2009-06-03 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
27bc4d80 37#include "dfp.h"
bccdca4a 38#include "objfiles.h"
79a45b7d 39#include "valprint.h"
bc3b79fd 40#include "cli/cli-decode.h"
c906108c 41
a08702d6
TJB
42#include "python/python.h"
43
c906108c
SS
44/* Prototypes for exported functions. */
45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
63static struct cmd_list_element *functionlist;
64
91294c83
AC
65struct value
66{
67 /* Type of value; either not an lval, or one of the various
68 different possible kinds of lval. */
69 enum lval_type lval;
70
71 /* Is it modifiable? Only relevant if lval != not_lval. */
72 int modifiable;
73
74 /* Location of value (if lval). */
75 union
76 {
77 /* If lval == lval_memory, this is the address in the inferior.
78 If lval == lval_register, this is the byte offset into the
79 registers structure. */
80 CORE_ADDR address;
81
82 /* Pointer to internal variable. */
83 struct internalvar *internalvar;
5f5233d4
PA
84
85 /* If lval == lval_computed, this is a set of function pointers
86 to use to access and describe the value, and a closure pointer
87 for them to use. */
88 struct
89 {
90 struct lval_funcs *funcs; /* Functions to call. */
91 void *closure; /* Closure for those functions to use. */
92 } computed;
91294c83
AC
93 } location;
94
95 /* Describes offset of a value within lval of a structure in bytes.
96 If lval == lval_memory, this is an offset to the address. If
97 lval == lval_register, this is a further offset from
98 location.address within the registers structure. Note also the
99 member embedded_offset below. */
100 int offset;
101
102 /* Only used for bitfields; number of bits contained in them. */
103 int bitsize;
104
105 /* Only used for bitfields; position of start of field. For
32c9a795
MD
106 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
107 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
108 int bitpos;
109
110 /* Frame register value is relative to. This will be described in
111 the lval enum above as "lval_register". */
112 struct frame_id frame_id;
113
114 /* Type of the value. */
115 struct type *type;
116
117 /* If a value represents a C++ object, then the `type' field gives
118 the object's compile-time type. If the object actually belongs
119 to some class derived from `type', perhaps with other base
120 classes and additional members, then `type' is just a subobject
121 of the real thing, and the full object is probably larger than
122 `type' would suggest.
123
124 If `type' is a dynamic class (i.e. one with a vtable), then GDB
125 can actually determine the object's run-time type by looking at
126 the run-time type information in the vtable. When this
127 information is available, we may elect to read in the entire
128 object, for several reasons:
129
130 - When printing the value, the user would probably rather see the
131 full object, not just the limited portion apparent from the
132 compile-time type.
133
134 - If `type' has virtual base classes, then even printing `type'
135 alone may require reaching outside the `type' portion of the
136 object to wherever the virtual base class has been stored.
137
138 When we store the entire object, `enclosing_type' is the run-time
139 type -- the complete object -- and `embedded_offset' is the
140 offset of `type' within that larger type, in bytes. The
141 value_contents() macro takes `embedded_offset' into account, so
142 most GDB code continues to see the `type' portion of the value,
143 just as the inferior would.
144
145 If `type' is a pointer to an object, then `enclosing_type' is a
146 pointer to the object's run-time type, and `pointed_to_offset' is
147 the offset in bytes from the full object to the pointed-to object
148 -- that is, the value `embedded_offset' would have if we followed
149 the pointer and fetched the complete object. (I don't really see
150 the point. Why not just determine the run-time type when you
151 indirect, and avoid the special case? The contents don't matter
152 until you indirect anyway.)
153
154 If we're not doing anything fancy, `enclosing_type' is equal to
155 `type', and `embedded_offset' is zero, so everything works
156 normally. */
157 struct type *enclosing_type;
158 int embedded_offset;
159 int pointed_to_offset;
160
161 /* Values are stored in a chain, so that they can be deleted easily
162 over calls to the inferior. Values assigned to internal
a08702d6
TJB
163 variables, put into the value history or exposed to Python are
164 taken off this list. */
91294c83
AC
165 struct value *next;
166
167 /* Register number if the value is from a register. */
168 short regnum;
169
170 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
171 nonzero, contents are in inferior. If the lval field is lval_memory,
172 the contents are in inferior memory at location.address plus offset.
