Factor out int printing code from generic_val_print
[deliverable/binutils-gdb.git] / gdb / valprint.c
CommitLineData
c906108c 1/* Print values for GDB, the GNU debugger.
5c1c87f0 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
c906108c
SS
21#include "symtab.h"
22#include "gdbtypes.h"
23#include "value.h"
24#include "gdbcore.h"
25#include "gdbcmd.h"
26#include "target.h"
c906108c 27#include "language.h"
c906108c
SS
28#include "annotate.h"
29#include "valprint.h"
39424bef 30#include "floatformat.h"
d16aafd8 31#include "doublest.h"
7678ef8f 32#include "dfp.h"
6dddc817 33#include "extension.h"
0c3acc09 34#include "ada-lang.h"
3b2b8fea
TT
35#include "gdb_obstack.h"
36#include "charset.h"
37#include <ctype.h>
c906108c 38
0d63ecda
KS
39/* Maximum number of wchars returned from wchar_iterate. */
40#define MAX_WCHARS 4
41
42/* A convenience macro to compute the size of a wchar_t buffer containing X
43 characters. */
44#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
45
46/* Character buffer size saved while iterating over wchars. */
47#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
48
49/* A structure to encapsulate state information from iterated
50 character conversions. */
51struct converted_character
52{
53 /* The number of characters converted. */
54 int num_chars;
55
56 /* The result of the conversion. See charset.h for more. */
57 enum wchar_iterate_result result;
58
59 /* The (saved) converted character(s). */
60 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
61
62 /* The first converted target byte. */
63 const gdb_byte *buf;
64
65 /* The number of bytes converted. */
66 size_t buflen;
67
68 /* How many times this character(s) is repeated. */
69 int repeat_count;
70};
71
72typedef struct converted_character converted_character_d;
73DEF_VEC_O (converted_character_d);
74
e7045703
DE
75/* Command lists for set/show print raw. */
76struct cmd_list_element *setprintrawlist;
77struct cmd_list_element *showprintrawlist;
0d63ecda 78
c906108c
SS
79/* Prototypes for local functions */
80
777ea8f1 81static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 82 int len, int *errptr);
917317f4 83
a14ed312 84static void show_print (char *, int);
c906108c 85
a14ed312 86static void set_print (char *, int);
c906108c 87
a14ed312 88static void set_radix (char *, int);
c906108c 89
a14ed312 90static void show_radix (char *, int);
c906108c 91
a14ed312 92static void set_input_radix (char *, int, struct cmd_list_element *);
c906108c 93
a14ed312 94static void set_input_radix_1 (int, unsigned);
c906108c 95
a14ed312 96static void set_output_radix (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_output_radix_1 (int, unsigned);
c906108c 99
a14ed312 100void _initialize_valprint (void);
c906108c 101
581e13c1 102#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
79a45b7d
TT
103
104struct value_print_options user_print_options =
105{
2a998fc0
DE
106 Val_prettyformat_default, /* prettyformat */
107 0, /* prettyformat_arrays */
108 0, /* prettyformat_structs */
79a45b7d
TT
109 0, /* vtblprint */
110 1, /* unionprint */
111 1, /* addressprint */
112 0, /* objectprint */
113 PRINT_MAX_DEFAULT, /* print_max */
114 10, /* repeat_count_threshold */
115 0, /* output_format */
116 0, /* format */
117 0, /* stop_print_at_null */
79a45b7d
TT
118 0, /* print_array_indexes */
119 0, /* deref_ref */
120 1, /* static_field_print */
a6bac58e
TT
121 1, /* pascal_static_field_print */
122 0, /* raw */
9cb709b6
TT
123 0, /* summary */
124 1 /* symbol_print */
79a45b7d
TT
125};
126
127/* Initialize *OPTS to be a copy of the user print options. */
128void
129get_user_print_options (struct value_print_options *opts)
130{
131 *opts = user_print_options;
132}
133
134/* Initialize *OPTS to be a copy of the user print options, but with
2a998fc0 135 pretty-formatting disabled. */
79a45b7d 136void
2a998fc0 137get_no_prettyformat_print_options (struct value_print_options *opts)
79a45b7d
TT
138{
139 *opts = user_print_options;
2a998fc0 140 opts->prettyformat = Val_no_prettyformat;
79a45b7d
TT
141}
142
143/* Initialize *OPTS to be a copy of the user print options, but using
144 FORMAT as the formatting option. */
145void
146get_formatted_print_options (struct value_print_options *opts,
147 char format)
148{
149 *opts = user_print_options;
150 opts->format = format;
151}
152
920d2a44
AC
153static void
154show_print_max (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
3e43a32a
MS
157 fprintf_filtered (file,
158 _("Limit on string chars or array "
159 "elements to print is %s.\n"),
920d2a44
AC
160 value);
161}
162
c906108c
SS
163
164/* Default input and output radixes, and output format letter. */
165
166unsigned input_radix = 10;
920d2a44
AC
167static void
168show_input_radix (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
3e43a32a
MS
171 fprintf_filtered (file,
172 _("Default input radix for entering numbers is %s.\n"),
920d2a44
AC
173 value);
174}
175
c906108c 176unsigned output_radix = 10;
920d2a44
AC
177static void
178show_output_radix (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
3e43a32a
MS
181 fprintf_filtered (file,
182 _("Default output radix for printing of values is %s.\n"),
920d2a44
AC
183 value);
184}
c906108c 185
e79af960
JB
186/* By default we print arrays without printing the index of each element in
187 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
188
e79af960
JB
189static void
190show_print_array_indexes (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
194}
195
c906108c
SS
196/* Print repeat counts if there are more than this many repetitions of an
197 element in an array. Referenced by the low level language dependent
581e13c1 198 print routines. */
c906108c 199
920d2a44
AC
200static void
201show_repeat_count_threshold (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203{
204 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
205 value);
206}
c906108c 207
581e13c1 208/* If nonzero, stops printing of char arrays at first null. */
c906108c 209
920d2a44
AC
210static void
211show_stop_print_at_null (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213{
3e43a32a
MS
214 fprintf_filtered (file,
215 _("Printing of char arrays to stop "
216 "at first null char is %s.\n"),
920d2a44
AC
217 value);
218}
c906108c 219
581e13c1 220/* Controls pretty printing of structures. */
c906108c 221
920d2a44 222static void
2a998fc0 223show_prettyformat_structs (struct ui_file *file, int from_tty,
920d2a44
AC
224 struct cmd_list_element *c, const char *value)
225{
2a998fc0 226 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
920d2a44 227}
c906108c
SS
228
229/* Controls pretty printing of arrays. */
230
920d2a44 231static void
2a998fc0 232show_prettyformat_arrays (struct ui_file *file, int from_tty,
920d2a44
AC
233 struct cmd_list_element *c, const char *value)
234{
2a998fc0 235 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
920d2a44 236}
c906108c
SS
237
238/* If nonzero, causes unions inside structures or other unions to be
581e13c1 239 printed. */
c906108c 240
920d2a44
AC
241static void
242show_unionprint (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244{
3e43a32a
MS
245 fprintf_filtered (file,
246 _("Printing of unions interior to structures is %s.\n"),
920d2a44
AC
247 value);
248}
c906108c 249
581e13c1 250/* If nonzero, causes machine addresses to be printed in certain contexts. */
c906108c 251
920d2a44
AC
252static void
253show_addressprint (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255{
256 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
257}
9cb709b6
TT
258
259static void
260show_symbol_print (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file,
264 _("Printing of symbols when printing pointers is %s.\n"),
265 value);
266}
267
c906108c 268\f
c5aa993b 269
a6bac58e
TT
270/* A helper function for val_print. When printing in "summary" mode,
271 we want to print scalar arguments, but not aggregate arguments.
272 This function distinguishes between the two. */
273
6211c335
YQ
274int
275val_print_scalar_type_p (struct type *type)
a6bac58e 276{
f168693b 277 type = check_typedef (type);
a6bac58e
TT
278 while (TYPE_CODE (type) == TYPE_CODE_REF)
279 {
280 type = TYPE_TARGET_TYPE (type);
f168693b 281 type = check_typedef (type);
a6bac58e
TT
282 }
283 switch (TYPE_CODE (type))
284 {
285 case TYPE_CODE_ARRAY:
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
288 case TYPE_CODE_SET:
289 case TYPE_CODE_STRING:
a6bac58e
TT
290 return 0;
291 default:
292 return 1;
293 }
294}
295
a72c8f6a 296/* See its definition in value.h. */
0e03807e 297
a72c8f6a 298int
0e03807e
TT
299valprint_check_validity (struct ui_file *stream,
300 struct type *type,
4e07d55f 301 int embedded_offset,
0e03807e
TT
302 const struct value *val)
303{
f168693b 304 type = check_typedef (type);
0e03807e
TT
305
306 if (TYPE_CODE (type) != TYPE_CODE_UNION
307 && TYPE_CODE (type) != TYPE_CODE_STRUCT
308 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
309 {
9a0dc9e3
PA
310 if (value_bits_any_optimized_out (val,
311 TARGET_CHAR_BIT * embedded_offset,
312 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
0e03807e 313 {
901461f8 314 val_print_optimized_out (val, stream);
0e03807e
TT
315 return 0;
316 }
8cf6f0b1 317
4e07d55f 318 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
8cf6f0b1
TT
319 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
320 {
321 fputs_filtered (_("<synthetic pointer>"), stream);
322 return 0;
323 }
4e07d55f
PA
324
325 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
326 {
327 val_print_unavailable (stream);
328 return 0;
329 }
0e03807e
TT
330 }
331
332 return 1;
333}
334
585fdaa1 335void
901461f8 336val_print_optimized_out (const struct value *val, struct ui_file *stream)
585fdaa1 337{
901461f8 338 if (val != NULL && value_lval_const (val) == lval_register)
782d47df 339 val_print_not_saved (stream);
901461f8
PA
340 else
341 fprintf_filtered (stream, _("<optimized out>"));
585fdaa1
PA
342}
343
782d47df
PA
344void
345val_print_not_saved (struct ui_file *stream)
346{
347 fprintf_filtered (stream, _("<not saved>"));
348}
349
4e07d55f
PA
350void
351val_print_unavailable (struct ui_file *stream)
352{
353 fprintf_filtered (stream, _("<unavailable>"));
354}
355
8af8e3bc
PA
356void
357val_print_invalid_address (struct ui_file *stream)
358{
359 fprintf_filtered (stream, _("<invalid address>"));
360}
361
9f436164
SM
362/* Print a pointer based on the type of its target.
