c 680 }
492254e9 681
c906108c
SS
682 /* Modify what needs to be modified. */
683 if (VALUE_BITSIZE (toval))
492254e9
AC
684 {
685 modify_field (buffer + byte_offset,
686 value_as_long (fromval),
687 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
688 }
c906108c 689 else if (use_buffer)
492254e9
AC
690 {
691 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
692 }
c906108c 693 else
492254e9
AC
694 {
695 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
696 TYPE_LENGTH (type));
697 /* Do any conversion necessary when storing this type to
698 more than one register. */
699#ifdef REGISTER_CONVERT_FROM_TYPE
700 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
701 (buffer + byte_offset));
702#endif
703 }
c906108c 704
492254e9
AC
705 /* Copy it out. */
706 for (regno = reg_offset, amount_copied = 0;
c906108c 707 amount_copied < amount_to_copy;
492254e9 708 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c
SS
709 {
710 enum lval_type lval;
711 CORE_ADDR addr;
712 int optim;
492254e9
AC
713 int realnum;
714
c906108c 715 /* Just find out where to put it. */
492254e9
AC
716 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
717 NULL);
718
c906108c
SS
719 if (optim)
720 error ("Attempt to assign to a value that was optimized out.");
721 if (lval == lval_memory)
492254e9
AC
722 write_memory (addr, buffer + amount_copied,
723 REGISTER_RAW_SIZE (regno));
c906108c 724 else if (lval == lval_register)
492254e9
AC
725 regcache_cooked_write (current_regcache, realnum,
726 (buffer + amount_copied));
c906108c
SS
727 else
728 error ("Attempt to assign to an unmodifiable value.");
729 }
730
731 if (register_changed_hook)
732 register_changed_hook (-1);
e23792cc 733 target_changed_event ();
492254e9 734
c906108c
SS
735 }
736 break;
492254e9
AC
737
738
c906108c
SS
739 default:
740 error ("Left operand of assignment is not an lvalue.");
741 }
742
cb741690
DJ
743 /* Assigning to the stack pointer, frame pointer, and other
744 (architecture and calling convention specific) registers may
745 cause the frame cache to be out of date. Assigning to memory
746 also can. We just do this on all assignments to registers or
747 memory, for simplicity's sake; I doubt the slowdown matters. */
748 switch (VALUE_LVAL (toval))
749 {
750 case lval_memory:
751 case lval_register:
752 case lval_reg_frame_relative:
753
754 reinit_frame_cache ();
755
756 /* Having destoroyed the frame cache, restore the selected frame. */
757
758 /* FIXME: cagney/2002-11-02: There has to be a better way of
759 doing this. Instead of constantly saving/restoring the
760 frame. Why not create a get_selected_frame() function that,
761 having saved the selected frame's ID can automatically
762 re-find the previously selected frame automatically. */
763
764 {
765 struct frame_info *fi = frame_find_by_id (old_frame);
766 if (fi != NULL)
767 select_frame (fi);
768 }
769
770 break;
771 default:
772 break;
773 }
774
c906108c
SS
775 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
776 If the field is signed, and is negative, then sign extend. */
777 if ((VALUE_BITSIZE (toval) > 0)
778 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
779 {
780 LONGEST fieldval = value_as_long (fromval);
781 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
782
783 fieldval &= valmask;
784 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
785 fieldval |= ~valmask;
786
787 fromval = value_from_longest (type, fieldval);
788 }
789
790 val = value_copy (toval);
791 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
792 TYPE_LENGTH (type));
793 VALUE_TYPE (val) = type;
2b127877 794 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
795 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
796 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 797
c906108c
SS
798 return val;
799}
800
801/* Extend a value VAL to COUNT repetitions of its type. */
802
f23631e4
AC
803struct value *
804value_repeat (struct value *arg1, int count)
c906108c 805{
f23631e4 806 struct value *val;
c906108c
SS
807
808 if (VALUE_LVAL (arg1) != lval_memory)
809 error ("Only values in memory can be extended with '@'.");
810 if (count < 1)
811 error ("Invalid number %d of repetitions.", count);
812
813 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
814
815 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
816 VALUE_CONTENTS_ALL_RAW (val),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
818 VALUE_LVAL (val) = lval_memory;
819 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
820
821 return val;
822}
823
f23631e4 824struct value *
fba45db2 825value_of_variable (struct symbol *var, struct block *b)
c906108c 826{
f23631e4 827 struct value *val;
c906108c
SS
828 struct frame_info *frame = NULL;
829
830 if (!b)
831 frame = NULL; /* Use selected frame. */
832 else if (symbol_read_needs_frame (var))
833 {
834 frame = block_innermost_frame (b);
835 if (!frame)
c5aa993b 836 {
c906108c 837 if (BLOCK_FUNCTION (b)
de5ad195 838 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
c906108c 839 error ("No frame is currently executing in block %s.",
de5ad195 840 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
c906108c
SS
841 else
842 error ("No frame is currently executing in specified block");
c5aa993b 843 }
c906108c
SS
844 }
845
846 val = read_var_value (var, frame);
847 if (!val)
de5ad195 848 error ("Address of symbol \"%s\" is unknown.", SYMBOL_PRINT_NAME (var));
c906108c
SS
849
850 return val;
851}
852
853/* Given a value which is an array, return a value which is a pointer to its
854 first element, regardless of whether or not the array has a nonzero lower
855 bound.
856
857 FIXME: A previous comment here indicated that this routine should be
858 substracting the array's lower bound. It's not clear to me that this
859 is correct. Given an array subscripting operation, it would certainly
860 work to do the adjustment here, essentially computing:
861
862 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
863
864 However I believe a more appropriate and logical place to account for
865 the lower bound is to do so in value_subscript, essentially computing:
866
867 (&array[0] + ((index - lowerbound) * sizeof array[0]))
868
869 As further evidence consider what would happen with operations other
870 than array subscripting, where the caller would get back a value that
871 had an address somewhere before the actual first element of the array,
872 and the information about the lower bound would be lost because of
873 the coercion to pointer type.
c5aa993b 874 */
c906108c 875
f23631e4
AC
876struct value *
877value_coerce_array (struct value *arg1)
c906108c
SS
878{
879 register struct type *type = check_typedef (VALUE_TYPE (arg1));
880
881 if (VALUE_LVAL (arg1) != lval_memory)
882 error ("Attempt to take address of value not located in memory.");
883
4478b372
JB
884 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
885 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
886}
887
888/* Given a value which is a function, return a value which is a pointer
889 to it. */
890
f23631e4
AC
891struct value *
892value_coerce_function (struct value *arg1)
c906108c 893{
f23631e4 894 struct value *retval;
c906108c
SS
895
896 if (VALUE_LVAL (arg1) != lval_memory)
897 error ("Attempt to take address of value not located in memory.");
898
4478b372
JB
899 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
900 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
901 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
902 return retval;
c5aa993b 903}
c906108c
SS
904
905/* Return a pointer value for the object for which ARG1 is the contents. */
906
f23631e4
AC
907struct value *
908value_addr (struct value *arg1)
c906108c 909{
f23631e4 910 struct value *arg2;
c906108c
SS
911
912 struct type *type = check_typedef (VALUE_TYPE (arg1));
913 if (TYPE_CODE (type) == TYPE_CODE_REF)
914 {
915 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
916 We keep the same location information, which is efficient,
917 and allows &(&X) to get the location containing the reference. */
c906108c
SS
918 arg2 = value_copy (arg1);
919 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
920 return arg2;
921 }
922 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
923 return value_coerce_function (arg1);
924
925 if (VALUE_LVAL (arg1) != lval_memory)
926 error ("Attempt to take address of value not located in memory.");
927
c5aa993b 928 /* Get target memory address */
4478b372
JB
929 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
930 (VALUE_ADDRESS (arg1)
931 + VALUE_OFFSET (arg1)
932 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
933
934 /* This may be a pointer to a base subobject; so remember the
c5aa993b 935 full derived object's type ... */
2b127877 936 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
937 /* ... and also the relative position of the subobject in the full object */
938 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
939 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
940 return arg2;
941}
942
943/* Given a value of a pointer type, apply the C unary * operator to it. */
944
f23631e4
AC
945struct value *
946value_ind (struct value *arg1)
c906108c
SS
947{
948 struct type *base_type;
f23631e4 949 struct value *arg2;
c906108c
SS
950
951 COERCE_ARRAY (arg1);
952
953 base_type = check_typedef (VALUE_TYPE (arg1));
954
955 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
956 error ("not implemented: member types in value_ind");
957
958 /* Allow * on an integer so we can cast it to whatever we want.
959 This returns an int, which seems like the most C-like thing
960 to do. "long long" variables are rare enough that
961 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
962 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
963 return value_at_lazy (builtin_type_int,
964 (CORE_ADDR) value_as_long (arg1),
965 VALUE_BFD_SECTION (arg1));
c906108c
SS
966 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
967 {
968 struct type *enc_type;
969 /* We may be pointing to something embedded in a larger object */
c5aa993b 970 /* Get the real type of the enclosing object */
c906108c
SS
971 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
972 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
973 /* Retrieve the enclosing object pointed to */
974 arg2 = value_at_lazy (enc_type,
1aa20aa8 975 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
976 VALUE_BFD_SECTION (arg1));
977 /* Re-adjust type */
c906108c
SS
978 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
979 /* Add embedding info */
2b127877 980 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
981 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
982
983 /* We may be pointing to an object of some derived type */
984 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
985 return arg2;
986 }
987
988 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 989 return 0; /* For lint -- never reached */
c906108c
SS
990}
991\f
992/* Pushing small parts of stack frames. */
993
994/* Push one word (the size of object that a register holds). */
995
996CORE_ADDR
fba45db2 997push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
998{
999 register int len = REGISTER_SIZE;
e6cbd02a 1000 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
1001
1002 store_unsigned_integer (buffer, len, word);
1003 if (INNER_THAN (1, 2))
1004 {
1005 /* stack grows downward */
1006 sp -= len;
1007 write_memory (sp, buffer, len);
1008 }
1009 else
1010 {
1011 /* stack grows upward */
1012 write_memory (sp, buffer, len);
1013 sp += len;
1014 }
1015
1016 return sp;
1017}
1018
1019/* Push LEN bytes with data at BUFFER. */
1020
1021CORE_ADDR
fba45db2 1022push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1023{
1024 if (INNER_THAN (1, 2))
1025 {
1026 /* stack grows downward */
1027 sp -= len;
1028 write_memory (sp, buffer, len);
1029 }
1030 else
1031 {
1032 /* stack grows upward */
1033 write_memory (sp, buffer, len);
1034 sp += len;
1035 }
1036
1037 return sp;
1038}
1039
2df3850c
JM
1040#ifndef PARM_BOUNDARY
1041#define PARM_BOUNDARY (0)
1042#endif
1043
1044/* Push onto the stack the specified value VALUE. Pad it correctly for
1045 it to be an argument to a function. */
c906108c 1046
c906108c 1047static CORE_ADDR
f23631e4 1048value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1049{
1050 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1051 register int container_len = len;
2df3850c
JM
1052 register int offset;
1053
1054 /* How big is the container we're going to put this value in? */
1055 if (PARM_BOUNDARY)
1056 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1057 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1058
1059 /* Are we going to put it at the high or low end of the container? */
d7449b42 1060 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1061 offset = container_len - len;
1062 else
1063 offset = 0;
c906108c
SS
1064
1065 if (INNER_THAN (1, 2))
1066 {
1067 /* stack grows downward */
2df3850c
JM
1068 sp -= container_len;
1069 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1070 }
1071 else
1072 {
1073 /* stack grows upward */
2df3850c
JM
1074 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1075 sp += container_len;
c906108c
SS
1076 }
1077
1078 return sp;
1079}
1080
392a587b 1081CORE_ADDR
b81774d8
AC
1082legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1083 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1084{
1085 /* ASSERT ( !struct_return); */
1086 int i;
1087 for (i = nargs - 1; i >= 0; i--)
1088 sp = value_push (sp, args[i]);
1089 return sp;
1090}
1091
c906108c
SS
1092/* Perform the standard coercions that are specified
1093 for arguments to be passed to C functions.