173 The lval field may also be lval_register.
91294c83
AC
174
175 WARNING: This field is used by the code which handles watchpoints
176 (see breakpoint.c) to decide whether a particular value can be
177 watched by hardware watchpoints. If the lazy flag is set for
178 some member of a value chain, it is assumed that this member of
179 the chain doesn't need to be watched as part of watching the
180 value itself. This is how GDB avoids watching the entire struct
181 or array when the user wants to watch a single struct member or
182 array element. If you ever change the way lazy flag is set and
183 reset, be sure to consider this use as well! */
184 char lazy;
185
186 /* If nonzero, this is the value of a variable which does not
187 actually exist in the program. */
188 char optimized_out;
189
42be36b3
CT
190 /* If value is a variable, is it initialized or not. */
191 int initialized;
192
3e3d7139
JG
193 /* Actual contents of the value. Target byte-order. NULL or not
194 valid if lazy is nonzero. */
195 gdb_byte *contents;
91294c83
AC
196};
197
c906108c
SS
198/* Prototypes for local functions. */
199
a14ed312 200static void show_values (char *, int);
c906108c 201
a14ed312 202static void show_convenience (char *, int);
c906108c 203
c906108c
SS
204
205/* The value-history records all the values printed
206 by print commands during this session. Each chunk
207 records 60 consecutive values. The first chunk on
208 the chain records the most recent values.
209 The total number of values is in value_history_count. */
210
211#define VALUE_HISTORY_CHUNK 60
212
213struct value_history_chunk
c5aa993b
JM
214 {
215 struct value_history_chunk *next;
f23631e4 216 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 217 };
c906108c
SS
218
219/* Chain of chunks now in use. */
220
221static struct value_history_chunk *value_history_chain;
222
223static int value_history_count; /* Abs number of last entry stored */
bc3b79fd
TJB
224
225/* The type of internal functions. */
226
227static struct type *internal_fn_type;
c906108c
SS
228\f
229/* List of all value objects currently allocated
230 (except for those released by calls to release_value)
231 This is so they can be freed after each command. */
232
f23631e4 233static struct value *all_values;
c906108c 234
3e3d7139
JG
235/* Allocate a lazy value for type TYPE. Its actual content is
236 "lazily" allocated too: the content field of the return value is
237 NULL; it will be allocated when it is fetched from the target. */
c906108c 238
f23631e4 239struct value *
3e3d7139 240allocate_value_lazy (struct type *type)
c906108c 241{
f23631e4 242 struct value *val;
c906108c
SS
243 struct type *atype = check_typedef (type);
244
3e3d7139
JG
245 val = (struct value *) xzalloc (sizeof (struct value));
246 val->contents = NULL;
df407dfe 247 val->next = all_values;
c906108c 248 all_values = val;
df407dfe 249 val->type = type;
4754a64e 250 val->enclosing_type = type;
c906108c 251 VALUE_LVAL (val) = not_lval;
42ae5230 252 val->location.address = 0;
1df6926e 253 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
254 val->offset = 0;
255 val->bitpos = 0;
256 val->bitsize = 0;
9ee8fc9d 257 VALUE_REGNUM (val) = -1;
3e3d7139 258 val->lazy = 1;
feb13ab0 259 val->optimized_out = 0;
13c3b5f5 260 val->embedded_offset = 0;
b44d461b 261 val->pointed_to_offset = 0;
c906108c 262 val->modifiable = 1;
42be36b3 263 val->initialized = 1; /* Default to initialized. */
c906108c
SS
264 return val;
265}
266
3e3d7139
JG
267/* Allocate the contents of VAL if it has not been allocated yet. */
268
269void
270allocate_value_contents (struct value *val)
271{
272 if (!val->contents)
273 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
274}
275
276/* Allocate a value and its contents for type TYPE. */
277
278struct value *
279allocate_value (struct type *type)
280{
281 struct value *val = allocate_value_lazy (type);
282 allocate_value_contents (val);
283 val->lazy = 0;
284 return val;
285}
286
c906108c 287/* Allocate a value that has the correct length