363
364 Arguments to this functions are roughly the same as those in
365 generic_val_print. A difference is that ADDRESS is the address to print,
366 with embedded_offset already added. ELTTYPE represents
367 the pointed type after check_typedef. */
368
369static void
370print_unpacked_pointer (struct type *type, struct type *elttype,
371 CORE_ADDR address, struct ui_file *stream,
372 const struct value_print_options *options)
373{
374 struct gdbarch *gdbarch = get_type_arch (type);
375
376 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
377 {
378 /* Try to print what function it points to. */
379 print_function_pointer_address (options, gdbarch, address, stream);
380 return;
381 }
382
383 if (options->symbol_print)
384 print_address_demangle (options, gdbarch, address, stream, demangle);
385 else if (options->addressprint)
386 fputs_filtered (paddress (gdbarch, address), stream);
387}
388
557dbe8a
SM
389/* generic_val_print helper for TYPE_CODE_ARRAY. */
390
391static void
392generic_val_print_array (struct type *type, const gdb_byte *valaddr,
393 int embedded_offset, CORE_ADDR address,
394 struct ui_file *stream, int recurse,
395 const struct value *original_value,
396 const struct value_print_options *options)
397{
398 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
399 struct type *elttype = check_typedef (unresolved_elttype);
400
401 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
402 {
403 LONGEST low_bound, high_bound;
404
405 if (!get_array_bounds (type, &low_bound, &high_bound))
406 error (_("Could not determine the array high bound"));
407
408 if (options->prettyformat_arrays)
409 {
410 print_spaces_filtered (2 + 2 * recurse, stream);
411 }
412
413 fprintf_filtered (stream, "{");
414 val_print_array_elements (type, valaddr, embedded_offset,
415 address, stream,
416 recurse, original_value, options, 0);
417 fprintf_filtered (stream, "}");
418 }
419 else
420 {
421 /* Array of unspecified length: treat like pointer to first elt. */
422 print_unpacked_pointer (type, elttype, address + embedded_offset, stream,
423 options);
424 }
425
426}
427
81eb921a
SM
428/* generic_val_print helper for TYPE_CODE_PTR. */
429
430static void
431generic_val_print_ptr (struct type *type, const gdb_byte *valaddr,
432 int embedded_offset, struct ui_file *stream,
433 const struct value *original_value,
434 const struct value_print_options *options)
435{
436 if (options->format && options->format != 's')
437 {
438 val_print_scalar_formatted (type, valaddr, embedded_offset,
439 original_value, options, 0, stream);
440 }
441 else
442 {
443 struct type *unresolved_elttype = TYPE_TARGET_TYPE(type);
444 struct type *elttype = check_typedef (unresolved_elttype);
445 CORE_ADDR addr = unpack_pointer (type, valaddr + embedded_offset);
446
447 print_unpacked_pointer (type, elttype, addr, stream, options);
448 }
449}
450
45000ea2
SM
451
452/* generic_val_print helper for TYPE_CODE_MEMBERPTR. */
453
454static void
455generic_val_print_memberptr (struct type *type, const gdb_byte *valaddr,
456 int embedded_offset, struct ui_file *stream,
457 const struct value *original_value,
458 const struct value_print_options *options)
459{
460 val_print_scalar_formatted (type, valaddr, embedded_offset,
461 original_value, options, 0, stream);
462}
463
fe43fede
SM
464/* generic_val_print helper for TYPE_CODE_REF. */
465
466static void
467generic_val_print_ref (struct type *type, const gdb_byte *valaddr,
468 int embedded_offset, struct ui_file *stream, int recurse,
469 const struct value *original_value,
470 const struct value_print_options *options)
471{
472 struct gdbarch *gdbarch = get_type_arch (type);
473 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
474
475 if (options->addressprint)
476 {
477 CORE_ADDR addr
478 = extract_typed_address (valaddr + embedded_offset, type);
479
480 fprintf_filtered (stream, "@");
481 fputs_filtered (paddress (gdbarch, addr), stream);
482 if (options->deref_ref)
483 fputs_filtered (": ", stream);
484 }
485 /* De-reference the reference. */
486 if (options->deref_ref)
487 {
488 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
489 {
490 struct value *deref_val;
491
492 deref_val = coerce_ref_if_computed (original_value);
493 if (deref_val != NULL)
494 {
495 /* More complicated computed references are not supported. */
496 gdb_assert (embedded_offset == 0);
497 }
498 else
499 deref_val = value_at (TYPE_TARGET_TYPE (type),
500 unpack_pointer (type,
501 (valaddr
502 + embedded_offset)));
503
504 common_val_print (deref_val, stream, recurse, options,
505 current_language);
506 }
507 else
508 fputs_filtered ("???", stream);
509 }
510}
511
ef0bc0dd
SM
512/* generic_val_print helper for TYPE_CODE_ENUM. */
513
514static void
515generic_val_print_enum (struct type *type, const gdb_byte *valaddr,
516 int embedded_offset, struct ui_file *stream,
517 const struct value *original_value,
518 const struct value_print_options *options)
519{
520 unsigned int i;
521 unsigned int len;
522 LONGEST val;
523
524 if (options->format)
525 {
526 val_print_scalar_formatted (type, valaddr, embedded_offset,
527 original_value, options, 0, stream);
528 return;
529 }
530 len = TYPE_NFIELDS (type);
531 val = unpack_long (type, valaddr + embedded_offset);
532 for (i = 0; i < len; i++)
533 {
534 QUIT;
535 if (val == TYPE_FIELD_ENUMVAL (type, i))
536 {
537 break;
538 }
539 }
540 if (i < len)
541 {
542 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
543 }
544 else if (TYPE_FLAG_ENUM (type))
545 {
546 int first = 1;
547
548 /* We have a "flag" enum, so we try to decompose it into
549 pieces as appropriate. A flag enum has disjoint
550 constants by definition. */
551 fputs_filtered ("(", stream);
552 for (i = 0; i < len; ++i)
553 {
554 QUIT;
555
556 if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0)
557 {
558 if (!first)
559 fputs_filtered (" | ", stream);
560 first = 0;
561
562 val &= ~TYPE_FIELD_ENUMVAL (type, i);
563 fputs_filtered (TYPE_FIELD_NAME (type, i), stream);
564 }
565 }
566
567 if (first || val != 0)
568 {
569 if (!first)
570 fputs_filtered (" | ", stream);
571 fputs_filtered ("unknown: ", stream);
572 print_longest (stream, 'd', 0, val);
573 }
574
575 fputs_filtered (")", stream);
576 }
577 else
578 print_longest (stream, 'd', 0, val);
579}
580
d93880bd
SM
581/* generic_val_print helper for TYPE_CODE_FLAGS. */
582
583static void
584generic_val_print_flags (struct type *type, const gdb_byte *valaddr,
585 int embedded_offset, struct ui_file *stream,
586 const struct value *original_value,
587 const struct value_print_options *options)
588
589{
590 if (options->format)
591 val_print_scalar_formatted (type, valaddr, embedded_offset, original_value,
592 options, 0, stream);
593 else
594 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
595}
596
4a8c372f
SM
597/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598
599static void
600generic_val_print_func (struct type *type, const gdb_byte *valaddr,
601 int embedded_offset, CORE_ADDR address,
602 struct ui_file *stream,
603 const struct value *original_value,
604 const struct value_print_options *options)
605{
606 struct gdbarch *gdbarch = get_type_arch (type);
607
608 if (options->format)
609 {
610 val_print_scalar_formatted (type, valaddr, embedded_offset,
611 original_value, options, 0, stream);
612 }
613 else
614 {
615 /* FIXME, we should consider, at least for ANSI C language,
616 eliminating the distinction made between FUNCs and POINTERs
617 to FUNCs. */
618 fprintf_filtered (stream, "{");
619 type_print (type, "", stream, -1);
620 fprintf_filtered (stream, "} ");
621 /* Try to print what function it points to, and its address. */
622 print_address_demangle (options, gdbarch, address, stream, demangle);
623 }
624}
625
e5bead4b
SM
626/* generic_val_print helper for TYPE_CODE_BOOL. */
627
628static void
629generic_val_print_bool (struct type *type, const gdb_byte *valaddr,
630 int embedded_offset, struct ui_file *stream,
631 const struct value *original_value,
632 const struct value_print_options *options,
633 const struct generic_val_print_decorations *decorations)
634{
635 LONGEST val;
636
637 if (options->format || options->output_format)
638 {
639 struct value_print_options opts = *options;
640 opts.format = (options->format ? options->format
641 : options->output_format);
642 val_print_scalar_formatted (type, valaddr, embedded_offset,
643 original_value, &opts, 0, stream);
644 }
645 else
646 {
647 val = unpack_long (type, valaddr + embedded_offset);
648 if (val == 0)
649 fputs_filtered (decorations->false_name, stream);
650 else if (val == 1)
651 fputs_filtered (decorations->true_name, stream);
652 else
653 print_longest (stream, 'd', 0, val);
654 }
655}
656
b21b6342
SM
657/* generic_val_print helper for TYPE_CODE_INT. */
658
659static void
660generic_val_print_int (struct type *type, const gdb_byte *valaddr,
661 int embedded_offset, struct ui_file *stream,
662 const struct value *original_value,
663 const struct value_print_options *options)
664{
665 if (options->format || options->output_format)
666 {
667 struct value_print_options opts = *options;
668
669 opts.format = (options->format ? options->format
670 : options->output_format);
671 val_print_scalar_formatted (type, valaddr, embedded_offset,
672 original_value, &opts, 0, stream);
673 }
674 else
675 val_print_type_code_int (type, valaddr + embedded_offset, stream);
676}
677
e88acd96
TT
678/* A generic val_print that is suitable for use by language
679 implementations of the la_val_print method. This function can
680 handle most type codes, though not all, notably exception
681 TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by
682 the caller.
683
684 Most arguments are as to val_print.
685
686 The additional DECORATIONS argument can be used to customize the
687 output in some small, language-specific ways. */
688
689void
690generic_val_print (struct type *type, const gdb_byte *valaddr,
691 int embedded_offset, CORE_ADDR address,
692 struct ui_file *stream, int recurse,
693 const struct value *original_value,
694 const struct value_print_options *options,
695 const struct generic_val_print_decorations *decorations)
696{
e88acd96 697 struct type *unresolved_type = type;
e88acd96 698 LONGEST val;
e88acd96 699
f168693b 700 type = check_typedef (type);
e88acd96
TT
701 switch (TYPE_CODE (type))
702 {
703 case TYPE_CODE_ARRAY:
557dbe8a
SM
704 generic_val_print_array (type, valaddr, embedded_offset, address, stream,
705 recurse, original_value, options);
9f436164 706 break;
e88acd96
TT
707
708 case TYPE_CODE_MEMBERPTR:
45000ea2
SM
709 generic_val_print_memberptr (type, valaddr, embedded_offset, stream,
710 original_value, options);
e88acd96
TT
711 break;
712
713 case TYPE_CODE_PTR:
81eb921a
SM
714 generic_val_print_ptr (type, valaddr, embedded_offset, stream,
715 original_value, options);
e88acd96
TT
716 break;
717
718 case TYPE_CODE_REF:
fe43fede
SM
719 generic_val_print_ref (type, valaddr, embedded_offset, stream, recurse,
720 original_value, options);
e88acd96
TT
721 break;
722
723 case TYPE_CODE_ENUM:
ef0bc0dd
SM
724 generic_val_print_enum (type, valaddr, embedded_offset, stream,
725 original_value, options);
e88acd96
TT
726 break;
727
728 case TYPE_CODE_FLAGS:
d93880bd
SM
729 generic_val_print_flags (type, valaddr, embedded_offset, stream,
730 original_value, options);
e88acd96
TT
731 break;
732
733 case TYPE_CODE_FUNC:
734 case TYPE_CODE_METHOD:
4a8c372f
SM
735 generic_val_print_func (type, valaddr, embedded_offset, address, stream,
736 original_value, options);
e88acd96
TT
737 break;
738
739 case TYPE_CODE_BOOL:
e5bead4b
SM
740 generic_val_print_bool (type, valaddr, embedded_offset, stream,
741 original_value, options, decorations);
e88acd96
TT
742 break;
743
744 case TYPE_CODE_RANGE:
0c9c3474 745 /* FIXME: create_static_range_type does not set the unsigned bit in a
e88acd96
TT
746 range type (I think it probably should copy it from the
747 target type), so we won't print values which are too large to
748 fit in a signed integer correctly. */
749 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
750 print with the target type, though, because the size of our
751 type and the target type might differ). */
752
753 /* FALLTHROUGH */
754
755 case TYPE_CODE_INT:
b21b6342
SM
756 generic_val_print_int (type, valaddr, embedded_offset, stream,
757 original_value, options);
e88acd96
TT
758 break;
759
760 case TYPE_CODE_CHAR:
761 if (options->format || options->output_format)
762 {
763 struct value_print_options opts = *options;
764
765 opts.format = (options->format ? options->format
766 : options->output_format);
767 val_print_scalar_formatted (type, valaddr, embedded_offset,
768 original_value, &opts, 0, stream);
769 }
770 else
771 {
772 val = unpack_long (type, valaddr + embedded_offset);
773 if (TYPE_UNSIGNED (type))
774 fprintf_filtered (stream, "%u", (unsigned int) val);
775 else
776 fprintf_filtered (stream, "%d", (int) val);
777 fputs_filtered (" ", stream);
778 LA_PRINT_CHAR (val, unresolved_type, stream);
779 }
780 break;
781
782 case TYPE_CODE_FLT:
783 if (options->format)
784 {
785 val_print_scalar_formatted (type, valaddr, embedded_offset,
786 original_value, options, 0, stream);
787 }
788 else
789 {
790 print_floating (valaddr + embedded_offset, type, stream);
791 }
792 break;
793
794 case TYPE_CODE_DECFLOAT:
795 if (options->format)
796 val_print_scalar_formatted (type, valaddr, embedded_offset,
797 original_value, options, 0, stream);
798 else
799 print_decimal_floating (valaddr + embedded_offset,
800 type, stream);
801 break;
802
803 case TYPE_CODE_VOID:
804 fputs_filtered (decorations->void_name, stream);
805 break;
806
807 case TYPE_CODE_ERROR:
808 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
809 break;
810
811 case TYPE_CODE_UNDEF:
812 /* This happens (without TYPE_FLAG_STUB set) on systems which
813 don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a
814 "struct foo *bar" and no complete type for struct foo in that
815 file. */
816 fprintf_filtered (stream, _("<incomplete type>"));
817 break;
818
819 case TYPE_CODE_COMPLEX:
820 fprintf_filtered (stream, "%s", decorations->complex_prefix);
821 if (options->format)
822 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
823 valaddr, embedded_offset,
824 original_value, options, 0, stream);
825 else
826 print_floating (valaddr + embedded_offset,
827 TYPE_TARGET_TYPE (type),
828 stream);
829 fprintf_filtered (stream, "%s", decorations->complex_infix);
830 if (options->format)
831 val_print_scalar_formatted (TYPE_TARGET_TYPE (type),
832 valaddr,
833 embedded_offset
834 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
835 original_value,
836 options, 0, stream);
837 else
838 print_floating (valaddr + embedded_offset
839 + TYPE_LENGTH (TYPE_TARGET_TYPE (type)),
840 TYPE_TARGET_TYPE (type),
841 stream);
842 fprintf_filtered (stream, "%s", decorations->complex_suffix);
843 break;
844
845 case TYPE_CODE_UNION:
846 case TYPE_CODE_STRUCT:
847 case TYPE_CODE_METHODPTR:
848 default:
849 error (_("Unhandled type code %d in symbol table."),
850 TYPE_CODE (type));
851 }
852 gdb_flush (stream);
853}
854
32b72a42
PA
855/* Print using the given LANGUAGE the data of type TYPE located at
856 VALADDR + EMBEDDED_OFFSET (within GDB), which came from the
857 inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream
858 STREAM according to OPTIONS. VAL is the whole object that came
859 from ADDRESS. VALADDR must point to the head of VAL's contents
860 buffer.
