2003-01-30 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / valops.c
CommitLineData
c906108c 1/* Perform non-arithmetic operations on values, for GDB.
f23631e4 2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1e698235 3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
f23631e4 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcore.h"
30#include "target.h"
31#include "demangle.h"
32#include "language.h"
33#include "gdbcmd.h"
4e052eda 34#include "regcache.h"
015a42b4 35#include "cp-abi.h"
c906108c
SS
36
37#include <errno.h>
38#include "gdb_string.h"
4a1970e4 39#include "gdb_assert.h"
c906108c 40
c906108c
SS
41/* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43extern int hp_som_som_object_present;
44
070ad9f0 45extern int overload_debug;
c906108c
SS
46/* Local functions. */
47
ad2f7632
DJ
48static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
c906108c 50
389e51db 51static CORE_ADDR find_function_addr (struct value *, struct type **);
f23631e4 52static struct value *value_arg_coerce (struct value *, struct type *, int);
c906108c 53
389e51db 54
f23631e4 55static CORE_ADDR value_push (CORE_ADDR, struct value *);
c906108c 56
f23631e4 57static struct value *search_struct_field (char *, struct value *, int,
a14ed312 58 struct type *, int);
c906108c 59
f23631e4
AC
60static struct value *search_struct_method (char *, struct value **,
61 struct value **,
a14ed312 62 int, int *, struct type *);
c906108c 63
a14ed312 64static int check_field_in (struct type *, const char *);
c906108c 65
a14ed312 66static CORE_ADDR allocate_space_in_inferior (int);
c906108c 67
f23631e4 68static struct value *cast_into_complex (struct type *, struct value *);
c906108c 69
f23631e4 70static struct fn_field *find_method_list (struct value ** argp, char *method,
4a1970e4 71 int offset,
a14ed312
KB
72 struct type *type, int *num_fns,
73 struct type **basetype,
74 int *boffset);
7a292a7a 75
a14ed312 76void _initialize_valops (void);
c906108c 77
c906108c
SS
78/* Flag for whether we want to abandon failed expression evals by default. */
79
80#if 0
81static int auto_abandon = 0;
82#endif
83
84int overload_resolution = 0;
242bfc55
FN
85
86/* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
90
91int unwind_on_signal_p = 0;
c906108c 92
1e698235
DJ
93/* How you should pass arguments to a function depends on whether it
94 was defined in K&R style or prototype style. If you define a
95 function using the K&R syntax that takes a `float' argument, then
96 callers must pass that argument as a `double'. If you define the
97 function using the prototype syntax, then you must pass the
98 argument as a `float', with no promotion.
99
100 Unfortunately, on certain older platforms, the debug info doesn't
101 indicate reliably how each function was defined. A function type's
102 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
103 defined in prototype style. When calling a function whose
104 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
105 what to do.
106
107 For modern targets, it is proper to assume that, if the prototype
108 flag is clear, that can be trusted: `float' arguments should be
109 promoted to `double'. For some older targets, if the prototype
110 flag is clear, that doesn't tell us anything. The default is to
111 trust the debug information; the user can override this behavior
112 with "set coerce-float-to-double 0". */
113
114static int coerce_float_to_double;
115\f
389e51db 116
c906108c
SS
117/* Find the address of function name NAME in the inferior. */
118
f23631e4 119struct value *
3bada2a2 120find_function_in_inferior (const char *name)
c906108c
SS
121{
122 register struct symbol *sym;
123 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
124 if (sym != NULL)
125 {
126 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
127 {
128 error ("\"%s\" exists in this program but is not a function.",
129 name);
130 }
131 return value_of_variable (sym, NULL);
132 }
133 else
134 {
c5aa993b 135 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
c906108c
SS
136 if (msymbol != NULL)
137 {
138 struct type *type;
4478b372 139 CORE_ADDR maddr;
c906108c
SS
140 type = lookup_pointer_type (builtin_type_char);
141 type = lookup_function_type (type);
142 type = lookup_pointer_type (type);
4478b372
JB
143 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
144 return value_from_pointer (type, maddr);
c906108c
SS
145 }
146 else
147 {
c5aa993b 148 if (!target_has_execution)
c906108c 149 error ("evaluation of this expression requires the target program to be active");
c5aa993b 150 else
c906108c
SS
151 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
152 }
153 }
154}
155
156/* Allocate NBYTES of space in the inferior using the inferior's malloc
157 and return a value that is a pointer to the allocated space. */
158
f23631e4 159struct value *
fba45db2 160value_allocate_space_in_inferior (int len)
c906108c 161{
f23631e4 162 struct value *blocklen;
5720643c 163 struct value *val = find_function_in_inferior (NAME_OF_MALLOC);
c906108c
SS
164
165 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
166 val = call_function_by_hand (val, 1, &blocklen);
167 if (value_logical_not (val))
168 {
169 if (!target_has_execution)
c5aa993b
JM
170 error ("No memory available to program now: you need to start the target first");
171 else
172 error ("No memory available to program: call to malloc failed");
c906108c
SS
173 }
174 return val;
175}
176
177static CORE_ADDR
fba45db2 178allocate_space_in_inferior (int len)
c906108c
SS
179{
180 return value_as_long (value_allocate_space_in_inferior (len));
181}
182
183/* Cast value ARG2 to type TYPE and return as a value.
184 More general than a C cast: accepts any two types of the same length,
185 and if ARG2 is an lvalue it can be cast into anything at all. */
186/* In C++, casts may change pointer or object representations. */
187
f23631e4
AC
188struct value *
189value_cast (struct type *type, struct value *arg2)
c906108c
SS
190{
191 register enum type_code code1;
192 register enum type_code code2;
193 register int scalar;
194 struct type *type2;
195
196 int convert_to_boolean = 0;
c5aa993b 197
c906108c
SS
198 if (VALUE_TYPE (arg2) == type)
199 return arg2;
200
201 CHECK_TYPEDEF (type);
202 code1 = TYPE_CODE (type);
c5aa993b 203 COERCE_REF (arg2);
c906108c
SS
204 type2 = check_typedef (VALUE_TYPE (arg2));
205
206 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
207 is treated like a cast to (TYPE [N])OBJECT,
208 where N is sizeof(OBJECT)/sizeof(TYPE). */
209 if (code1 == TYPE_CODE_ARRAY)
210 {
211 struct type *element_type = TYPE_TARGET_TYPE (type);
212 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
213 if (element_length > 0
c5aa993b 214 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
c906108c
SS
215 {
216 struct type *range_type = TYPE_INDEX_TYPE (type);
217 int val_length = TYPE_LENGTH (type2);
218 LONGEST low_bound, high_bound, new_length;
219 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
220 low_bound = 0, high_bound = 0;
221 new_length = val_length / element_length;
222 if (val_length % element_length != 0)
c5aa993b 223 warning ("array element type size does not divide object size in cast");
c906108c
SS
224 /* FIXME-type-allocation: need a way to free this type when we are
225 done with it. */
226 range_type = create_range_type ((struct type *) NULL,
227 TYPE_TARGET_TYPE (range_type),
228 low_bound,
229 new_length + low_bound - 1);
230 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
231 element_type, range_type);
232 return arg2;
233 }
234 }
235
236 if (current_language->c_style_arrays
237 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
238 arg2 = value_coerce_array (arg2);
239
240 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
241 arg2 = value_coerce_function (arg2);
242
243 type2 = check_typedef (VALUE_TYPE (arg2));
244 COERCE_VARYING_ARRAY (arg2, type2);
245 code2 = TYPE_CODE (type2);
246
247 if (code1 == TYPE_CODE_COMPLEX)
248 return cast_into_complex (type, arg2);
249 if (code1 == TYPE_CODE_BOOL)
250 {
251 code1 = TYPE_CODE_INT;
252 convert_to_boolean = 1;
253 }
254 if (code1 == TYPE_CODE_CHAR)
255 code1 = TYPE_CODE_INT;
256 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
257 code2 = TYPE_CODE_INT;
258
259 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
260 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
261
c5aa993b 262 if (code1 == TYPE_CODE_STRUCT
c906108c
SS
263 && code2 == TYPE_CODE_STRUCT
264 && TYPE_NAME (type) != 0)
265 {
266 /* Look in the type of the source to see if it contains the
7b83ea04
AC
267 type of the target as a superclass. If so, we'll need to
268 offset the object in addition to changing its type. */
f23631e4 269 struct value *v = search_struct_field (type_name_no_tag (type),
c906108c
SS
270 arg2, 0, type2, 1);
271 if (v)
272 {
273 VALUE_TYPE (v) = type;
274 return v;
275 }
276 }
277 if (code1 == TYPE_CODE_FLT && scalar)
278 return value_from_double (type, value_as_double (arg2));
279 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
280 || code1 == TYPE_CODE_RANGE)
281 && (scalar || code2 == TYPE_CODE_PTR))
282 {
283 LONGEST longest;
c5aa993b
JM
284
285 if (hp_som_som_object_present && /* if target compiled by HP aCC */
286 (code2 == TYPE_CODE_PTR))
287 {
288 unsigned int *ptr;
f23631e4 289 struct value *retvalp;
c5aa993b
JM
290
291 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
292 {
293 /* With HP aCC, pointers to data members have a bias */
294 case TYPE_CODE_MEMBER:
295 retvalp = value_from_longest (type, value_as_long (arg2));
716c501e 296 /* force evaluation */
802db21b 297 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
c5aa993b
JM
298 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
299 return retvalp;
300
301 /* While pointers to methods don't really point to a function */
302 case TYPE_CODE_METHOD:
303 error ("Pointers to methods not supported with HP aCC");
304
305 default:
306 break; /* fall out and go to normal handling */
307 }
308 }
2bf1f4a1
JB
309
310 /* When we cast pointers to integers, we mustn't use
311 POINTER_TO_ADDRESS to find the address the pointer
312 represents, as value_as_long would. GDB should evaluate
313 expressions just as the compiler would --- and the compiler
314 sees a cast as a simple reinterpretation of the pointer's
315 bits. */
316 if (code2 == TYPE_CODE_PTR)
317 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
318 TYPE_LENGTH (type2));
319 else
320 longest = value_as_long (arg2);
802db21b 321 return value_from_longest (type, convert_to_boolean ?
716c501e 322 (LONGEST) (longest ? 1 : 0) : longest);
c906108c 323 }
802db21b 324 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
23e04971
MS
325 code2 == TYPE_CODE_ENUM ||
326 code2 == TYPE_CODE_RANGE))
634acd5f 327 {
4603e466
DT
328 /* TYPE_LENGTH (type) is the length of a pointer, but we really
329 want the length of an address! -- we are really dealing with
330 addresses (i.e., gdb representations) not pointers (i.e.,
331 target representations) here.
332
333 This allows things like "print *(int *)0x01000234" to work
334 without printing a misleading message -- which would
335 otherwise occur when dealing with a target having two byte
336 pointers and four byte addresses. */
337
338 int addr_bit = TARGET_ADDR_BIT;
339
634acd5f 340 LONGEST longest = value_as_long (arg2);
4603e466 341 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
634acd5f 342 {
4603e466
DT
343 if (longest >= ((LONGEST) 1 << addr_bit)
344 || longest <= -((LONGEST) 1 << addr_bit))
634acd5f
AC
345 warning ("value truncated");
346 }
347 return value_from_longest (type, longest);
348 }
c906108c
SS
349 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
350 {
351 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
352 {
353 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
354 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
c5aa993b 355 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
c906108c
SS
356 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
357 && !value_logical_not (arg2))
358 {
f23631e4 359 struct value *v;
c906108c
SS
360
361 /* Look in the type of the source to see if it contains the
7b83ea04
AC
362 type of the target as a superclass. If so, we'll need to
363 offset the pointer rather than just change its type. */
c906108c
SS
364 if (TYPE_NAME (t1) != NULL)
365 {
366 v = search_struct_field (type_name_no_tag (t1),
367 value_ind (arg2), 0, t2, 1);
368 if (v)
369 {
370 v = value_addr (v);
371 VALUE_TYPE (v) = type;
372 return v;
373 }
374 }
375
376 /* Look in the type of the target to see if it contains the
7b83ea04
AC
377 type of the source as a superclass. If so, we'll need to
378 offset the pointer rather than just change its type.
379 FIXME: This fails silently with virtual inheritance. */
c906108c
SS
380 if (TYPE_NAME (t2) != NULL)
381 {
382 v = search_struct_field (type_name_no_tag (t2),
c5aa993b 383 value_zero (t1, not_lval), 0, t1, 1);
c906108c
SS
384 if (v)
385 {
d174216d
JB
386 CORE_ADDR addr2 = value_as_address (arg2);
387 addr2 -= (VALUE_ADDRESS (v)
388 + VALUE_OFFSET (v)
389 + VALUE_EMBEDDED_OFFSET (v));
390 return value_from_pointer (type, addr2);
c906108c
SS
391 }
392 }
393 }
394 /* No superclass found, just fall through to change ptr type. */
395 }
396 VALUE_TYPE (arg2) = type;
2b127877 397 arg2 = value_change_enclosing_type (arg2, type);
c5aa993b 398 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
c906108c
SS
399 return arg2;
400 }
c906108c
SS
401 else if (VALUE_LVAL (arg2) == lval_memory)
402 {
403 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
404 VALUE_BFD_SECTION (arg2));
405 }
406 else if (code1 == TYPE_CODE_VOID)
407 {
408 return value_zero (builtin_type_void, not_lval);
409 }
410 else
411 {
412 error ("Invalid cast.");
413 return 0;
414 }
415}
416
417/* Create a value of type TYPE that is zero, and return it. */
418
f23631e4 419struct value *
fba45db2 420value_zero (struct type *type, enum lval_type lv)
c906108c 421{
f23631e4 422 struct value *val = allocate_value (type);
c906108c
SS
423
424 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
425 VALUE_LVAL (val) = lv;
426
427 return val;
428}
429
070ad9f0 430/* Return a value with type TYPE located at ADDR.
c906108c
SS
431
432 Call value_at only if the data needs to be fetched immediately;
433 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
434 value_at_lazy instead. value_at_lazy simply records the address of
070ad9f0
DB
435 the data and sets the lazy-evaluation-required flag. The lazy flag
436 is tested in the VALUE_CONTENTS macro, which is used if and when
437 the contents are actually required.
c906108c
SS
438
439 Note: value_at does *NOT* handle embedded offsets; perform such
440 adjustments before or after calling it. */
441
f23631e4 442struct value *
fba45db2 443value_at (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 444{
f23631e4 445 struct value *val;
c906108c
SS
446
447 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
448 error ("Attempt to dereference a generic pointer.");
449
450 val = allocate_value (type);
451
75af7f68 452 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
c906108c
SS
453
454 VALUE_LVAL (val) = lval_memory;
455 VALUE_ADDRESS (val) = addr;
456 VALUE_BFD_SECTION (val) = sect;
457
458 return val;
459}
460
461/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
462
f23631e4 463struct value *
fba45db2 464value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
c906108c 465{
f23631e4 466 struct value *val;
c906108c
SS
467
468 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
469 error ("Attempt to dereference a generic pointer.");
470
471 val = allocate_value (type);
472
473 VALUE_LVAL (val) = lval_memory;
474 VALUE_ADDRESS (val) = addr;
475 VALUE_LAZY (val) = 1;
476 VALUE_BFD_SECTION (val) = sect;
477
478 return val;
479}
480
070ad9f0
DB
481/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
482 if the current data for a variable needs to be loaded into
483 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
c906108c
SS
484 clears the lazy flag to indicate that the data in the buffer is valid.