938f5214 288 for COUNT repetitions of type TYPE. */
c906108c 289
f23631e4 290struct value *
fba45db2 291allocate_repeat_value (struct type *type, int count)
c906108c 292{
c5aa993b 293 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
294 /* FIXME-type-allocation: need a way to free this type when we are
295 done with it. */
296 struct type *range_type
6d84d3d8 297 = create_range_type ((struct type *) NULL, builtin_type_int32,
c5aa993b 298 low_bound, count + low_bound - 1);
c906108c
SS
299 /* FIXME-type-allocation: need a way to free this type when we are
300 done with it. */
301 return allocate_value (create_array_type ((struct type *) NULL,
302 type, range_type));
303}
304
a08702d6
TJB
305/* Needed if another module needs to maintain its on list of values. */
306void
307value_prepend_to_list (struct value **head, struct value *val)
308{
309 val->next = *head;
310 *head = val;
311}
312
313/* Needed if another module needs to maintain its on list of values. */
314void
315value_remove_from_list (struct value **head, struct value *val)
316{
317 struct value *prev;
318
319 if (*head == val)
320 *head = (*head)->next;
321 else
322 for (prev = *head; prev->next; prev = prev->next)
323 if (prev->next == val)
324 {
325 prev->next = val->next;
326 break;
327 }
328}
329
5f5233d4
PA
330struct value *
331allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334{
335 struct value *v = allocate_value (type);
336 VALUE_LVAL (v) = lval_computed;
337 v->location.computed.funcs = funcs;
338 v->location.computed.closure = closure;
339 set_value_lazy (v, 1);
340
341 return v;
342}
343
df407dfe
AC
344/* Accessor methods. */
345
17cf0ecd
AC
346struct value *
347value_next (struct value *value)
348{
349 return value->next;
350}
351
df407dfe
AC
352struct type *
353value_type (struct value *value)
354{
355 return value->type;
356}
04624583
AC
357void
358deprecated_set_value_type (struct value *value, struct type *type)
359{
360 value->type = type;
361}
df407dfe
AC
362
363int
364value_offset (struct value *value)
365{
366 return value->offset;
367}
f5cf64a7
AC
368void
369set_value_offset (struct value *value, int offset)
370{
371 value->offset = offset;
372}
df407dfe
AC
373
374int
375value_bitpos (struct value *value)
376{
377 return value->bitpos;
378}
9bbda503
AC
379void
380set_value_bitpos (struct value *value, int bit)
381{
382 value->bitpos = bit;
383}
df407dfe
AC
384
385int
386value_bitsize (struct value *value)
387{
388 return value->bitsize;
389}
9bbda503
AC
390void
391set_value_bitsize (struct value *value, int bit)
392{
393 value->bitsize = bit;
394}
df407dfe 395
fc1a4b47 396gdb_byte *
990a07ab
AC
397value_contents_raw (struct value *value)
398{
3e3d7139
JG
399 allocate_value_contents (value);
400 return value->contents + value->embedded_offset;
990a07ab
AC
401}
402
fc1a4b47 403gdb_byte *
990a07ab
AC
404value_contents_all_raw (struct value *value)
405{
3e3d7139
JG
406 allocate_value_contents (value);
407 return value->contents;
990a07ab
AC
408}
409
4754a64e
AC
410struct type *
411value_enclosing_type (struct value *value)
412{
413 return value->enclosing_type;
414}
415
fc1a4b47 416const gdb_byte *
46615f07
AC
417value_contents_all (struct value *value)
418{
419 if (value->lazy)
420 value_fetch_lazy (value);
3e3d7139 421 return value->contents;
46615f07
AC
422}
423
d69fe07e
AC
424int
425value_lazy (struct value *value)
426{
427 return value->lazy;
428}
429
dfa52d88
AC
430void
431set_value_lazy (struct value *value, int val)
432{
433 value->lazy = val;
434}
435
fc1a4b47 436const gdb_byte *
0fd88904
AC
437value_contents (struct value *value)
438{
439 return value_contents_writeable (value);
440}
441
fc1a4b47 442gdb_byte *
0fd88904
AC
443value_contents_writeable (struct value *value)
444{
445 if (value->lazy)
446 value_fetch_lazy (value);
fc0c53a0 447 return value_contents_raw (value);
0fd88904
AC
448}
449
a6c442d8
MK
450/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
451 this function is different from value_equal; in C the operator ==
452 can return 0 even if the two values being compared are equal. */