861
862 The language printers will pass down an adjusted EMBEDDED_OFFSET to
863 further helper subroutines as subfields of TYPE are printed. In
864 such cases, VALADDR is passed down unadjusted, as well as VAL, so
865 that VAL can be queried for metadata about the contents data being
866 printed, using EMBEDDED_OFFSET as an offset into VAL's contents
867 buffer. For example: "has this field been optimized out", or "I'm
868 printing an object while inspecting a traceframe; has this
869 particular piece of data been collected?".
870
871 RECURSE indicates the amount of indentation to supply before
872 continuation lines; this amount is roughly twice the value of
35c0084b 873 RECURSE. */
32b72a42 874
35c0084b 875void
fc1a4b47 876val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
79a45b7d 877 CORE_ADDR address, struct ui_file *stream, int recurse,
0e03807e 878 const struct value *val,
79a45b7d 879 const struct value_print_options *options,
d8ca156b 880 const struct language_defn *language)
c906108c 881{
19ca80ba 882 int ret = 0;
79a45b7d 883 struct value_print_options local_opts = *options;
c906108c 884 struct type *real_type = check_typedef (type);
79a45b7d 885
2a998fc0
DE
886 if (local_opts.prettyformat == Val_prettyformat_default)
887 local_opts.prettyformat = (local_opts.prettyformat_structs
888 ? Val_prettyformat : Val_no_prettyformat);
c5aa993b 889
c906108c
SS
890 QUIT;
891
892 /* Ensure that the type is complete and not just a stub. If the type is
893 only a stub and we can't find and substitute its complete type, then
894 print appropriate string and return. */
895
74a9bb82 896 if (TYPE_STUB (real_type))
c906108c 897 {
0e03807e 898 fprintf_filtered (stream, _("<incomplete type>"));
c906108c 899 gdb_flush (stream);
35c0084b 900 return;
c906108c 901 }
c5aa993b 902
0e03807e 903 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
35c0084b 904 return;
0e03807e 905
a6bac58e
TT
906 if (!options->raw)
907 {
6dddc817
DE
908 ret = apply_ext_lang_val_pretty_printer (type, valaddr, embedded_offset,
909 address, stream, recurse,
910 val, options, language);
a6bac58e 911 if (ret)
35c0084b 912 return;
a6bac58e
TT
913 }
914
915 /* Handle summary mode. If the value is a scalar, print it;
916 otherwise, print an ellipsis. */
6211c335 917 if (options->summary && !val_print_scalar_type_p (type))
a6bac58e
TT
918 {
919 fprintf_filtered (stream, "...");
35c0084b 920 return;
a6bac58e
TT
921 }
922
492d29ea 923 TRY
19ca80ba 924 {
d3eab38a
TT
925 language->la_val_print (type, valaddr, embedded_offset, address,
926 stream, recurse, val,
927 &local_opts);
19ca80ba 928 }
492d29ea
PA
929 CATCH (except, RETURN_MASK_ERROR)
930 {
931 fprintf_filtered (stream, _("<error reading variable>"));
932 }
933 END_CATCH
c906108c
SS
934}
935
806048c6 936/* Check whether the value VAL is printable. Return 1 if it is;
6501578c
YQ
937 return 0 and print an appropriate error message to STREAM according to
938 OPTIONS if it is not. */
c906108c 939
806048c6 940static int
6501578c
YQ
941value_check_printable (struct value *val, struct ui_file *stream,
942 const struct value_print_options *options)
c906108c
SS
943{
944 if (val == 0)
945 {
806048c6 946 fprintf_filtered (stream, _("<address of value unknown>"));
c906108c
SS
947 return 0;
948 }
806048c6 949
0e03807e 950 if (value_entirely_optimized_out (val))
c906108c 951 {
6211c335 952 if (options->summary && !val_print_scalar_type_p (value_type (val)))
6501578c
YQ
953 fprintf_filtered (stream, "...");
954 else
901461f8 955 val_print_optimized_out (val, stream);
c906108c
SS
956 return 0;
957 }
806048c6 958
eebc056c
AB
959 if (value_entirely_unavailable (val))
960 {
961 if (options->summary && !val_print_scalar_type_p (value_type (val)))
962 fprintf_filtered (stream, "...");
963 else
964 val_print_unavailable (stream);
965 return 0;
966 }
967
bc3b79fd
TJB
968 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
969 {
970 fprintf_filtered (stream, _("<internal function %s>"),
971 value_internal_function_name (val));
972 return 0;
973 }
974
806048c6
DJ
975 return 1;
976}
977
d8ca156b 978/* Print using the given LANGUAGE the value VAL onto stream STREAM according
79a45b7d 979 to OPTIONS.
806048c6 980
806048c6
DJ
981 This is a preferable interface to val_print, above, because it uses
982 GDB's value mechanism. */
983
a1f5dd1b 984void
79a45b7d
TT
985common_val_print (struct value *val, struct ui_file *stream, int recurse,
986 const struct value_print_options *options,
d8ca156b 987 const struct language_defn *language)
806048c6 988{
6501578c 989 if (!value_check_printable (val, stream, options))
a1f5dd1b 990 return;
806048c6 991
0c3acc09
JB
992 if (language->la_language == language_ada)
993 /* The value might have a dynamic type, which would cause trouble
994 below when trying to extract the value contents (since the value
995 size is determined from the type size which is unknown). So
996 get a fixed representation of our value. */
997 val = ada_to_fixed_value (val);
998
a1f5dd1b
TT
999 val_print (value_type (val), value_contents_for_printing (val),
1000 value_embedded_offset (val), value_address (val),
1001 stream, recurse,
1002 val, options, language);
806048c6
DJ
1003}
1004
7348c5e1 1005/* Print on stream STREAM the value VAL according to OPTIONS. The value
8e069a98 1006 is printed using the current_language syntax. */
7348c5e1 1007
8e069a98 1008void
79a45b7d
TT
1009value_print (struct value *val, struct ui_file *stream,
1010 const struct value_print_options *options)
806048c6 1011{
6501578c 1012 if (!value_check_printable (val, stream, options))
8e069a98 1013 return;
806048c6 1014
a6bac58e
TT
1015 if (!options->raw)
1016 {
6dddc817
DE
1017 int r
1018 = apply_ext_lang_val_pretty_printer (value_type (val),
1019 value_contents_for_printing (val),
1020 value_embedded_offset (val),
1021 value_address (val),
1022 stream, 0,
1023 val, options, current_language);
a109c7c1 1024
a6bac58e 1025 if (r)
8e069a98 1026 return;
a6bac58e
TT
1027 }
1028
8e069a98 1029 LA_VALUE_PRINT (val, stream, options);
c906108c
SS
1030}
1031
1032/* Called by various <lang>_val_print routines to print
1033 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
1034 value. STREAM is where to print the value. */
1035
1036void
fc1a4b47 1037val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
fba45db2 1038 struct ui_file *stream)
c906108c 1039{
50810684 1040 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
d44e8473 1041
c906108c
SS
1042 if (TYPE_LENGTH (type) > sizeof (LONGEST))
1043 {
1044 LONGEST val;
1045
1046 if (TYPE_UNSIGNED (type)
1047 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
e17a4113 1048 byte_order, &val))
c906108c
SS
1049 {
1050 print_longest (stream, 'u', 0, val);
1051 }
1052 else
1053 {
1054 /* Signed, or we couldn't turn an unsigned value into a
1055 LONGEST. For signed values, one could assume two's
1056 complement (a reasonable assumption, I think) and do
1057 better than this. */
1058 print_hex_chars (stream, (unsigned char *) valaddr,
d44e8473 1059 TYPE_LENGTH (type), byte_order);
c906108c
SS
1060 }
1061 }
1062 else
1063 {
c906108c
SS
1064 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
1065 unpack_long (type, valaddr));
c906108c
SS
1066 }
1067}
1068
4f2aea11
MK
1069void
1070val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
1071 struct ui_file *stream)
1072{
befae759 1073 ULONGEST val = unpack_long (type, valaddr);
4f2aea11
MK
1074 int bitpos, nfields = TYPE_NFIELDS (type);
1075
1076 fputs_filtered ("[ ", stream);
1077 for (bitpos = 0; bitpos < nfields; bitpos++)
1078 {
316703b9
MK
1079 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
1080 && (val & ((ULONGEST)1 << bitpos)))
4f2aea11
MK
1081 {
1082 if (TYPE_FIELD_NAME (type, bitpos))
1083 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
1084 else
1085 fprintf_filtered (stream, "#%d ", bitpos);
1086 }
1087 }
1088 fputs_filtered ("]", stream);
19c37f24 1089}
ab2188aa
PA
1090
1091/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
1092 according to OPTIONS and SIZE on STREAM. Format i is not supported
1093 at this level.
1094
1095 This is how the elements of an array or structure are printed
1096 with a format. */
ab2188aa
PA
1097
1098void
1099val_print_scalar_formatted (struct type *type,
1100 const gdb_byte *valaddr, int embedded_offset,
1101 const struct value *val,
1102 const struct value_print_options *options,
1103 int size,
1104 struct ui_file *stream)
1105{
1106 gdb_assert (val != NULL);
1107 gdb_assert (valaddr == value_contents_for_printing_const (val));
1108
1109 /* If we get here with a string format, try again without it. Go
1110 all the way back to the language printers, which may call us
1111 again. */
1112 if (options->format == 's')
1113 {
1114 struct value_print_options opts = *options;
1115 opts.format = 0;
1116 opts.deref_ref = 0;
1117 val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts,
1118 current_language);
1119 return;
1120 }
1121
1122 /* A scalar object that does not have all bits available can't be
1123 printed, because all bits contribute to its representation. */
9a0dc9e3
PA
1124 if (value_bits_any_optimized_out (val,
1125 TARGET_CHAR_BIT * embedded_offset,
1126 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
901461f8 1127 val_print_optimized_out (val, stream);
4e07d55f
PA
1128 else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
1129 val_print_unavailable (stream);
ab2188aa
PA
1130 else
1131 print_scalar_formatted (valaddr + embedded_offset, type,
1132 options, size, stream);
4f2aea11
MK
1133}
1134
c906108c
SS
1135/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1136 The raison d'etre of this function is to consolidate printing of
581e13c1 1137 LONG_LONG's into this one function. The format chars b,h,w,g are
bb599908 1138 from print_scalar_formatted(). Numbers are printed using C
581e13c1 1139 format.
bb599908
PH
1140
1141 USE_C_FORMAT means to use C format in all cases. Without it,
1142 'o' and 'x' format do not include the standard C radix prefix
1143 (leading 0 or 0x).
1144
1145 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1146 and was intended to request formating according to the current
1147 language and would be used for most integers that GDB prints. The
1148 exceptional cases were things like protocols where the format of
1149 the integer is a protocol thing, not a user-visible thing). The
1150 parameter remains to preserve the information of what things might
1151 be printed with language-specific format, should we ever resurrect
581e13c1 1152 that capability. */
c906108c
SS
1153
1154void
bb599908 1155print_longest (struct ui_file *stream, int format, int use_c_format,
fba45db2 1156 LONGEST val_long)
c906108c 1157{
2bfb72ee
AC
1158 const char *val;
1159
c906108c
SS
1160 switch (format)
1161 {
1162 case 'd':
bb599908 1163 val = int_string (val_long, 10, 1, 0, 1); break;
c906108c 1164 case 'u':
bb599908 1165 val = int_string (val_long, 10, 0, 0, 1); break;
c906108c 1166 case 'x':
bb599908 1167 val = int_string (val_long, 16, 0, 0, use_c_format); break;
c906108c 1168 case 'b':
bb599908 1169 val = int_string (val_long, 16, 0, 2, 1); break;
c906108c 1170 case 'h':
bb599908 1171 val = int_string (val_long, 16, 0, 4, 1); break;
c906108c 1172 case 'w':
bb599908 1173 val = int_string (val_long, 16, 0, 8, 1); break;
c906108c 1174 case 'g':
bb599908 1175 val = int_string (val_long, 16, 0, 16, 1); break;
c906108c
SS
1176 break;
1177 case 'o':
bb599908 1178 val = int_string (val_long, 8, 0, 0, use_c_format); break;
c906108c 1179 default:
3e43a32a
MS
1180 internal_error (__FILE__, __LINE__,
1181 _("failed internal consistency check"));
bb599908 1182 }
2bfb72ee 1183 fputs_filtered (val, stream);
c906108c
SS
1184}
1185
c906108c
SS
1186/* This used to be a macro, but I don't think it is called often enough
1187 to merit such treatment. */
1188/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1189 arguments to a function, number in a value history, register number, etc.)