485
486 If the value is zero-length, we avoid calling read_memory, which would
487 abort. We mark the value as fetched anyway -- all 0 bytes of it.
488
489 This function returns a value because it is used in the VALUE_CONTENTS
490 macro as part of an expression, where a void would not work. The
491 value is ignored. */
492
493int
f23631e4 494value_fetch_lazy (struct value *val)
c906108c
SS
495{
496 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
497 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
498
c5aa993b 499 struct type *type = VALUE_TYPE (val);
75af7f68 500 if (length)
d4b2399a 501 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
802db21b 502
c906108c
SS
503 VALUE_LAZY (val) = 0;
504 return 0;
505}
506
507
508/* Store the contents of FROMVAL into the location of TOVAL.
509 Return a new value with the location of TOVAL and contents of FROMVAL. */
510
f23631e4
AC
511struct value *
512value_assign (struct value *toval, struct value *fromval)
c906108c
SS
513{
514 register struct type *type;
f23631e4 515 struct value *val;
e6cbd02a 516 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
517 int use_buffer = 0;
518
519 if (!toval->modifiable)
520 error ("Left operand of assignment is not a modifiable lvalue.");
521
522 COERCE_REF (toval);
523
524 type = VALUE_TYPE (toval);
525 if (VALUE_LVAL (toval) != lval_internalvar)
526 fromval = value_cast (type, fromval);
527 else
528 COERCE_ARRAY (fromval);
529 CHECK_TYPEDEF (type);
530
531 /* If TOVAL is a special machine register requiring conversion
532 of program values to a special raw format,
533 convert FROMVAL's contents now, with result in `raw_buffer',
534 and set USE_BUFFER to the number of bytes to write. */
535
ac9a91a7 536 if (VALUE_REGNO (toval) >= 0)
c906108c
SS
537 {
538 int regno = VALUE_REGNO (toval);
13d01224 539 if (CONVERT_REGISTER_P (regno))
c906108c
SS
540 {
541 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
13d01224 542 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
c906108c
SS
543 use_buffer = REGISTER_RAW_SIZE (regno);
544 }
545 }
c906108c
SS
546
547 switch (VALUE_LVAL (toval))
548 {
549 case lval_internalvar:
550 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
551 val = value_copy (VALUE_INTERNALVAR (toval)->value);
2b127877 552 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
553 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
554 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
555 return val;
556
557 case lval_internalvar_component:
558 set_internalvar_component (VALUE_INTERNALVAR (toval),
559 VALUE_OFFSET (toval),
560 VALUE_BITPOS (toval),
561 VALUE_BITSIZE (toval),
562 fromval);
563 break;
564
565 case lval_memory:
566 {
567 char *dest_buffer;
c5aa993b
JM
568 CORE_ADDR changed_addr;
569 int changed_len;
c906108c 570
c5aa993b
JM
571 if (VALUE_BITSIZE (toval))
572 {
c906108c
SS
573 char buffer[sizeof (LONGEST)];
574 /* We assume that the argument to read_memory is in units of
575 host chars. FIXME: Is that correct? */
576 changed_len = (VALUE_BITPOS (toval)
c5aa993b
JM
577 + VALUE_BITSIZE (toval)
578 + HOST_CHAR_BIT - 1)
579 / HOST_CHAR_BIT;
c906108c
SS
580
581 if (changed_len > (int) sizeof (LONGEST))
582 error ("Can't handle bitfields which don't fit in a %d bit word.",
baa6f10b 583 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
c906108c
SS
584
585 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
586 buffer, changed_len);
587 modify_field (buffer, value_as_long (fromval),
588 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
589 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
590 dest_buffer = buffer;
591 }
592 else if (use_buffer)
593 {
594 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
595 changed_len = use_buffer;
596 dest_buffer = raw_buffer;
597 }
598 else
599 {
600 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
601 changed_len = TYPE_LENGTH (type);
602 dest_buffer = VALUE_CONTENTS (fromval);
603 }
604
605 write_memory (changed_addr, dest_buffer, changed_len);
606 if (memory_changed_hook)
607 memory_changed_hook (changed_addr, changed_len);
e23792cc 608 target_changed_event ();
c906108c
SS
609 }
610 break;
611
c906108c 612 case lval_reg_frame_relative:
492254e9 613 case lval_register:
c906108c 614 {
492254e9 615 struct frame_id old_frame;
c906108c
SS
616 /* value is stored in a series of registers in the frame
617 specified by the structure. Copy that value out, modify
618 it, and copy it back in. */
c906108c 619 int amount_copied;
492254e9
AC
620 int amount_to_copy;
621 char *buffer;
622 int value_reg;
623 int reg_offset;
624 int byte_offset;
c906108c
SS
625 int regno;
626 struct frame_info *frame;
627
492254e9
AC
628 /* Since modifying a register can trash the frame chain, we
629 save the old frame and then restore the new frame
630 afterwards. */
7a424e99 631 old_frame = get_frame_id (deprecated_selected_frame);
492254e9 632
c906108c 633 /* Figure out which frame this is in currently. */
492254e9
AC
634 if (VALUE_LVAL (toval) == lval_register)
635 {
636 frame = get_current_frame ();
637 value_reg = VALUE_REGNO (toval);
638 }
639 else
640 {
641 for (frame = get_current_frame ();
c193f6ac 642 frame && get_frame_base (frame) != VALUE_FRAME (toval);
492254e9
AC
643 frame = get_prev_frame (frame))
644 ;
645 value_reg = VALUE_FRAME_REGNUM (toval);
646 }
c906108c
SS
647
648 if (!frame)
649 error ("Value being assigned to is no longer active.");
650
492254e9
AC
651 /* Locate the first register that falls in the value that
652 needs to be transfered. Compute the offset of the value in
653 that register. */
654 {
655 int offset;
656 for (reg_offset = value_reg, offset = 0;
657 offset + REGISTER_RAW_SIZE (reg_offset) <= VALUE_OFFSET (toval);
658 reg_offset++);
659 byte_offset = VALUE_OFFSET (toval) - offset;
660 }
661
662 /* Compute the number of register aligned values that need to
663 be copied. */
664 if (VALUE_BITSIZE (toval))
665 amount_to_copy = byte_offset + 1;
666 else
667 amount_to_copy = byte_offset + TYPE_LENGTH (type);
668
669 /* And a bounce buffer. Be slightly over generous. */
670 buffer = (char *) alloca (amount_to_copy
671 + MAX_REGISTER_RAW_SIZE);
c906108c 672
492254e9
AC
673 /* Copy it in. */
674 for (regno = reg_offset, amount_copied = 0;
c906108c 675 amount_copied < amount_to_copy;
492254e9 676 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c 677 {
492254e9 678 frame_register_read (frame, regno, buffer + amount_copied);
c906108c 679 }
492254e9 680
c906108c
SS
681 /* Modify what needs to be modified. */
682 if (VALUE_BITSIZE (toval))
492254e9
AC
683 {
684 modify_field (buffer + byte_offset,
685 value_as_long (fromval),
686 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
687 }
c906108c 688 else if (use_buffer)
492254e9
AC
689 {
690 memcpy (buffer + VALUE_OFFSET (toval), raw_buffer, use_buffer);
691 }
c906108c 692 else
492254e9
AC
693 {
694 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
695 TYPE_LENGTH (type));
696 /* Do any conversion necessary when storing this type to
697 more than one register. */
698#ifdef REGISTER_CONVERT_FROM_TYPE
699 REGISTER_CONVERT_FROM_TYPE (value_reg, type,
700 (buffer + byte_offset));
701#endif
702 }
c906108c 703
492254e9
AC
704 /* Copy it out. */
705 for (regno = reg_offset, amount_copied = 0;
c906108c 706 amount_copied < amount_to_copy;
492254e9 707 amount_copied += REGISTER_RAW_SIZE (regno), regno++)
c906108c
SS
708 {
709 enum lval_type lval;
710 CORE_ADDR addr;
711 int optim;
492254e9
AC
712 int realnum;
713
c906108c 714 /* Just find out where to put it. */
492254e9
AC
715 frame_register (frame, regno, &optim, &lval, &addr, &realnum,
716 NULL);
717
c906108c
SS
718 if (optim)
719 error ("Attempt to assign to a value that was optimized out.");
720 if (lval == lval_memory)
492254e9
AC
721 write_memory (addr, buffer + amount_copied,
722 REGISTER_RAW_SIZE (regno));
c906108c 723 else if (lval == lval_register)
492254e9
AC
724 regcache_cooked_write (current_regcache, realnum,
725 (buffer + amount_copied));
c906108c
SS
726 else
727 error ("Attempt to assign to an unmodifiable value.");
728 }
729
730 if (register_changed_hook)
731 register_changed_hook (-1);
e23792cc 732 target_changed_event ();
492254e9
AC
733
734 /* Assigning to the stack pointer, frame pointer, and other
735 (architecture and calling convention specific) registers
736 may cause the frame cache to be out of date. We just do
737 this on all assignments to registers for simplicity; I
738 doubt the slowdown matters. */
739 reinit_frame_cache ();
740
741 /* Having destoroyed the frame cache, restore the selected
742 frame. */
743 /* FIXME: cagney/2002-11-02: There has to be a better way of
744 doing this. Instead of constantly saving/restoring the
745 frame. Why not create a get_selected_frame() function
746 that, having saved the selected frame's ID can
747 automatically re-find the previously selected frame
748 automatically. */
749 {
750 struct frame_info *fi = frame_find_by_id (old_frame);
751 if (fi != NULL)
752 select_frame (fi);
753 }
c906108c
SS
754 }
755 break;
492254e9
AC
756
757
c906108c
SS
758 default:
759 error ("Left operand of assignment is not an lvalue.");
760 }
761
762 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
763 If the field is signed, and is negative, then sign extend. */
764 if ((VALUE_BITSIZE (toval) > 0)
765 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
766 {
767 LONGEST fieldval = value_as_long (fromval);
768 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
769
770 fieldval &= valmask;
771 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
772 fieldval |= ~valmask;
773
774 fromval = value_from_longest (type, fieldval);
775 }
776
777 val = value_copy (toval);
778 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
779 TYPE_LENGTH (type));
780 VALUE_TYPE (val) = type;
2b127877 781 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
c906108c
SS
782 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
783 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
c5aa993b 784
c906108c
SS
785 return val;
786}
787
788/* Extend a value VAL to COUNT repetitions of its type. */
789
f23631e4
AC
790struct value *
791value_repeat (struct value *arg1, int count)
c906108c 792{
f23631e4 793 struct value *val;
c906108c
SS
794
795 if (VALUE_LVAL (arg1) != lval_memory)
796 error ("Only values in memory can be extended with '@'.");
797 if (count < 1)
798 error ("Invalid number %d of repetitions.", count);
799
800 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
801
802 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
803 VALUE_CONTENTS_ALL_RAW (val),
804 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
805 VALUE_LVAL (val) = lval_memory;
806 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
807
808 return val;
809}
810
f23631e4 811struct value *
fba45db2 812value_of_variable (struct symbol *var, struct block *b)
c906108c 813{
f23631e4 814 struct value *val;
c906108c
SS
815 struct frame_info *frame = NULL;
816
817 if (!b)
818 frame = NULL; /* Use selected frame. */
819 else if (symbol_read_needs_frame (var))
820 {
821 frame = block_innermost_frame (b);
822 if (!frame)
c5aa993b 823 {
c906108c
SS
824 if (BLOCK_FUNCTION (b)
825 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
826 error ("No frame is currently executing in block %s.",
827 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
828 else
829 error ("No frame is currently executing in specified block");
c5aa993b 830 }
c906108c
SS
831 }
832
833 val = read_var_value (var, frame);
834 if (!val)
835 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
836
837 return val;
838}
839
840/* Given a value which is an array, return a value which is a pointer to its
841 first element, regardless of whether or not the array has a nonzero lower
842 bound.
843
844 FIXME: A previous comment here indicated that this routine should be
845 substracting the array's lower bound. It's not clear to me that this
846 is correct. Given an array subscripting operation, it would certainly
847 work to do the adjustment here, essentially computing:
848
849 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
850
851 However I believe a more appropriate and logical place to account for
852 the lower bound is to do so in value_subscript, essentially computing:
853
854 (&array[0] + ((index - lowerbound) * sizeof array[0]))
855
856 As further evidence consider what would happen with operations other
857 than array subscripting, where the caller would get back a value that
858 had an address somewhere before the actual first element of the array,
859 and the information about the lower bound would be lost because of
860 the coercion to pointer type.
c5aa993b 861 */
c906108c 862
f23631e4
AC
863struct value *
864value_coerce_array (struct value *arg1)
c906108c
SS
865{
866 register struct type *type = check_typedef (VALUE_TYPE (arg1));
867
868 if (VALUE_LVAL (arg1) != lval_memory)
869 error ("Attempt to take address of value not located in memory.");
870
4478b372
JB
871 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
872 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
873}
874
875/* Given a value which is a function, return a value which is a pointer
876 to it. */
877
f23631e4
AC
878struct value *
879value_coerce_function (struct value *arg1)
c906108c 880{
f23631e4 881 struct value *retval;
c906108c
SS
882
883 if (VALUE_LVAL (arg1) != lval_memory)
884 error ("Attempt to take address of value not located in memory.");
885
4478b372
JB
886 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
887 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
c906108c
SS
888 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
889 return retval;
c5aa993b 890}
c906108c
SS
891
892/* Return a pointer value for the object for which ARG1 is the contents. */
893
f23631e4
AC
894struct value *
895value_addr (struct value *arg1)
c906108c 896{
f23631e4 897 struct value *arg2;
c906108c
SS
898
899 struct type *type = check_typedef (VALUE_TYPE (arg1));
900 if (TYPE_CODE (type) == TYPE_CODE_REF)
901 {
902 /* Copy the value, but change the type from (T&) to (T*).