1094
1095 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1096 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1097
f23631e4 1098static struct value *
290b2c7a
MK
1099value_arg_coerce (struct value *arg, struct type *param_type,
1100 int is_prototyped)
c906108c
SS
1101{
1102 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1103 register struct type *type
290b2c7a 1104 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1105
1106 switch (TYPE_CODE (type))
1107 {
1108 case TYPE_CODE_REF:
491b8946
DJ
1109 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1110 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1111 {
1112 arg = value_addr (arg);
1113 VALUE_TYPE (arg) = param_type;
1114 return arg;
1115 }
1116 break;
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_BOOL:
1120 case TYPE_CODE_ENUM:
1121 /* If we don't have a prototype, coerce to integer type if necessary. */
1122 if (!is_prototyped)
1123 {
1124 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1125 type = builtin_type_int;
1126 }
1127 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1128 type for an argument. We may have to conditionalize the following
1129 type coercion for future targets. */
c906108c
SS
1130 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1131 type = builtin_type_int;
1132 break;
1133 case TYPE_CODE_FLT:
1e698235 1134 if (!is_prototyped && coerce_float_to_double)
c906108c
SS
1135 {
1136 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1137 type = builtin_type_double;
1138 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1139 type = builtin_type_long_double;
1140 }
1141 break;
1142 case TYPE_CODE_FUNC:
1143 type = lookup_pointer_type (type);
1144 break;
1145 case TYPE_CODE_ARRAY:
a3162708
EZ
1146 /* Arrays are coerced to pointers to their first element, unless
1147 they are vectors, in which case we want to leave them alone,
1148 because they are passed by value. */
c906108c 1149 if (current_language->c_style_arrays)
a3162708
EZ
1150 if (!TYPE_VECTOR (type))
1151 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1152 break;
1153 case TYPE_CODE_UNDEF:
1154 case TYPE_CODE_PTR:
1155 case TYPE_CODE_STRUCT:
1156 case TYPE_CODE_UNION:
1157 case TYPE_CODE_VOID:
1158 case TYPE_CODE_SET:
1159 case TYPE_CODE_RANGE:
1160 case TYPE_CODE_STRING:
1161 case TYPE_CODE_BITSTRING:
1162 case TYPE_CODE_ERROR:
1163 case TYPE_CODE_MEMBER:
1164 case TYPE_CODE_METHOD:
1165 case TYPE_CODE_COMPLEX:
1166 default:
1167 break;
1168 }
1169
1170 return value_cast (type, arg);
1171}
1172
070ad9f0 1173/* Determine a function's address and its return type from its value.
c906108c
SS
1174 Calls error() if the function is not valid for calling. */
1175
389e51db 1176static CORE_ADDR
f23631e4 1177find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1178{
1179 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1180 register enum type_code code = TYPE_CODE (ftype);
1181 struct type *value_type;
1182 CORE_ADDR funaddr;
1183
1184 /* If it's a member function, just look at the function
1185 part of it. */
1186
1187 /* Determine address to call. */
1188 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1189 {
1190 funaddr = VALUE_ADDRESS (function);
1191 value_type = TYPE_TARGET_TYPE (ftype);
1192 }
1193 else if (code == TYPE_CODE_PTR)
1194 {
1aa20aa8 1195 funaddr = value_as_address (function);
c906108c
SS
1196 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1197 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1198 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1199 {
c906108c 1200 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1201 value_type = TYPE_TARGET_TYPE (ftype);
1202 }
1203 else
1204 value_type = builtin_type_int;
1205 }
1206 else if (code == TYPE_CODE_INT)
1207 {
1208 /* Handle the case of functions lacking debugging info.
7b83ea04 1209 Their values are characters since their addresses are char */
c906108c 1210 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1211 funaddr = value_as_address (value_addr (function));
c906108c
SS
1212 else
1213 /* Handle integer used as address of a function. */
1214 funaddr = (CORE_ADDR) value_as_long (function);
1215
1216 value_type = builtin_type_int;
1217 }
1218 else
1219 error ("Invalid data type for function to be called.");
1220
1221 *retval_type = value_type;
1222 return funaddr;
1223}
1224
1225/* All this stuff with a dummy frame may seem unnecessarily complicated
1226 (why not just save registers in GDB?). The purpose of pushing a dummy
1227 frame which looks just like a real frame is so that if you call a
1228 function and then hit a breakpoint (get a signal, etc), "backtrace"
1229 will look right. Whether the backtrace needs to actually show the
1230 stack at the time the inferior function was called is debatable, but
1231 it certainly needs to not display garbage. So if you are contemplating
1232 making dummy frames be different from normal frames, consider that. */
1233
1234/* Perform a function call in the inferior.
1235 ARGS is a vector of values of arguments (NARGS of them).
1236 FUNCTION is a value, the function to be called.
1237 Returns a value representing what the function returned.
1238 May fail to return, if a breakpoint or signal is hit
1239 during the execution of the function.
1240
1241 ARGS is modified to contain coerced values. */
1242
f23631e4
AC
1243static struct value *
1244hand_function_call (struct value *function, int nargs, struct value **args)
c906108c
SS
1245{
1246 register CORE_ADDR sp;
1247 register int i;
da59e081 1248 int rc;
c906108c
SS
1249 CORE_ADDR start_sp;
1250 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1251 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1252 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1253 bigger than REGISTER_SIZE.
c906108c
SS
1254
1255 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1256 sequence of instructions. But CISC machines will have
1257 to pack the instructions into REGISTER_SIZE units (and
1258 so will RISC machines for which INSTRUCTION_SIZE is not
1259 REGISTER_SIZE).
7a292a7a
SS
1260
1261 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1262 target byte order. */
c906108c 1263
7a292a7a
SS
1264 static ULONGEST *dummy;
1265 int sizeof_dummy1;
1266 char *dummy1;
b81774d8 1267 CORE_ADDR dummy_addr;
c906108c
SS
1268 CORE_ADDR old_sp;
1269 struct type *value_type;
1270 unsigned char struct_return;
1271 CORE_ADDR struct_addr = 0;
36160dc4 1272 struct regcache *retbuf;
26e6c56a 1273 struct cleanup *retbuf_cleanup;
7a292a7a 1274 struct inferior_status *inf_status;
26e6c56a 1275 struct cleanup *inf_status_cleanup;
c906108c 1276 CORE_ADDR funaddr;
c5aa993b 1277 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1278 CORE_ADDR real_pc;
1279 struct type *param_type = NULL;
1280 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1281 int n_method_args = 0;
c906108c 1282
7a292a7a
SS
1283 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1284 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1285 dummy1 = alloca (sizeof_dummy1);
1286 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1287
c906108c 1288 if (!target_has_execution)
c5aa993b 1289 noprocess ();
c906108c 1290
26e6c56a
AC
1291 /* Create a cleanup chain that contains the retbuf (buffer
1292 containing the register values). This chain is create BEFORE the
1293 inf_status chain so that the inferior status can cleaned up
1294 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1295 retbuf = regcache_xmalloc (current_gdbarch);
1296 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1297
1298 /* A cleanup for the inferior status. Create this AFTER the retbuf
1299 so that this can be discarded or applied without interfering with
1300 the regbuf. */
7a292a7a 1301 inf_status = save_inferior_status (1);
26e6c56a 1302 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c 1303
f3824013
AC
1304 if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
1305 {
1306 /* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
749b82f6 1307 inferior registers (and frame_pop() for restoring them). (At
f3824013
AC
1308 least on most machines) they are saved on the stack in the
1309 inferior. */
1310 DEPRECATED_PUSH_DUMMY_FRAME;
1311 }
1312 else
1313 {
1314 /* FIXME: cagney/2003-02-26: Step zero of this little tinker is
1315 to extract the generic dummy frame code from the architecture
1316 vector. Hence this direct call.
1317
1318 A follow-on change is to modify this interface so that it takes
1319 thread OR frame OR tpid as a parameter, and returns a dummy
1320 frame handle. The handle can then be used further down as a
1321 parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
1322 everything is ment to be using generic dummy frames, why not
1323 even use some of the dummy frame code to here - do a regcache
1324 dup and then pass the duped regcache, along with all the other
1325 stuff, at one single point.
1326
1327 In fact, you can even save the structure's return address in the
1328 dummy frame and fix one of those nasty lost struct return edge
1329 conditions. */
1330 generic_push_dummy_frame ();
1331 }
c906108c 1332
dc604539
AC
1333 old_sp = read_sp ();
1334
1335 /* Ensure that the initial SP is correctly aligned. */
1336 if (gdbarch_frame_align_p (current_gdbarch))
1337 {
1338 /* NOTE: cagney/2002-09-18:
1339
1340 On a RISC architecture, a void parameterless generic dummy
1341 frame (i.e., no parameters, no result) typically does not
1342 need to push anything the stack and hence can leave SP and
1343 FP. Similarly, a framelss (possibly leaf) function does not
1344 push anything on the stack and, hence, that too can leave FP
1345 and SP unchanged. As a consequence, a sequence of void
1346 parameterless generic dummy frame calls to frameless
1347 functions will create a sequence of effectively identical
1348 frames (SP, FP and TOS and PC the same). This, not
1349 suprisingly, results in what appears to be a stack in an
1350 infinite loop --- when GDB tries to find a generic dummy
1351 frame on the internal dummy frame stack, it will always find
1352 the first one.