1190 where the value must not be larger than can fit in an int. */
1191
1192int
fba45db2 1193longest_to_int (LONGEST arg)
c906108c 1194{
581e13c1 1195 /* Let the compiler do the work. */
c906108c
SS
1196 int rtnval = (int) arg;
1197
581e13c1 1198 /* Check for overflows or underflows. */
c906108c
SS
1199 if (sizeof (LONGEST) > sizeof (int))
1200 {
1201 if (rtnval != arg)
1202 {
8a3fe4f8 1203 error (_("Value out of range."));
c906108c
SS
1204 }
1205 }
1206 return (rtnval);
1207}
1208
a73c86fb
AC
1209/* Print a floating point value of type TYPE (not always a
1210 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
c906108c
SS
1211
1212void
fc1a4b47 1213print_floating (const gdb_byte *valaddr, struct type *type,
c84141d6 1214 struct ui_file *stream)
c906108c
SS
1215{
1216 DOUBLEST doub;
1217 int inv;
a73c86fb 1218 const struct floatformat *fmt = NULL;
c906108c 1219 unsigned len = TYPE_LENGTH (type);
20389057 1220 enum float_kind kind;
c5aa993b 1221
a73c86fb
AC
1222 /* If it is a floating-point, check for obvious problems. */
1223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1224 fmt = floatformat_from_type (type);
20389057 1225 if (fmt != NULL)
39424bef 1226 {
20389057
DJ
1227 kind = floatformat_classify (fmt, valaddr);
1228 if (kind == float_nan)
1229 {
1230 if (floatformat_is_negative (fmt, valaddr))
1231 fprintf_filtered (stream, "-");
1232 fprintf_filtered (stream, "nan(");
1233 fputs_filtered ("0x", stream);
1234 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
1235 fprintf_filtered (stream, ")");
1236 return;
1237 }
1238 else if (kind == float_infinite)
1239 {
1240 if (floatformat_is_negative (fmt, valaddr))
1241 fputs_filtered ("-", stream);
1242 fputs_filtered ("inf", stream);
1243 return;
1244 }
7355ddba 1245 }
c906108c 1246
a73c86fb
AC
1247 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
1248 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
1249 needs to be used as that takes care of any necessary type
1250 conversions. Such conversions are of course direct to DOUBLEST
1251 and disregard any possible target floating point limitations.
1252 For instance, a u64 would be converted and displayed exactly on a
1253 host with 80 bit DOUBLEST but with loss of information on a host
1254 with 64 bit DOUBLEST. */
c2f05ac9 1255
c906108c
SS
1256 doub = unpack_double (type, valaddr, &inv);
1257 if (inv)
1258 {
1259 fprintf_filtered (stream, "<invalid float value>");
1260 return;
1261 }
1262
39424bef
MK
1263 /* FIXME: kettenis/2001-01-20: The following code makes too much
1264 assumptions about the host and target floating point format. */
1265
a73c86fb 1266 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
c41b8590 1267 not necessarily be a TYPE_CODE_FLT, the below ignores that and
a73c86fb
AC
1268 instead uses the type's length to determine the precision of the
1269 floating-point value being printed. */
c2f05ac9 1270
c906108c 1271 if (len < sizeof (double))
c5aa993b 1272 fprintf_filtered (stream, "%.9g", (double) doub);
c906108c 1273 else if (len == sizeof (double))
c5aa993b 1274 fprintf_filtered (stream, "%.17g", (double) doub);
c906108c
SS
1275 else
1276#ifdef PRINTF_HAS_LONG_DOUBLE
1277 fprintf_filtered (stream, "%.35Lg", doub);
1278#else
39424bef
MK
1279 /* This at least wins with values that are representable as
1280 doubles. */
c906108c
SS
1281 fprintf_filtered (stream, "%.17g", (double) doub);
1282#endif
1283}
1284
7678ef8f
TJB
1285void
1286print_decimal_floating (const gdb_byte *valaddr, struct type *type,
1287 struct ui_file *stream)
1288{
e17a4113 1289 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
7678ef8f
TJB
1290 char decstr[MAX_DECIMAL_STRING];
1291 unsigned len = TYPE_LENGTH (type);
1292
e17a4113 1293 decimal_to_string (valaddr, len, byte_order, decstr);
7678ef8f
TJB
1294 fputs_filtered (decstr, stream);
1295 return;
1296}
1297
c5aa993b 1298void
fc1a4b47 1299print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1300 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1301{
1302
1303#define BITS_IN_BYTES 8
1304
fc1a4b47 1305 const gdb_byte *p;
745b8ca0 1306 unsigned int i;
c5aa993b 1307 int b;
c906108c
SS
1308
1309 /* Declared "int" so it will be signed.
581e13c1
MS
1310 This ensures that right shift will shift in zeros. */
1311
c5aa993b 1312 const int mask = 0x080;
c906108c
SS
1313
1314 /* FIXME: We should be not printing leading zeroes in most cases. */
1315
d44e8473 1316 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1317 {
1318 for (p = valaddr;
1319 p < valaddr + len;
1320 p++)
1321 {
c5aa993b 1322 /* Every byte has 8 binary characters; peel off
581e13c1
MS
1323 and print from the MSB end. */
1324
c5aa993b
JM
1325 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1326 {
1327 if (*p & (mask >> i))
1328 b = 1;
1329 else
1330 b = 0;
1331
1332 fprintf_filtered (stream, "%1d", b);
1333 }
c906108c
SS
1334 }
1335 }
1336 else
1337 {
1338 for (p = valaddr + len - 1;
1339 p >= valaddr;
1340 p--)
1341 {
c5aa993b
JM
1342 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
1343 {
1344 if (*p & (mask >> i))
1345 b = 1;
1346 else
1347 b = 0;
1348
1349 fprintf_filtered (stream, "%1d", b);
1350 }
c906108c
SS
1351 }
1352 }
c906108c
SS
1353}
1354
1355/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1356 Print it in octal on stream or format it in buf. */
1357
c906108c 1358void
fc1a4b47 1359print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1360 unsigned len, enum bfd_endian byte_order)
c906108c 1361{
fc1a4b47 1362 const gdb_byte *p;
c906108c 1363 unsigned char octa1, octa2, octa3, carry;
c5aa993b
JM
1364 int cycle;
1365
c906108c
SS
1366 /* FIXME: We should be not printing leading zeroes in most cases. */
1367
1368
1369 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1370 * the extra bits, which cycle every three bytes:
1371 *
1372 * Byte side: 0 1 2 3
1373 * | | | |
1374 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1375 *
1376 * Octal side: 0 1 carry 3 4 carry ...
1377 *
1378 * Cycle number: 0 1 2
1379 *
1380 * But of course we are printing from the high side, so we have to
1381 * figure out where in the cycle we are so that we end up with no
1382 * left over bits at the end.
1383 */
1384#define BITS_IN_OCTAL 3
1385#define HIGH_ZERO 0340
1386#define LOW_ZERO 0016
1387#define CARRY_ZERO 0003
1388#define HIGH_ONE 0200
1389#define MID_ONE 0160
1390#define LOW_ONE 0016
1391#define CARRY_ONE 0001
1392#define HIGH_TWO 0300
1393#define MID_TWO 0070
1394#define LOW_TWO 0007
1395
1396 /* For 32 we start in cycle 2, with two bits and one bit carry;
581e13c1
MS
1397 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1398
c906108c
SS
1399 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
1400 carry = 0;
c5aa993b 1401
bb599908 1402 fputs_filtered ("0", stream);
d44e8473 1403 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1404 {
1405 for (p = valaddr;
1406 p < valaddr + len;
1407 p++)
1408 {
c5aa993b
JM
1409 switch (cycle)
1410 {
1411 case 0:
581e13c1
MS
1412 /* No carry in, carry out two bits. */
1413
c5aa993b
JM
1414 octa1 = (HIGH_ZERO & *p) >> 5;
1415 octa2 = (LOW_ZERO & *p) >> 2;
1416 carry = (CARRY_ZERO & *p);
1417 fprintf_filtered (stream, "%o", octa1);
1418 fprintf_filtered (stream, "%o", octa2);
1419 break;
1420
1421 case 1:
581e13c1
MS
1422 /* Carry in two bits, carry out one bit. */
1423
c5aa993b
JM
1424 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1425 octa2 = (MID_ONE & *p) >> 4;
1426 octa3 = (LOW_ONE & *p) >> 1;
1427 carry = (CARRY_ONE & *p);
1428 fprintf_filtered (stream, "%o", octa1);
1429 fprintf_filtered (stream, "%o", octa2);
1430 fprintf_filtered (stream, "%o", octa3);
1431 break;
1432
1433 case 2:
581e13c1
MS
1434 /* Carry in one bit, no carry out. */
1435
c5aa993b
JM
1436 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1437 octa2 = (MID_TWO & *p) >> 3;
1438 octa3 = (LOW_TWO & *p);
1439 carry = 0;
1440 fprintf_filtered (stream, "%o", octa1);
1441 fprintf_filtered (stream, "%o", octa2);
1442 fprintf_filtered (stream, "%o", octa3);
1443 break;
1444
1445 default:
8a3fe4f8 1446 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1447 }
1448
1449 cycle++;
1450 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1451 }
1452 }
1453 else
1454 {
1455 for (p = valaddr + len - 1;
1456 p >= valaddr;
1457 p--)
1458 {
c5aa993b
JM
1459 switch (cycle)
1460 {
1461 case 0:
1462 /* Carry out, no carry in */
581e13c1 1463
c5aa993b
JM
1464 octa1 = (HIGH_ZERO & *p) >> 5;
1465 octa2 = (LOW_ZERO & *p) >> 2;
1466 carry = (CARRY_ZERO & *p);
1467 fprintf_filtered (stream, "%o", octa1);
1468 fprintf_filtered (stream, "%o", octa2);
1469 break;
1470
1471 case 1:
1472 /* Carry in, carry out */
581e13c1 1473
c5aa993b
JM
1474 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1475 octa2 = (MID_ONE & *p) >> 4;
1476 octa3 = (LOW_ONE & *p) >> 1;
1477 carry = (CARRY_ONE & *p);
1478 fprintf_filtered (stream, "%o", octa1);
1479 fprintf_filtered (stream, "%o", octa2);
1480 fprintf_filtered (stream, "%o", octa3);
1481 break;
1482
1483 case 2:
1484 /* Carry in, no carry out */
581e13c1 1485
c5aa993b
JM
1486 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1487 octa2 = (MID_TWO & *p) >> 3;
1488 octa3 = (LOW_TWO & *p);
1489 carry = 0;
1490 fprintf_filtered (stream, "%o", octa1);
1491 fprintf_filtered (stream, "%o", octa2);
1492 fprintf_filtered (stream, "%o", octa3);
1493 break;
1494
1495 default:
8a3fe4f8 1496 error (_("Internal error in octal conversion;"));
c5aa993b
JM
1497 }
1498
1499 cycle++;
1500 cycle = cycle % BITS_IN_OCTAL;
c906108c
SS
1501 }
1502 }
1503
c906108c
SS
1504}
1505
1506/* VALADDR points to an integer of LEN bytes.
581e13c1
MS
1507 Print it in decimal on stream or format it in buf. */
1508
c906108c 1509void
fc1a4b47 1510print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1511 unsigned len, enum bfd_endian byte_order)
c906108c
SS
1512{
1513#define TEN 10
c5aa993b 1514#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
c906108c
SS
1515#define CARRY_LEFT( x ) ((x) % TEN)
1516#define SHIFT( x ) ((x) << 4)
c906108c
SS
1517#define LOW_NIBBLE( x ) ( (x) & 0x00F)
1518#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1519
fc1a4b47 1520 const gdb_byte *p;
c906108c 1521 unsigned char *digits;
c5aa993b
JM
1522 int carry;
1523 int decimal_len;
1524 int i, j, decimal_digits;
1525 int dummy;
1526 int flip;
1527
c906108c 1528 /* Base-ten number is less than twice as many digits
581e13c1
MS
1529 as the base 16 number, which is 2 digits per byte. */
1530
c906108c 1531 decimal_len = len * 2 * 2;
3c37485b 1532 digits = xmalloc (decimal_len);
c906108c 1533
c5aa993b
JM
1534 for (i = 0; i < decimal_len; i++)
1535 {
c906108c 1536 digits[i] = 0;
c5aa993b 1537 }
c906108c 1538
c906108c
SS
1539 /* Ok, we have an unknown number of bytes of data to be printed in
1540 * decimal.
1541 *
1542 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1543 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1544 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1545 *
1546 * The trick is that "digits" holds a base-10 number, but sometimes
581e13c1 1547 * the individual digits are > 10.
c906108c
SS
1548 *
1549 * Outer loop is per nibble (hex digit) of input, from MSD end to
1550 * LSD end.
1551 */
c5aa993b 1552 decimal_digits = 0; /* Number of decimal digits so far */
d44e8473 1553 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
c906108c 1554 flip = 0;
d44e8473 1555 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
c5aa993b 1556 {
c906108c
SS
1557 /*
1558 * Multiply current base-ten number by 16 in place.
1559 * Each digit was between 0 and 9, now is between
1560 * 0 and 144.
1561 */
c5aa993b
JM
1562 for (j = 0; j < decimal_digits; j++)
1563 {
1564 digits[j] = SHIFT (digits[j]);
1565 }
1566
c906108c
SS
1567 /* Take the next nibble off the input and add it to what
1568 * we've got in the LSB position. Bottom 'digit' is now
1569 * between 0 and 159.
1570 *
1571 * "flip" is used to run this loop twice for each byte.
1572 */
c5aa993b
JM
1573 if (flip == 0)
1574 {
581e13c1
MS
1575 /* Take top nibble. */
1576
c5aa993b
JM
1577 digits[0] += HIGH_NIBBLE (*p);
1578 flip = 1;
1579 }
1580 else
1581 {
581e13c1
MS
1582 /* Take low nibble and bump our pointer "p". */
1583
c5aa993b 1584 digits[0] += LOW_NIBBLE (*p);
d44e8473
MD
1585 if (byte_order == BFD_ENDIAN_BIG)
1586 p++;
1587 else
1588 p--;
c5aa993b
JM
1589 flip = 0;
1590 }
c906108c
SS
1591
1592 /* Re-decimalize. We have to do this often enough
1593 * that we don't overflow, but once per nibble is
1594 * overkill. Easier this way, though. Note that the
1595 * carry is often larger than 10 (e.g. max initial
1596 * carry out of lowest nibble is 15, could bubble all
1597 * the way up greater than 10). So we have to do
1598 * the carrying beyond the last current digit.