7b83ea04
AC
903 We keep the same location information, which is efficient,
904 and allows &(&X) to get the location containing the reference. */
c906108c
SS
905 arg2 = value_copy (arg1);
906 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
907 return arg2;
908 }
909 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
910 return value_coerce_function (arg1);
911
912 if (VALUE_LVAL (arg1) != lval_memory)
913 error ("Attempt to take address of value not located in memory.");
914
c5aa993b 915 /* Get target memory address */
4478b372
JB
916 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
917 (VALUE_ADDRESS (arg1)
918 + VALUE_OFFSET (arg1)
919 + VALUE_EMBEDDED_OFFSET (arg1)));
c906108c
SS
920
921 /* This may be a pointer to a base subobject; so remember the
c5aa993b 922 full derived object's type ... */
2b127877 923 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
c5aa993b
JM
924 /* ... and also the relative position of the subobject in the full object */
925 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
c906108c
SS
926 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
927 return arg2;
928}
929
930/* Given a value of a pointer type, apply the C unary * operator to it. */
931
f23631e4
AC
932struct value *
933value_ind (struct value *arg1)
c906108c
SS
934{
935 struct type *base_type;
f23631e4 936 struct value *arg2;
c906108c
SS
937
938 COERCE_ARRAY (arg1);
939
940 base_type = check_typedef (VALUE_TYPE (arg1));
941
942 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
943 error ("not implemented: member types in value_ind");
944
945 /* Allow * on an integer so we can cast it to whatever we want.
946 This returns an int, which seems like the most C-like thing
947 to do. "long long" variables are rare enough that
948 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
949 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
56468235
DH
950 return value_at_lazy (builtin_type_int,
951 (CORE_ADDR) value_as_long (arg1),
952 VALUE_BFD_SECTION (arg1));
c906108c
SS
953 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
954 {
955 struct type *enc_type;
956 /* We may be pointing to something embedded in a larger object */
c5aa993b 957 /* Get the real type of the enclosing object */
c906108c
SS
958 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
959 enc_type = TYPE_TARGET_TYPE (enc_type);
c5aa993b
JM
960 /* Retrieve the enclosing object pointed to */
961 arg2 = value_at_lazy (enc_type,
1aa20aa8 962 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
c5aa993b
JM
963 VALUE_BFD_SECTION (arg1));
964 /* Re-adjust type */
c906108c
SS
965 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
966 /* Add embedding info */
2b127877 967 arg2 = value_change_enclosing_type (arg2, enc_type);
c906108c
SS
968 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
969
970 /* We may be pointing to an object of some derived type */
971 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
972 return arg2;
973 }
974
975 error ("Attempt to take contents of a non-pointer value.");
c5aa993b 976 return 0; /* For lint -- never reached */
c906108c
SS
977}
978\f
979/* Pushing small parts of stack frames. */
980
981/* Push one word (the size of object that a register holds). */
982
983CORE_ADDR
fba45db2 984push_word (CORE_ADDR sp, ULONGEST word)
c906108c
SS
985{
986 register int len = REGISTER_SIZE;
e6cbd02a 987 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
988
989 store_unsigned_integer (buffer, len, word);
990 if (INNER_THAN (1, 2))
991 {
992 /* stack grows downward */
993 sp -= len;
994 write_memory (sp, buffer, len);
995 }
996 else
997 {
998 /* stack grows upward */
999 write_memory (sp, buffer, len);
1000 sp += len;
1001 }
1002
1003 return sp;
1004}
1005
1006/* Push LEN bytes with data at BUFFER. */
1007
1008CORE_ADDR
fba45db2 1009push_bytes (CORE_ADDR sp, char *buffer, int len)
c906108c
SS
1010{
1011 if (INNER_THAN (1, 2))
1012 {
1013 /* stack grows downward */
1014 sp -= len;
1015 write_memory (sp, buffer, len);
1016 }
1017 else
1018 {
1019 /* stack grows upward */
1020 write_memory (sp, buffer, len);
1021 sp += len;
1022 }
1023
1024 return sp;
1025}
1026
2df3850c
JM
1027#ifndef PARM_BOUNDARY
1028#define PARM_BOUNDARY (0)
1029#endif
1030
1031/* Push onto the stack the specified value VALUE. Pad it correctly for
1032 it to be an argument to a function. */
c906108c 1033
c906108c 1034static CORE_ADDR
f23631e4 1035value_push (register CORE_ADDR sp, struct value *arg)
c906108c
SS
1036{
1037 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
917317f4 1038 register int container_len = len;
2df3850c
JM
1039 register int offset;
1040
1041 /* How big is the container we're going to put this value in? */
1042 if (PARM_BOUNDARY)
1043 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1044 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1045
1046 /* Are we going to put it at the high or low end of the container? */
d7449b42 1047 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2df3850c
JM
1048 offset = container_len - len;
1049 else
1050 offset = 0;
c906108c
SS
1051
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
2df3850c
JM
1055 sp -= container_len;
1056 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
c906108c
SS
1057 }
1058 else
1059 {
1060 /* stack grows upward */
2df3850c
JM
1061 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1062 sp += container_len;
c906108c
SS
1063 }
1064
1065 return sp;
1066}
1067
392a587b 1068CORE_ADDR
f23631e4 1069default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1070 int struct_return, CORE_ADDR struct_addr)
392a587b
JM
1071{
1072 /* ASSERT ( !struct_return); */
1073 int i;
1074 for (i = nargs - 1; i >= 0; i--)
1075 sp = value_push (sp, args[i]);
1076 return sp;
1077}
1078
c906108c
SS
1079/* Perform the standard coercions that are specified
1080 for arguments to be passed to C functions.
1081
1082 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1083 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1084
f23631e4 1085static struct value *
290b2c7a
MK
1086value_arg_coerce (struct value *arg, struct type *param_type,
1087 int is_prototyped)
c906108c
SS
1088{
1089 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1090 register struct type *type
290b2c7a 1091 = param_type ? check_typedef (param_type) : arg_type;
c906108c
SS
1092
1093 switch (TYPE_CODE (type))
1094 {
1095 case TYPE_CODE_REF:
491b8946
DJ
1096 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1097 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
c906108c
SS
1098 {
1099 arg = value_addr (arg);
1100 VALUE_TYPE (arg) = param_type;
1101 return arg;
1102 }
1103 break;
1104 case TYPE_CODE_INT:
1105 case TYPE_CODE_CHAR:
1106 case TYPE_CODE_BOOL:
1107 case TYPE_CODE_ENUM:
1108 /* If we don't have a prototype, coerce to integer type if necessary. */
1109 if (!is_prototyped)
1110 {
1111 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1112 type = builtin_type_int;
1113 }
1114 /* Currently all target ABIs require at least the width of an integer
7b83ea04
AC
1115 type for an argument. We may have to conditionalize the following
1116 type coercion for future targets. */
c906108c
SS
1117 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1118 type = builtin_type_int;
1119 break;
1120 case TYPE_CODE_FLT:
1e698235 1121 if (!is_prototyped && coerce_float_to_double)
c906108c
SS
1122 {
1123 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1124 type = builtin_type_double;
1125 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1126 type = builtin_type_long_double;
1127 }
1128 break;
1129 case TYPE_CODE_FUNC:
1130 type = lookup_pointer_type (type);
1131 break;
1132 case TYPE_CODE_ARRAY:
a3162708
EZ
1133 /* Arrays are coerced to pointers to their first element, unless
1134 they are vectors, in which case we want to leave them alone,
1135 because they are passed by value. */
c906108c 1136 if (current_language->c_style_arrays)
a3162708
EZ
1137 if (!TYPE_VECTOR (type))
1138 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
c906108c
SS
1139 break;
1140 case TYPE_CODE_UNDEF:
1141 case TYPE_CODE_PTR:
1142 case TYPE_CODE_STRUCT:
1143 case TYPE_CODE_UNION:
1144 case TYPE_CODE_VOID:
1145 case TYPE_CODE_SET:
1146 case TYPE_CODE_RANGE:
1147 case TYPE_CODE_STRING:
1148 case TYPE_CODE_BITSTRING:
1149 case TYPE_CODE_ERROR:
1150 case TYPE_CODE_MEMBER:
1151 case TYPE_CODE_METHOD:
1152 case TYPE_CODE_COMPLEX:
1153 default:
1154 break;
1155 }
1156
1157 return value_cast (type, arg);
1158}
1159
070ad9f0 1160/* Determine a function's address and its return type from its value.
c906108c
SS
1161 Calls error() if the function is not valid for calling. */
1162
389e51db 1163static CORE_ADDR
f23631e4 1164find_function_addr (struct value *function, struct type **retval_type)
c906108c
SS
1165{
1166 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1167 register enum type_code code = TYPE_CODE (ftype);
1168 struct type *value_type;
1169 CORE_ADDR funaddr;
1170
1171 /* If it's a member function, just look at the function
1172 part of it. */
1173
1174 /* Determine address to call. */
1175 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1176 {
1177 funaddr = VALUE_ADDRESS (function);
1178 value_type = TYPE_TARGET_TYPE (ftype);
1179 }
1180 else if (code == TYPE_CODE_PTR)
1181 {
1aa20aa8 1182 funaddr = value_as_address (function);
c906108c
SS
1183 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1184 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1185 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1186 {
c906108c 1187 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
c906108c
SS
1188 value_type = TYPE_TARGET_TYPE (ftype);
1189 }
1190 else
1191 value_type = builtin_type_int;
1192 }
1193 else if (code == TYPE_CODE_INT)
1194 {
1195 /* Handle the case of functions lacking debugging info.
7b83ea04 1196 Their values are characters since their addresses are char */
c906108c 1197 if (TYPE_LENGTH (ftype) == 1)
1aa20aa8 1198 funaddr = value_as_address (value_addr (function));
c906108c
SS
1199 else
1200 /* Handle integer used as address of a function. */
1201 funaddr = (CORE_ADDR) value_as_long (function);
1202
1203 value_type = builtin_type_int;
1204 }
1205 else
1206 error ("Invalid data type for function to be called.");
1207
1208 *retval_type = value_type;
1209 return funaddr;
1210}
1211
1212/* All this stuff with a dummy frame may seem unnecessarily complicated
1213 (why not just save registers in GDB?). The purpose of pushing a dummy
1214 frame which looks just like a real frame is so that if you call a
1215 function and then hit a breakpoint (get a signal, etc), "backtrace"
1216 will look right. Whether the backtrace needs to actually show the
1217 stack at the time the inferior function was called is debatable, but
1218 it certainly needs to not display garbage. So if you are contemplating
1219 making dummy frames be different from normal frames, consider that. */
1220
1221/* Perform a function call in the inferior.
1222 ARGS is a vector of values of arguments (NARGS of them).
1223 FUNCTION is a value, the function to be called.
1224 Returns a value representing what the function returned.
1225 May fail to return, if a breakpoint or signal is hit
1226 during the execution of the function.
1227
1228 ARGS is modified to contain coerced values. */
1229
f23631e4
AC
1230static struct value *
1231hand_function_call (struct value *function, int nargs, struct value **args)
c906108c
SS
1232{
1233 register CORE_ADDR sp;
1234 register int i;
da59e081 1235 int rc;
c906108c
SS
1236 CORE_ADDR start_sp;
1237 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1238 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1239 and remove any extra bytes which might exist because ULONGEST is
070ad9f0 1240 bigger than REGISTER_SIZE.
c906108c
SS
1241
1242 NOTE: This is pretty wierd, as the call dummy is actually a
c5aa993b
JM
1243 sequence of instructions. But CISC machines will have
1244 to pack the instructions into REGISTER_SIZE units (and
1245 so will RISC machines for which INSTRUCTION_SIZE is not
1246 REGISTER_SIZE).
7a292a7a
SS
1247
1248 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
c5aa993b 1249 target byte order. */
c906108c 1250
7a292a7a
SS
1251 static ULONGEST *dummy;
1252 int sizeof_dummy1;
1253 char *dummy1;
c906108c
SS
1254 CORE_ADDR old_sp;
1255 struct type *value_type;
1256 unsigned char struct_return;
1257 CORE_ADDR struct_addr = 0;
36160dc4 1258 struct regcache *retbuf;
26e6c56a 1259 struct cleanup *retbuf_cleanup;
7a292a7a 1260 struct inferior_status *inf_status;
26e6c56a 1261 struct cleanup *inf_status_cleanup;
c906108c 1262 CORE_ADDR funaddr;
c5aa993b 1263 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
c906108c
SS
1264 CORE_ADDR real_pc;
1265 struct type *param_type = NULL;
1266 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
76b2e19d 1267 int n_method_args = 0;
c906108c 1268
7a292a7a
SS
1269 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1270 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1271 dummy1 = alloca (sizeof_dummy1);
1272 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1273
c906108c 1274 if (!target_has_execution)
c5aa993b 1275 noprocess ();
c906108c 1276
26e6c56a
AC
1277 /* Create a cleanup chain that contains the retbuf (buffer
1278 containing the register values). This chain is create BEFORE the
1279 inf_status chain so that the inferior status can cleaned up
1280 (restored or discarded) without having the retbuf freed. */
36160dc4
AC
1281 retbuf = regcache_xmalloc (current_gdbarch);
1282 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
26e6c56a
AC
1283
1284 /* A cleanup for the inferior status. Create this AFTER the retbuf
1285 so that this can be discarded or applied without interfering with
1286 the regbuf. */
7a292a7a 1287 inf_status = save_inferior_status (1);
26e6c56a 1288 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
c906108c
SS
1289
1290 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1291 (and POP_FRAME for restoring them). (At least on most machines)
1292 they are saved on the stack in the inferior. */
1293 PUSH_DUMMY_FRAME;
1294
dc604539
AC
1295 old_sp = read_sp ();
1296
1297 /* Ensure that the initial SP is correctly aligned. */
1298 if (gdbarch_frame_align_p (current_gdbarch))
1299 {
1300 /* NOTE: cagney/2002-09-18:
1301
1302 On a RISC architecture, a void parameterless generic dummy
1303 frame (i.e., no parameters, no result) typically does not
1304 need to push anything the stack and hence can leave SP and
1305 FP. Similarly, a framelss (possibly leaf) function does not
1306 push anything on the stack and, hence, that too can leave FP
1307 and SP unchanged. As a consequence, a sequence of void
1308 parameterless generic dummy frame calls to frameless
1309 functions will create a sequence of effectively identical
1310 frames (SP, FP and TOS and PC the same). This, not
1311 suprisingly, results in what appears to be a stack in an
1312 infinite loop --- when GDB tries to find a generic dummy
1313 frame on the internal dummy frame stack, it will always find
1314 the first one.