453
454int
455value_contents_equal (struct value *val1, struct value *val2)
456{
457 struct type *type1;
458 struct type *type2;
459 int len;
460
461 type1 = check_typedef (value_type (val1));
462 type2 = check_typedef (value_type (val2));
463 len = TYPE_LENGTH (type1);
464 if (len != TYPE_LENGTH (type2))
465 return 0;
466
467 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
468}
469
feb13ab0
AC
470int
471value_optimized_out (struct value *value)
472{
473 return value->optimized_out;
474}
475
476void
477set_value_optimized_out (struct value *value, int val)
478{
479 value->optimized_out = val;
480}
13c3b5f5
AC
481
482int
483value_embedded_offset (struct value *value)
484{
485 return value->embedded_offset;
486}
487
488void
489set_value_embedded_offset (struct value *value, int val)
490{
491 value->embedded_offset = val;
492}
b44d461b
AC
493
494int
495value_pointed_to_offset (struct value *value)
496{
497 return value->pointed_to_offset;
498}
499
500void
501set_value_pointed_to_offset (struct value *value, int val)
502{
503 value->pointed_to_offset = val;
504}
13bb5560 505
5f5233d4
PA
506struct lval_funcs *
507value_computed_funcs (struct value *v)
508{
509 gdb_assert (VALUE_LVAL (v) == lval_computed);
510
511 return v->location.computed.funcs;
512}
513
514void *
515value_computed_closure (struct value *v)
516{
517 gdb_assert (VALUE_LVAL (v) == lval_computed);
518
519 return v->location.computed.closure;
520}
521
13bb5560
AC
522enum lval_type *
523deprecated_value_lval_hack (struct value *value)
524{
525 return &value->lval;
526}
527
42ae5230
TT
528CORE_ADDR
529value_address (struct value *value)
530{
531 if (value->lval == lval_internalvar
532 || value->lval == lval_internalvar_component)
533 return 0;
534 return value->location.address + value->offset;
535}
536
537CORE_ADDR
538value_raw_address (struct value *value)
539{
540 if (value->lval == lval_internalvar
541 || value->lval == lval_internalvar_component)
542 return 0;
543 return value->location.address;
544}
545
546void
547set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 548{
42ae5230
TT
549 gdb_assert (value->lval != lval_internalvar
550 && value->lval != lval_internalvar_component);
551 value->location.address = addr;
13bb5560
AC
552}
553
554struct internalvar **
555deprecated_value_internalvar_hack (struct value *value)
556{
557 return &value->location.internalvar;
558}
559
560struct frame_id *
561deprecated_value_frame_id_hack (struct value *value)
562{
563 return &value->frame_id;
564}
565
566short *
567deprecated_value_regnum_hack (struct value *value)
568{
569 return &value->regnum;
570}
88e3b34b
AC
571
572int
573deprecated_value_modifiable (struct value *value)
574{
575 return value->modifiable;
576}
577void
578deprecated_set_value_modifiable (struct value *value, int modifiable)
579{
580 value->modifiable = modifiable;
581}
990a07ab 582\f
c906108c
SS
583/* Return a mark in the value chain. All values allocated after the
584 mark is obtained (except for those released) are subject to being freed
585 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 586struct value *
fba45db2 587value_mark (void)
c906108c
SS
588{
589 return all_values;
590}
591
3e3d7139
JG
592void
593value_free (struct value *val)
594{
595 if (val)
5f5233d4
PA
596 {
597 if (VALUE_LVAL (val) == lval_computed)
598 {
599 struct lval_funcs *funcs = val->location.computed.funcs;
600
601 if (funcs->free_closure)
602 funcs->free_closure (val);
603 }
604
605 xfree (val->contents);
606 }
3e3d7139
JG
607 xfree (val);
608}
609
c906108c
SS
610/* Free all values allocated since MARK was obtained by value_mark
611 (except for those released). */
612void
f23631e4 613value_free_to_mark (struct value *mark)
c906108c 614{
f23631e4
AC
615 struct value *val;
616 struct value *next;
c906108c
SS
617
618 for (val = all_values; val && val != mark; val = next)
619 {
df407dfe 620 next = val->next;
c906108c
SS
621 value_free (val);
622 }
623 all_values = val;
624}
625
626/* Free all the values that have been allocated (except for those released).