1599 */
1600 carry = 0;
c5aa993b
JM
1601 for (j = 0; j < decimal_len - 1; j++)
1602 {
1603 digits[j] += carry;
1604
1605 /* "/" won't handle an unsigned char with
1606 * a value that if signed would be negative.
1607 * So extend to longword int via "dummy".
1608 */
1609 dummy = digits[j];
1610 carry = CARRY_OUT (dummy);
1611 digits[j] = CARRY_LEFT (dummy);
1612
1613 if (j >= decimal_digits && carry == 0)
1614 {
1615 /*
1616 * All higher digits are 0 and we
1617 * no longer have a carry.
1618 *
1619 * Note: "j" is 0-based, "decimal_digits" is
1620 * 1-based.
1621 */
1622 decimal_digits = j + 1;
1623 break;
1624 }
1625 }
1626 }
c906108c
SS
1627
1628 /* Ok, now "digits" is the decimal representation, with
581e13c1
MS
1629 the "decimal_digits" actual digits. Print! */
1630
c5aa993b
JM
1631 for (i = decimal_digits - 1; i >= 0; i--)
1632 {
1633 fprintf_filtered (stream, "%1d", digits[i]);
1634 }
b8c9b27d 1635 xfree (digits);
c906108c
SS
1636}
1637
1638/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1639
6b9acc27 1640void
fc1a4b47 1641print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
d44e8473 1642 unsigned len, enum bfd_endian byte_order)
c906108c 1643{
fc1a4b47 1644 const gdb_byte *p;
c906108c
SS
1645
1646 /* FIXME: We should be not printing leading zeroes in most cases. */
1647
bb599908 1648 fputs_filtered ("0x", stream);
d44e8473 1649 if (byte_order == BFD_ENDIAN_BIG)
c906108c
SS
1650 {
1651 for (p = valaddr;
1652 p < valaddr + len;
1653 p++)
1654 {
1655 fprintf_filtered (stream, "%02x", *p);
1656 }
1657 }
1658 else
1659 {
1660 for (p = valaddr + len - 1;
1661 p >= valaddr;
1662 p--)
1663 {
1664 fprintf_filtered (stream, "%02x", *p);
1665 }
1666 }
c906108c
SS
1667}
1668
3e43a32a 1669/* VALADDR points to a char integer of LEN bytes.
581e13c1 1670 Print it out in appropriate language form on stream.
6b9acc27
JJ
1671 Omit any leading zero chars. */
1672
1673void
6c7a06a3
TT
1674print_char_chars (struct ui_file *stream, struct type *type,
1675 const gdb_byte *valaddr,
d44e8473 1676 unsigned len, enum bfd_endian byte_order)
6b9acc27 1677{
fc1a4b47 1678 const gdb_byte *p;
6b9acc27 1679
d44e8473 1680 if (byte_order == BFD_ENDIAN_BIG)
6b9acc27
JJ
1681 {
1682 p = valaddr;
1683 while (p < valaddr + len - 1 && *p == 0)
1684 ++p;
1685
1686 while (p < valaddr + len)
1687 {
6c7a06a3 1688 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1689 ++p;
1690 }
1691 }
1692 else
1693 {
1694 p = valaddr + len - 1;
1695 while (p > valaddr && *p == 0)
1696 --p;
1697
1698 while (p >= valaddr)
1699 {
6c7a06a3 1700 LA_EMIT_CHAR (*p, type, stream, '\'');
6b9acc27
JJ
1701 --p;
1702 }
1703 }
1704}
1705
132c57b4
TT
1706/* Print function pointer with inferior address ADDRESS onto stdio
1707 stream STREAM. */
1708
1709void
edf0c1b7
TT
1710print_function_pointer_address (const struct value_print_options *options,
1711 struct gdbarch *gdbarch,
132c57b4 1712 CORE_ADDR address,
edf0c1b7 1713 struct ui_file *stream)
132c57b4
TT
1714{
1715 CORE_ADDR func_addr
1716 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1717 &current_target);
1718
1719 /* If the function pointer is represented by a description, print
1720 the address of the description. */
edf0c1b7 1721 if (options->addressprint && func_addr != address)
132c57b4
TT
1722 {
1723 fputs_filtered ("@", stream);
1724 fputs_filtered (paddress (gdbarch, address), stream);
1725 fputs_filtered (": ", stream);
1726 }
edf0c1b7 1727 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
132c57b4
TT
1728}
1729
1730
79a45b7d 1731/* Print on STREAM using the given OPTIONS the index for the element
e79af960
JB
1732 at INDEX of an array whose index type is INDEX_TYPE. */
1733
1734void
1735maybe_print_array_index (struct type *index_type, LONGEST index,
79a45b7d
TT
1736 struct ui_file *stream,
1737 const struct value_print_options *options)
e79af960
JB
1738{
1739 struct value *index_value;
1740
79a45b7d 1741 if (!options->print_array_indexes)
e79af960
JB
1742 return;
1743
1744 index_value = value_from_longest (index_type, index);
1745
79a45b7d
TT
1746 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1747}
e79af960 1748
c906108c 1749/* Called by various <lang>_val_print routines to print elements of an
c5aa993b 1750 array in the form "<elem1>, <elem2>, <elem3>, ...".
c906108c 1751
c5aa993b
JM
1752 (FIXME?) Assumes array element separator is a comma, which is correct
1753 for all languages currently handled.
1754 (FIXME?) Some languages have a notation for repeated array elements,
581e13c1 1755 perhaps we should try to use that notation when appropriate. */
c906108c
SS
1756
1757void
490f124f
PA
1758val_print_array_elements (struct type *type,
1759 const gdb_byte *valaddr, int embedded_offset,
a2bd3dcd 1760 CORE_ADDR address, struct ui_file *stream,
79a45b7d 1761 int recurse,
0e03807e 1762 const struct value *val,
79a45b7d 1763 const struct value_print_options *options,
fba45db2 1764 unsigned int i)
c906108c
SS
1765{
1766 unsigned int things_printed = 0;
1767 unsigned len;
aa715135 1768 struct type *elttype, *index_type, *base_index_type;
c906108c
SS
1769 unsigned eltlen;
1770 /* Position of the array element we are examining to see
1771 whether it is repeated. */
1772 unsigned int rep1;
1773 /* Number of repetitions we have detected so far. */
1774 unsigned int reps;
dbc98a8b 1775 LONGEST low_bound, high_bound;
aa715135 1776 LONGEST low_pos, high_pos;
c5aa993b 1777
c906108c
SS
1778 elttype = TYPE_TARGET_TYPE (type);
1779 eltlen = TYPE_LENGTH (check_typedef (elttype));
e79af960 1780 index_type = TYPE_INDEX_TYPE (type);
c906108c 1781
dbc98a8b 1782 if (get_array_bounds (type, &low_bound, &high_bound))
75be741b 1783 {
aa715135
JG
1784 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
1785 base_index_type = TYPE_TARGET_TYPE (index_type);
1786 else
1787 base_index_type = index_type;
1788
1789 /* Non-contiguous enumerations types can by used as index types
1790 in some languages (e.g. Ada). In this case, the array length
1791 shall be computed from the positions of the first and last
1792 literal in the enumeration type, and not from the values
1793 of these literals. */
1794 if (!discrete_position (base_index_type, low_bound, &low_pos)
1795 || !discrete_position (base_index_type, high_bound, &high_pos))
1796 {
1797 warning (_("unable to get positions in array, use bounds instead"));
1798 low_pos = low_bound;
1799 high_pos = high_bound;
1800 }
1801
1802 /* The array length should normally be HIGH_POS - LOW_POS + 1.
75be741b 1803 But we have to be a little extra careful, because some languages
aa715135 1804 such as Ada allow LOW_POS to be greater than HIGH_POS for
75be741b
JB
1805 empty arrays. In that situation, the array length is just zero,
1806 not negative! */
aa715135 1807 if (low_pos > high_pos)
75be741b
JB
1808 len = 0;
1809 else
aa715135 1810 len = high_pos - low_pos + 1;
75be741b 1811 }
e936309c
JB
1812 else
1813 {
dbc98a8b
KW
1814 warning (_("unable to get bounds of array, assuming null array"));
1815 low_bound = 0;
1816 len = 0;
168de233
JB
1817 }
1818
c906108c
SS
1819 annotate_array_section_begin (i, elttype);
1820
79a45b7d 1821 for (; i < len && things_printed < options->print_max; i++)
c906108c
SS
1822 {
1823 if (i != 0)
1824 {
2a998fc0 1825 if (options->prettyformat_arrays)
c906108c
SS
1826 {
1827 fprintf_filtered (stream, ",\n");
1828 print_spaces_filtered (2 + 2 * recurse, stream);
1829 }
1830 else
1831 {
1832 fprintf_filtered (stream, ", ");
1833 }
1834 }
1835 wrap_here (n_spaces (2 + 2 * recurse));
dbc98a8b 1836 maybe_print_array_index (index_type, i + low_bound,
79a45b7d 1837 stream, options);
c906108c
SS
1838
1839 rep1 = i + 1;
1840 reps = 1;
35bef4fd
TT
1841 /* Only check for reps if repeat_count_threshold is not set to
1842 UINT_MAX (unlimited). */
1843 if (options->repeat_count_threshold < UINT_MAX)
c906108c 1844 {
35bef4fd 1845 while (rep1 < len
9a0dc9e3
PA
1846 && value_contents_eq (val,
1847 embedded_offset + i * eltlen,
1848 val,
1849 (embedded_offset
1850 + rep1 * eltlen),
1851 eltlen))
35bef4fd
TT
1852 {
1853 ++reps;
1854 ++rep1;
1855 }
c906108c
SS
1856 }
1857
79a45b7d 1858 if (reps > options->repeat_count_threshold)
c906108c 1859 {
490f124f
PA
1860 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1861 address, stream, recurse + 1, val, options,
1862 current_language);
c906108c
SS
1863 annotate_elt_rep (reps);
1864 fprintf_filtered (stream, " <repeats %u times>", reps);
1865 annotate_elt_rep_end ();
1866
1867 i = rep1 - 1;
79a45b7d 1868 things_printed += options->repeat_count_threshold;
c906108c
SS
1869 }
1870 else
1871 {
490f124f
PA
1872 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1873 address,
0e03807e 1874 stream, recurse + 1, val, options, current_language);
c906108c
SS
1875 annotate_elt ();
1876 things_printed++;
1877 }
1878 }
1879 annotate_array_section_end ();
1880 if (i < len)
1881 {
1882 fprintf_filtered (stream, "...");
1883 }
1884}
1885
917317f4
JM
1886/* Read LEN bytes of target memory at address MEMADDR, placing the
1887 results in GDB's memory at MYADDR. Returns a count of the bytes
9b409511 1888 actually read, and optionally a target_xfer_status value in the
578d3588 1889 location pointed to by ERRPTR if ERRPTR is non-null. */
917317f4
JM
1890
1891/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1892 function be eliminated. */
1893
1894static int
3e43a32a 1895partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
578d3588 1896 int len, int *errptr)
917317f4 1897{
581e13c1
MS
1898 int nread; /* Number of bytes actually read. */
1899 int errcode; /* Error from last read. */
917317f4 1900
581e13c1 1901 /* First try a complete read. */
917317f4
JM
1902 errcode = target_read_memory (memaddr, myaddr, len);
1903 if (errcode == 0)
1904 {
581e13c1 1905 /* Got it all. */
917317f4
JM
1906 nread = len;
1907 }
1908 else
1909 {
581e13c1 1910 /* Loop, reading one byte at a time until we get as much as we can. */
917317f4
JM
1911 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1912 {
1913 errcode = target_read_memory (memaddr++, myaddr++, 1);
1914 }
581e13c1 1915 /* If an error, the last read was unsuccessful, so adjust count. */
917317f4
JM
1916 if (errcode != 0)
1917 {
1918 nread--;
1919 }
1920 }
578d3588 1921 if (errptr != NULL)
917317f4 1922 {
578d3588 1923 *errptr = errcode;
917317f4
JM
1924 }
1925 return (nread);
1926}
1927
ae6a3a4c
TJB
1928/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1929 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1930 allocated buffer containing the string, which the caller is responsible to
1931 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
9b409511 1932 success, or a target_xfer_status on failure.
ae6a3a4c 1933
f380848e
SA
1934 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
1935 (including eventual NULs in the middle or end of the string).
1936
1937 If LEN is -1, stops at the first null character (not necessarily
1938 the first null byte) up to a maximum of FETCHLIMIT characters. Set
1939 FETCHLIMIT to UINT_MAX to read as many characters as possible from
1940 the string.
ae6a3a4c
TJB
1941
1942 Unless an exception is thrown, BUFFER will always be allocated, even on
1943 failure. In this case, some characters might have been read before the
1944 failure happened. Check BYTES_READ to recognize this situation.