1315
1316 To avoid this problem, the code below always grows the stack.
1317 That way, two dummy frames can never be identical. It does
1318 burn a few bytes of stack but that is a small price to pay
1319 :-). */
1320 sp = gdbarch_frame_align (current_gdbarch, old_sp);
1321 if (sp == old_sp)
1322 {
1323 if (INNER_THAN (1, 2))
1324 /* Stack grows down. */
1325 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
1326 else
1327 /* Stack grows up. */
1328 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
1329 }
1330 gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
1331 || (INNER_THAN (2, 1) && sp >= old_sp));
1332 }
1333 else
1334 /* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
1335 aligned the SP is! Further, per comment above, if the generic
1336 dummy frame ends up empty (because nothing is pushed) GDB won't
1337 be able to correctly perform back traces. If a target is
1338 having trouble with backtraces, first thing to do is add
1339 FRAME_ALIGN() to its architecture vector. After that, try
1340 adding SAVE_DUMMY_FRAME_TOS() and modifying FRAME_CHAIN so that
1341 when the next outer frame is a generic dummy, it returns the
1342 current frame's base. */
1343 sp = old_sp;
c906108c
SS
1344
1345 if (INNER_THAN (1, 2))
1346 {
1347 /* Stack grows down */
7a292a7a 1348 sp -= sizeof_dummy1;
c906108c
SS
1349 start_sp = sp;
1350 }
1351 else
1352 {
1353 /* Stack grows up */
1354 start_sp = sp;
7a292a7a 1355 sp += sizeof_dummy1;
c906108c
SS
1356 }
1357
dc604539
AC
1358 /* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
1359 after allocating space for the call dummy. A target can specify
1360 a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
1361 alignment requirements are met. */
1362
c906108c
SS
1363 funaddr = find_function_addr (function, &value_type);
1364 CHECK_TYPEDEF (value_type);
1365
1366 {
1367 struct block *b = block_for_pc (funaddr);
1368 /* If compiled without -g, assume GCC 2. */
1369 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1370 }
1371
1372 /* Are we returning a value using a structure return or a normal
1373 value return? */
1374
1375 struct_return = using_struct_return (function, funaddr, value_type,
1376 using_gcc);
1377
1378 /* Create a call sequence customized for this function
1379 and the number of arguments for it. */
7a292a7a 1380 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
c906108c
SS
1381 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1382 REGISTER_SIZE,
c5aa993b 1383 (ULONGEST) dummy[i]);
c906108c
SS
1384
1385#ifdef GDB_TARGET_IS_HPPA
1386 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1387 value_type, using_gcc);
1388#else
1389 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1390 value_type, using_gcc);
1391 real_pc = start_sp;
1392#endif
1393
7a292a7a
SS
1394 if (CALL_DUMMY_LOCATION == ON_STACK)
1395 {
c5aa993b 1396 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
07555a72 1397 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a 1398 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
7a292a7a 1399 }
c906108c 1400
7a292a7a
SS
1401 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1402 {
1403 real_pc = funaddr;
07555a72 1404 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
6096c27a
AC
1405 /* NOTE: cagney/2002-04-13: The entry point is going to be
1406 modified with a single breakpoint. */
1407 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1408 CALL_DUMMY_ADDRESS () + 1);
7a292a7a 1409 }
c906108c
SS
1410
1411#ifdef lint
c5aa993b 1412 sp = old_sp; /* It really is used, for some ifdef's... */
c906108c
SS
1413#endif
1414
ad2f7632 1415 if (nargs < TYPE_NFIELDS (ftype))
c906108c
SS
1416 error ("too few arguments in function call");
1417
1418 for (i = nargs - 1; i >= 0; i--)
1419 {
ad2f7632 1420 int prototyped;
76b2e19d 1421
ad2f7632
DJ
1422 /* FIXME drow/2002-05-31: Should just always mark methods as
1423 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1424 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1425 prototyped = 1;
1426 else
1427 prototyped = TYPE_PROTOTYPED (ftype);
c906108c 1428
ad2f7632
DJ
1429 if (i < TYPE_NFIELDS (ftype))
1430 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1431 prototyped);
c5aa993b 1432 else
ad2f7632 1433 args[i] = value_arg_coerce (args[i], NULL, 0);
c906108c 1434
070ad9f0
DB
1435 /*elz: this code is to handle the case in which the function to be called
1436 has a pointer to function as parameter and the corresponding actual argument
7b83ea04
AC
1437 is the address of a function and not a pointer to function variable.
1438 In aCC compiled code, the calls through pointers to functions (in the body
1439 of the function called by hand) are made via $$dyncall_external which
070ad9f0
DB
1440 requires some registers setting, this is taken care of if we call
1441 via a function pointer variable, but not via a function address.
7b83ea04 1442 In cc this is not a problem. */
c906108c
SS
1443
1444 if (using_gcc == 0)
ad2f7632 1445 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
c5aa993b 1446 /* if this parameter is a pointer to function */
c906108c 1447 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
0004e5a2 1448 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
070ad9f0 1449 /* elz: FIXME here should go the test about the compiler used
7b83ea04 1450 to compile the target. We want to issue the error
070ad9f0
DB
1451 message only if the compiler used was HP's aCC.
1452 If we used HP's cc, then there is no problem and no need
7b83ea04 1453 to return at this point */
c5aa993b 1454 if (using_gcc == 0) /* && compiler == aCC */
c906108c 1455 /* go see if the actual parameter is a variable of type
c5aa993b 1456 pointer to function or just a function */
c906108c
SS
1457 if (args[i]->lval == not_lval)
1458 {
1459 char *arg_name;
c5aa993b
JM
1460 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1461 error ("\
c906108c
SS
1462You cannot use function <%s> as argument. \n\
1463You must use a pointer to function type variable. Command ignored.", arg_name);
c5aa993b 1464 }
c906108c
SS
1465 }
1466
d03e67c9
AC
1467 if (REG_STRUCT_HAS_ADDR_P ())
1468 {
1469 /* This is a machine like the sparc, where we may need to pass a
1470 pointer to the structure, not the structure itself. */
1471 for (i = nargs - 1; i >= 0; i--)
1472 {
1473 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1474 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1475 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1476 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1477 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1478 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1479 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1480 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1481 && TYPE_LENGTH (arg_type) > 8)
1482 )
1483 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1484 {
1485 CORE_ADDR addr;
1486 int len; /* = TYPE_LENGTH (arg_type); */
1487 int aligned_len;
1488 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1489 len = TYPE_LENGTH (arg_type);
1490
1491 if (STACK_ALIGN_P ())
1492 /* MVS 11/22/96: I think at least some of this
1493 stack_align code is really broken. Better to let
1494 PUSH_ARGUMENTS adjust the stack in a target-defined
1495 manner. */
1496 aligned_len = STACK_ALIGN (len);
1497 else
1498 aligned_len = len;
1499 if (INNER_THAN (1, 2))
1500 {
1501 /* stack grows downward */
1502 sp -= aligned_len;
0b3f98d3
AC
1503 /* ... so the address of the thing we push is the
1504 stack pointer after we push it. */
1505 addr = sp;
d03e67c9
AC
1506 }
1507 else
1508 {
1509 /* The stack grows up, so the address of the thing
1510 we push is the stack pointer before we push it. */
1511 addr = sp;
d03e67c9
AC
1512 sp += aligned_len;
1513 }
0b3f98d3
AC
1514 /* Push the structure. */
1515 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
d03e67c9
AC
1516 /* The value we're going to pass is the address of the
1517 thing we just pushed. */
1518 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1519 (LONGEST) addr); */
1520 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1521 addr);
1522 }
1523 }
1524 }
1525
c906108c
SS
1526
1527 /* Reserve space for the return structure to be written on the
dc604539
AC
1528 stack, if necessary. Make certain that the value is correctly
1529 aligned. */
c906108c
SS
1530
1531 if (struct_return)
1532 {
1533 int len = TYPE_LENGTH (value_type);
2ada493a
AC
1534 if (STACK_ALIGN_P ())
1535 /* MVS 11/22/96: I think at least some of this stack_align
1536 code is really broken. Better to let PUSH_ARGUMENTS adjust
1537 the stack in a target-defined manner. */
1538 len = STACK_ALIGN (len);
c906108c
SS
1539 if (INNER_THAN (1, 2))
1540 {
dc604539
AC
1541 /* Stack grows downward. Align STRUCT_ADDR and SP after
1542 making space for the return value. */
c906108c 1543 sp -= len;
dc604539
AC
1544 if (gdbarch_frame_align_p (current_gdbarch))
1545 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1546 struct_addr = sp;
1547 }
1548 else
1549 {
dc604539
AC
1550 /* Stack grows upward. Align the frame, allocate space, and
1551 then again, re-align the frame??? */
1552 if (gdbarch_frame_align_p (current_gdbarch))
1553 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1554 struct_addr = sp;
1555 sp += len;
dc604539
AC
1556 if (gdbarch_frame_align_p (current_gdbarch))
1557 sp = gdbarch_frame_align (current_gdbarch, sp);
c906108c
SS
1558 }
1559 }
1560
0a49d05e
AC
1561 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1562 on other architectures. This is because all the alignment is
1563 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1564 in hppa_push_arguments */
1565 if (EXTRA_STACK_ALIGNMENT_NEEDED)
c906108c 1566 {
0a49d05e
AC
1567 /* MVS 11/22/96: I think at least some of this stack_align code
1568 is really broken. Better to let PUSH_ARGUMENTS adjust the
1569 stack in a target-defined manner. */
1570 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1571 {
1572 /* If stack grows down, we must leave a hole at the top. */
1573 int len = 0;
1574
1575 for (i = nargs - 1; i >= 0; i--)
1576 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1577 if (CALL_DUMMY_STACK_ADJUST_P)
1578 len += CALL_DUMMY_STACK_ADJUST;
1579 sp -= STACK_ALIGN (len) - len;
1580 }
c906108c 1581 }
c906108c 1582
392a587b 1583 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
c906108c 1584
69a0d5f4
AC
1585 if (PUSH_RETURN_ADDRESS_P ())
1586 /* for targets that use no CALL_DUMMY */
1587 /* There are a number of targets now which actually don't write
1588 any CALL_DUMMY instructions into the target, but instead just
1589 save the machine state, push the arguments, and jump directly
1590 to the callee function. Since this doesn't actually involve
1591 executing a JSR/BSR instruction, the return address must be set
1592 up by hand, either by pushing onto the stack or copying into a
1593 return-address register as appropriate. Formerly this has been
1594 done in PUSH_ARGUMENTS, but that's overloading its
1595 functionality a bit, so I'm making it explicit to do it here. */
1596 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
c906108c 1597
2ada493a 1598 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
c906108c
SS
1599 {
1600 /* If stack grows up, we must leave a hole at the bottom, note
7b83ea04 1601 that sp already has been advanced for the arguments! */
7a292a7a
SS
1602 if (CALL_DUMMY_STACK_ADJUST_P)
1603 sp += CALL_DUMMY_STACK_ADJUST;
c906108c
SS
1604 sp = STACK_ALIGN (sp);
1605 }
c906108c
SS
1606
1607/* XXX This seems wrong. For stacks that grow down we shouldn't do
1608 anything here! */
1609 /* MVS 11/22/96: I think at least some of this stack_align code is
1610 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1611 a target-defined manner. */
7a292a7a
SS
1612 if (CALL_DUMMY_STACK_ADJUST_P)
1613 if (INNER_THAN (1, 2))
1614 {
1615 /* stack grows downward */
1616 sp -= CALL_DUMMY_STACK_ADJUST;
1617 }
c906108c
SS
1618
1619 /* Store the address at which the structure is supposed to be
1620 written. Note that this (and the code which reserved the space
1621 above) assumes that gcc was used to compile this function. Since
1622 it doesn't cost us anything but space and if the function is pcc
1623 it will ignore this value, we will make that assumption.
1624
070ad9f0 1625 Also note that on some machines (like the sparc) pcc uses a
c906108c
SS
1626 convention like gcc's. */
1627
1628 if (struct_return)
1629 STORE_STRUCT_RETURN (struct_addr, sp);
1630
1631 /* Write the stack pointer. This is here because the statements above
1632 might fool with it. On SPARC, this write also stores the register
1633 window into the right place in the new stack frame, which otherwise
1634 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1635 write_sp (sp);
1636
d1e3cf49
AC
1637 if (SAVE_DUMMY_FRAME_TOS_P ())
1638 SAVE_DUMMY_FRAME_TOS (sp);
43ff13b4 1639
c906108c 1640 {
c906108c
SS
1641 char *name;
1642 struct symbol *symbol;
1643
1644 name = NULL;
1645 symbol = find_pc_function (funaddr);
1646 if (symbol)
1647 {
1648 name = SYMBOL_SOURCE_NAME (symbol);
1649 }
1650 else
1651 {
1652 /* Try the minimal symbols. */
1653 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1654
1655 if (msymbol)
1656 {
1657 name = SYMBOL_SOURCE_NAME (msymbol);
1658 }
1659 }
1660 if (name == NULL)
1661 {
1662 char format[80];
1663 sprintf (format, "at %s", local_hex_format ());
1664 name = alloca (80);
1665 /* FIXME-32x64: assumes funaddr fits in a long. */
1666 sprintf (name, format, (unsigned long) funaddr);
1667 }
1668
1669 /* Execute the stack dummy routine, calling FUNCTION.
1670 When it is done, discard the empty frame
1671 after storing the contents of all regs into retbuf. */
da59e081
JM
1672 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1673
1674 if (rc == 1)
1675 {
1676 /* We stopped inside the FUNCTION because of a random signal.
1677 Further execution of the FUNCTION is not allowed. */
1678
7b83ea04 1679 if (unwind_on_signal_p)
242bfc55
FN
1680 {
1681 /* The user wants the context restored. */
da59e081 1682
dbe9fe58
AC
1683 /* We must get back to the frame we were before the dummy
1684 call. */
1685 frame_pop (get_current_frame ());
242bfc55
FN
1686
1687 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1688 a C++ name with arguments and stuff. */
1689 error ("\
1690The program being debugged was signaled while in a function called from GDB.\n\
1691GDB has restored the context to what it was before the call.\n\
1692To change this behavior use \"set unwindonsignal off\"\n\
da59e081 1693Evaluation of the expression containing the function (%s) will be abandoned.",
242bfc55
FN
1694 name);
1695 }
1696 else
1697 {
1698 /* The user wants to stay in the frame where we stopped (default).*/
1699
26e6c56a
AC
1700 /* If we restored the inferior status (via the cleanup),
1701 we would print a spurious error message (Unable to
1702 restore previously selected frame), would write the
1703 registers from the inf_status (which is wrong), and
1704 would do other wrong things. */
1705 discard_cleanups (inf_status_cleanup);
242bfc55
FN
1706 discard_inferior_status (inf_status);
1707
1708 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1709 a C++ name with arguments and stuff. */
1710 error ("\
1711The program being debugged was signaled while in a function called from GDB.\n\
1712GDB remains in the frame where the signal was received.\n\
1713To change this behavior use \"set unwindonsignal on\"\n\
1714Evaluation of the expression containing the function (%s) will be abandoned.",
1715 name);
1716 }
da59e081
JM
1717 }
1718
1719 if (rc == 2)
c906108c 1720 {
da59e081 1721 /* We hit a breakpoint inside the FUNCTION. */
c906108c 1722
26e6c56a
AC
1723 /* If we restored the inferior status (via the cleanup), we
1724 would print a spurious error message (Unable to restore
1725 previously selected frame), would write the registers from
1726 the inf_status (which is wrong), and would do other wrong
1727 things. */
1728 discard_cleanups (inf_status_cleanup);
7a292a7a 1729 discard_inferior_status (inf_status);
c906108c
SS
1730
1731 /* The following error message used to say "The expression
1732 which contained the function call has been discarded." It
1733 is a hard concept to explain in a few words. Ideally, GDB
1734 would be able to resume evaluation of the expression when
1735 the function finally is done executing. Perhaps someday
1736 this will be implemented (it would not be easy). */
1737
1738 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1739 a C++ name with arguments and stuff. */
1740 error ("\
1741The program being debugged stopped while in a function called from GDB.\n\
1742When the function (%s) is done executing, GDB will silently\n\
1743stop (instead of continuing to evaluate the expression containing\n\
1744the function call).", name);
1745 }
1746
da59e081 1747 /* If we get here the called FUNCTION run to completion. */
26e6c56a
AC
1748
1749 /* Restore the inferior status, via its cleanup. At this stage,
1750 leave the RETBUF alone. */
1751 do_cleanups (inf_status_cleanup);
c906108c
SS
1752
1753 /* Figure out the value returned by the function. */
dc604539
AC
1754 /* elz: I defined this new macro for the hppa architecture only.