627 Called after each command, successful or not. */
628
629void
fba45db2 630free_all_values (void)
c906108c 631{
f23631e4
AC
632 struct value *val;
633 struct value *next;
c906108c
SS
634
635 for (val = all_values; val; val = next)
636 {
df407dfe 637 next = val->next;
c906108c
SS
638 value_free (val);
639 }
640
641 all_values = 0;
642}
643
644/* Remove VAL from the chain all_values
645 so it will not be freed automatically. */
646
647void
f23631e4 648release_value (struct value *val)
c906108c 649{
f23631e4 650 struct value *v;
c906108c
SS
651
652 if (all_values == val)
653 {
654 all_values = val->next;
655 return;
656 }
657
658 for (v = all_values; v; v = v->next)
659 {
660 if (v->next == val)
661 {
662 v->next = val->next;
663 break;
664 }
665 }
666}
667
668/* Release all values up to mark */
f23631e4
AC
669struct value *
670value_release_to_mark (struct value *mark)
c906108c 671{
f23631e4
AC
672 struct value *val;
673 struct value *next;
c906108c 674
df407dfe
AC
675 for (val = next = all_values; next; next = next->next)
676 if (next->next == mark)
c906108c 677 {
df407dfe
AC
678 all_values = next->next;
679 next->next = NULL;
c906108c
SS
680 return val;
681 }
682 all_values = 0;
683 return val;
684}
685
686/* Return a copy of the value ARG.
687 It contains the same contents, for same memory address,
688 but it's a different block of storage. */
689
f23631e4
AC
690struct value *
691value_copy (struct value *arg)
c906108c 692{
4754a64e 693 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
694 struct value *val;
695
696 if (value_lazy (arg))
697 val = allocate_value_lazy (encl_type);
698 else
699 val = allocate_value (encl_type);
df407dfe 700 val->type = arg->type;
c906108c 701 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 702 val->location = arg->location;
df407dfe
AC
703 val->offset = arg->offset;
704 val->bitpos = arg->bitpos;
705 val->bitsize = arg->bitsize;
1df6926e 706 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 707 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 708 val->lazy = arg->lazy;
feb13ab0 709 val->optimized_out = arg->optimized_out;
13c3b5f5 710 val->embedded_offset = value_embedded_offset (arg);
b44d461b 711 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 712 val->modifiable = arg->modifiable;
d69fe07e 713 if (!value_lazy (val))
c906108c 714 {
990a07ab 715 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 716 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
717
718 }
5f5233d4
PA
719 if (VALUE_LVAL (val) == lval_computed)
720 {
721 struct lval_funcs *funcs = val->location.computed.funcs;
722
723 if (funcs->copy_closure)
724 val->location.computed.closure = funcs->copy_closure (val);
725 }
c906108c
SS
726 return val;
727}
74bcbdf3
PA
728
729void
730set_value_component_location (struct value *component, struct value *whole)
731{
732 if (VALUE_LVAL (whole) == lval_internalvar)
733 VALUE_LVAL (component) = lval_internalvar_component;
734 else
735 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 736
74bcbdf3 737 component->location = whole->location;
5f5233d4
PA
738 if (VALUE_LVAL (whole) == lval_computed)
739 {
740 struct lval_funcs *funcs = whole->location.computed.funcs;
741
742 if (funcs->copy_closure)
743 component->location.computed.closure = funcs->copy_closure (whole);
744 }
74bcbdf3
PA
745}
746
c906108c
SS
747\f
748/* Access to the value history. */
749
750/* Record a new value in the value history.