1945
1946 Note: There was a FIXME asking to make this code use target_read_string,
1947 but this function is more general (can read past null characters, up to
581e13c1 1948 given LEN). Besides, it is used much more often than target_read_string
ae6a3a4c
TJB
1949 so it is more tested. Perhaps callers of target_read_string should use
1950 this function instead? */
c906108c
SS
1951
1952int
ae6a3a4c 1953read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
e17a4113 1954 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
c906108c 1955{
ae6a3a4c
TJB
1956 int errcode; /* Errno returned from bad reads. */
1957 unsigned int nfetch; /* Chars to fetch / chars fetched. */
3e43a32a
MS
1958 gdb_byte *bufptr; /* Pointer to next available byte in
1959 buffer. */
ae6a3a4c
TJB
1960 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1961
ae6a3a4c
TJB
1962 /* Loop until we either have all the characters, or we encounter
1963 some error, such as bumping into the end of the address space. */
c906108c 1964
b5096abe
PM
1965 *buffer = NULL;
1966
1967 old_chain = make_cleanup (free_current_contents, buffer);
c906108c
SS
1968
1969 if (len > 0)
1970 {
88db67ef
YQ
1971 /* We want fetchlimit chars, so we might as well read them all in
1972 one operation. */
f380848e
SA
1973 unsigned int fetchlen = min (len, fetchlimit);
1974
1975 *buffer = (gdb_byte *) xmalloc (fetchlen * width);
ae6a3a4c 1976 bufptr = *buffer;
c906108c 1977
f380848e 1978 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
c906108c
SS
1979 / width;
1980 addr += nfetch * width;
1981 bufptr += nfetch * width;
1982 }
1983 else if (len == -1)
1984 {
1985 unsigned long bufsize = 0;
88db67ef
YQ
1986 unsigned int chunksize; /* Size of each fetch, in chars. */
1987 int found_nul; /* Non-zero if we found the nul char. */
1988 gdb_byte *limit; /* First location past end of fetch buffer. */
1989
1990 found_nul = 0;
1991 /* We are looking for a NUL terminator to end the fetching, so we
1992 might as well read in blocks that are large enough to be efficient,
1993 but not so large as to be slow if fetchlimit happens to be large.
1994 So we choose the minimum of 8 and fetchlimit. We used to use 200
1995 instead of 8 but 200 is way too big for remote debugging over a
1996 serial line. */
1997 chunksize = min (8, fetchlimit);
ae6a3a4c 1998
c906108c
SS
1999 do
2000 {
2001 QUIT;
2002 nfetch = min (chunksize, fetchlimit - bufsize);
2003
ae6a3a4c
TJB
2004 if (*buffer == NULL)
2005 *buffer = (gdb_byte *) xmalloc (nfetch * width);
c906108c 2006 else
b5096abe
PM
2007 *buffer = (gdb_byte *) xrealloc (*buffer,
2008 (nfetch + bufsize) * width);
c906108c 2009
ae6a3a4c 2010 bufptr = *buffer + bufsize * width;
c906108c
SS
2011 bufsize += nfetch;
2012
ae6a3a4c 2013 /* Read as much as we can. */
917317f4 2014 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
ae6a3a4c 2015 / width;
c906108c 2016
ae6a3a4c 2017 /* Scan this chunk for the null character that terminates the string
c906108c
SS
2018 to print. If found, we don't need to fetch any more. Note
2019 that bufptr is explicitly left pointing at the next character
ae6a3a4c
TJB
2020 after the null character, or at the next character after the end
2021 of the buffer. */
c906108c
SS
2022
2023 limit = bufptr + nfetch * width;
2024 while (bufptr < limit)
2025 {
2026 unsigned long c;
2027
e17a4113 2028 c = extract_unsigned_integer (bufptr, width, byte_order);
c906108c
SS
2029 addr += width;
2030 bufptr += width;
2031 if (c == 0)
2032 {
2033 /* We don't care about any error which happened after
ae6a3a4c 2034 the NUL terminator. */
c906108c
SS
2035 errcode = 0;
2036 found_nul = 1;
2037 break;
2038 }
2039 }
2040 }
c5aa993b 2041 while (errcode == 0 /* no error */
ae6a3a4c
TJB
2042 && bufptr - *buffer < fetchlimit * width /* no overrun */
2043 && !found_nul); /* haven't found NUL yet */
c906108c
SS
2044 }
2045 else
ae6a3a4c
TJB
2046 { /* Length of string is really 0! */
2047 /* We always allocate *buffer. */
2048 *buffer = bufptr = xmalloc (1);
c906108c
SS
2049 errcode = 0;
2050 }
2051
2052 /* bufptr and addr now point immediately beyond the last byte which we
2053 consider part of the string (including a '\0' which ends the string). */
ae6a3a4c
TJB
2054 *bytes_read = bufptr - *buffer;
2055
2056 QUIT;
2057
2058 discard_cleanups (old_chain);
2059
2060 return errcode;
2061}
2062
3b2b8fea
TT
2063/* Return true if print_wchar can display W without resorting to a
2064 numeric escape, false otherwise. */
2065
2066static int
2067wchar_printable (gdb_wchar_t w)
2068{
2069 return (gdb_iswprint (w)
2070 || w == LCST ('\a') || w == LCST ('\b')
2071 || w == LCST ('\f') || w == LCST ('\n')
2072 || w == LCST ('\r') || w == LCST ('\t')
2073 || w == LCST ('\v'));
2074}
2075
2076/* A helper function that converts the contents of STRING to wide
2077 characters and then appends them to OUTPUT. */
2078
2079static void
2080append_string_as_wide (const char *string,
2081 struct obstack *output)
2082{
2083 for (; *string; ++string)
2084 {
2085 gdb_wchar_t w = gdb_btowc (*string);
2086 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2087 }
2088}
2089
2090/* Print a wide character W to OUTPUT. ORIG is a pointer to the
2091 original (target) bytes representing the character, ORIG_LEN is the
2092 number of valid bytes. WIDTH is the number of bytes in a base
2093 characters of the type. OUTPUT is an obstack to which wide
2094 characters are emitted. QUOTER is a (narrow) character indicating
2095 the style of quotes surrounding the character to be printed.
2096 NEED_ESCAPE is an in/out flag which is used to track numeric
2097 escapes across calls. */
2098
2099static void
2100print_wchar (gdb_wint_t w, const gdb_byte *orig,
2101 int orig_len, int width,
2102 enum bfd_endian byte_order,
2103 struct obstack *output,
2104 int quoter, int *need_escapep)
2105{
2106 int need_escape = *need_escapep;
2107
2108 *need_escapep = 0;
3b2b8fea 2109
95c64f92
YQ
2110 /* iswprint implementation on Windows returns 1 for tab character.
2111 In order to avoid different printout on this host, we explicitly
2112 use wchar_printable function. */
2113 switch (w)
3b2b8fea 2114 {
95c64f92
YQ
2115 case LCST ('\a'):
2116 obstack_grow_wstr (output, LCST ("\\a"));
2117 break;
2118 case LCST ('\b'):
2119 obstack_grow_wstr (output, LCST ("\\b"));
2120 break;
2121 case LCST ('\f'):
2122 obstack_grow_wstr (output, LCST ("\\f"));
2123 break;
2124 case LCST ('\n'):
2125 obstack_grow_wstr (output, LCST ("\\n"));
2126 break;
2127 case LCST ('\r'):
2128 obstack_grow_wstr (output, LCST ("\\r"));
2129 break;
2130 case LCST ('\t'):
2131 obstack_grow_wstr (output, LCST ("\\t"));
2132 break;
2133 case LCST ('\v'):
2134 obstack_grow_wstr (output, LCST ("\\v"));
2135 break;
2136 default:
3b2b8fea 2137 {
95c64f92
YQ
2138 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2139 && w != LCST ('8')
2140 && w != LCST ('9'))))
2141 {
2142 gdb_wchar_t wchar = w;
3b2b8fea 2143
95c64f92
YQ
2144 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2145 obstack_grow_wstr (output, LCST ("\\"));
2146 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2147 }
2148 else
2149 {
2150 int i;
3b2b8fea 2151
95c64f92
YQ
2152 for (i = 0; i + width <= orig_len; i += width)
2153 {
2154 char octal[30];
2155 ULONGEST value;
2156
2157 value = extract_unsigned_integer (&orig[i], width,
3b2b8fea 2158 byte_order);
95c64f92
YQ
2159 /* If the value fits in 3 octal digits, print it that
2160 way. Otherwise, print it as a hex escape. */
2161 if (value <= 0777)
2162 xsnprintf (octal, sizeof (octal), "\\%.3o",
2163 (int) (value & 0777));
2164 else
2165 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2166 append_string_as_wide (octal, output);
2167 }
2168 /* If we somehow have extra bytes, print them now. */
2169 while (i < orig_len)
2170 {
2171 char octal[5];
2172
2173 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2174 append_string_as_wide (octal, output);
2175 ++i;
2176 }
2177
2178 *need_escapep = 1;
2179 }
3b2b8fea
TT
2180 break;
2181 }
2182 }
2183}
2184
2185/* Print the character C on STREAM as part of the contents of a
2186 literal string whose delimiter is QUOTER. ENCODING names the
2187 encoding of C. */
2188
2189void
2190generic_emit_char (int c, struct type *type, struct ui_file *stream,
2191 int quoter, const char *encoding)
2192{
2193 enum bfd_endian byte_order
2194 = gdbarch_byte_order (get_type_arch (type));
2195 struct obstack wchar_buf, output;
2196 struct cleanup *cleanups;
2197 gdb_byte *buf;
2198 struct wchar_iterator *iter;
2199 int need_escape = 0;
2200
2201 buf = alloca (TYPE_LENGTH (type));
2202 pack_long (buf, type, c);
2203
2204 iter = make_wchar_iterator (buf, TYPE_LENGTH (type),
2205 encoding, TYPE_LENGTH (type));
2206 cleanups = make_cleanup_wchar_iterator (iter);
2207
2208 /* This holds the printable form of the wchar_t data. */
2209 obstack_init (&wchar_buf);
2210 make_cleanup_obstack_free (&wchar_buf);
2211
2212 while (1)
2213 {
2214 int num_chars;
2215 gdb_wchar_t *chars;
2216 const gdb_byte *buf;
2217 size_t buflen;
2218 int print_escape = 1;
2219 enum wchar_iterate_result result;
2220
2221 num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen);
2222 if (num_chars < 0)
2223 break;
2224 if (num_chars > 0)
2225 {
2226 /* If all characters are printable, print them. Otherwise,
2227 we're going to have to print an escape sequence. We
2228 check all characters because we want to print the target
2229 bytes in the escape sequence, and we don't know character
2230 boundaries there. */
2231 int i;
2232
2233 print_escape = 0;
2234 for (i = 0; i < num_chars; ++i)
2235 if (!wchar_printable (chars[i]))
2236 {
2237 print_escape = 1;
2238 break;
2239 }
2240
2241 if (!print_escape)
2242 {
2243 for (i = 0; i < num_chars; ++i)
2244 print_wchar (chars[i], buf, buflen,
2245 TYPE_LENGTH (type), byte_order,
2246 &wchar_buf, quoter, &need_escape);
2247 }
2248 }
2249
2250 /* This handles the NUM_CHARS == 0 case as well. */
2251 if (print_escape)
2252 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2253 byte_order, &wchar_buf, quoter, &need_escape);
2254 }
2255
2256 /* The output in the host encoding. */
2257 obstack_init (&output);
2258 make_cleanup_obstack_free (&output);
2259
2260 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2261 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2262 obstack_object_size (&wchar_buf),
fff10684 2263 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2264 obstack_1grow (&output, '\0');
2265
2266 fputs_filtered (obstack_base (&output), stream);
2267
2268 do_cleanups (cleanups);
2269}
2270
0d63ecda
KS
2271/* Return the repeat count of the next character/byte in ITER,
2272 storing the result in VEC. */
2273
2274static int
2275count_next_character (struct wchar_iterator *iter,
2276 VEC (converted_character_d) **vec)
2277{
2278 struct converted_character *current;
2279
2280 if (VEC_empty (converted_character_d, *vec))
2281 {
2282 struct converted_character tmp;
2283 gdb_wchar_t *chars;
2284
2285 tmp.num_chars
2286 = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen);
2287 if (tmp.num_chars > 0)
2288 {
2289 gdb_assert (tmp.num_chars < MAX_WCHARS);
2290 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2291 }
2292 VEC_safe_push (converted_character_d, *vec, &tmp);
2293 }
2294
2295 current = VEC_last (converted_character_d, *vec);
2296
2297 /* Count repeated characters or bytes. */
2298 current->repeat_count = 1;
2299 if (current->num_chars == -1)
2300 {
2301 /* EOF */
2302 return -1;
2303 }
2304 else
2305 {
2306 gdb_wchar_t *chars;
2307 struct converted_character d;
2308 int repeat;
2309
2310 d.repeat_count = 0;
2311
2312 while (1)
2313 {
2314 /* Get the next character. */
2315 d.num_chars
2316 = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen);
2317
2318 /* If a character was successfully converted, save the character
2319 into the converted character. */
2320 if (d.num_chars > 0)
2321 {
2322 gdb_assert (d.num_chars < MAX_WCHARS);
2323 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2324 }
2325
2326 /* Determine if the current character is the same as this
2327 new character. */
2328 if (d.num_chars == current->num_chars && d.result == current->result)
2329 {
2330 /* There are two cases to consider:
2331
2332 1) Equality of converted character (num_chars > 0)
2333 2) Equality of non-converted character (num_chars == 0) */
2334 if ((current->num_chars > 0
2335 && memcmp (current->chars, d.chars,
2336 WCHAR_BUFLEN (current->num_chars)) == 0)
2337 || (current->num_chars == 0