1755 this gives us a way to get the value returned by the function
1756 from the stack, at the same address we told the function to put
1757 it. We cannot assume on the pa that r28 still contains the
1758 address of the returned structure. Usually this will be
1759 overwritten by the callee. I don't know about other
1760 architectures, so I defined this macro */
c906108c
SS
1761#ifdef VALUE_RETURNED_FROM_STACK
1762 if (struct_return)
26e6c56a
AC
1763 {
1764 do_cleanups (retbuf_cleanup);
1765 return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1766 }
c906108c 1767#endif
dc604539
AC
1768 /* NOTE: cagney/2002-09-10: Only when the stack has been correctly
1769 aligned (using frame_align()) do we can trust STRUCT_ADDR and
1770 fetch the return value direct from the stack. This lack of
1771 trust comes about because legacy targets have a nasty habit of
1772 silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
1773 For such targets, just hope that value_being_returned() can
1774 find the adjusted value. */
1775 if (struct_return && gdbarch_frame_align_p (current_gdbarch))
1776 {
1777 struct value *retval = value_at (value_type, struct_addr, NULL);
1778 do_cleanups (retbuf_cleanup);
1779 return retval;
1780 }
1781 else
1782 {
1783 struct value *retval = value_being_returned (value_type, retbuf,
1784 struct_return);
1785 do_cleanups (retbuf_cleanup);
1786 return retval;
1787 }
c906108c
SS
1788 }
1789}
7a292a7a 1790
f23631e4
AC
1791struct value *
1792call_function_by_hand (struct value *function, int nargs, struct value **args)
c906108c 1793{
7a292a7a
SS
1794 if (CALL_DUMMY_P)
1795 {
1796 return hand_function_call (function, nargs, args);
1797 }
1798 else
1799 {
1800 error ("Cannot invoke functions on this machine.");
1801 }
c906108c 1802}
c5aa993b 1803\f
7a292a7a 1804
c906108c 1805
c906108c
SS
1806/* Create a value for an array by allocating space in the inferior, copying
1807 the data into that space, and then setting up an array value.
1808
1809 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1810 populated from the values passed in ELEMVEC.
1811
1812 The element type of the array is inherited from the type of the
1813 first element, and all elements must have the same size (though we
1814 don't currently enforce any restriction on their types). */
1815
f23631e4
AC
1816struct value *
1817value_array (int lowbound, int highbound, struct value **elemvec)
c906108c
SS
1818{
1819 int nelem;
1820 int idx;
1821 unsigned int typelength;
f23631e4 1822 struct value *val;
c906108c
SS
1823 struct type *rangetype;
1824 struct type *arraytype;
1825 CORE_ADDR addr;
1826
1827 /* Validate that the bounds are reasonable and that each of the elements
1828 have the same size. */
1829
1830 nelem = highbound - lowbound + 1;
1831 if (nelem <= 0)
1832 {
1833 error ("bad array bounds (%d, %d)", lowbound, highbound);
1834 }
1835 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1836 for (idx = 1; idx < nelem; idx++)
1837 {
1838 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1839 {
1840 error ("array elements must all be the same size");
1841 }
1842 }
1843
1844 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1845 lowbound, highbound);
c5aa993b
JM
1846 arraytype = create_array_type ((struct type *) NULL,
1847 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
c906108c
SS
1848
1849 if (!current_language->c_style_arrays)
1850 {
1851 val = allocate_value (arraytype);
1852 for (idx = 0; idx < nelem; idx++)
1853 {
1854 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1855 VALUE_CONTENTS_ALL (elemvec[idx]),
1856 typelength);
1857 }
1858 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1859 return val;
1860 }
1861
1862 /* Allocate space to store the array in the inferior, and then initialize
1863 it by copying in each element. FIXME: Is it worth it to create a
1864 local buffer in which to collect each value and then write all the
1865 bytes in one operation? */
1866
1867 addr = allocate_space_in_inferior (nelem * typelength);
1868 for (idx = 0; idx < nelem; idx++)
1869 {
1870 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1871 typelength);
1872 }
1873
1874 /* Create the array type and set up an array value to be evaluated lazily. */
1875
1876 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1877 return (val);
1878}
1879
1880/* Create a value for a string constant by allocating space in the inferior,
1881 copying the data into that space, and returning the address with type
1882 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1883 of characters.
1884 Note that string types are like array of char types with a lower bound of
1885 zero and an upper bound of LEN - 1. Also note that the string may contain
1886 embedded null bytes. */
1887
f23631e4 1888struct value *
fba45db2 1889value_string (char *ptr, int len)
c906108c 1890{
f23631e4 1891 struct value *val;
c906108c
SS
1892 int lowbound = current_language->string_lower_bound;
1893 struct type *rangetype = create_range_type ((struct type *) NULL,
1894 builtin_type_int,
1895 lowbound, len + lowbound - 1);
1896 struct type *stringtype
c5aa993b 1897 = create_string_type ((struct type *) NULL, rangetype);
c906108c
SS
1898 CORE_ADDR addr;
1899
1900 if (current_language->c_style_arrays == 0)
1901 {
1902 val = allocate_value (stringtype);
1903 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1904 return val;
1905 }
1906
1907
1908 /* Allocate space to store the string in the inferior, and then
1909 copy LEN bytes from PTR in gdb to that address in the inferior. */
1910
1911 addr = allocate_space_in_inferior (len);
1912 write_memory (addr, ptr, len);
1913
1914 val = value_at_lazy (stringtype, addr, NULL);
1915 return (val);
1916}
1917
f23631e4 1918struct value *
fba45db2 1919value_bitstring (char *ptr, int len)
c906108c 1920{
f23631e4 1921 struct value *val;
c906108c
SS
1922 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1923 0, len - 1);
c5aa993b 1924 struct type *type = create_set_type ((struct type *) NULL, domain_type);
c906108c
SS
1925 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1926 val = allocate_value (type);
1927 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1928 return val;
1929}
1930\f
1931/* See if we can pass arguments in T2 to a function which takes arguments
ad2f7632
DJ
1932 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1933 vector. If some arguments need coercion of some sort, then the coerced
1934 values are written into T2. Return value is 0 if the arguments could be
1935 matched, or the position at which they differ if not.
c906108c
SS
1936
1937 STATICP is nonzero if the T1 argument list came from a
ad2f7632
DJ
1938 static member function. T2 will still include the ``this'' pointer,
1939 but it will be skipped.
c906108c
SS
1940
1941 For non-static member functions, we ignore the first argument,
1942 which is the type of the instance variable. This is because we want
1943 to handle calls with objects from derived classes. This is not
1944 entirely correct: we should actually check to make sure that a
1945 requested operation is type secure, shouldn't we? FIXME. */
1946
1947static int
ad2f7632
DJ
1948typecmp (int staticp, int varargs, int nargs,
1949 struct field t1[], struct value *t2[])
c906108c
SS
1950{
1951 int i;
1952
1953 if (t2 == 0)
ad2f7632
DJ
1954 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1955
4a1970e4
DJ
1956 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1957 if (staticp)
ad2f7632
DJ
1958 t2 ++;
1959
1960 for (i = 0;
1961 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1962 i++)
c906108c 1963 {
c5aa993b 1964 struct type *tt1, *tt2;
ad2f7632 1965
c5aa993b
JM
1966 if (!t2[i])
1967 return i + 1;
ad2f7632
DJ
1968
1969 tt1 = check_typedef (t1[i].type);
c5aa993b 1970 tt2 = check_typedef (VALUE_TYPE (t2[i]));
ad2f7632 1971
c906108c 1972 if (TYPE_CODE (tt1) == TYPE_CODE_REF
c5aa993b 1973 /* We should be doing hairy argument matching, as below. */
c906108c
SS
1974 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1975 {
1976 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1977 t2[i] = value_coerce_array (t2[i]);
1978 else
1979 t2[i] = value_addr (t2[i]);
1980 continue;
1981 }
1982
802db21b
DB
1983 /* djb - 20000715 - Until the new type structure is in the
1984 place, and we can attempt things like implicit conversions,
1985 we need to do this so you can take something like a map<const
1986 char *>, and properly access map["hello"], because the
1987 argument to [] will be a reference to a pointer to a char,
7168a814 1988 and the argument will be a pointer to a char. */
802db21b
DB
1989 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1990 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1991 {
1992 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1993 }
1994 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1995 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1996 TYPE_CODE(tt2) == TYPE_CODE_REF)
c906108c 1997 {
802db21b 1998 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
c906108c 1999 }
c5aa993b
JM
2000 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2001 continue;
c906108c
SS
2002 /* Array to pointer is a `trivial conversion' according to the ARM. */
2003
2004 /* We should be doing much hairier argument matching (see section 13.2
7b83ea04
AC
2005 of the ARM), but as a quick kludge, just check for the same type
2006 code. */
ad2f7632 2007 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
c5aa993b 2008 return i + 1;
c906108c 2009 }
ad2f7632 2010 if (varargs || t2[i] == NULL)
c5aa993b 2011 return 0;
ad2f7632 2012 return i + 1;
c906108c
SS
2013}
2014
2015/* Helper function used by value_struct_elt to recurse through baseclasses.
2016 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2017 and search in it assuming it has (class) type TYPE.
2018 If found, return value, else return NULL.
2019
2020 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2021 look for a baseclass named NAME. */
2022
f23631e4
AC
2023static struct value *
2024search_struct_field (char *name, struct value *arg1, int offset,
fba45db2 2025 register struct type *type, int looking_for_baseclass)
c906108c
SS
2026{
2027 int i;
2028 int nbases = TYPE_N_BASECLASSES (type);
2029
2030 CHECK_TYPEDEF (type);
2031
c5aa993b 2032 if (!looking_for_baseclass)
c906108c
SS
2033 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2034 {
2035 char *t_field_name = TYPE_FIELD_NAME (type, i);
2036
db577aea 2037 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 2038 {
f23631e4 2039 struct value *v;
c906108c 2040 if (TYPE_FIELD_STATIC (type, i))
2c2738a0
DC
2041 {
2042 v = value_static_field (type, i);
2043 if (v == 0)
2044 error ("field %s is nonexistent or has been optimised out",
2045 name);
2046 }
c906108c 2047 else
2c2738a0
DC
2048 {
2049 v = value_primitive_field (arg1, offset, i, type);
2050 if (v == 0)
2051 error ("there is no field named %s", name);
2052 }
c906108c
SS
2053 return v;
2054 }
2055
2056 if (t_field_name
2057 && (t_field_name[0] == '\0'
2058 || (TYPE_CODE (type) == TYPE_CODE_UNION
db577aea 2059 && (strcmp_iw (t_field_name, "else") == 0))))
c906108c
SS
2060 {
2061 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2062 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2063 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2064 {
2065 /* Look for a match through the fields of an anonymous union,
2066 or anonymous struct. C++ provides anonymous unions.
2067
1b831c93
AC
2068 In the GNU Chill (now deleted from GDB)
2069 implementation of variant record types, each
2070 <alternative field> has an (anonymous) union type,
2071 each member of the union represents a <variant
2072 alternative>. Each <variant alternative> is
2073 represented as a struct, with a member for each
2074 <variant field>. */
c5aa993b 2075
f23631e4 2076 struct value *v;
c906108c
SS
2077 int new_offset = offset;
2078
db034ac5
AC
2079 /* This is pretty gross. In G++, the offset in an
2080 anonymous union is relative to the beginning of the
1b831c93
AC
2081 enclosing struct. In the GNU Chill (now deleted
2082 from GDB) implementation of variant records, the
2083 bitpos is zero in an anonymous union field, so we
2084 have to add the offset of the union here. */
c906108c
SS
2085 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2086 || (TYPE_NFIELDS (field_type) > 0
2087 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2088 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2089
2090 v = search_struct_field (name, arg1, new_offset, field_type,
2091 looking_for_baseclass);
2092 if (v)
2093 return v;
2094 }
2095 }
2096 }
2097
c5aa993b 2098 for (i = 0; i < nbases; i++)
c906108c 2099 {
f23631e4 2100 struct value *v;
c906108c
SS
2101 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2102 /* If we are looking for baseclasses, this is what we get when we
7b83ea04
AC
2103 hit them. But it could happen that the base part's member name
2104 is not yet filled in. */
c906108c
SS
2105 int found_baseclass = (looking_for_baseclass
2106 && TYPE_BASECLASS_NAME (type, i) != NULL
db577aea 2107 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
c906108c
SS
2108
2109 if (BASETYPE_VIA_VIRTUAL (type, i))
2110 {
2111 int boffset;
f23631e4 2112 struct value *v2 = allocate_value (basetype);
c906108c
SS
2113
2114 boffset = baseclass_offset (type, i,
2115 VALUE_CONTENTS (arg1) + offset,
2116 VALUE_ADDRESS (arg1)
c5aa993b 2117 + VALUE_OFFSET (arg1) + offset);
c906108c
SS
2118 if (boffset == -1)
2119 error ("virtual baseclass botch");
2120
2121 /* The virtual base class pointer might have been clobbered by the
2122 user program. Make sure that it still points to a valid memory
2123 location. */
2124
2125 boffset += offset;
2126 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2127 {
2128 CORE_ADDR base_addr;
c5aa993b 2129
c906108c
SS
2130 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2131 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2132 TYPE_LENGTH (basetype)) != 0)
2133 error ("virtual baseclass botch");
2134 VALUE_LVAL (v2) = lval_memory;
2135 VALUE_ADDRESS (v2) = base_addr;
2136 }
2137 else
2138 {
2139 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2140 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2141 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2142 if (VALUE_LAZY (arg1))
2143 VALUE_LAZY (v2) = 1;
2144 else
2145 memcpy (VALUE_CONTENTS_RAW (v2),
2146 VALUE_CONTENTS_RAW (arg1) + boffset,
2147 TYPE_LENGTH (basetype));
2148 }
2149
2150 if (found_baseclass)
2151 return v2;
2152 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2153 looking_for_baseclass);
2154 }
2155 else if (found_baseclass)
2156 v = value_primitive_field (arg1, offset, i, type);
2157 else
2158 v = search_struct_field (name, arg1,
c5aa993b 2159 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
c906108c 2160 basetype, looking_for_baseclass);
c5aa993b
JM
2161 if (v)
2162 return v;
c906108c
SS
2163 }
2164 return NULL;
2165}
2166
2167
2168/* Return the offset (in bytes) of the virtual base of type BASETYPE
2169 * in an object pointed to by VALADDR (on the host), assumed to be of
2170 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2171 * looking (in case VALADDR is the contents of an enclosing object).