751 Returns the absolute history index of the entry.
752 Result of -1 indicates the value was not saved; otherwise it is the
753 value history index of this new item. */
754
755int
f23631e4 756record_latest_value (struct value *val)
c906108c
SS
757{
758 int i;
759
760 /* We don't want this value to have anything to do with the inferior anymore.
761 In particular, "set $1 = 50" should not affect the variable from which
762 the value was taken, and fast watchpoints should be able to assume that
763 a value on the value history never changes. */
d69fe07e 764 if (value_lazy (val))
c906108c
SS
765 value_fetch_lazy (val);
766 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
767 from. This is a bit dubious, because then *&$1 does not just return $1
768 but the current contents of that location. c'est la vie... */
769 val->modifiable = 0;
770 release_value (val);
771
772 /* Here we treat value_history_count as origin-zero
773 and applying to the value being stored now. */
774
775 i = value_history_count % VALUE_HISTORY_CHUNK;
776 if (i == 0)
777 {
f23631e4 778 struct value_history_chunk *new
c5aa993b
JM
779 = (struct value_history_chunk *)
780 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
781 memset (new->values, 0, sizeof new->values);
782 new->next = value_history_chain;
783 value_history_chain = new;
784 }
785
786 value_history_chain->values[i] = val;
787
788 /* Now we regard value_history_count as origin-one
789 and applying to the value just stored. */
790
791 return ++value_history_count;
792}
793
794/* Return a copy of the value in the history with sequence number NUM. */
795
f23631e4 796struct value *
fba45db2 797access_value_history (int num)
c906108c 798{
f23631e4 799 struct value_history_chunk *chunk;
52f0bd74
AC
800 int i;
801 int absnum = num;
c906108c
SS
802
803 if (absnum <= 0)
804 absnum += value_history_count;
805
806 if (absnum <= 0)
807 {
808 if (num == 0)
8a3fe4f8 809 error (_("The history is empty."));
c906108c 810 else if (num == 1)
8a3fe4f8 811 error (_("There is only one value in the history."));
c906108c 812 else
8a3fe4f8 813 error (_("History does not go back to $$%d."), -num);
c906108c
SS
814 }
815 if (absnum > value_history_count)
8a3fe4f8 816 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
817
818 absnum--;
819
820 /* Now absnum is always absolute and origin zero. */
821
822 chunk = value_history_chain;
823 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
824 i > 0; i--)
825 chunk = chunk->next;
826
827 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
828}
829
c906108c 830static void
fba45db2 831show_values (char *num_exp, int from_tty)
c906108c 832{
52f0bd74 833 int i;
f23631e4 834 struct value *val;
c906108c
SS
835 static int num = 1;
836
837 if (num_exp)
838 {
f132ba9d
TJB
839 /* "show values +" should print from the stored position.