2338 && current->buflen == d.buflen
2339 && memcmp (current->buf, d.buf, current->buflen) == 0))
2340 ++current->repeat_count;
2341 else
2342 break;
2343 }
2344 else
2345 break;
2346 }
2347
2348 /* Push this next converted character onto the result vector. */
2349 repeat = current->repeat_count;
2350 VEC_safe_push (converted_character_d, *vec, &d);
2351 return repeat;
2352 }
2353}
2354
2355/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2356 character to use with string output. WIDTH is the size of the output
2357 character type. BYTE_ORDER is the the target byte order. OPTIONS
2358 is the user's print options. */
2359
2360static void
2361print_converted_chars_to_obstack (struct obstack *obstack,
2362 VEC (converted_character_d) *chars,
2363 int quote_char, int width,
2364 enum bfd_endian byte_order,
2365 const struct value_print_options *options)
2366{
2367 unsigned int idx;
2368 struct converted_character *elem;
2369 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2370 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2371 int need_escape = 0;
2372
2373 /* Set the start state. */
2374 idx = 0;
2375 last = state = START;
2376 elem = NULL;
2377
2378 while (1)
2379 {
2380 switch (state)
2381 {
2382 case START:
2383 /* Nothing to do. */
2384 break;
2385
2386 case SINGLE:
2387 {
2388 int j;
2389
2390 /* We are outputting a single character
2391 (< options->repeat_count_threshold). */
2392
2393 if (last != SINGLE)
2394 {
2395 /* We were outputting some other type of content, so we
2396 must output and a comma and a quote. */
2397 if (last != START)
2398 obstack_grow_wstr (obstack, LCST (", "));
0d63ecda
KS
2399 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2400 }
2401 /* Output the character. */
2402 for (j = 0; j < elem->repeat_count; ++j)
2403 {
2404 if (elem->result == wchar_iterate_ok)
2405 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2406 byte_order, obstack, quote_char, &need_escape);
2407 else
2408 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2409 byte_order, obstack, quote_char, &need_escape);
2410 }
2411 }
2412 break;
2413
2414 case REPEAT:
2415 {
2416 int j;
2417 char *s;
2418
2419 /* We are outputting a character with a repeat count
2420 greater than options->repeat_count_threshold. */
2421
2422 if (last == SINGLE)
2423 {
2424 /* We were outputting a single string. Terminate the
2425 string. */
0d63ecda
KS
2426 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2427 }
2428 if (last != START)
2429 obstack_grow_wstr (obstack, LCST (", "));
2430
2431 /* Output the character and repeat string. */
2432 obstack_grow_wstr (obstack, LCST ("'"));
2433 if (elem->result == wchar_iterate_ok)
2434 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2435 byte_order, obstack, quote_char, &need_escape);
2436 else
2437 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2438 byte_order, obstack, quote_char, &need_escape);
2439 obstack_grow_wstr (obstack, LCST ("'"));
2440 s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count);
2441 for (j = 0; s[j]; ++j)
2442 {
2443 gdb_wchar_t w = gdb_btowc (s[j]);
2444 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2445 }
2446 xfree (s);
2447 }
2448 break;
2449
2450 case INCOMPLETE:
2451 /* We are outputting an incomplete sequence. */
2452 if (last == SINGLE)
2453 {
2454 /* If we were outputting a string of SINGLE characters,
2455 terminate the quote. */
0d63ecda
KS
2456 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2457 }
2458 if (last != START)
2459 obstack_grow_wstr (obstack, LCST (", "));
2460
2461 /* Output the incomplete sequence string. */
2462 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2463 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2464 obstack, 0, &need_escape);
2465 obstack_grow_wstr (obstack, LCST (">"));
2466
2467 /* We do not attempt to outupt anything after this. */
2468 state = FINISH;
2469 break;
2470
2471 case FINISH:
2472 /* All done. If we were outputting a string of SINGLE
2473 characters, the string must be terminated. Otherwise,
2474 REPEAT and INCOMPLETE are always left properly terminated. */
2475 if (last == SINGLE)
e93a8774 2476 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
0d63ecda
KS
2477
2478 return;
2479 }
2480
2481 /* Get the next element and state. */
2482 last = state;
2483 if (state != FINISH)
2484 {
2485 elem = VEC_index (converted_character_d, chars, idx++);
2486 switch (elem->result)
2487 {
2488 case wchar_iterate_ok:
2489 case wchar_iterate_invalid:
2490 if (elem->repeat_count > options->repeat_count_threshold)
2491 state = REPEAT;
2492 else
2493 state = SINGLE;
2494 break;
2495
2496 case wchar_iterate_incomplete:
2497 state = INCOMPLETE;
2498 break;
2499
2500 case wchar_iterate_eof:
2501 state = FINISH;
2502 break;
2503 }
2504 }
2505 }
2506}
2507
3b2b8fea
TT
2508/* Print the character string STRING, printing at most LENGTH
2509 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2510 the type of each character. OPTIONS holds the printing options;
2511 printing stops early if the number hits print_max; repeat counts
2512 are printed as appropriate. Print ellipses at the end if we had to
2513 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2514 QUOTE_CHAR is the character to print at each end of the string. If
2515 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2516 omitted. */
2517
2518void
2519generic_printstr (struct ui_file *stream, struct type *type,
2520 const gdb_byte *string, unsigned int length,
2521 const char *encoding, int force_ellipses,
2522 int quote_char, int c_style_terminator,
2523 const struct value_print_options *options)
2524{
2525 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2526 unsigned int i;
3b2b8fea
TT
2527 int width = TYPE_LENGTH (type);
2528 struct obstack wchar_buf, output;
2529 struct cleanup *cleanup;
2530 struct wchar_iterator *iter;
2531 int finished = 0;
0d63ecda
KS
2532 struct converted_character *last;
2533 VEC (converted_character_d) *converted_chars;
3b2b8fea
TT
2534
2535 if (length == -1)
2536 {
2537 unsigned long current_char = 1;
2538
2539 for (i = 0; current_char; ++i)
2540 {
2541 QUIT;
2542 current_char = extract_unsigned_integer (string + i * width,
2543 width, byte_order);
2544 }
2545 length = i;
2546 }
2547
2548 /* If the string was not truncated due to `set print elements', and
2549 the last byte of it is a null, we don't print that, in
2550 traditional C style. */
2551 if (c_style_terminator
2552 && !force_ellipses
2553 && length > 0
2554 && (extract_unsigned_integer (string + (length - 1) * width,
2555 width, byte_order) == 0))
2556 length--;
2557
2558 if (length == 0)
2559 {
2560 fputs_filtered ("\"\"", stream);
2561 return;
2562 }
2563
2564 /* Arrange to iterate over the characters, in wchar_t form. */
2565 iter = make_wchar_iterator (string, length * width, encoding, width);
2566 cleanup = make_cleanup_wchar_iterator (iter);
0d63ecda
KS
2567 converted_chars = NULL;
2568 make_cleanup (VEC_cleanup (converted_character_d), &converted_chars);
3b2b8fea 2569
0d63ecda
KS
2570 /* Convert characters until the string is over or the maximum
2571 number of printed characters has been reached. */
2572 i = 0;
2573 while (i < options->print_max)
3b2b8fea 2574 {
0d63ecda 2575 int r;
3b2b8fea
TT
2576
2577 QUIT;
2578
0d63ecda
KS
2579 /* Grab the next character and repeat count. */
2580 r = count_next_character (iter, &converted_chars);
3b2b8fea 2581
0d63ecda
KS
2582 /* If less than zero, the end of the input string was reached. */
2583 if (r < 0)
2584 break;
3b2b8fea 2585
0d63ecda
KS
2586 /* Otherwise, add the count to the total print count and get
2587 the next character. */
2588 i += r;
2589 }
3b2b8fea 2590
0d63ecda
KS
2591 /* Get the last element and determine if the entire string was
2592 processed. */
2593 last = VEC_last (converted_character_d, converted_chars);
2594 finished = (last->result == wchar_iterate_eof);
3b2b8fea 2595
0d63ecda
KS
2596 /* Ensure that CONVERTED_CHARS is terminated. */
2597 last->result = wchar_iterate_eof;
3b2b8fea 2598
0d63ecda
KS
2599 /* WCHAR_BUF is the obstack we use to represent the string in
2600 wchar_t form. */
2601 obstack_init (&wchar_buf);
2602 make_cleanup_obstack_free (&wchar_buf);
3b2b8fea 2603
0d63ecda
KS
2604 /* Print the output string to the obstack. */
2605 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2606 width, byte_order, options);
3b2b8fea
TT
2607
2608 if (force_ellipses || !finished)
2609 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2610
2611 /* OUTPUT is where we collect `char's for printing. */
2612 obstack_init (&output);
2613 make_cleanup_obstack_free (&output);
2614
2615 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
ac91cd70 2616 (gdb_byte *) obstack_base (&wchar_buf),
3b2b8fea 2617 obstack_object_size (&wchar_buf),
fff10684 2618 sizeof (gdb_wchar_t), &output, translit_char);
3b2b8fea
TT
2619 obstack_1grow (&output, '\0');
2620
2621 fputs_filtered (obstack_base (&output), stream);
2622
2623 do_cleanups (cleanup);
2624}
2625
ae6a3a4c
TJB
2626/* Print a string from the inferior, starting at ADDR and printing up to LEN
2627 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2628 stops at the first null byte, otherwise printing proceeds (including null
2629 bytes) until either print_max or LEN characters have been printed,
09ca9e2e
TT
2630 whichever is smaller. ENCODING is the name of the string's
2631 encoding. It can be NULL, in which case the target encoding is
2632 assumed. */
ae6a3a4c
TJB
2633
2634int
09ca9e2e
TT
2635val_print_string (struct type *elttype, const char *encoding,
2636 CORE_ADDR addr, int len,
6c7a06a3 2637 struct ui_file *stream,
ae6a3a4c
TJB
2638 const struct value_print_options *options)
2639{
2640 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2641 int errcode; /* Errno returned from bad reads. */
581e13c1 2642 int found_nul; /* Non-zero if we found the nul char. */
ae6a3a4c
TJB
2643 unsigned int fetchlimit; /* Maximum number of chars to print. */
2644 int bytes_read;
2645 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
2646 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
5af949e3 2647 struct gdbarch *gdbarch = get_type_arch (elttype);
e17a4113 2648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6c7a06a3 2649 int width = TYPE_LENGTH (elttype);
ae6a3a4c
TJB
2650
2651 /* First we need to figure out the limit on the number of characters we are
2652 going to attempt to fetch and print. This is actually pretty simple. If
2653 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2654 LEN is -1, then the limit is print_max. This is true regardless of
2655 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2656 because finding the null byte (or available memory) is what actually
2657 limits the fetch. */
2658
3e43a32a
MS
2659 fetchlimit = (len == -1 ? options->print_max : min (len,
2660 options->print_max));
ae6a3a4c 2661
e17a4113
UW
2662 errcode = read_string (addr, len, width, fetchlimit, byte_order,
2663 &buffer, &bytes_read);
ae6a3a4c
TJB
2664 old_chain = make_cleanup (xfree, buffer);
2665
2666 addr += bytes_read;
c906108c 2667
3e43a32a
MS
2668 /* We now have either successfully filled the buffer to fetchlimit,
2669 or terminated early due to an error or finding a null char when
2670 LEN is -1. */
ae6a3a4c
TJB
2671
2672 /* Determine found_nul by looking at the last character read. */
6694c411
JK
2673 found_nul = 0;
2674 if (bytes_read >= width)
2675 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
2676 byte_order) == 0;
c906108c
SS
2677 if (len == -1 && !found_nul)
2678 {
777ea8f1 2679 gdb_byte *peekbuf;
c906108c 2680
ae6a3a4c 2681 /* We didn't find a NUL terminator we were looking for. Attempt
c5aa993b
JM
2682 to peek at the next character. If not successful, or it is not
2683 a null byte, then force ellipsis to be printed. */
c906108c 2684
777ea8f1 2685 peekbuf = (gdb_byte *) alloca (width);
c906108c
SS
2686
2687 if (target_read_memory (addr, peekbuf, width) == 0
e17a4113 2688 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
c906108c
SS
2689 force_ellipsis = 1;
2690 }
ae6a3a4c 2691 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
c906108c
SS
2692 {
2693 /* Getting an error when we have a requested length, or fetching less
c5aa993b 2694 than the number of characters actually requested, always make us
ae6a3a4c 2695 print ellipsis. */
c906108c
SS
2696 force_ellipsis = 1;
2697 }
2698
c906108c
SS
2699 /* If we get an error before fetching anything, don't print a string.