2172 *
2173 * This routine recurses on the primary base of the derived class because
2174 * the virtual base entries of the primary base appear before the other
2175 * virtual base entries.
2176 *
2177 * If the virtual base is not found, a negative integer is returned.
2178 * The magnitude of the negative integer is the number of entries in
2179 * the virtual table to skip over (entries corresponding to various
2180 * ancestral classes in the chain of primary bases).
2181 *
2182 * Important: This assumes the HP / Taligent C++ runtime
2183 * conventions. Use baseclass_offset() instead to deal with g++
2184 * conventions. */
2185
2186void
fba45db2
KB
2187find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2188 int offset, int *boffset_p, int *skip_p)
c906108c 2189{
c5aa993b
JM
2190 int boffset; /* offset of virtual base */
2191 int index; /* displacement to use in virtual table */
c906108c 2192 int skip;
c5aa993b 2193
f23631e4 2194 struct value *vp;
c5aa993b
JM
2195 CORE_ADDR vtbl; /* the virtual table pointer */
2196 struct type *pbc; /* the primary base class */
c906108c
SS
2197
2198 /* Look for the virtual base recursively in the primary base, first.
2199 * This is because the derived class object and its primary base
2200 * subobject share the primary virtual table. */
c5aa993b 2201
c906108c 2202 boffset = 0;
c5aa993b 2203 pbc = TYPE_PRIMARY_BASE (type);
c906108c
SS
2204 if (pbc)
2205 {
2206 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2207 if (skip < 0)
c5aa993b
JM
2208 {
2209 *boffset_p = boffset;
2210 *skip_p = -1;
2211 return;
2212 }
c906108c
SS
2213 }
2214 else
2215 skip = 0;
2216
2217
2218 /* Find the index of the virtual base according to HP/Taligent
2219 runtime spec. (Depth-first, left-to-right.) */
2220 index = virtual_base_index_skip_primaries (basetype, type);
2221
c5aa993b
JM
2222 if (index < 0)
2223 {
2224 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2225 *boffset_p = 0;
2226 return;
2227 }
c906108c 2228
c5aa993b 2229 /* pai: FIXME -- 32x64 possible problem */
c906108c 2230 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b 2231 vtbl = *(CORE_ADDR *) (valaddr + offset);
c906108c 2232
c5aa993b 2233 /* Before the constructor is invoked, things are usually zero'd out. */
c906108c
SS
2234 if (vtbl == 0)
2235 error ("Couldn't find virtual table -- object may not be constructed yet.");
2236
2237
2238 /* Find virtual base's offset -- jump over entries for primary base
2239 * ancestors, then use the index computed above. But also adjust by
2240 * HP_ACC_VBASE_START for the vtable slots before the start of the
2241 * virtual base entries. Offset is negative -- virtual base entries
2242 * appear _before_ the address point of the virtual table. */
c5aa993b 2243
070ad9f0 2244 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
c5aa993b 2245 & use long type */
c906108c
SS
2246
2247 /* epstein : FIXME -- added param for overlay section. May not be correct */
c5aa993b 2248 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
c906108c
SS
2249 boffset = value_as_long (vp);
2250 *skip_p = -1;
2251 *boffset_p = boffset;
2252 return;
2253}
2254
2255
2256/* Helper function used by value_struct_elt to recurse through baseclasses.
2257 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2258 and search in it assuming it has (class) type TYPE.
2259 If found, return value, else if name matched and args not return (value)-1,
2260 else return NULL. */
2261
f23631e4
AC
2262static struct value *
2263search_struct_method (char *name, struct value **arg1p,
2264 struct value **args, int offset,
fba45db2 2265 int *static_memfuncp, register struct type *type)
c906108c
SS
2266{
2267 int i;
f23631e4 2268 struct value *v;
c906108c
SS
2269 int name_matched = 0;
2270 char dem_opname[64];
2271
2272 CHECK_TYPEDEF (type);
2273 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2274 {
2275 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2276 /* FIXME! May need to check for ARM demangling here */
c5aa993b
JM
2277 if (strncmp (t_field_name, "__", 2) == 0 ||
2278 strncmp (t_field_name, "op", 2) == 0 ||
2279 strncmp (t_field_name, "type", 4) == 0)
c906108c 2280 {
c5aa993b
JM
2281 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2282 t_field_name = dem_opname;
2283 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 2284 t_field_name = dem_opname;
c906108c 2285 }
db577aea 2286 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2287 {
2288 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2289 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
c5aa993b 2290 name_matched = 1;
c906108c 2291
de17c821 2292 check_stub_method_group (type, i);
c906108c
SS
2293 if (j > 0 && args == 0)
2294 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
acf5ed49 2295 else if (j == 0 && args == 0)
c906108c 2296 {
acf5ed49
DJ
2297 v = value_fn_field (arg1p, f, j, type, offset);
2298 if (v != NULL)
2299 return v;
c906108c 2300 }
acf5ed49
DJ
2301 else
2302 while (j >= 0)
2303 {
acf5ed49 2304 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
ad2f7632
DJ
2305 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2306 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
acf5ed49
DJ
2307 TYPE_FN_FIELD_ARGS (f, j), args))
2308 {
2309 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2310 return value_virtual_fn_field (arg1p, f, j, type, offset);
2311 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2312 *static_memfuncp = 1;
2313 v = value_fn_field (arg1p, f, j, type, offset);
2314 if (v != NULL)
2315 return v;
2316 }
2317 j--;
2318 }
c906108c
SS
2319 }
2320 }
2321
2322 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2323 {
2324 int base_offset;
2325
2326 if (BASETYPE_VIA_VIRTUAL (type, i))
2327 {
c5aa993b
JM
2328 if (TYPE_HAS_VTABLE (type))
2329 {
2330 /* HP aCC compiled type, search for virtual base offset
7b83ea04 2331 according to HP/Taligent runtime spec. */
c5aa993b
JM
2332 int skip;
2333 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2334 VALUE_CONTENTS_ALL (*arg1p),
2335 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2336 &base_offset, &skip);
2337 if (skip >= 0)
2338 error ("Virtual base class offset not found in vtable");
2339 }
2340 else
2341 {
2342 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2343 char *base_valaddr;
2344
2345 /* The virtual base class pointer might have been clobbered by the
7b83ea04
AC
2346 user program. Make sure that it still points to a valid memory
2347 location. */
c5aa993b
JM
2348
2349 if (offset < 0 || offset >= TYPE_LENGTH (type))
2350 {
2351 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2352 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2353 + VALUE_OFFSET (*arg1p) + offset,
2354 base_valaddr,
2355 TYPE_LENGTH (baseclass)) != 0)
2356 error ("virtual baseclass botch");
2357 }
2358 else
2359 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2360
2361 base_offset =
2362 baseclass_offset (type, i, base_valaddr,
2363 VALUE_ADDRESS (*arg1p)
2364 + VALUE_OFFSET (*arg1p) + offset);
2365 if (base_offset == -1)
2366 error ("virtual baseclass botch");
2367 }
2368 }
c906108c
SS
2369 else
2370 {
2371 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2372 }
c906108c
SS
2373 v = search_struct_method (name, arg1p, args, base_offset + offset,
2374 static_memfuncp, TYPE_BASECLASS (type, i));
f23631e4 2375 if (v == (struct value *) - 1)
c906108c
SS
2376 {
2377 name_matched = 1;
2378 }
2379 else if (v)
2380 {
2381/* FIXME-bothner: Why is this commented out? Why is it here? */
c5aa993b 2382/* *arg1p = arg1_tmp; */
c906108c 2383 return v;
c5aa993b 2384 }
c906108c 2385 }
c5aa993b 2386 if (name_matched)
f23631e4 2387 return (struct value *) - 1;
c5aa993b
JM
2388 else
2389 return NULL;
c906108c
SS
2390}
2391
2392/* Given *ARGP, a value of type (pointer to a)* structure/union,
2393 extract the component named NAME from the ultimate target structure/union
2394 and return it as a value with its appropriate type.
2395 ERR is used in the error message if *ARGP's type is wrong.
2396
2397 C++: ARGS is a list of argument types to aid in the selection of
2398 an appropriate method. Also, handle derived types.
2399
2400 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2401 where the truthvalue of whether the function that was resolved was
2402 a static member function or not is stored.
2403
2404 ERR is an error message to be printed in case the field is not found. */
2405
f23631e4
AC
2406struct value *
2407value_struct_elt (struct value **argp, struct value **args,
fba45db2 2408 char *name, int *static_memfuncp, char *err)
c906108c
SS
2409{
2410 register struct type *t;
f23631e4 2411 struct value *v;
c906108c
SS
2412
2413 COERCE_ARRAY (*argp);
2414
2415 t = check_typedef (VALUE_TYPE (*argp));
2416
2417 /* Follow pointers until we get to a non-pointer. */
2418
2419 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2420 {
2421 *argp = value_ind (*argp);
2422 /* Don't coerce fn pointer to fn and then back again! */
2423 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2424 COERCE_ARRAY (*argp);
2425 t = check_typedef (VALUE_TYPE (*argp));
2426 }
2427
2428 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2429 error ("not implemented: member type in value_struct_elt");
2430
c5aa993b 2431 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2432 && TYPE_CODE (t) != TYPE_CODE_UNION)
2433 error ("Attempt to extract a component of a value that is not a %s.", err);
2434
2435 /* Assume it's not, unless we see that it is. */
2436 if (static_memfuncp)
c5aa993b 2437 *static_memfuncp = 0;
c906108c
SS
2438
2439 if (!args)
2440 {
2441 /* if there are no arguments ...do this... */
2442
2443 /* Try as a field first, because if we succeed, there
7b83ea04 2444 is less work to be done. */
c906108c
SS
2445 v = search_struct_field (name, *argp, 0, t, 0);
2446 if (v)
2447 return v;
2448
2449 /* C++: If it was not found as a data field, then try to
7b83ea04 2450 return it as a pointer to a method. */
c906108c
SS
2451
2452 if (destructor_name_p (name, t))
2453 error ("Cannot get value of destructor");
2454
2455 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2456
f23631e4 2457 if (v == (struct value *) - 1)
c906108c
SS
2458 error ("Cannot take address of a method");
2459 else if (v == 0)
2460 {
2461 if (TYPE_NFN_FIELDS (t))
2462 error ("There is no member or method named %s.", name);
2463 else
2464 error ("There is no member named %s.", name);
2465 }
2466 return v;
2467 }
2468
2469 if (destructor_name_p (name, t))
2470 {
2471 if (!args[1])
2472 {
2473 /* Destructors are a special case. */
2474 int m_index, f_index;
2475
2476 v = NULL;
2477 if (get_destructor_fn_field (t, &m_index, &f_index))
2478 {
2479 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2480 f_index, NULL, 0);
2481 }
2482 if (v == NULL)
2483 error ("could not find destructor function named %s.", name);
2484 else
2485 return v;
2486 }
2487 else
2488 {
2489 error ("destructor should not have any argument");
2490 }
2491 }
2492 else
2493 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
7168a814 2494
f23631e4 2495 if (v == (struct value *) - 1)
c906108c 2496 {
7168a814 2497 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
c906108c
SS
2498 }
2499 else if (v == 0)
2500 {
2501 /* See if user tried to invoke data as function. If so,
7b83ea04
AC
2502 hand it back. If it's not callable (i.e., a pointer to function),
2503 gdb should give an error. */
c906108c
SS
2504 v = search_struct_field (name, *argp, 0, t, 0);
2505 }
2506
2507 if (!v)
2508 error ("Structure has no component named %s.", name);
2509 return v;
2510}
2511
2512/* Search through the methods of an object (and its bases)
2513 * to find a specified method. Return the pointer to the
2514 * fn_field list of overloaded instances.
2515 * Helper function for value_find_oload_list.
2516 * ARGP is a pointer to a pointer to a value (the object)
2517 * METHOD is a string containing the method name
2518 * OFFSET is the offset within the value
c906108c
SS
2519 * TYPE is the assumed type of the object
2520 * NUM_FNS is the number of overloaded instances
2521 * BASETYPE is set to the actual type of the subobject where the method is found
2522 * BOFFSET is the offset of the base subobject where the method is found */
2523
7a292a7a 2524static struct fn_field *
f23631e4 2525find_method_list (struct value **argp, char *method, int offset,
4a1970e4 2526 struct type *type, int *num_fns,
fba45db2 2527 struct type **basetype, int *boffset)
c906108c
SS
2528{
2529 int i;
c5aa993b 2530 struct fn_field *f;
c906108c
SS
2531 CHECK_TYPEDEF (type);
2532
2533 *num_fns = 0;
2534
c5aa993b
JM
2535 /* First check in object itself */
2536 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
c906108c
SS
2537 {
2538 /* pai: FIXME What about operators and type conversions? */
c5aa993b 2539 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
db577aea 2540 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
c5aa993b 2541 {
4a1970e4
DJ
2542 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2543 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4a1970e4
DJ
2544
2545 *num_fns = len;
c5aa993b
JM
2546 *basetype = type;
2547 *boffset = offset;
4a1970e4 2548
de17c821
DJ
2549 /* Resolve any stub methods. */
2550 check_stub_method_group (type, i);
4a1970e4
DJ
2551
2552 return f;
c5aa993b
JM
2553 }
2554 }
2555
c906108c
SS
2556 /* Not found in object, check in base subobjects */
2557 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2558 {
2559 int base_offset;
2560 if (BASETYPE_VIA_VIRTUAL (type, i))
2561 {
c5aa993b
JM
2562 if (TYPE_HAS_VTABLE (type))
2563 {
2564 /* HP aCC compiled type, search for virtual base offset
2565 * according to HP/Taligent runtime spec. */
2566 int skip;
2567 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2568 VALUE_CONTENTS_ALL (*argp),
2569 offset + VALUE_EMBEDDED_OFFSET (*argp),
2570 &base_offset, &skip);
2571 if (skip >= 0)
2572 error ("Virtual base class offset not found in vtable");
2573 }
2574 else
2575 {
2576 /* probably g++ runtime model */
2577 base_offset = VALUE_OFFSET (*argp) + offset;
2578 base_offset =
2579 baseclass_offset (type, i,
2580 VALUE_CONTENTS (*argp) + base_offset,
2581 VALUE_ADDRESS (*argp) + base_offset);
2582 if (base_offset == -1)
2583 error ("virtual baseclass botch");
2584 }
2585 }
2586 else
2587 /* non-virtual base, simply use bit position from debug info */
c906108c
SS
2588 {
2589 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
c5aa993b 2590 }
c906108c 2591 f = find_method_list (argp, method, base_offset + offset,
4a1970e4
DJ
2592 TYPE_BASECLASS (type, i), num_fns, basetype,
2593 boffset);
c906108c 2594 if (f)
c5aa993b 2595 return f;
c906108c 2596 }
c5aa993b 2597 return NULL;
c906108c
SS
2598}
2599
2600/* Return the list of overloaded methods of a specified name.