1353
1354 To avoid this problem, the code below always grows the stack.
1355 That way, two dummy frames can never be identical. It does
1356 burn a few bytes of stack but that is a small price to pay
1357 :-). */
1358 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1359 if (sp == old_sp)
1360 {
1361 if (INNER_THAN (1, 2))
1362 /* Stack grows down. */
1363 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1364 else
1365 /* Stack grows up. */
1366 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1367 }
1368 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1369 || (INNER_THAN (2, 1) && sp >= old_sp));
1370 }
1371 else
1372 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1373 aligned the SP is! Further, per comment above, if the generic
1374 dummy frame ends up empty (because nothing is pushed) GDB won't
1375 be able to correctly perform back traces. If a target is
1376 having trouble with backtraces, first thing to do is add
1377 FRAME_ALIGN() to its architecture vector. After that, try
618ce49f
AC
1378 adding SAVE_DUMMY_FRAME_TOS() and modifying
1379 DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
1380 generic dummy, it returns the current frame's base. */
dc604539 1381 sp = old_sp;
c906108c
SS
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
7a292a7a 1386 sp -= sizeof_dummy1;
c906108c
SS
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
7a292a7a 1393 sp += sizeof_dummy1;
c906108c
SS
1394 }
1395
dc604539
AC
1396 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1397 after allocating space for the call dummy. A target can specify
1398 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1399 alignment requirements are met. */
1400
c906108c
SS
1401 funaddr = find_function_addr (function, &value_type);
1402 CHECK_TYPEDEF (value_type);
1403
1404 {
1405 struct block *b = block_for_pc (funaddr);
1406 /* If compiled without -g, assume GCC 2. */
1407 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1408 }
1409
1410 /* Are we returning a value using a structure return or a normal
1411 value return? */
1412
1413 struct_return = using_struct_return (function, funaddr, value_type,
1414 using_gcc);
1415
1416 /* Create a call sequence customized for this function
1417 and the number of arguments for it. */
7a292a7a 1418 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1419 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1420 REGISTER_SIZE,
c5aa993b 1421 (ULONGEST) dummy[i]);
c906108c
SS
1422
1423#ifdef GDB_TARGET_IS_HPPA
1424 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1425 value_type, using_gcc);
1426#else
1427 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1428 value_type, using_gcc);
1429 real_pc = start_sp;
1430#endif
1431
b81774d8 1432 switch (CALL_DUMMY_LOCATION)
7a292a7a 1433 {
b81774d8
AC
1434 case ON_STACK:
1435 dummy_addr = start_sp;
c5aa993b 1436 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
07555a72 1437 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a 1438 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
b81774d8
AC
1439 break;
1440 case AT_ENTRY_POINT:
7a292a7a 1441 real_pc = funaddr;
b81774d8 1442 dummy_addr = CALL_DUMMY_ADDRESS ();
07555a72 1443 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a
AC
1444 /* NOTE: cagney/2002-04-13: The entry point is going to be
1445 modified with a single breakpoint. */
1446 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1447 CALL_DUMMY_ADDRESS () + 1);
b81774d8
AC
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, "bad switch");
7a292a7a 1451 }
c906108c
SS
1452
1453#ifdef lint
c5aa993b 1454 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1455#endif
1456
ad2f7632 1457 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1458 error ("too few arguments in function call");
1459
1460 for (i = nargs - 1; i >= 0; i--)
1461 {
ad2f7632 1462 int prototyped;
76b2e19d 1463
ad2f7632
DJ
1464 /* FIXME drow/2002-05-31: Should just always mark methods as
1465 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1466 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1467 prototyped = 1;
1468 else
1469 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1470
ad2f7632
DJ
1471 if (i < TYPE_NFIELDS (ftype))
1472 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1473 prototyped);
c5aa993b 1474 else
ad2f7632 1475 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1476
070ad9f0
DB
1477 /*elz: this code is to handle the case in which the function to be called
1478 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1479 is the address of a function and not a pointer to function variable.
1480 In aCC compiled code, the calls through pointers to functions (in the body
1481 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1482 requires some registers setting, this is taken care of if we call
1483 via a function pointer variable, but not via a function address.
7b83ea04 1484 In cc this is not a problem. */
c906108c
SS
1485
1486 if (using_gcc == 0)
ad2f7632 1487 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1488 /* if this parameter is a pointer to function */
c906108c 1489 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1490 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1491 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1492 to compile the target. We want to issue the error
070ad9f0
DB
1493 message only if the compiler used was HP's aCC.
1494 If we used HP's cc, then there is no problem and no need
7b83ea04 1495 to return at this point */
c5aa993b 1496 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1497 /* go see if the actual parameter is a variable of type
c5aa993b 1498 pointer to function or just a function */
c906108c
SS
1499 if (args[i]->lval == not_lval)
1500 {
1501 char *arg_name;
c5aa993b
JM
1502 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1503 error ("\
c906108c
SS
1504You cannot use function <%s> as argument. \n\
1505You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1506 }
c906108c
SS
1507 }
1508
d03e67c9
AC
1509 if (REG_STRUCT_HAS_ADDR_P ())
1510 {
1511 /* This is a machine like the sparc, where we may need to pass a
1512 pointer to the structure, not the structure itself. */
1513 for (i = nargs - 1; i >= 0; i--)
1514 {
1515 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1516 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1517 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1518 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1519 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1520 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1521 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1522 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1523 && TYPE_LENGTH (arg_type) > 8)
1524 )
1525 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1526 {
1527 CORE_ADDR addr;
1528 int len; /* = TYPE_LENGTH (arg_type); */
1529 int aligned_len;
1530 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1531 len = TYPE_LENGTH (arg_type);
1532
1533 if (STACK_ALIGN_P ())
1534 /* MVS 11/22/96: I think at least some of this
1535 stack_align code is really broken. Better to let
1536 PUSH_ARGUMENTS adjust the stack in a target-defined
1537 manner. */
1538 aligned_len = STACK_ALIGN (len);
1539 else
1540 aligned_len = len;
1541 if (INNER_THAN (1, 2))
1542 {
1543 /* stack grows downward */
1544 sp -= aligned_len;
0b3f98d3
AC
1545 /* ... so the address of the thing we push is the
1546 stack pointer after we push it. */
1547 addr = sp;
d03e67c9
AC
1548 }
1549 else
1550 {
1551 /* The stack grows up, so the address of the thing
1552 we push is the stack pointer before we push it. */
1553 addr = sp;
d03e67c9
AC
1554 sp += aligned_len;
1555 }
0b3f98d3
AC
1556 /* Push the structure. */
1557 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1558 /* The value we're going to pass is the address of the
1559 thing we just pushed. */
1560 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1561 (LONGEST) addr); */
1562 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1563 addr);
1564 }
1565 }
1566 }
1567
c906108c
SS
1568
1569 /* Reserve space for the return structure to be written on the
dc604539
AC
1570 stack, if necessary. Make certain that the value is correctly
1571 aligned. */
c906108c
SS
1572
1573 if (struct_return)
1574 {
1575 int len = TYPE_LENGTH (value_type);
2ada493a 1576 if (STACK_ALIGN_P ())
b81774d8
AC
1577 /* NOTE: cagney/2003-03-22: Should rely on frame align, rather
1578 than stack align to force the alignment of the stack. */
2ada493a 1579 len = STACK_ALIGN (len);
c906108c
SS
1580 if (INNER_THAN (1, 2))
1581 {
dc604539
AC
1582 /* Stack grows downward. Align STRUCT_ADDR and SP after
1583 making space for the return value. */
c906108c 1584 sp -= len;
dc604539
AC
1585 if (gdbarch_frame_align_p (current_gdbarch))
1586 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1587 struct_addr = sp;
1588 }
1589 else
1590 {
dc604539
AC
1591 /* Stack grows upward. Align the frame, allocate space, and
1592 then again, re-align the frame??? */
1593 if (gdbarch_frame_align_p (current_gdbarch))
1594 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1595 struct_addr = sp;
1596 sp += len;
dc604539
AC
1597 if (gdbarch_frame_align_p (current_gdbarch))
1598 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1599 }
1600 }
1601
0a49d05e
AC
1602 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1603 on other architectures. This is because all the alignment is
1604 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1605 in hppa_push_arguments */
f933a9c5
AC
1606 /* NOTE: cagney/2003-03-24: The below code is very broken. Given an
1607 odd sized parameter the below will mis-align the stack. As was
1608 suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
1609 if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1610 {
0a49d05e 1611 /* MVS 11/22/96: I think at least some of this stack_align code
b81774d8 1612 is really broken. Better to let push_dummy_call() adjust the
0a49d05e
AC
1613 stack in a target-defined manner. */
1614 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1615 {
1616 /* If stack grows down, we must leave a hole at the top. */
1617 int len = 0;
1618
1619 for (i = nargs - 1; i >= 0; i--)
1620 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1bf6d5cc
AC
1621 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1622 len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
0a49d05e
AC
1623 sp -= STACK_ALIGN (len) - len;
1624 }
c906108c 1625 }
c906108c 1626
b81774d8
AC
1627 /* Create the dummy stack frame. Pass in the call dummy address as,
1628 presumably, the ABI code knows where, in the call dummy, the
1629 return address should be pointed. */
1630 if (gdbarch_push_dummy_call_p (current_gdbarch))
1631 /* When there is no push_dummy_call method, should this code
1632 simply error out. That would the implementation of this method
1633 for all ABIs (which is probably a good thing). */
1634 sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
1635 dummy_addr, nargs, args, sp, struct_return,
1636 struct_addr);
1637 else if (DEPRECATED_PUSH_ARGUMENTS_P ())
1638 /* Keep old targets working. */
1639 sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
1640 struct_addr);
1641 else
1642 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
c906108c 1643
28f617b3 1644 if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
69a0d5f4
AC
1645 /* for targets that use no CALL_DUMMY */
1646 /* There are a number of targets now which actually don't write
1647 any CALL_DUMMY instructions into the target, but instead just
1648 save the machine state, push the arguments, and jump directly
1649 to the callee function. Since this doesn't actually involve
1650 executing a JSR/BSR instruction, the return address must be set
1651 up by hand, either by pushing onto the stack or copying into a
1652 return-address register as appropriate. Formerly this has been
1653 done in PUSH_ARGUMENTS, but that's overloading its
1654 functionality a bit, so I'm making it explicit to do it here. */
28f617b3 1655 sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1656
b81774d8
AC
1657 /* NOTE: cagney/2003-03-23: Diable this code when there is a
1658 push_dummy_call() method. Since that method will have already
1659 handled any alignment issues, the code below is entirely
1660 redundant. */
1661 if (!gdbarch_push_dummy_call_p (current_gdbarch)
1662 && STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1663 {
1664 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1665 that sp already has been advanced for the arguments! */
1bf6d5cc
AC
1666 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
1667 sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1668 sp = STACK_ALIGN (sp);
1669 }
c906108c
SS
1670
1671/* XXX This seems wrong. For stacks that grow down we shouldn't do
1672 anything here! */
1673 /* MVS 11/22/96: I think at least some of this stack_align code is
1674 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1675 a target-defined manner. */
1bf6d5cc 1676 if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
7a292a7a
SS
1677 if (INNER_THAN (1, 2))
1678 {
1679 /* stack grows downward */
1bf6d5cc 1680 sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
7a292a7a 1681 }
c906108c
SS
1682
1683 /* Store the address at which the structure is supposed to be
4183d812
AC
1684 written. */
1685 /* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
1686 store the struct return address, this call is entirely redundant. */
1687 if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
1688 DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
c906108c
SS
1689
1690 /* Write the stack pointer. This is here because the statements above
1691 might fool with it. On SPARC, this write also stores the register
1692 window into the right place in the new stack frame, which otherwise
1693 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
b81774d8
AC
1694 /* NOTE: cagney/2003-03-23: Disable this code when there is a
1695 push_dummy_call() method. Since that method will have already
1696 stored the stack pointer (as part of creating the fake call
1697 frame), and none of the code following that code adjusts the
1698 stack-pointer value, the below call is entirely redundant. */
6c0e89ed
AC
1699 if (DEPRECATED_DUMMY_WRITE_SP_P ())
1700 DEPRECATED_DUMMY_WRITE_SP (sp);
c906108c 1701
d1e3cf49
AC
1702 if (SAVE_DUMMY_FRAME_TOS_P ())
1703 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1704
c906108c 1705 {
c906108c
SS
1706 char *name;
1707 struct symbol *symbol;
1708
1709 name = NULL;
1710 symbol = find_pc_function (funaddr);
1711 if (symbol)
1712 {
de5ad195 1713 name = SYMBOL_PRINT_NAME (symbol);
c906108c
SS
1714 }
1715 else
1716 {
1717 /* Try the minimal symbols. */
1718 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1719
1720 if (msymbol)
1721 {
de5ad195 1722 name = SYMBOL_PRINT_NAME (msymbol);
c906108c
SS
1723 }
1724 }
1725 if (name == NULL)
1726 {
1727 char format[80];
1728 sprintf (format, "at %s", local_hex_format ());
1729 name = alloca (80);
1730 /* FIXME-32x64: assumes funaddr fits in a long. */
1731 sprintf (name, format, (unsigned long) funaddr);
1732 }
1733
1734 /* Execute the stack dummy routine, calling FUNCTION.