840 "show values <exp>" should print around value number <exp>. */
c906108c 841 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 842 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
843 }
844 else
845 {
f132ba9d 846 /* "show values" means print the last 10 values. */
c906108c
SS
847 num = value_history_count - 9;
848 }
849
850 if (num <= 0)
851 num = 1;
852
853 for (i = num; i < num + 10 && i <= value_history_count; i++)
854 {
79a45b7d 855 struct value_print_options opts;
c906108c 856 val = access_value_history (i);
a3f17187 857 printf_filtered (("$%d = "), i);
79a45b7d
TT
858 get_user_print_options (&opts);
859 value_print (val, gdb_stdout, &opts);
a3f17187 860 printf_filtered (("\n"));
c906108c
SS
861 }
862
f132ba9d 863 /* The next "show values +" should start after what we just printed. */
c906108c
SS
864 num += 10;
865
866 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
867 "show values +". If num_exp is null, this is unnecessary, since
868 "show values +" is not useful after "show values". */
c906108c
SS
869 if (from_tty && num_exp)
870 {
871 num_exp[0] = '+';
872 num_exp[1] = '\0';
873 }
874}
875\f
876/* Internal variables. These are variables within the debugger
877 that hold values assigned by debugger commands.
878 The user refers to them with a '$' prefix
879 that does not appear in the variable names stored internally. */
880
881static struct internalvar *internalvars;
882
53e5f3cf
AS
883/* If the variable does not already exist create it and give it the value given.
884 If no value is given then the default is zero. */
885static void
886init_if_undefined_command (char* args, int from_tty)
887{
888 struct internalvar* intvar;
889
890 /* Parse the expression - this is taken from set_command(). */
891 struct expression *expr = parse_expression (args);
892 register struct cleanup *old_chain =
893 make_cleanup (free_current_contents, &expr);
894
895 /* Validate the expression.
896 Was the expression an assignment?
897 Or even an expression at all? */
898 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
899 error (_("Init-if-undefined requires an assignment expression."));
900
901 /* Extract the variable from the parsed expression.
902 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
903 if (expr->elts[1].opcode != OP_INTERNALVAR)
904 error (_("The first parameter to init-if-undefined should be a GDB variable."));
905 intvar = expr->elts[2].internalvar;
906
907 /* Only evaluate the expression if the lvalue is void.
908 This may still fail if the expresssion is invalid. */
909 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
910 evaluate_expression (expr);
911
912 do_cleanups (old_chain);
913}
914
915
c906108c
SS
916/* Look up an internal variable with name NAME. NAME should not
917 normally include a dollar sign.
918
919 If the specified internal variable does not exist,
c4a3d09a 920 the return value is NULL. */
c906108c
SS
921
922struct internalvar *
bc3b79fd 923lookup_only_internalvar (const char *name)
c906108c 924{
52f0bd74 925 struct internalvar *var;
c906108c
SS
926
927 for (var = internalvars; var; var = var->next)
5cb316ef 928 if (strcmp (var->name, name) == 0)
c906108c
SS
929 return var;
930
c4a3d09a
MF
931 return NULL;
932}
933
934
935/* Create an internal variable with name NAME and with a void value.
936 NAME should not normally include a dollar sign. */
937
938struct internalvar *
bc3b79fd 939create_internalvar (const char *name)
c4a3d09a
MF
940{
941 struct internalvar *var;
c906108c 942 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 943 var->name = concat (name, (char *)NULL);
c906108c 944 var->value = allocate_value (builtin_type_void);
0d20ae72 945 var->endian = gdbarch_byte_order (current_gdbarch);
4aa995e1 946 var->make_value = NULL;
bc3b79fd 947 var->canonical = 0;
c906108c
SS
948 release_value (var->value);
949 var->next = internalvars;
950 internalvars = var;
951 return var;
952}
953
4aa995e1
PA
954/* Create an internal variable with name NAME and register FUN as the
955 function that value_of_internalvar uses to create a value whenever
956 this variable is referenced. NAME should not normally include a
957 dollar sign. */
958
959struct internalvar *
960create_internalvar_type_lazy (char *name, internalvar_make_value fun)
961{
962 struct internalvar *var;
963 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
964 var->name = concat (name, (char *)NULL);
965 var->value = NULL;
966 var->make_value = fun;
967 var->endian = gdbarch_byte_order (current_gdbarch);
968 var->next = internalvars;
969 internalvars = var;
970 return var;
971}
c4a3d09a
MF
972
973/* Look up an internal variable with name NAME. NAME should not
974 normally include a dollar sign.