2601 * ARGP is a pointer to a pointer to a value (the object)
2602 * METHOD is the method name
2603 * OFFSET is the offset within the value contents
c906108c
SS
2604 * NUM_FNS is the number of overloaded instances
2605 * BASETYPE is set to the type of the base subobject that defines the method
2606 * BOFFSET is the offset of the base subobject which defines the method */
2607
2608struct fn_field *
f23631e4 2609value_find_oload_method_list (struct value **argp, char *method, int offset,
4a1970e4
DJ
2610 int *num_fns, struct type **basetype,
2611 int *boffset)
c906108c 2612{
c5aa993b 2613 struct type *t;
c906108c
SS
2614
2615 t = check_typedef (VALUE_TYPE (*argp));
2616
c5aa993b 2617 /* code snarfed from value_struct_elt */
c906108c
SS
2618 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2619 {
2620 *argp = value_ind (*argp);
2621 /* Don't coerce fn pointer to fn and then back again! */
2622 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2623 COERCE_ARRAY (*argp);
2624 t = check_typedef (VALUE_TYPE (*argp));
2625 }
c5aa993b 2626
c906108c
SS
2627 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2628 error ("Not implemented: member type in value_find_oload_lis");
c5aa993b
JM
2629
2630 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2631 && TYPE_CODE (t) != TYPE_CODE_UNION)
c906108c 2632 error ("Attempt to extract a component of a value that is not a struct or union");
c5aa993b 2633
4a1970e4 2634 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
c906108c
SS
2635}
2636
2637/* Given an array of argument types (ARGTYPES) (which includes an
2638 entry for "this" in the case of C++ methods), the number of
2639 arguments NARGS, the NAME of a function whether it's a method or
2640 not (METHOD), and the degree of laxness (LAX) in conforming to
2641 overload resolution rules in ANSI C++, find the best function that
2642 matches on the argument types according to the overload resolution
2643 rules.
2644
2645 In the case of class methods, the parameter OBJ is an object value
2646 in which to search for overloaded methods.
2647
2648 In the case of non-method functions, the parameter FSYM is a symbol
2649 corresponding to one of the overloaded functions.
2650
2651 Return value is an integer: 0 -> good match, 10 -> debugger applied
2652 non-standard coercions, 100 -> incompatible.
2653
2654 If a method is being searched for, VALP will hold the value.
2655 If a non-method is being searched for, SYMP will hold the symbol for it.
2656
2657 If a method is being searched for, and it is a static method,
2658 then STATICP will point to a non-zero value.
2659
2660 Note: This function does *not* check the value of
2661 overload_resolution. Caller must check it to see whether overload
2662 resolution is permitted.
c5aa993b 2663 */
c906108c
SS
2664
2665int
fba45db2 2666find_overload_match (struct type **arg_types, int nargs, char *name, int method,
7f8c9282 2667 int lax, struct value **objp, struct symbol *fsym,
f23631e4 2668 struct value **valp, struct symbol **symp, int *staticp)
c906108c
SS
2669{
2670 int nparms;
c5aa993b 2671 struct type **parm_types;
c906108c 2672 int champ_nparms = 0;
7f8c9282 2673 struct value *obj = (objp ? *objp : NULL);
c5aa993b
JM
2674
2675 short oload_champ = -1; /* Index of best overloaded function */
2676 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2677 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2678 short oload_ambig_champ = -1; /* 2nd contender for best match */
2679 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2680 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2681
2682 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2683 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2684
f23631e4 2685 struct value *temp = obj;
c5aa993b
JM
2686 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2687 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2688 int num_fns = 0; /* Number of overloaded instances being considered */
2689 struct type *basetype = NULL;
c906108c
SS
2690 int boffset;
2691 register int jj;
2692 register int ix;
4a1970e4 2693 int static_offset;
02f0d45d 2694 struct cleanup *cleanups = NULL;
c906108c 2695
c5aa993b
JM
2696 char *obj_type_name = NULL;
2697 char *func_name = NULL;
c906108c
SS
2698
2699 /* Get the list of overloaded methods or functions */
2700 if (method)
2701 {
2702 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2703 /* Hack: evaluate_subexp_standard often passes in a pointer
7b83ea04 2704 value rather than the object itself, so try again */
c906108c 2705 if ((!obj_type_name || !*obj_type_name) &&
c5aa993b
JM
2706 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2707 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
c906108c
SS
2708
2709 fns_ptr = value_find_oload_method_list (&temp, name, 0,
c5aa993b
JM
2710 &num_fns,
2711 &basetype, &boffset);
c906108c 2712 if (!fns_ptr || !num_fns)
c5aa993b
JM
2713 error ("Couldn't find method %s%s%s",
2714 obj_type_name,
2715 (obj_type_name && *obj_type_name) ? "::" : "",
2716 name);
4a1970e4
DJ
2717 /* If we are dealing with stub method types, they should have
2718 been resolved by find_method_list via value_find_oload_method_list
2719 above. */
2720 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
c906108c
SS
2721 }
2722 else
2723 {
2724 int i = -1;
2725 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2726
917317f4 2727 /* If the name is NULL this must be a C-style function.
7b83ea04 2728 Just return the same symbol. */
917317f4 2729 if (!func_name)
7b83ea04 2730 {
917317f4 2731 *symp = fsym;
7b83ea04
AC
2732 return 0;
2733 }
917317f4 2734
c906108c 2735 oload_syms = make_symbol_overload_list (fsym);
02f0d45d 2736 cleanups = make_cleanup (xfree, oload_syms);
c906108c 2737 while (oload_syms[++i])
c5aa993b 2738 num_fns++;
c906108c 2739 if (!num_fns)
c5aa993b 2740 error ("Couldn't find function %s", func_name);
c906108c 2741 }
c5aa993b 2742
c906108c
SS
2743 oload_champ_bv = NULL;
2744
c5aa993b 2745 /* Consider each candidate in turn */
c906108c
SS
2746 for (ix = 0; ix < num_fns; ix++)
2747 {
4a1970e4 2748 static_offset = 0;
db577aea
AC
2749 if (method)
2750 {
4a1970e4
DJ
2751 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2752 static_offset = 1;
ad2f7632 2753 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
db577aea
AC
2754 }
2755 else
2756 {
2757 /* If it's not a method, this is the proper place */
2758 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2759 }
c906108c 2760
c5aa993b 2761 /* Prepare array of parameter types */
c906108c
SS
2762 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2763 for (jj = 0; jj < nparms; jj++)
db577aea 2764 parm_types[jj] = (method
ad2f7632 2765 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
db577aea 2766 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
c906108c 2767
4a1970e4
DJ
2768 /* Compare parameter types to supplied argument types. Skip THIS for
2769 static methods. */
2770 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2771 nargs - static_offset);
c5aa993b 2772
c906108c 2773 if (!oload_champ_bv)
c5aa993b
JM
2774 {
2775 oload_champ_bv = bv;
2776 oload_champ = 0;
2777 champ_nparms = nparms;
2778 }
c906108c 2779 else
c5aa993b
JM
2780 /* See whether current candidate is better or worse than previous best */
2781 switch (compare_badness (bv, oload_champ_bv))
2782 {
2783 case 0:
2784 oload_ambiguous = 1; /* top two contenders are equally good */
2785 oload_ambig_champ = ix;
2786 break;
2787 case 1:
2788 oload_ambiguous = 2; /* incomparable top contenders */
2789 oload_ambig_champ = ix;
2790 break;
2791 case 2:
2792 oload_champ_bv = bv; /* new champion, record details */
2793 oload_ambiguous = 0;
2794 oload_champ = ix;
2795 oload_ambig_champ = -1;
2796 champ_nparms = nparms;
2797 break;
2798 case 3:
2799 default:
2800 break;
2801 }
b8c9b27d 2802 xfree (parm_types);
6b1ba9a0
ND
2803 if (overload_debug)
2804 {
2805 if (method)
2806 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2807 else
2808 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
4a1970e4 2809 for (jj = 0; jj < nargs - static_offset; jj++)
6b1ba9a0
ND
2810 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2811 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2812 }
c5aa993b 2813 } /* end loop over all candidates */
db577aea
AC
2814 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2815 if they have the exact same goodness. This is because there is no
2816 way to differentiate based on return type, which we need to in
2817 cases like overloads of .begin() <It's both const and non-const> */
2818#if 0
c906108c
SS
2819 if (oload_ambiguous)
2820 {
2821 if (method)
c5aa993b
JM
2822 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2823 obj_type_name,
2824 (obj_type_name && *obj_type_name) ? "::" : "",
2825 name);
c906108c 2826 else
c5aa993b
JM
2827 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2828 func_name);
c906108c 2829 }
db577aea 2830#endif
c906108c 2831
4a1970e4
DJ
2832 /* Check how bad the best match is. */
2833 static_offset = 0;
2834 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2835 static_offset = 1;
2836 for (ix = 1; ix <= nargs - static_offset; ix++)
c906108c 2837 {
6b1ba9a0
ND
2838 if (oload_champ_bv->rank[ix] >= 100)
2839 oload_incompatible = 1; /* truly mismatched types */
2840
2841 else if (oload_champ_bv->rank[ix] >= 10)
2842 oload_non_standard = 1; /* non-standard type conversions needed */
c906108c
SS
2843 }
2844 if (oload_incompatible)
2845 {
2846 if (method)
c5aa993b
JM
2847 error ("Cannot resolve method %s%s%s to any overloaded instance",
2848 obj_type_name,
2849 (obj_type_name && *obj_type_name) ? "::" : "",
2850 name);
c906108c 2851 else
c5aa993b
JM
2852 error ("Cannot resolve function %s to any overloaded instance",
2853 func_name);
c906108c
SS
2854 }
2855 else if (oload_non_standard)
2856 {
2857 if (method)
c5aa993b
JM
2858 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2859 obj_type_name,
2860 (obj_type_name && *obj_type_name) ? "::" : "",
2861 name);
c906108c 2862 else
c5aa993b
JM
2863 warning ("Using non-standard conversion to match function %s to supplied arguments",
2864 func_name);
c906108c
SS
2865 }
2866
2867 if (method)
2868 {
4a1970e4
DJ
2869 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2870 *staticp = 1;
2871 else if (staticp)
2872 *staticp = 0;
c906108c 2873 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
c5aa993b 2874 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c 2875 else
c5aa993b 2876 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
c906108c
SS
2877 }
2878 else
2879 {
2880 *symp = oload_syms[oload_champ];
b8c9b27d 2881 xfree (func_name);
c906108c
SS
2882 }
2883
7f8c9282
DJ
2884 if (objp)
2885 {
2886 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2887 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2888 {
2889 temp = value_addr (temp);
2890 }
2891 *objp = temp;
2892 }
02f0d45d
DJ
2893 if (cleanups != NULL)
2894 do_cleanups (cleanups);
2895
c906108c
SS
2896 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2897}
2898
2899/* C++: return 1 is NAME is a legitimate name for the destructor
2900 of type TYPE. If TYPE does not have a destructor, or
2901 if NAME is inappropriate for TYPE, an error is signaled. */
2902int
fba45db2 2903destructor_name_p (const char *name, const struct type *type)
c906108c
SS
2904{
2905 /* destructors are a special case. */
2906
2907 if (name[0] == '~')
2908 {
2909 char *dname = type_name_no_tag (type);
2910 char *cp = strchr (dname, '<');
2911 unsigned int len;
2912
2913 /* Do not compare the template part for template classes. */
2914 if (cp == NULL)
2915 len = strlen (dname);
2916 else
2917 len = cp - dname;
2918 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2919 error ("name of destructor must equal name of class");
2920 else
2921 return 1;
2922 }
2923 return 0;
2924}
2925
2926/* Helper function for check_field: Given TYPE, a structure/union,
2927 return 1 if the component named NAME from the ultimate
2928 target structure/union is defined, otherwise, return 0. */
2929
2930static int
fba45db2 2931check_field_in (register struct type *type, const char *name)
c906108c
SS
2932{
2933 register int i;
2934
2935 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2936 {
2937 char *t_field_name = TYPE_FIELD_NAME (type, i);
db577aea 2938 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
2939 return 1;
2940 }
2941
2942 /* C++: If it was not found as a data field, then try to
2943 return it as a pointer to a method. */
2944
2945 /* Destructors are a special case. */
2946 if (destructor_name_p (name, type))
2947 {
2948 int m_index, f_index;
2949
2950 return get_destructor_fn_field (type, &m_index, &f_index);
2951 }
2952
2953 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2954 {
db577aea 2955 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
c906108c
SS
2956 return 1;
2957 }
2958
2959 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2960 if (check_field_in (TYPE_BASECLASS (type, i), name))
2961 return 1;
c5aa993b 2962
c906108c
SS
2963 return 0;
2964}
2965
2966
2967/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2968 return 1 if the component named NAME from the ultimate
2969 target structure/union is defined, otherwise, return 0. */
2970
2971int
f23631e4 2972check_field (struct value *arg1, const char *name)
c906108c
SS
2973{
2974 register struct type *t;
2975
2976 COERCE_ARRAY (arg1);
2977
2978 t = VALUE_TYPE (arg1);
2979
2980 /* Follow pointers until we get to a non-pointer. */
2981
2982 for (;;)
2983 {
2984 CHECK_TYPEDEF (t);
2985 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2986 break;
2987 t = TYPE_TARGET_TYPE (t);
2988 }
2989
2990 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2991 error ("not implemented: member type in check_field");
2992
c5aa993b 2993 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
2994 && TYPE_CODE (t) != TYPE_CODE_UNION)
2995 error ("Internal error: `this' is not an aggregate");
2996
2997 return check_field_in (t, name);
2998}
2999
3000/* C++: Given an aggregate type CURTYPE, and a member name NAME,
3001 return the address of this member as a "pointer to member"
3002 type. If INTYPE is non-null, then it will be the type
3003 of the member we are looking for. This will help us resolve
3004 "pointers to member functions". This function is used
3005 to resolve user expressions of the form "DOMAIN::NAME". */
3006
f23631e4 3007struct value *
fba45db2
KB
3008value_struct_elt_for_reference (struct type *domain, int offset,
3009 struct type *curtype, char *name,
3010 struct type *intype)
c906108c
SS
3011{
3012 register struct type *t = curtype;
3013 register int i;
f23631e4 3014 struct value *v;
c906108c 3015
c5aa993b 3016 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
c906108c
SS
3017 && TYPE_CODE (t) != TYPE_CODE_UNION)
3018 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3019
3020 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3021 {
3022 char *t_field_name = TYPE_FIELD_NAME (t, i);
c5aa993b 3023
c906108c
SS
3024 if (t_field_name && STREQ (t_field_name, name))
3025 {
3026 if (TYPE_FIELD_STATIC (t, i))
3027 {
3028 v = value_static_field (t, i);
3029 if (v == NULL)
2c2738a0 3030 error ("static field %s has been optimized out",
c906108c
SS
3031 name);
3032 return v;
3033 }
3034 if (TYPE_FIELD_PACKED (t, i))
3035 error ("pointers to bitfield members not allowed");
c5aa993b 3036
c906108c
SS
3037 return value_from_longest
3038 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3039 domain)),
3040 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3041 }
3042 }
3043
3044 /* C++: If it was not found as a data field, then try to
3045 return it as a pointer to a method. */
3046
3047 /* Destructors are a special case. */
3048 if (destructor_name_p (name, t))
3049 {
3050 error ("member pointers to destructors not implemented yet");
3051 }
3052
3053 /* Perform all necessary dereferencing. */
3054 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3055 intype = TYPE_TARGET_TYPE (intype);
3056
3057 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3058 {
3059 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3060 char dem_opname[64];
3061
c5aa993b
JM
3062 if (strncmp (t_field_name, "__", 2) == 0 ||
3063 strncmp (t_field_name, "op", 2) == 0 ||
3064 strncmp (t_field_name, "type", 4) == 0)
c906108c 3065 {
c5aa993b
JM
3066 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3067 t_field_name = dem_opname;
3068 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
c906108c 3069 t_field_name = dem_opname;
c906108c
SS
3070 }
3071 if (t_field_name && STREQ (t_field_name, name))
3072 {
3073 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3074 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
c5aa993b 3075
de17c821
DJ
3076 check_stub_method_group (t, i);
3077
c906108c
SS
3078 if (intype == 0 && j > 1)
3079 error ("non-unique member `%s' requires type instantiation", name);
3080 if (intype)
3081 {
3082 while (j--)
3083 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3084 break;
3085 if (j < 0)
3086 error ("no member function matches that type instantiation");
3087 }
3088 else
3089 j = 0;
c5aa993b 3090
c906108c
SS
3091 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3092 {
3093 return value_from_longest
3094 (lookup_reference_type
3095 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3096 domain)),
3097 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3098 }
3099 else
3100 {
3101 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3102 0, VAR_NAMESPACE, 0, NULL);
3103 if (s == NULL)
3104 {
3105 v = 0;
3106 }
3107 else
3108 {
3109 v = read_var_value (s, 0);
3110#if 0
3111 VALUE_TYPE (v) = lookup_reference_type
3112 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3113 domain));
3114#endif
3115 }
3116 return v;
3117 }
3118 }
3119 }
3120 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3121 {
f23631e4 3122 struct value *v;
c906108c
SS
3123 int base_offset;
3124
3125 if (BASETYPE_VIA_VIRTUAL (t, i))
3126 base_offset = 0;
3127 else
3128 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3129 v = value_struct_elt_for_reference (domain,
3130 offset + base_offset,
3131 TYPE_BASECLASS (t, i),
3132 name,
3133 intype);
3134 if (v)
3135 return v;
3136 }
3137 return 0;
3138}
3139
3140
c906108c
SS
3141/* Given a pointer value V, find the real (RTTI) type
3142 of the object it points to.