1735 When it is done, discard the empty frame
1736 after storing the contents of all regs into retbuf. */
da59e081
JM
1737 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1738
1739 if (rc == 1)
1740 {
1741 /* We stopped inside the FUNCTION because of a random signal.
1742 Further execution of the FUNCTION is not allowed. */
1743
7b83ea04 1744 if (unwind_on_signal_p)
242bfc55
FN
1745 {
1746 /* The user wants the context restored. */
da59e081 1747
dbe9fe58
AC
1748 /* We must get back to the frame we were before the dummy
1749 call. */
1750 frame_pop (get_current_frame ());
242bfc55
FN
1751
1752 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1753 a C++ name with arguments and stuff. */
1754 error ("\
1755The program being debugged was signaled while in a function called from GDB.\n\
1756GDB has restored the context to what it was before the call.\n\
1757To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1758Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1759 name);
1760 }
1761 else
1762 {
1763 /* The user wants to stay in the frame where we stopped (default).*/
1764
26e6c56a
AC
1765 /* If we restored the inferior status (via the cleanup),
1766 we would print a spurious error message (Unable to
1767 restore previously selected frame), would write the
1768 registers from the inf_status (which is wrong), and
1769 would do other wrong things. */
1770 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1771 discard_inferior_status (inf_status);
1772
1773 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1774 a C++ name with arguments and stuff. */
1775 error ("\
1776The program being debugged was signaled while in a function called from GDB.\n\
1777GDB remains in the frame where the signal was received.\n\
1778To change this behavior use \"set unwindonsignal on\"\n\
1779Evaluation of the expression containing the function (%s) will be abandoned.",
1780 name);
1781 }
da59e081
JM
1782 }
1783
1784 if (rc == 2)
c906108c 1785 {
da59e081 1786 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1787
26e6c56a
AC
1788 /* If we restored the inferior status (via the cleanup), we
1789 would print a spurious error message (Unable to restore
1790 previously selected frame), would write the registers from
1791 the inf_status (which is wrong), and would do other wrong
1792 things. */
1793 discard_cleanups (inf_status_cleanup);
7a292a7a 1794 discard_inferior_status (inf_status);
c906108c
SS
1795
1796 /* The following error message used to say "The expression
1797 which contained the function call has been discarded." It
1798 is a hard concept to explain in a few words. Ideally, GDB
1799 would be able to resume evaluation of the expression when
1800 the function finally is done executing. Perhaps someday
1801 this will be implemented (it would not be easy). */
1802
1803 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1804 a C++ name with arguments and stuff. */
1805 error ("\
1806The program being debugged stopped while in a function called from GDB.\n\
1807When the function (%s) is done executing, GDB will silently\n\
1808stop (instead of continuing to evaluate the expression containing\n\
1809the function call).", name);
1810 }
1811
da59e081 1812 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1813
1814 /* Restore the inferior status, via its cleanup. At this stage,
1815 leave the RETBUF alone. */
1816 do_cleanups (inf_status_cleanup);
c906108c
SS
1817
1818 /* Figure out the value returned by the function. */
dc604539
AC
1819 /* elz: I defined this new macro for the hppa architecture only.
1820 this gives us a way to get the value returned by the function
1821 from the stack, at the same address we told the function to put
1822 it. We cannot assume on the pa that r28 still contains the
1823 address of the returned structure. Usually this will be
1824 overwritten by the callee. I don't know about other
1825 architectures, so I defined this macro */
c906108c
SS
1826#ifdef VALUE_RETURNED_FROM_STACK
1827 if (struct_return)
26e6c56a
AC
1828 {
1829 do_cleanups (retbuf_cleanup);
1830 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1831 }
c906108c 1832#endif
dc604539
AC
1833 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1834 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1835 fetch the return value direct from the stack. This lack of
1836 trust comes about because legacy targets have a nasty habit of
1837 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1838 For such targets, just hope that value_being_returned() can
1839 find the adjusted value. */
1840 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1841 {
1842 struct value *retval = value_at (value_type, struct_addr, NULL);
1843 do_cleanups (retbuf_cleanup);
1844 return retval;
1845 }
1846 else
1847 {
1848 struct value *retval = value_being_returned (value_type, retbuf,
1849 struct_return);
1850 do_cleanups (retbuf_cleanup);
1851 return retval;
1852 }
c906108c
SS
1853 }
1854}
7a292a7a 1855
f23631e4
AC
1856struct value *
1857call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c 1858{
7a292a7a
SS
1859 if (CALL_DUMMY_P)
1860 {
1861 return hand_function_call (function, nargs, args);
1862 }
1863 else
1864 {
1865 error ("Cannot invoke functions on this machine.");
1866 }
c906108c 1867}
c5aa993b 1868\f
7a292a7a 1869
c906108c 1870
c906108c
SS
1871/* Create a value for an array by allocating space in the inferior, copying
1872 the data into that space, and then setting up an array value.
1873
1874 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1875 populated from the values passed in ELEMVEC.
1876
1877 The element type of the array is inherited from the type of the
1878 first element, and all elements must have the same size (though we
1879 don't currently enforce any restriction on their types). */
1880
f23631e4
AC
1881struct value *
1882value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1883{
1884 int nelem;
1885 int idx;
1886 unsigned int typelength;
f23631e4 1887 struct value *val;
c906108c
SS
1888 struct type *rangetype;
1889 struct type *arraytype;
1890 CORE_ADDR addr;
1891
1892 /* Validate that the bounds are reasonable and that each of the elements
1893 have the same size. */
1894
1895 nelem = highbound - lowbound + 1;
1896 if (nelem <= 0)
1897 {
1898 error ("bad array bounds (%d, %d)", lowbound, highbound);
1899 }
1900 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1901 for (idx = 1; idx < nelem; idx++)
1902 {
1903 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1904 {
1905 error ("array elements must all be the same size");
1906 }
1907 }
1908
1909 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1910 lowbound, highbound);
c5aa993b
JM
1911 arraytype = create_array_type ((struct type *) NULL,
1912 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1913
1914 if (!current_language->c_style_arrays)
1915 {
1916 val = allocate_value (arraytype);
1917 for (idx = 0; idx < nelem; idx++)
1918 {
1919 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1920 VALUE_CONTENTS_ALL (elemvec[idx]),
1921 typelength);
1922 }
1923 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1924 return val;
1925 }
1926
1927 /* Allocate space to store the array in the inferior, and then initialize
1928 it by copying in each element. FIXME: Is it worth it to create a
1929 local buffer in which to collect each value and then write all the
1930 bytes in one operation? */
1931
1932 addr = allocate_space_in_inferior (nelem * typelength);
1933 for (idx = 0; idx < nelem; idx++)
1934 {
1935 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1936 typelength);
1937 }
1938
1939 /* Create the array type and set up an array value to be evaluated lazily. */
1940
1941 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1942 return (val);
1943}
1944
1945/* Create a value for a string constant by allocating space in the inferior,
1946 copying the data into that space, and returning the address with type
1947 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1948 of characters.
1949 Note that string types are like array of char types with a lower bound of
1950 zero and an upper bound of LEN - 1. Also note that the string may contain
1951 embedded null bytes. */
1952
f23631e4 1953struct value *
fba45db2 1954value_string (char *ptr, int len)
c906108c 1955{
f23631e4 1956 struct value *val;
c906108c
SS
1957 int lowbound = current_language->string_lower_bound;
1958 struct type *rangetype = create_range_type ((struct type *) NULL,
1959 builtin_type_int,
1960 lowbound, len + lowbound - 1);
1961 struct type *stringtype
c5aa993b 1962 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1963 CORE_ADDR addr;
1964
1965 if (current_language->c_style_arrays == 0)
1966 {
1967 val = allocate_value (stringtype);
1968 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1969 return val;
1970 }
1971
1972
1973 /* Allocate space to store the string in the inferior, and then
1974 copy LEN bytes from PTR in gdb to that address in the inferior. */
1975
1976 addr = allocate_space_in_inferior (len);
1977 write_memory (addr, ptr, len);
1978
1979 val = value_at_lazy (stringtype, addr, NULL);
1980 return (val);
1981}
1982
f23631e4 1983struct value *
fba45db2 1984value_bitstring (char *ptr, int len)
c906108c 1985{
f23631e4 1986 struct value *val;
c906108c
SS
1987 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1988 0, len - 1);
c5aa993b 1989 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1990 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1991 val = allocate_value (type);
1992 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1993 return val;
1994}
1995\f
1996/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1997 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1998 vector. If some arguments need coercion of some sort, then the coerced
1999 values are written into T2. Return value is 0 if the arguments could be
2000 matched, or the position at which they differ if not.
c906108c
SS
2001
2002 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
2003 static member function. T2 will still include the ``this'' pointer,
2004 but it will be skipped.
c906108c
SS
2005
2006 For non-static member functions, we ignore the first argument,
2007 which is the type of the instance variable. This is because we want
2008 to handle calls with objects from derived classes. This is not
2009 entirely correct: we should actually check to make sure that a
2010 requested operation is type secure, shouldn't we? FIXME. */
2011
2012static int
ad2f7632
DJ
2013typecmp (int staticp, int varargs, int nargs,
2014 struct field t1[], struct value *t2[])
c906108c
SS
2015{
2016 int i;
2017
2018 if (t2 == 0)
ad2f7632
DJ
2019 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
2020
4a1970e4
DJ
2021 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
2022 if (staticp)
ad2f7632
DJ
2023 t2 ++;
2024
2025 for (i = 0;
2026 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
2027 i++)
c906108c 2028 {
c5aa993b 2029 struct type *tt1, *tt2;
ad2f7632 2030
c5aa993b
JM
2031 if (!t2[i])
2032 return i + 1;
ad2f7632
DJ
2033
2034 tt1 = check_typedef (t1[i].type);
c5aa993b 2035 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 2036
c906108c 2037 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 2038 /* We should be doing hairy argument matching, as below. */
c906108c
SS
2039 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2040 {
2041 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2042 t2[i] = value_coerce_array (t2[i]);
2043 else
2044 t2[i] = value_addr (t2[i]);
2045 continue;
2046 }
2047
802db21b
DB
2048 /* djb - 20000715 - Until the new type structure is in the
2049 place, and we can attempt things like implicit conversions,
2050 we need to do this so you can take something like a map<const
2051 char *>, and properly access map["hello"], because the
2052 argument to [] will be a reference to a pointer to a char,
7168a814 2053 and the argument will be a pointer to a char. */
802db21b
DB
2054 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
2055 TYPE_CODE (tt1) == TYPE_CODE_PTR)
2056 {
2057 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
2058 }
2059 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
2060 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
2061 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 2062 {
802db21b 2063 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 2064 }
c5aa993b
JM
2065 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2066 continue;
c906108c
SS
2067 /* Array to pointer is a `trivial conversion' according to the ARM. */
2068
2069 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2070 of the ARM), but as a quick kludge, just check for the same type
2071 code. */
ad2f7632 2072 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2073 return i + 1;
c906108c 2074 }
ad2f7632 2075 if (varargs || t2[i] == NULL)
c5aa993b 2076 return 0;
ad2f7632 2077 return i + 1;
c906108c
SS
2078}
2079
2080/* Helper function used by value_struct_elt to recurse through baseclasses.