2700 But if we fetch something and then get an error, print the string
2701 and then the error message. */
ae6a3a4c 2702 if (errcode == 0 || bytes_read > 0)
c906108c 2703 {
be759fcf 2704 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
3a772aa4 2705 encoding, force_ellipsis, options);
c906108c
SS
2706 }
2707
2708 if (errcode != 0)
2709 {
578d3588
PA
2710 char *str;
2711
2712 str = memory_error_message (errcode, gdbarch, addr);
2713 make_cleanup (xfree, str);
2714
2715 fprintf_filtered (stream, "<error: ");
2716 fputs_filtered (str, stream);
2717 fprintf_filtered (stream, ">");
c906108c 2718 }
ae6a3a4c 2719
c906108c
SS
2720 gdb_flush (stream);
2721 do_cleanups (old_chain);
ae6a3a4c
TJB
2722
2723 return (bytes_read / width);
c906108c 2724}
c906108c 2725\f
c5aa993b 2726
09e6485f
PA
2727/* The 'set input-radix' command writes to this auxiliary variable.
2728 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2729 it is left unchanged. */
2730
2731static unsigned input_radix_1 = 10;
2732
c906108c
SS
2733/* Validate an input or output radix setting, and make sure the user
2734 knows what they really did here. Radix setting is confusing, e.g.
2735 setting the input radix to "10" never changes it! */
2736
c906108c 2737static void
fba45db2 2738set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2739{
09e6485f 2740 set_input_radix_1 (from_tty, input_radix_1);
c906108c
SS
2741}
2742
c906108c 2743static void
fba45db2 2744set_input_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2745{
2746 /* We don't currently disallow any input radix except 0 or 1, which don't
2747 make any mathematical sense. In theory, we can deal with any input
2748 radix greater than 1, even if we don't have unique digits for every
2749 value from 0 to radix-1, but in practice we lose on large radix values.
2750 We should either fix the lossage or restrict the radix range more.
581e13c1 2751 (FIXME). */
c906108c
SS
2752
2753 if (radix < 2)
2754 {
09e6485f 2755 input_radix_1 = input_radix;
8a3fe4f8 2756 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
c906108c
SS
2757 radix);
2758 }
09e6485f 2759 input_radix_1 = input_radix = radix;
c906108c
SS
2760 if (from_tty)
2761 {
3e43a32a
MS
2762 printf_filtered (_("Input radix now set to "
2763 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2764 radix, radix, radix);
2765 }
2766}
2767
09e6485f
PA
2768/* The 'set output-radix' command writes to this auxiliary variable.
2769 If the requested radix is valid, OUTPUT_RADIX is updated,
2770 otherwise, it is left unchanged. */
2771
2772static unsigned output_radix_1 = 10;
2773
c906108c 2774static void
fba45db2 2775set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2776{
09e6485f 2777 set_output_radix_1 (from_tty, output_radix_1);
c906108c
SS
2778}
2779
2780static void
fba45db2 2781set_output_radix_1 (int from_tty, unsigned radix)
c906108c
SS
2782{
2783 /* Validate the radix and disallow ones that we aren't prepared to
581e13c1 2784 handle correctly, leaving the radix unchanged. */
c906108c
SS
2785 switch (radix)
2786 {
2787 case 16:
79a45b7d 2788 user_print_options.output_format = 'x'; /* hex */
c906108c
SS
2789 break;
2790 case 10:
79a45b7d 2791 user_print_options.output_format = 0; /* decimal */
c906108c
SS
2792 break;
2793 case 8:
79a45b7d 2794 user_print_options.output_format = 'o'; /* octal */
c906108c
SS
2795 break;
2796 default:
09e6485f 2797 output_radix_1 = output_radix;
3e43a32a
MS
2798 error (_("Unsupported output radix ``decimal %u''; "
2799 "output radix unchanged."),
c906108c
SS
2800 radix);
2801 }
09e6485f 2802 output_radix_1 = output_radix = radix;
c906108c
SS
2803 if (from_tty)
2804 {
3e43a32a
MS
2805 printf_filtered (_("Output radix now set to "
2806 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2807 radix, radix, radix);
2808 }
2809}
2810
2811/* Set both the input and output radix at once. Try to set the output radix
2812 first, since it has the most restrictive range. An radix that is valid as
2813 an output radix is also valid as an input radix.
2814
2815 It may be useful to have an unusual input radix. If the user wishes to
2816 set an input radix that is not valid as an output radix, he needs to use
581e13c1 2817 the 'set input-radix' command. */
c906108c
SS
2818
2819static void
fba45db2 2820set_radix (char *arg, int from_tty)
c906108c
SS
2821{
2822 unsigned radix;
2823
bb518678 2824 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
c906108c
SS
2825 set_output_radix_1 (0, radix);
2826 set_input_radix_1 (0, radix);
2827 if (from_tty)
2828 {
3e43a32a
MS
2829 printf_filtered (_("Input and output radices now set to "
2830 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2831 radix, radix, radix);
2832 }
2833}
2834
581e13c1 2835/* Show both the input and output radices. */
c906108c 2836
c906108c 2837static void
fba45db2 2838show_radix (char *arg, int from_tty)
c906108c
SS
2839{
2840 if (from_tty)
2841 {
2842 if (input_radix == output_radix)
2843 {
3e43a32a
MS
2844 printf_filtered (_("Input and output radices set to "
2845 "decimal %u, hex %x, octal %o.\n"),
c906108c
SS
2846 input_radix, input_radix, input_radix);
2847 }
2848 else
2849 {
3e43a32a
MS
2850 printf_filtered (_("Input radix set to decimal "
2851 "%u, hex %x, octal %o.\n"),
c906108c 2852 input_radix, input_radix, input_radix);
3e43a32a
MS
2853 printf_filtered (_("Output radix set to decimal "
2854 "%u, hex %x, octal %o.\n"),
c906108c
SS
2855 output_radix, output_radix, output_radix);
2856 }
2857 }
2858}
c906108c 2859\f
c5aa993b 2860
c906108c 2861static void
fba45db2 2862set_print (char *arg, int from_tty)
c906108c
SS
2863{
2864 printf_unfiltered (
c5aa993b 2865 "\"set print\" must be followed by the name of a print subcommand.\n");
635c7e8a 2866 help_list (setprintlist, "set print ", all_commands, gdb_stdout);
c906108c
SS
2867}
2868
c906108c 2869static void
fba45db2 2870show_print (char *args, int from_tty)
c906108c
SS
2871{
2872 cmd_show_list (showprintlist, from_tty, "");
2873}
e7045703
DE
2874
2875static void
2876set_print_raw (char *arg, int from_tty)
2877{
2878 printf_unfiltered (
2879 "\"set print raw\" must be followed by the name of a \"print raw\" subcommand.\n");
635c7e8a 2880 help_list (setprintrawlist, "set print raw ", all_commands, gdb_stdout);
e7045703
DE
2881}
2882
2883static void
2884show_print_raw (char *args, int from_tty)
2885{
2886 cmd_show_list (showprintrawlist, from_tty, "");
2887}
2888
c906108c
SS
2889\f
2890void
fba45db2 2891_initialize_valprint (void)
c906108c 2892{
c906108c 2893 add_prefix_cmd ("print", no_class, set_print,
1bedd215 2894 _("Generic command for setting how things print."),
c906108c 2895 &setprintlist, "set print ", 0, &setlist);
c5aa993b 2896 add_alias_cmd ("p", "print", no_class, 1, &setlist);
581e13c1 2897 /* Prefer set print to set prompt. */
c906108c
SS
2898 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
2899
2900 add_prefix_cmd ("print", no_class, show_print,
1bedd215 2901 _("Generic command for showing print settings."),
c906108c 2902 &showprintlist, "show print ", 0, &showlist);
c5aa993b
JM
2903 add_alias_cmd ("p", "print", no_class, 1, &showlist);
2904 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
c906108c 2905
e7045703
DE
2906 add_prefix_cmd ("raw", no_class, set_print_raw,
2907 _("\
2908Generic command for setting what things to print in \"raw\" mode."),
2909 &setprintrawlist, "set print raw ", 0, &setprintlist);
2910 add_prefix_cmd ("raw", no_class, show_print_raw,
2911 _("Generic command for showing \"print raw\" settings."),
2912 &showprintrawlist, "show print raw ", 0, &showprintlist);
2913
79a45b7d
TT
2914 add_setshow_uinteger_cmd ("elements", no_class,
2915 &user_print_options.print_max, _("\
35096d9d
AC
2916Set limit on string chars or array elements to print."), _("\
2917Show limit on string chars or array elements to print."), _("\
f81d1120 2918\"set print elements unlimited\" causes there to be no limit."),
35096d9d 2919 NULL,
920d2a44 2920 show_print_max,
35096d9d 2921 &setprintlist, &showprintlist);
c906108c 2922
79a45b7d
TT
2923 add_setshow_boolean_cmd ("null-stop", no_class,
2924 &user_print_options.stop_print_at_null, _("\
5bf193a2
AC
2925Set printing of char arrays to stop at first null char."), _("\
2926Show printing of char arrays to stop at first null char."), NULL,
2927 NULL,
920d2a44 2928 show_stop_print_at_null,
5bf193a2 2929 &setprintlist, &showprintlist);
c906108c 2930
35096d9d 2931 add_setshow_uinteger_cmd ("repeats", no_class,
79a45b7d 2932 &user_print_options.repeat_count_threshold, _("\
35096d9d
AC
2933Set threshold for repeated print elements."), _("\
2934Show threshold for repeated print elements."), _("\
f81d1120 2935\"set print repeats unlimited\" causes all elements to be individually printed."),
35096d9d 2936 NULL,
920d2a44 2937 show_repeat_count_threshold,
35096d9d 2938 &setprintlist, &showprintlist);
c906108c 2939
79a45b7d 2940 add_setshow_boolean_cmd ("pretty", class_support,
2a998fc0
DE
2941 &user_print_options.prettyformat_structs, _("\
2942Set pretty formatting of structures."), _("\
2943Show pretty formatting of structures."), NULL,
5bf193a2 2944 NULL,
2a998fc0 2945 show_prettyformat_structs,
5bf193a2
AC
2946 &setprintlist, &showprintlist);
2947
79a45b7d
TT
2948 add_setshow_boolean_cmd ("union", class_support,
2949 &user_print_options.unionprint, _("\
5bf193a2
AC
2950Set printing of unions interior to structures."), _("\
2951Show printing of unions interior to structures."), NULL,
2952 NULL,
920d2a44 2953 show_unionprint,
5bf193a2
AC
2954 &setprintlist, &showprintlist);
2955
79a45b7d 2956 add_setshow_boolean_cmd ("array", class_support,
2a998fc0
DE
2957 &user_print_options.prettyformat_arrays, _("\
2958Set pretty formatting of arrays."), _("\
2959Show pretty formatting of arrays."), NULL,
5bf193a2 2960 NULL,
2a998fc0 2961 show_prettyformat_arrays,
5bf193a2
AC
2962 &setprintlist, &showprintlist);
2963
79a45b7d
TT
2964 add_setshow_boolean_cmd ("address", class_support,
2965 &user_print_options.addressprint, _("\
5bf193a2
AC
2966Set printing of addresses."), _("\
2967Show printing of addresses."), NULL,
2968 NULL,
920d2a44 2969 show_addressprint,
5bf193a2 2970 &setprintlist, &showprintlist);
c906108c 2971
9cb709b6
TT
2972 add_setshow_boolean_cmd ("symbol", class_support,
2973 &user_print_options.symbol_print, _("\
2974Set printing of symbol names when printing pointers."), _("\
2975Show printing of symbol names when printing pointers."),
2976 NULL, NULL,
2977 show_symbol_print,
2978 &setprintlist, &showprintlist);
2979
1e8fb976
PA
2980 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
2981 _("\
35096d9d
AC
2982Set default input radix for entering numbers."), _("\
2983Show default input radix for entering numbers."), NULL,
1e8fb976
PA
2984 set_input_radix,
2985 show_input_radix,
2986 &setlist, &showlist);
35096d9d 2987
1e8fb976
PA
2988 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
2989 _("\
35096d9d
AC
2990Set default output radix for printing of values."), _("\
2991Show default output radix for printing of values."), NULL,
1e8fb976
PA
2992 set_output_radix,
2993 show_output_radix,
2994 &setlist, &showlist);
c906108c 2995
cb1a6d5f
AC
2996 /* The "set radix" and "show radix" commands are special in that
2997 they are like normal set and show commands but allow two normally
2998 independent variables to be either set or shown with a single
b66df561 2999 command. So the usual deprecated_add_set_cmd() and [deleted]
581e13c1 3000 add_show_from_set() commands aren't really appropriate. */
b66df561
AC
3001 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3002 longer true - show can display anything. */
1a966eab
AC
3003 add_cmd ("radix", class_support, set_radix, _("\
3004Set default input and output number radices.\n\
c906108c 3005Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1a966eab 3006Without an argument, sets both radices back to the default value of 10."),
c906108c 3007 &setlist);
1a966eab
AC
3008 add_cmd ("radix", class_support, show_radix, _("\
3009Show the default input and output number radices.\n\
3010Use 'show input-radix' or 'show output-radix' to independently show each."),
c906108c
SS
3011 &showlist);
3012
e79af960 3013 add_setshow_boolean_cmd ("array-indexes", class_support,
79a45b7d 3014 &user_print_options.print_array_indexes, _("\
e79af960
JB
3015Set printing of array indexes."), _("\
3016Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
3017 &setprintlist, &showprintlist);
c906108c 3018}
This page took 2.252832 seconds and 4 git commands to generate.