3143 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3144 and refer to the values computed for the object pointed to. */
3145
3146struct type *
f23631e4 3147value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
c906108c 3148{
f23631e4 3149 struct value *target;
c906108c
SS
3150
3151 target = value_ind (v);
3152
3153 return value_rtti_type (target, full, top, using_enc);
3154}
3155
3156/* Given a value pointed to by ARGP, check its real run-time type, and
3157 if that is different from the enclosing type, create a new value
3158 using the real run-time type as the enclosing type (and of the same
3159 type as ARGP) and return it, with the embedded offset adjusted to
3160 be the correct offset to the enclosed object
3161 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3162 parameters, computed by value_rtti_type(). If these are available,
3163 they can be supplied and a second call to value_rtti_type() is avoided.
3164 (Pass RTYPE == NULL if they're not available */
3165
f23631e4
AC
3166struct value *
3167value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
fba45db2 3168 int xusing_enc)
c906108c 3169{
c5aa993b 3170 struct type *real_type;
c906108c
SS
3171 int full = 0;
3172 int top = -1;
3173 int using_enc = 0;
f23631e4 3174 struct value *new_val;
c906108c
SS
3175
3176 if (rtype)
3177 {
3178 real_type = rtype;
3179 full = xfull;
3180 top = xtop;
3181 using_enc = xusing_enc;
3182 }
3183 else
3184 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3185
3186 /* If no RTTI data, or if object is already complete, do nothing */
3187 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3188 return argp;
3189
3190 /* If we have the full object, but for some reason the enclosing
c5aa993b 3191 type is wrong, set it *//* pai: FIXME -- sounds iffy */
c906108c
SS
3192 if (full)
3193 {
2b127877 3194 argp = value_change_enclosing_type (argp, real_type);
c906108c
SS
3195 return argp;
3196 }
3197
3198 /* Check if object is in memory */
3199 if (VALUE_LVAL (argp) != lval_memory)
3200 {
3201 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
c5aa993b 3202
c906108c
SS
3203 return argp;
3204 }
c5aa993b 3205
c906108c
SS
3206 /* All other cases -- retrieve the complete object */
3207 /* Go back by the computed top_offset from the beginning of the object,
3208 adjusting for the embedded offset of argp if that's what value_rtti_type
3209 used for its computation. */
3210 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
c5aa993b
JM
3211 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3212 VALUE_BFD_SECTION (argp));
c906108c
SS
3213 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3214 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3215 return new_val;
3216}
3217
389e51db
AC
3218
3219
3220
d069f99d 3221/* Return the value of the local variable, if one exists.
c906108c
SS
3222 Flag COMPLAIN signals an error if the request is made in an
3223 inappropriate context. */
3224
f23631e4 3225struct value *
d069f99d 3226value_of_local (const char *name, int complain)
c906108c
SS
3227{
3228 struct symbol *func, *sym;
3229 struct block *b;
3230 int i;
d069f99d 3231 struct value * ret;
c906108c 3232
6e7f8b9c 3233 if (deprecated_selected_frame == 0)
c906108c
SS
3234 {
3235 if (complain)
c5aa993b
JM
3236 error ("no frame selected");
3237 else
3238 return 0;
c906108c
SS
3239 }
3240
6e7f8b9c 3241 func = get_frame_function (deprecated_selected_frame);
c906108c
SS
3242 if (!func)
3243 {
3244 if (complain)
2625d86c 3245 error ("no `%s' in nameless context", name);
c5aa993b
JM
3246 else
3247 return 0;
c906108c
SS
3248 }
3249
3250 b = SYMBOL_BLOCK_VALUE (func);
3251 i = BLOCK_NSYMS (b);
3252 if (i <= 0)
3253 {
3254 if (complain)
2625d86c 3255 error ("no args, no `%s'", name);
c5aa993b
JM
3256 else
3257 return 0;
c906108c
SS
3258 }
3259
3260 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3261 symbol instead of the LOC_ARG one (if both exist). */
d069f99d 3262 sym = lookup_block_symbol (b, name, NULL, VAR_NAMESPACE);
c906108c
SS
3263 if (sym == NULL)
3264 {
3265 if (complain)
2625d86c 3266 error ("current stack frame does not contain a variable named `%s'", name);
c906108c
SS
3267 else
3268 return NULL;
3269 }
3270
6e7f8b9c 3271 ret = read_var_value (sym, deprecated_selected_frame);
d069f99d 3272 if (ret == 0 && complain)
2625d86c 3273 error ("`%s' argument unreadable", name);
d069f99d
AF
3274 return ret;
3275}
3276
3277/* C++/Objective-C: return the value of the class instance variable,
3278 if one exists. Flag COMPLAIN signals an error if the request is
3279 made in an inappropriate context. */
3280
3281struct value *
3282value_of_this (int complain)
3283{
3284 if (current_language->la_language == language_objc)
3285 return value_of_local ("self", complain);
3286 else
3287 return value_of_local ("this", complain);
c906108c
SS
3288}
3289
3290/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3291 long, starting at LOWBOUND. The result has the same lower bound as
3292 the original ARRAY. */
3293
f23631e4
AC
3294struct value *
3295value_slice (struct value *array, int lowbound, int length)
c906108c
SS
3296{
3297 struct type *slice_range_type, *slice_type, *range_type;
7a67d0fe 3298 LONGEST lowerbound, upperbound;
f23631e4 3299 struct value *slice;
c906108c
SS
3300 struct type *array_type;
3301 array_type = check_typedef (VALUE_TYPE (array));
3302 COERCE_VARYING_ARRAY (array, array_type);
3303 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3304 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3305 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3306 error ("cannot take slice of non-array");
3307 range_type = TYPE_INDEX_TYPE (array_type);
3308 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3309 error ("slice from bad array or bitstring");
3310 if (lowbound < lowerbound || length < 0
db034ac5 3311 || lowbound + length - 1 > upperbound)
c906108c
SS
3312 error ("slice out of range");
3313 /* FIXME-type-allocation: need a way to free this type when we are
3314 done with it. */
c5aa993b 3315 slice_range_type = create_range_type ((struct type *) NULL,
c906108c
SS
3316 TYPE_TARGET_TYPE (range_type),
3317 lowbound, lowbound + length - 1);
3318 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3319 {
3320 int i;
c5aa993b 3321 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
c906108c
SS
3322 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3323 slice = value_zero (slice_type, not_lval);
3324 for (i = 0; i < length; i++)
3325 {
3326 int element = value_bit_index (array_type,
3327 VALUE_CONTENTS (array),
3328 lowbound + i);
3329 if (element < 0)
3330 error ("internal error accessing bitstring");
3331 else if (element > 0)
3332 {
3333 int j = i % TARGET_CHAR_BIT;
3334 if (BITS_BIG_ENDIAN)
3335 j = TARGET_CHAR_BIT - 1 - j;
3336 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3337 }
3338 }
3339 /* We should set the address, bitssize, and bitspos, so the clice
7b83ea04
AC
3340 can be used on the LHS, but that may require extensions to
3341 value_assign. For now, just leave as a non_lval. FIXME. */
c906108c
SS
3342 }
3343 else
3344 {
3345 struct type *element_type = TYPE_TARGET_TYPE (array_type);
7a67d0fe 3346 LONGEST offset
c906108c 3347 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
c5aa993b 3348 slice_type = create_array_type ((struct type *) NULL, element_type,
c906108c
SS
3349 slice_range_type);
3350 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3351 slice = allocate_value (slice_type);
3352 if (VALUE_LAZY (array))
3353 VALUE_LAZY (slice) = 1;
3354 else
3355 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3356 TYPE_LENGTH (slice_type));
3357 if (VALUE_LVAL (array) == lval_internalvar)
3358 VALUE_LVAL (slice) = lval_internalvar_component;
3359 else
3360 VALUE_LVAL (slice) = VALUE_LVAL (array);
3361 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3362 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3363 }
3364 return slice;
3365}
3366
070ad9f0
DB
3367/* Create a value for a FORTRAN complex number. Currently most of
3368 the time values are coerced to COMPLEX*16 (i.e. a complex number
3369 composed of 2 doubles. This really should be a smarter routine
3370 that figures out precision inteligently as opposed to assuming
c5aa993b 3371 doubles. FIXME: fmb */
c906108c 3372
f23631e4
AC
3373struct value *
3374value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
c906108c 3375{
f23631e4 3376 struct value *val;
c906108c
SS
3377 struct type *real_type = TYPE_TARGET_TYPE (type);
3378
3379 val = allocate_value (type);
3380 arg1 = value_cast (real_type, arg1);
3381 arg2 = value_cast (real_type, arg2);
3382
3383 memcpy (VALUE_CONTENTS_RAW (val),
3384 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3385 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3386 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3387 return val;
3388}
3389
3390/* Cast a value into the appropriate complex data type. */
3391
f23631e4
AC
3392static struct value *
3393cast_into_complex (struct type *type, struct value *val)
c906108c
SS
3394{
3395 struct type *real_type = TYPE_TARGET_TYPE (type);
3396 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3397 {
3398 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
f23631e4
AC
3399 struct value *re_val = allocate_value (val_real_type);
3400 struct value *im_val = allocate_value (val_real_type);
c906108c
SS
3401
3402 memcpy (VALUE_CONTENTS_RAW (re_val),
3403 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3404 memcpy (VALUE_CONTENTS_RAW (im_val),
3405 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
c5aa993b 3406 TYPE_LENGTH (val_real_type));
c906108c
SS
3407
3408 return value_literal_complex (re_val, im_val, type);
3409 }
3410 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3411 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3412 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3413 else
3414 error ("cannot cast non-number to complex");
3415}
3416
3417void
fba45db2 3418_initialize_valops (void)
c906108c
SS
3419{
3420#if 0
3421 add_show_from_set
c5aa993b 3422 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
c906108c
SS
3423 "Set automatic abandonment of expressions upon failure.",
3424 &setlist),
3425 &showlist);
3426#endif
3427
3428 add_show_from_set
c5aa993b 3429 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
c906108c
SS
3430 "Set overload resolution in evaluating C++ functions.",
3431 &setlist),
3432 &showlist);
3433 overload_resolution = 1;
3434
242bfc55
FN
3435 add_show_from_set (
3436 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3437 (char *) &unwind_on_signal_p,
3438"Set unwinding of stack if a signal is received while in a call dummy.\n\
3439The unwindonsignal lets the user determine what gdb should do if a signal\n\
3440is received while in a function called from gdb (call dummy). If set, gdb\n\
3441unwinds the stack and restore the context to what as it was before the call.\n\
3442The default is to stop in the frame where the signal was received.", &setlist),
3443 &showlist);
1e698235
DJ
3444
3445 add_show_from_set
3446 (add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
3447 (char *) &coerce_float_to_double,
3448 "Set coercion of floats to doubles when calling functions\n"
3449 "Variables of type float should generally be converted to doubles before\n"
3450 "calling an unprototyped function, and left alone when calling a prototyped\n"
3451 "function. However, some older debug info formats do not provide enough\n"
3452 "information to determine that a function is prototyped. If this flag is\n"
3453 "set, GDB will perform the conversion for a function it considers\n"
3454 "unprototyped.\n"
3455 "The default is to perform the conversion.\n",
3456 &setlist),
3457 &showlist);
3458 coerce_float_to_double = 1;
c906108c 3459}
This page took 0.523643 seconds and 4 git commands to generate.