2081 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2082 and search in it assuming it has (class) type TYPE.
2083 If found, return value, else return NULL.
2084
2085 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2086 look for a baseclass named NAME. */
2087
f23631e4
AC
2088static struct value *
2089search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2090 register struct type *type, int looking_for_baseclass)
c906108c
SS
2091{
2092 int i;
2093 int nbases = TYPE_N_BASECLASSES (type);
2094
2095 CHECK_TYPEDEF (type);
2096
c5aa993b 2097 if (!looking_for_baseclass)
c906108c
SS
2098 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2099 {
2100 char *t_field_name = TYPE_FIELD_NAME (type, i);
2101
db577aea 2102 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2103 {
f23631e4 2104 struct value *v;
c906108c 2105 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2106 {
2107 v = value_static_field (type, i);
2108 if (v == 0)
2109 error ("field %s is nonexistent or has been optimised out",
2110 name);
2111 }
c906108c 2112 else
2c2738a0
DC
2113 {
2114 v = value_primitive_field (arg1, offset, i, type);
2115 if (v == 0)
2116 error ("there is no field named %s", name);
2117 }
c906108c
SS
2118 return v;
2119 }
2120
2121 if (t_field_name
2122 && (t_field_name[0] == '\0'
2123 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2124 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2125 {
2126 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2127 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2128 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2129 {
2130 /* Look for a match through the fields of an anonymous union,
2131 or anonymous struct. C++ provides anonymous unions.
2132
1b831c93
AC
2133 In the GNU Chill (now deleted from GDB)
2134 implementation of variant record types, each
2135 <alternative field> has an (anonymous) union type,
2136 each member of the union represents a <variant
2137 alternative>. Each <variant alternative> is
2138 represented as a struct, with a member for each
2139 <variant field>. */
c5aa993b 2140
f23631e4 2141 struct value *v;
c906108c
SS
2142 int new_offset = offset;
2143
db034ac5
AC
2144 /* This is pretty gross. In G++, the offset in an
2145 anonymous union is relative to the beginning of the
1b831c93
AC
2146 enclosing struct. In the GNU Chill (now deleted
2147 from GDB) implementation of variant records, the
2148 bitpos is zero in an anonymous union field, so we
2149 have to add the offset of the union here. */
c906108c
SS
2150 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2151 || (TYPE_NFIELDS (field_type) > 0
2152 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2153 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2154
2155 v = search_struct_field (name, arg1, new_offset, field_type,
2156 looking_for_baseclass);
2157 if (v)
2158 return v;
2159 }
2160 }
2161 }
2162
c5aa993b 2163 for (i = 0; i < nbases; i++)
c906108c 2164 {
f23631e4 2165 struct value *v;
c906108c
SS
2166 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2167 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2168 hit them. But it could happen that the base part's member name
2169 is not yet filled in. */
c906108c
SS
2170 int found_baseclass = (looking_for_baseclass
2171 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2172 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2173
2174 if (BASETYPE_VIA_VIRTUAL (type, i))
2175 {
2176 int boffset;
f23631e4 2177 struct value *v2 = allocate_value (basetype);
c906108c
SS
2178
2179 boffset = baseclass_offset (type, i,
2180 VALUE_CONTENTS (arg1) + offset,
2181 VALUE_ADDRESS (arg1)
c5aa993b 2182 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2183 if (boffset == -1)
2184 error ("virtual baseclass botch");
2185
2186 /* The virtual base class pointer might have been clobbered by the
2187 user program. Make sure that it still points to a valid memory
2188 location. */
2189
2190 boffset += offset;
2191 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2192 {
2193 CORE_ADDR base_addr;
c5aa993b 2194
c906108c
SS
2195 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2196 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2197 TYPE_LENGTH (basetype)) != 0)
2198 error ("virtual baseclass botch");
2199 VALUE_LVAL (v2) = lval_memory;
2200 VALUE_ADDRESS (v2) = base_addr;
2201 }
2202 else
2203 {
2204 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2205 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2206 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2207 if (VALUE_LAZY (arg1))
2208 VALUE_LAZY (v2) = 1;
2209 else
2210 memcpy (VALUE_CONTENTS_RAW (v2),
2211 VALUE_CONTENTS_RAW (arg1) + boffset,
2212 TYPE_LENGTH (basetype));
2213 }
2214
2215 if (found_baseclass)
2216 return v2;
2217 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2218 looking_for_baseclass);
2219 }
2220 else if (found_baseclass)
2221 v = value_primitive_field (arg1, offset, i, type);
2222 else
2223 v = search_struct_field (name, arg1,
c5aa993b 2224 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2225 basetype, looking_for_baseclass);
c5aa993b
JM
2226 if (v)
2227 return v;
c906108c
SS
2228 }
2229 return NULL;
2230}
2231
2232
2233/* Return the offset (in bytes) of the virtual base of type BASETYPE
2234 * in an object pointed to by VALADDR (on the host), assumed to be of
2235 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2236 * looking (in case VALADDR is the contents of an enclosing object).
2237 *
2238 * This routine recurses on the primary base of the derived class because
2239 * the virtual base entries of the primary base appear before the other
2240 * virtual base entries.
2241 *
2242 * If the virtual base is not found, a negative integer is returned.
2243 * The magnitude of the negative integer is the number of entries in
2244 * the virtual table to skip over (entries corresponding to various
2245 * ancestral classes in the chain of primary bases).
2246 *
2247 * Important: This assumes the HP / Taligent C++ runtime
2248 * conventions. Use baseclass_offset() instead to deal with g++
2249 * conventions. */
2250
2251void
fba45db2
KB
2252find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2253 int offset, int *boffset_p, int *skip_p)
c906108c 2254{
c5aa993b
JM
2255 int boffset; /* offset of virtual base */
2256 int index; /* displacement to use in virtual table */
c906108c 2257 int skip;
c5aa993b 2258
f23631e4 2259 struct value *vp;
c5aa993b
JM
2260 CORE_ADDR vtbl; /* the virtual table pointer */
2261 struct type *pbc; /* the primary base class */
c906108c
SS
2262
2263 /* Look for the virtual base recursively in the primary base, first.
2264 * This is because the derived class object and its primary base
2265 * subobject share the primary virtual table. */
c5aa993b 2266
c906108c 2267 boffset = 0;
c5aa993b 2268 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2269 if (pbc)
2270 {
2271 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2272 if (skip < 0)
c5aa993b
JM
2273 {
2274 *boffset_p = boffset;
2275 *skip_p = -1;
2276 return;
2277 }
c906108c
SS
2278 }
2279 else
2280 skip = 0;
2281
2282
2283 /* Find the index of the virtual base according to HP/Taligent
2284 runtime spec. (Depth-first, left-to-right.) */
2285 index = virtual_base_index_skip_primaries (basetype, type);
2286
c5aa993b
JM
2287 if (index < 0)
2288 {
2289 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2290 *boffset_p = 0;
2291 return;
2292 }
c906108c 2293
c5aa993b 2294 /* pai: FIXME -- 32x64 possible problem */
c906108c 2295 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2296 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2297
c5aa993b 2298 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2299 if (vtbl == 0)
2300 error ("Couldn't find virtual table -- object may not be constructed yet.");
2301
2302
2303 /* Find virtual base's offset -- jump over entries for primary base
2304 * ancestors, then use the index computed above. But also adjust by
2305 * HP_ACC_VBASE_START for the vtable slots before the start of the
2306 * virtual base entries. Offset is negative -- virtual base entries
2307 * appear _before_ the address point of the virtual table. */
c5aa993b 2308
070ad9f0 2309 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2310 & use long type */
c906108c
SS
2311
2312 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2313 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2314 boffset = value_as_long (vp);
2315 *skip_p = -1;
2316 *boffset_p = boffset;
2317 return;
2318}
2319
2320
2321/* Helper function used by value_struct_elt to recurse through baseclasses.
2322 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2323 and search in it assuming it has (class) type TYPE.
2324 If found, return value, else if name matched and args not return (value)-1,
2325 else return NULL. */
2326
f23631e4
AC
2327static struct value *
2328search_struct_method (char *name, struct value **arg1p,
2329 struct value **args, int offset,
fba45db2 2330 int *static_memfuncp, register struct type *type)
c906108c
SS
2331{
2332 int i;
f23631e4 2333 struct value *v;
c906108c
SS
2334 int name_matched = 0;
2335 char dem_opname[64];
2336
2337 CHECK_TYPEDEF (type);
2338 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2339 {
2340 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2341 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2342 if (strncmp (t_field_name, "__", 2) == 0 ||
2343 strncmp (t_field_name, "op", 2) == 0 ||
2344 strncmp (t_field_name, "type", 4) == 0)
c906108c 2345 {
c5aa993b
JM
2346 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2347 t_field_name = dem_opname;
2348 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2349 t_field_name = dem_opname;
c906108c 2350 }
db577aea 2351 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2352 {
2353 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2354 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2355 name_matched = 1;
c906108c 2356
de17c821 2357 check_stub_method_group (type, i);
c906108c
SS
2358 if (j > 0 && args == 0)
2359 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2360 else if (j == 0 && args == 0)
c906108c 2361 {
acf5ed49
DJ
2362 v = value_fn_field (arg1p, f, j, type, offset);
2363 if (v != NULL)
2364 return v;
c906108c 2365 }
acf5ed49
DJ
2366 else
2367 while (j >= 0)
2368 {
acf5ed49 2369 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2370 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2371 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2372 TYPE_FN_FIELD_ARGS (f, j), args))
2373 {
2374 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2375 return value_virtual_fn_field (arg1p, f, j, type, offset);
2376 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2377 *static_memfuncp = 1;
2378 v = value_fn_field (arg1p, f, j, type, offset);
2379 if (v != NULL)
2380 return v;
2381 }
2382 j--;
2383 }
c906108c
SS
2384 }
2385 }
2386
2387 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2388 {
2389 int base_offset;
2390
2391 if (BASETYPE_VIA_VIRTUAL (type, i))
2392 {
c5aa993b
JM
2393 if (TYPE_HAS_VTABLE (type))
2394 {
2395 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2396 according to HP/Taligent runtime spec. */
c5aa993b
JM
2397 int skip;
2398 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2399 VALUE_CONTENTS_ALL (*arg1p),
2400 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2401 &base_offset, &skip);
2402 if (skip >= 0)
2403 error ("Virtual base class offset not found in vtable");
2404 }
2405 else
2406 {
2407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2408 char *base_valaddr;
2409
2410 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2411 user program. Make sure that it still points to a valid memory
2412 location. */
c5aa993b
JM
2413
2414 if (offset < 0 || offset >= TYPE_LENGTH (type))
2415 {
2416 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2417 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2418 + VALUE_OFFSET (*arg1p) + offset,
2419 base_valaddr,
2420 TYPE_LENGTH (baseclass)) != 0)
2421 error ("virtual baseclass botch");
2422 }
2423 else
2424 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2425
2426 base_offset =
2427 baseclass_offset (type, i, base_valaddr,
2428 VALUE_ADDRESS (*arg1p)
2429 + VALUE_OFFSET (*arg1p) + offset);
2430 if (base_offset == -1)
2431 error ("virtual baseclass botch");
2432 }
2433 }
c906108c
SS
2434 else
2435 {
2436 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2437 }
c906108c
SS
2438 v = search_struct_method (name, arg1p, args, base_offset + offset,
2439 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2440 if (v == (struct value *) - 1)
c906108c
SS
2441 {
2442 name_matched = 1;
2443 }
2444 else if (v)
2445 {
2446/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2447/* *arg1p = arg1_tmp; */
c906108c 2448 return v;
c5aa993b 2449 }
c906108c 2450 }
c5aa993b 2451 if (name_matched)
f23631e4 2452 return (struct value *) - 1;
c5aa993b
JM
2453 else
2454 return NULL;
c906108c
SS
2455}
2456
2457/* Given *ARGP, a value of type (pointer to a)* structure/union,
2458 extract the component named NAME from the ultimate target structure/union
2459 and return it as a value with its appropriate type.
2460 ERR is used in the error message if *ARGP's type is wrong.
2461
2462 C++: ARGS is a list of argument types to aid in the selection of
2463 an appropriate method. Also, handle derived types.
2464
2465 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2466 where the truthvalue of whether the function that was resolved was
2467 a static member function or not is stored.
2468
2469 ERR is an error message to be printed in case the field is not found. */
2470
f23631e4
AC
2471struct value *
2472value_struct_elt (struct value **argp, struct value **args,
fba45db2 2473 char *name, int *static_memfuncp, char *err)
c906108c
SS
2474{
2475 register struct type *t;
f23631e4 2476 struct value *v;
c906108c
SS
2477
2478 COERCE_ARRAY (*argp);
2479
2480 t = check_typedef (VALUE_TYPE (*argp));
2481
2482 /* Follow pointers until we get to a non-pointer. */
2483
2484 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2485 {
2486 *argp = value_ind (*argp);
2487 /* Don't coerce fn pointer to fn and then back again! */
2488 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2489 COERCE_ARRAY (*argp);
2490 t = check_typedef (VALUE_TYPE (*argp));
2491 }
2492
2493 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2494 error ("not implemented: member type in value_struct_elt");
2495
c5aa993b 2496 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2497 && TYPE_CODE (t) != TYPE_CODE_UNION)
2498 error ("Attempt to extract a component of a value that is not a %s.", err);
2499
2500 /* Assume it's not, unless we see that it is. */
2501 if (static_memfuncp)
c5aa993b 2502 *static_memfuncp = 0;
c906108c
SS
2503
2504 if (!args)
2505 {
2506 /* if there are no arguments ...do this... */
2507
2508 /* Try as a field first, because if we succeed, there
7b83ea04 2509 is less work to be done. */
c906108c
SS
2510 v = search_struct_field (name, *argp, 0, t, 0);
2511 if (v)
2512 return v;
2513
2514 /* C++: If it was not found as a data field, then try to
7b83ea04 2515 return it as a pointer to a method. */
c906108c
SS
2516
2517 if (destructor_name_p (name, t))
2518 error ("Cannot get value of destructor");
2519
2520 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2521
f23631e4 2522 if (v == (struct value *) - 1)
c906108c
SS
2523 error ("Cannot take address of a method");
2524 else if (v == 0)
2525 {
2526 if (TYPE_NFN_FIELDS (t))
2527 error ("There is no member or method named %s.", name);
2528 else
2529 error ("There is no member named %s.", name);
2530 }
2531 return v;
2532 }
2533
2534 if (destructor_name_p (name, t))
2535 {
2536 if (!args[1])
2537 {
2538 /* Destructors are a special case. */
2539 int m_index, f_index;
2540
2541 v = NULL;
2542 if (get_destructor_fn_field (t, &m_index, &f_index))
2543 {
2544 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2545 f_index, NULL, 0);
2546 }
2547 if (v == NULL)
2548 error ("could not find destructor function named %s.", name);
2549 else
2550 return v;
2551 }
2552 else
2553 {
2554 error ("destructor should not have any argument");
2555 }
2556 }
2557 else
2558 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2559
f23631e4 2560 if (v == (struct value *) - 1)
c906108c 2561 {
7168a814 2562 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2563 }
2564 else if (v == 0)
2565 {
2566 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2567 hand it back. If it's not callable (i.e., a pointer to function),
2568 gdb should give an error. */
c906108c
SS
2569 v = search_struct_field (name, *argp, 0, t, 0);
2570 }
2571
2572 if (!v)
2573 error ("Structure has no component named %s.", name);
2574 return v;
2575}
2576
2577/* Search through the methods of an object (and its bases)
2578 * to find a specified method. Return the pointer to the
2579 * fn_field list of overloaded instances.
2580 * Helper function for value_find_oload_list.
2581 * ARGP is a pointer to a pointer to a value (the object)
2582 * METHOD is a string containing the method name
2583 * OFFSET is the offset within the value
c906108c
SS
2584 * TYPE is the assumed type of the object
2585 * NUM_FNS is the number of overloaded instances
2586 * BASETYPE is set to the actual type of the subobject where the method is found
2587 * BOFFSET is the offset of the base subobject where the method is found */
2588
7a292a7a 2589static struct fn_field *
f23631e4 2590find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2591 struct type *type, int *num_fns,
fba45db2 2592 struct type **basetype, int *boffset)
c906108c
SS
2593{
2594 int i;
c5aa993b 2595 struct fn_field *f;
c906108c
SS
2596 CHECK_TYPEDEF (type);
2597
2598 *num_fns = 0;
2599
c5aa993b
JM
2600 /* First check in object itself */
2601 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2602 {
2603 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2604 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2605 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2606 {
4a1970e4
DJ
2607 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2608 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4a1970e4
DJ
2609
2610 *num_fns = len;
c5aa993b
JM
2611 *basetype = type;
2612 *boffset = offset;
4a1970e4 2613
de17c821
DJ
2614 /* Resolve any stub methods. */
2615 check_stub_method_group (type, i);
4a1970e4
DJ
2616
2617 return f;
c5aa993b
JM
2618 }
2619 }
2620
c906108c
SS
2621 /* Not found in object, check in base subobjects */
2622 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2623 {
2624 int base_offset;
2625 if (BASETYPE_VIA_VIRTUAL (type, i))
2626 {
c5aa993b
JM
2627 if (TYPE_HAS_VTABLE (type))
2628 {
2629 /* HP aCC compiled type, search for virtual base offset
2630 * according to HP/Taligent runtime spec. */
2631 int skip;
2632 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2633 VALUE_CONTENTS_ALL (*argp),
2634 offset + VALUE_EMBEDDED_OFFSET (*argp),
2635 &base_offset, &skip);
2636 if (skip >= 0)
2637 error ("Virtual base class offset not found in vtable");
2638 }
2639 else
2640 {
2641 /* probably g++ runtime model */
2642 base_offset = VALUE_OFFSET (*argp) + offset;
2643 base_offset =
2644 baseclass_offset (type, i,
2645 VALUE_CONTENTS (*argp) + base_offset,
2646 VALUE_ADDRESS (*argp) + base_offset);
2647 if (base_offset == -1)
2648 error ("virtual baseclass botch");
2649 }
2650 }
2651 else
2652 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2653 {
2654 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2655 }
c906108c 2656 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2657 TYPE_BASECLASS (type, i), num_fns, basetype,
2658 boffset);
c906108c 2659 if (f)
c5aa993b 2660 return f;
c906108c 2661 }
c5aa993b 2662 return NULL;
c906108c
SS
2663}
2664
2665/* Return the list of overloaded methods of a specified name.
2666 * ARGP is a pointer to a pointer to a value (the object)
2667 * METHOD is the method name
2668 * OFFSET is the offset within the value contents
c906108c
SS
2669 * NUM_FNS is the number of overloaded instances
2670 * BASETYPE is set to the type of the base subobject that defines the method
2671 * BOFFSET is the offset of the base subobject which defines the method */
2672
2673struct fn_field *
f23631e4 2674value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2675 int *num_fns, struct type **basetype,
2676 int *boffset)
c906108c 2677{
c5aa993b 2678 struct type *t;
c906108c
SS
2679
2680 t = check_typedef (VALUE_TYPE (*argp));
2681
c5aa993b 2682 /* code snarfed from value_struct_elt */
c906108c
SS
2683 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2684 {
2685 *argp = value_ind (*argp);
2686 /* Don't coerce fn pointer to fn and then back again! */
2687 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2688 COERCE_ARRAY (*argp);
2689 t = check_typedef (VALUE_TYPE (*argp));
2690 }
c5aa993b 2691
c906108c
SS
2692 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2693 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2694
2695 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2696 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2697 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2698
4a1970e4 2699 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2700}
2701
2702/* Given an array of argument types (ARGTYPES) (which includes an
2703 entry for "this" in the case of C++ methods), the number of
2704 arguments NARGS, the NAME of a function whether it's a method or
2705 not (METHOD), and the degree of laxness (LAX) in conforming to
2706 overload resolution rules in ANSI C++, find the best function that
2707 matches on the argument types according to the overload resolution
2708 rules.
2709
2710 In the case of class methods, the parameter OBJ is an object value
2711 in which to search for overloaded methods.
2712
2713 In the case of non-method functions, the parameter FSYM is a symbol
2714 corresponding to one of the overloaded functions.
2715
2716 Return value is an integer: 0 -> good match, 10 -> debugger applied
2717 non-standard coercions, 100 -> incompatible.
2718
2719 If a method is being searched for, VALP will hold the value.
2720 If a non-method is being searched for, SYMP will hold the symbol for it.
2721
2722 If a method is being searched for, and it is a static method,
2723 then STATICP will point to a non-zero value.
2724
2725 Note: This function does *not* check the value of
2726 overload_resolution. Caller must check it to see whether overload
2727 resolution is permitted.
c5aa993b 2728 */
c906108c
SS
2729
2730int
fba45db2 2731find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2732 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2733 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2734{
2735 int nparms;
c5aa993b 2736 struct type **parm_types;
c906108c 2737 int champ_nparms = 0;
7f8c9282 2738 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2739
2740 short oload_champ = -1; /* Index of best overloaded function */
2741 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2742 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2743 short oload_ambig_champ = -1; /* 2nd contender for best match */
2744 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2745 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2746
2747 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2748 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2749
f23631e4 2750 struct value *temp = obj;
c5aa993b
JM
2751 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2752 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2753 int num_fns = 0; /* Number of overloaded instances being considered */
2754 struct type *basetype = NULL;
c906108c
SS
2755 int boffset;
2756 register int jj;
2757 register int ix;
4a1970e4 2758 int static_offset;
02f0d45d 2759 struct cleanup *cleanups = NULL;
c906108c 2760
c5aa993b
JM
2761 char *obj_type_name = NULL;
2762 char *func_name = NULL;
c906108c
SS
2763
2764 /* Get the list of overloaded methods or functions */
2765 if (method)
2766 {
2767 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2768 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2769 value rather than the object itself, so try again */
c906108c 2770 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2771 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2772 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2773
2774 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2775 &num_fns,
2776 &basetype, &boffset);
c906108c 2777 if (!fns_ptr || !num_fns)
c5aa993b
JM
2778 error ("Couldn't find method %s%s%s",
2779 obj_type_name,
2780 (obj_type_name && *obj_type_name) ? "::" : "",
2781 name);
4a1970e4
DJ
2782 /* If we are dealing with stub method types, they should have
2783 been resolved by find_method_list via value_find_oload_method_list
2784 above. */
2785 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2786 }
2787 else
2788 {
2789 int i = -1;
22abf04a 2790 func_name = cplus_demangle (DEPRECATED_SYMBOL_NAME (fsym), DMGL_NO_OPTS);
c906108c 2791
917317f4 2792 /* If the name is NULL this must be a C-style function.
7b83ea04 2793 Just return the same symbol. */
917317f4 2794 if (!func_name)
7b83ea04 2795 {
917317f4 2796 *symp = fsym;
7b83ea04
AC
2797 return 0;
2798 }
917317f4 2799
c906108c 2800 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2801 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2802 while (oload_syms[++i])
c5aa993b 2803 num_fns++;
c906108c 2804 if (!num_fns)
c5aa993b 2805 error ("Couldn't find function %s", func_name);
c906108c 2806 }
c5aa993b 2807
c906108c
SS
2808 oload_champ_bv = NULL;
2809
c5aa993b 2810 /* Consider each candidate in turn */
c906108c
SS
2811 for (ix = 0; ix < num_fns; ix++)
2812 {
4a1970e4 2813 static_offset = 0;
db577aea
AC
2814 if (method)
2815 {
4a1970e4
DJ
2816 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2817 static_offset = 1;
ad2f7632 2818 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2819 }
2820 else
2821 {
2822 /* If it's not a method, this is the proper place */
2823 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2824 }
c906108c 2825
c5aa993b 2826 /* Prepare array of parameter types */
c906108c
SS
2827 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2828 for (jj = 0; jj < nparms; jj++)
db577aea 2829 parm_types[jj] = (method
ad2f7632 2830 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2831 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2832
4a1970e4
DJ
2833 /* Compare parameter types to supplied argument types. Skip THIS for
2834 static methods. */
2835 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2836 nargs - static_offset);
c5aa993b 2837
c906108c 2838 if (!oload_champ_bv)
c5aa993b
JM
2839 {
2840 oload_champ_bv = bv;
2841 oload_champ = 0;
2842 champ_nparms = nparms;
2843 }
c906108c 2844 else
c5aa993b
JM
2845 /* See whether current candidate is better or worse than previous best */
2846 switch (compare_badness (bv, oload_champ_bv))
2847 {
2848 case 0:
2849 oload_ambiguous = 1; /* top two contenders are equally good */
2850 oload_ambig_champ = ix;
2851 break;
2852 case 1:
2853 oload_ambiguous = 2; /* incomparable top contenders */
2854 oload_ambig_champ = ix;
2855 break;
2856 case 2:
2857 oload_champ_bv = bv; /* new champion, record details */
2858 oload_ambiguous = 0;
2859 oload_champ = ix;
2860 oload_ambig_champ = -1;
2861 champ_nparms = nparms;
2862 break;
2863 case 3:
2864 default:
2865 break;
2866 }
b8c9b27d 2867 xfree (parm_types);
6b1ba9a0
ND
2868 if (overload_debug)
2869 {
2870 if (method)
2871 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2872 else
2873 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2874 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2875 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2876 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2877 }
c5aa993b 2878 } /* end loop over all candidates */
db577aea
AC
2879 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2880 if they have the exact same goodness. This is because there is no
2881 way to differentiate based on return type, which we need to in
2882 cases like overloads of .begin() <It's both const and non-const> */
2883#if 0
c906108c
SS
2884 if (oload_ambiguous)
2885 {
2886 if (method)
c5aa993b
JM
2887 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2888 obj_type_name,
2889 (obj_type_name && *obj_type_name) ? "::" : "",
2890 name);
c906108c 2891 else
c5aa993b
JM
2892 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2893 func_name);
c906108c 2894 }
db577aea 2895#endif
c906108c 2896
4a1970e4
DJ
2897 /* Check how bad the best match is. */
2898 static_offset = 0;
2899 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2900 static_offset = 1;
2901 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2902 {
6b1ba9a0
ND
2903 if (oload_champ_bv->rank[ix] >= 100)
2904 oload_incompatible = 1; /* truly mismatched types */
2905
2906 else if (oload_champ_bv->rank[ix] >= 10)
2907 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2908 }
2909 if (oload_incompatible)
2910 {
2911 if (method)
c5aa993b
JM
2912 error ("Cannot resolve method %s%s%s to any overloaded instance",
2913 obj_type_name,
2914 (obj_type_name && *obj_type_name) ? "::" : "",
2915 name);
c906108c 2916 else
c5aa993b
JM
2917 error ("Cannot resolve function %s to any overloaded instance",
2918 func_name);
c906108c
SS
2919 }
2920 else if (oload_non_standard)
2921 {
2922 if (method)
c5aa993b
JM
2923 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2924 obj_type_name,
2925 (obj_type_name && *obj_type_name) ? "::" : "",
2926 name);
c906108c 2927 else
c5aa993b
JM
2928 warning ("Using non-standard conversion to match function %s to supplied arguments",
2929 func_name);
c906108c
SS
2930 }
2931
2932 if (method)
2933 {
4a1970e4
DJ
2934 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2935 *staticp = 1;
2936 else if (staticp)
2937 *staticp = 0;
c906108c 2938 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2939 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2940 else
c5aa993b 2941 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2942 }
2943 else
2944 {
2945 *symp = oload_syms[oload_champ];
b8c9b27d 2946 xfree (func_name);
c906108c
SS
2947 }
2948
7f8c9282
DJ
2949 if (objp)
2950 {
2951 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2952 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2953 {
2954 temp = value_addr (temp);
2955 }
2956 *objp = temp;
2957 }
02f0d45d
DJ
2958 if (cleanups != NULL)
2959 do_cleanups (cleanups);
2960
c906108c
SS
2961 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2962}
2963
2964/* C++: return 1 is NAME is a legitimate name for the destructor
2965 of type TYPE. If TYPE does not have a destructor, or
2966 if NAME is inappropriate for TYPE, an error is signaled. */
2967int
fba45db2 2968destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2969{
2970 /* destructors are a special case. */
2971
2972 if (name[0] == '~')
2973 {
2974 char *dname = type_name_no_tag (type);
2975 char *cp = strchr (dname, '<');
2976 unsigned int len;
2977
2978 /* Do not compare the template part for template classes. */
2979 if (cp == NULL)
2980 len = strlen (dname);
2981 else
2982 len = cp - dname;
2983 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2984 error ("name of destructor must equal name of class");
2985 else
2986 return 1;
2987 }
2988 return 0;
2989}
2990
2991/* Helper function for check_field: Given TYPE, a structure/union,
2992 return 1 if the component named NAME from the ultimate
2993 target structure/union is defined, otherwise, return 0. */
2994
2995static int
fba45db2 2996check_field_in (register struct type *type, const char *name)
c906108c
SS
2997{
2998 register int i;
2999
3000 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3001 {
3002 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 3003 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
3004 return 1;
3005 }
3006
3007 /* C++: If it was not found as a data field, then try to
3008 return it as a pointer to a method. */
3009
3010 /* Destructors are a special case. */
3011 if (destructor_name_p (name, type))
3012 {
3013 int m_index, f_index;
3014
3015 return get_destructor_fn_field (type, &m_index, &f_index);
3016 }
3017
3018 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3019 {
db577aea 3020 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
3021 return 1;
3022 }
3023
3024 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3025 if (check_field_in (TYPE_BASECLASS (type, i), name))
3026 return 1;
c5aa993b 3027
c906108c
SS
3028 return 0;
3029}
3030
3031
3032/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3033 return 1 if the component named NAME from the ultimate
3034 target structure/union is defined, otherwise, return 0. */
3035
3036int
f23631e4 3037check_field (struct value *arg1, const char *name)
c906108c
SS
3038{
3039 register struct type *t;
3040
3041 COERCE_ARRAY (arg1);
3042
3043 t = VALUE_TYPE (arg1);
3044
3045 /* Follow pointers until we get to a non-pointer. */
3046
3047 for (;;)
3048 {
3049 CHECK_TYPEDEF (t);
3050 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3051 break;
3052 t = TYPE_TARGET_TYPE (t);
3053 }
3054
3055 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3056 error ("not implemented: member type in check_field");
3057
c5aa993b 3058 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3059 && TYPE_CODE (t) != TYPE_CODE_UNION)
3060 error ("Internal error: `this' is not an aggregate");
3061
3062 return check_field_in (t, name);
3063}
3064
3065/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3066 return the address of this member as a "pointer to member"
3067 type. If INTYPE is non-null, then it will be the type
3068 of the member we are looking for. This will help us resolve
3069 "pointers to member functions". This function is used
3070 to resolve user expressions of the form "DOMAIN::NAME". */
3071
f23631e4 3072struct value *
fba45db2
KB
3073value_struct_elt_for_reference (struct type *domain, int offset,
3074 struct type *curtype, char *name,
3075 struct type *intype)
c906108c
SS
3076{
3077 register struct type *t = curtype;
3078 register int i;
f23631e4 3079 struct value *v;
c906108c 3080
c5aa993b 3081 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3082 && TYPE_CODE (t) != TYPE_CODE_UNION)
3083 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3084
3085 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3086 {
3087 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3088
c906108c
SS
3089 if (t_field_name && STREQ (t_field_name, name))
3090 {
3091 if (TYPE_FIELD_STATIC (t, i))
3092 {
3093 v = value_static_field (t, i);
3094 if (v == NULL)
2c2738a0 3095 error ("static field %s has been optimized out",
c906108c
SS
3096 name);
3097 return v;
3098 }
3099 if (TYPE_FIELD_PACKED (t, i))
3100 error ("pointers to bitfield members not allowed");
c5aa993b 3101
c906108c
SS
3102 return value_from_longest
3103 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3104 domain)),
3105 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3106 }
3107 }
3108
3109 /* C++: If it was not found as a data field, then try to
3110 return it as a pointer to a method. */
3111
3112 /* Destructors are a special case. */
3113 if (destructor_name_p (name, t))
3114 {
3115 error ("member pointers to destructors not implemented yet");
3116 }
3117
3118 /* Perform all necessary dereferencing. */
3119 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3120 intype = TYPE_TARGET_TYPE (intype);
3121
3122 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3123 {
3124 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3125 char dem_opname[64];
3126
c5aa993b
JM
3127 if (strncmp (t_field_name, "__", 2) == 0 ||
3128 strncmp (t_field_name, "op", 2) == 0 ||
3129 strncmp (t_field_name, "type", 4) == 0)
c906108c 3130 {
c5aa993b
JM
3131 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3132 t_field_name = dem_opname;
3133 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3134 t_field_name = dem_opname;
c906108c
SS
3135 }
3136 if (t_field_name && STREQ (t_field_name, name))
3137 {
3138 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3139 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3140
de17c821
DJ
3141 check_stub_method_group (t, i);
3142
c906108c
SS
3143 if (intype == 0 && j > 1)
3144 error ("non-unique member `%s' requires type instantiation", name);
3145 if (intype)
3146 {
3147 while (j--)
3148 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3149 break;
3150 if (j < 0)
3151 error ("no member function matches that type instantiation");
3152 }
3153 else
3154 j = 0;
c5aa993b 3155
c906108c
SS
3156 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3157 {
3158 return value_from_longest
3159 (lookup_reference_type
3160 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3161 domain)),
3162 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3163 }
3164 else
3165 {
3166 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3167 0, VAR_NAMESPACE, 0, NULL);
3168 if (s == NULL)
3169 {
3170 v = 0;
3171 }
3172 else
3173 {
3174 v = read_var_value (s, 0);
3175#if 0
3176 VALUE_TYPE (v) = lookup_reference_type
3177 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3178 domain));
3179#endif
3180 }
3181 return v;
3182 }
3183 }
3184 }
3185 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3186 {
f23631e4 3187 struct value *v;
c906108c
SS
3188 int base_offset;
3189
3190 if (BASETYPE_VIA_VIRTUAL (t, i))
3191 base_offset = 0;
3192 else
3193 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3194 v = value_struct_elt_for_reference (domain,
3195 offset + base_offset,
3196 TYPE_BASECLASS (t, i),
3197 name,
3198 intype);
3199 if (v)
3200 return v;
3201 }
3202 return 0;
3203}
3204
3205
c906108c
SS
3206/* Given a pointer value V, find the real (RTTI) type
3207 of the object it points to.
3208 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3209 and refer to the values computed for the object pointed to. */
3210
3211struct type *
f23631e4 3212value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3213{
f23631e4 3214 struct value *target;
c906108c
SS
3215
3216 target = value_ind (v);
3217
3218 return value_rtti_type (target, full, top, using_enc);
3219}
3220
3221/* Given a value pointed to by ARGP, check its real run-time type, and
3222 if that is different from the enclosing type, create a new value
3223 using the real run-time type as the enclosing type (and of the same
3224 type as ARGP) and return it, with the embedded offset adjusted to
3225 be the correct offset to the enclosed object
3226 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3227 parameters, computed by value_rtti_type(). If these are available,
3228 they can be supplied and a second call to value_rtti_type() is avoided.
3229 (Pass RTYPE == NULL if they're not available */
3230
f23631e4
AC
3231struct value *
3232value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3233 int xusing_enc)
c906108c 3234{
c5aa993b 3235 struct type *real_type;
c906108c
SS
3236 int full = 0;
3237 int top = -1;
3238 int using_enc = 0;
f23631e4 3239 struct value *new_val;
c906108c
SS
3240
3241 if (rtype)
3242 {
3243 real_type = rtype;
3244 full = xfull;
3245 top = xtop;
3246 using_enc = xusing_enc;
3247 }
3248 else
3249 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3250
3251 /* If no RTTI data, or if object is already complete, do nothing */
3252 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3253 return argp;
3254
3255 /* If we have the full object, but for some reason the enclosing
c5aa993b 3256 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3257 if (full)
3258 {
2b127877 3259 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3260 return argp;
3261 }
3262
3263 /* Check if object is in memory */
3264 if (VALUE_LVAL (argp) != lval_memory)
3265 {
3266 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3267
c906108c
SS
3268 return argp;
3269 }
c5aa993b 3270
c906108c
SS
3271 /* All other cases -- retrieve the complete object */
3272 /* Go back by the computed top_offset from the beginning of the object,
3273 adjusting for the embedded offset of argp if that's what value_rtti_type
3274 used for its computation. */
3275 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3276 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3277 VALUE_BFD_SECTION (argp));
c906108c
SS
3278 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3279 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3280 return new_val;
3281}
3282
389e51db
AC
3283
3284
3285
d069f99d 3286/* Return the value of the local variable, if one exists.
c906108c
SS
3287 Flag COMPLAIN signals an error if the request is made in an
3288 inappropriate context. */
3289
f23631e4 3290struct value *
d069f99d 3291value_of_local (const char *name, int complain)
c906108c
SS
3292{
3293 struct symbol *func, *sym;
3294 struct block *b;
3295 int i;
d069f99d 3296 struct value * ret;
c906108c 3297
6e7f8b9c 3298 if (deprecated_selected_frame == 0)
c906108c
SS
3299 {
3300 if (complain)
c5aa993b
JM
3301 error ("no frame selected");
3302 else
3303 return 0;
c906108c
SS
3304 }
3305
6e7f8b9c 3306 func = get_frame_function (deprecated_selected_frame);
c906108c
SS
3307 if (!func)
3308 {
3309 if (complain)
2625d86c 3310 error ("no `%s' in nameless context", name);
c5aa993b
JM
3311 else
3312 return 0;
c906108c
SS
3313 }
3314
3315 b = SYMBOL_BLOCK_VALUE (func);
3316 i = BLOCK_NSYMS (b);
3317 if (i <= 0)
3318 {
3319 if (complain)
2625d86c 3320 error ("no args, no `%s'", name);
c5aa993b
JM
3321 else
3322 return 0;
c906108c
SS
3323 }
3324
3325 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3326 symbol instead of the LOC_ARG one (if both exist). */
d069f99d 3327 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
c906108c
SS
3328 if (sym == NULL)
3329 {
3330 if (complain)
2625d86c 3331 error ("current stack frame does not contain a variable named `%s'", name);
c906108c
SS
3332 else
3333 return NULL;
3334 }
3335
6e7f8b9c 3336 ret = read_var_value (sym, deprecated_selected_frame);
d069f99d 3337 if (ret == 0 && complain)
2625d86c 3338 error ("`%s' argument unreadable", name);
d069f99d
AF
3339 return ret;
3340}
3341
3342/* C++/Objective-C: return the value of the class instance variable,
3343 if one exists. Flag COMPLAIN signals an error if the request is
3344 made in an inappropriate context. */
3345
3346struct value *
3347value_of_this (int complain)
3348{
3349 if (current_language->la_language == language_objc)
3350 return value_of_local ("self", complain);
3351 else
3352 return value_of_local ("this", complain);
c906108c
SS
3353}
3354
3355/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3356 long, starting at LOWBOUND. The result has the same lower bound as
3357 the original ARRAY. */
3358
f23631e4
AC
3359struct value *
3360value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3361{
3362 struct type *slice_range_type, *slice_type, *range_type;
7a67d0fe 3363 LONGEST lowerbound, upperbound;
f23631e4 3364 struct value *slice;
c906108c
SS
3365 struct type *array_type;
3366 array_type = check_typedef (VALUE_TYPE (array));
3367 COERCE_VARYING_ARRAY (array, array_type);
3368 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3369 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3370 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3371 error ("cannot take slice of non-array");
3372 range_type = TYPE_INDEX_TYPE (array_type);
3373 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3374 error ("slice from bad array or bitstring");
3375 if (lowbound < lowerbound || length < 0
db034ac5 3376 || lowbound + length - 1 > upperbound)
c906108c
SS
3377 error ("slice out of range");
3378 /* FIXME-type-allocation: need a way to free this type when we are
3379 done with it. */
c5aa993b 3380 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3381 TYPE_TARGET_TYPE (range_type),
3382 lowbound, lowbound + length - 1);
3383 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3384 {
3385 int i;
c5aa993b 3386 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3387 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3388 slice = value_zero (slice_type, not_lval);
3389 for (i = 0; i < length; i++)
3390 {
3391 int element = value_bit_index (array_type,
3392 VALUE_CONTENTS (array),
3393 lowbound + i);
3394 if (element < 0)
3395 error ("internal error accessing bitstring");
3396 else if (element > 0)
3397 {
3398 int j = i % TARGET_CHAR_BIT;
3399 if (BITS_BIG_ENDIAN)
3400 j = TARGET_CHAR_BIT - 1 - j;
3401 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3402 }
3403 }
3404 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3405 can be used on the LHS, but that may require extensions to
3406 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3407 }
3408 else
3409 {
3410 struct type *element_type = TYPE_TARGET_TYPE (array_type);
7a67d0fe 3411 LONGEST offset
c906108c 3412 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3413 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3414 slice_range_type);
3415 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3416 slice = allocate_value (slice_type);
3417 if (VALUE_LAZY (array))
3418 VALUE_LAZY (slice) = 1;
3419 else
3420 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3421 TYPE_LENGTH (slice_type));
3422 if (VALUE_LVAL (array) == lval_internalvar)
3423 VALUE_LVAL (slice) = lval_internalvar_component;
3424 else
3425 VALUE_LVAL (slice) = VALUE_LVAL (array);
3426 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3427 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3428 }
3429 return slice;
3430}
3431
070ad9f0
DB
3432/* Create a value for a FORTRAN complex number. Currently most of
3433 the time values are coerced to COMPLEX*16 (i.e. a complex number
3434 composed of 2 doubles. This really should be a smarter routine
3435 that figures out precision inteligently as opposed to assuming
c5aa993b 3436 doubles. FIXME: fmb */
c906108c 3437
f23631e4
AC
3438struct value *
3439value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3440{
f23631e4 3441 struct value *val;
c906108c
SS
3442 struct type *real_type = TYPE_TARGET_TYPE (type);
3443
3444 val = allocate_value (type);
3445 arg1 = value_cast (real_type, arg1);
3446 arg2 = value_cast (real_type, arg2);
3447
3448 memcpy (VALUE_CONTENTS_RAW (val),
3449 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3450 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3451 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3452 return val;
3453}
3454
3455/* Cast a value into the appropriate complex data type. */
3456
f23631e4
AC
3457static struct value *
3458cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3459{
3460 struct type *real_type = TYPE_TARGET_TYPE (type);
3461 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3462 {
3463 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3464 struct value *re_val = allocate_value (val_real_type);
3465 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3466
3467 memcpy (VALUE_CONTENTS_RAW (re_val),
3468 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3469 memcpy (VALUE_CONTENTS_RAW (im_val),
3470 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3471 TYPE_LENGTH (val_real_type));
c906108c
SS
3472
3473 return value_literal_complex (re_val, im_val, type);
3474 }
3475 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3476 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3477 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3478 else
3479 error ("cannot cast non-number to complex");
3480}
3481
3482void
fba45db2 3483_initialize_valops (void)
c906108c
SS
3484{
3485#if 0
3486 add_show_from_set
c5aa993b 3487 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3488 "Set automatic abandonment of expressions upon failure.",
3489 &setlist),
3490 &showlist);
3491#endif
3492
3493 add_show_from_set
c5aa993b 3494 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3495 "Set overload resolution in evaluating C++ functions.",
3496 &setlist),
3497 &showlist);
3498 overload_resolution = 1;
3499
242bfc55
FN
3500 add_show_from_set (
3501 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3502 (char *) &unwind_on_signal_p,
3503"Set unwinding of stack if a signal is received while in a call dummy.\n\
3504The unwindonsignal lets the user determine what gdb should do if a signal\n\
3505is received while in a function called from gdb (call dummy). If set, gdb\n\
3506unwinds the stack and restore the context to what as it was before the call.\n\
3507The default is to stop in the frame where the signal was received.", &setlist),
3508 &showlist);
1e698235
DJ
3509
3510 add_show_from_set
3511 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3512 (char *) &coerce_float_to_double,
3513 "Set coercion of floats to doubles when calling functions\n"
3514 "Variables of type float should generally be converted to doubles before\n"
3515 "calling an unprototyped function, and left alone when calling a prototyped\n"
3516 "function. However, some older debug info formats do not provide enough\n"
3517 "information to determine that a function is prototyped. If this flag is\n"
3518 "set, GDB will perform the conversion for a function it considers\n"
3519 "unprototyped.\n"
3520 "The default is to perform the conversion.\n",
3521 &setlist),
3522 &showlist);
3523 coerce_float_to_double = 1;
c906108c 3524}
This page took 0.513917 seconds and 4 git commands to generate.