975
976 If the specified internal variable does not exist,
977 one is created, with a void value. */
978
979struct internalvar *
bc3b79fd 980lookup_internalvar (const char *name)
c4a3d09a
MF
981{
982 struct internalvar *var;
983
984 var = lookup_only_internalvar (name);
985 if (var)
986 return var;
987
988 return create_internalvar (name);
989}
990
f23631e4 991struct value *
fba45db2 992value_of_internalvar (struct internalvar *var)
c906108c 993{
f23631e4 994 struct value *val;
d3c139e9
AS
995 int i, j;
996 gdb_byte temp;
c906108c 997
4aa995e1
PA
998 if (var->make_value != NULL)
999 val = (*var->make_value) (var);
5f5233d4
PA
1000 else
1001 {
4aa995e1
PA
1002 val = value_copy (var->value);
1003 if (value_lazy (val))
1004 value_fetch_lazy (val);
1005
1006 /* If the variable's value is a computed lvalue, we want
1007 references to it to produce another computed lvalue, where
1008 referencces and assignments actually operate through the
1009 computed value's functions.
1010
1011 This means that internal variables with computed values
1012 behave a little differently from other internal variables:
1013 assignments to them don't just replace the previous value
1014 altogether. At the moment, this seems like the behavior we
1015 want. */
1016 if (var->value->lval == lval_computed)
1017 VALUE_LVAL (val) = lval_computed;
1018 else
1019 {
1020 VALUE_LVAL (val) = lval_internalvar;
1021 VALUE_INTERNALVAR (val) = var;
1022 }
5f5233d4 1023 }
d3c139e9
AS
1024
1025 /* Values are always stored in the target's byte order. When connected to a
1026 target this will most likely always be correct, so there's normally no
1027 need to worry about it.
1028
1029 However, internal variables can be set up before the target endian is
1030 known and so may become out of date. Fix it up before anybody sees.
1031
1032 Internal variables usually hold simple scalar values, and we can
1033 correct those. More complex values (e.g. structures and floating
1034 point types) are left alone, because they would be too complicated
1035 to correct. */
1036
0d20ae72 1037 if (var->endian != gdbarch_byte_order (current_gdbarch))
d3c139e9
AS
1038 {
1039 gdb_byte *array = value_contents_raw (val);
1040 struct type *type = check_typedef (value_enclosing_type (val));
1041 switch (TYPE_CODE (type))
1042 {
1043 case TYPE_CODE_INT:
1044 case TYPE_CODE_PTR:
1045 /* Reverse the bytes. */
1046 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
1047 {
1048 temp = array[j];
1049 array[j] = array[i];
1050 array[i] = temp;
1051 }
1052 break;
1053 }
1054 }
1055
c906108c
SS
1056 return val;
1057}
1058
1059void
fba45db2 1060set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1061 int bitsize, struct value *newval)
c906108c 1062{
fc1a4b47 1063 gdb_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 1064
c906108c
SS
1065 if (bitsize)
1066 modify_field (addr, value_as_long (newval),
1067 bitpos, bitsize);
1068 else
0fd88904 1069 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
1070}
1071
1072void
f23631e4 1073set_internalvar (struct internalvar *var, struct value *val)
c906108c 1074{
f23631e4 1075 struct value *newval;
c906108c 1076
bc3b79fd
TJB
1077 if (var->canonical)
1078 error (_("Cannot overwrite convenience function %s"), var->name);
1079
c906108c
SS
1080 newval = value_copy (val);
1081 newval->modifiable = 1;
1082
1083 /* Force the value to be fetched from the target now, to avoid problems
1084 later when this internalvar is referenced and the target is gone or
1085 has changed. */
d69fe07e 1086 if (value_lazy (newval))
c906108c
SS
1087 value_fetch_lazy (newval);
1088
1089 /* Begin code which must not call error(). If var->value points to
1090 something free'd, an error() obviously leaves a dangling pointer.
bc3b79fd 1091 But we also get a dangling pointer if var->value points to
c906108c
SS
1092 something in the value chain (i.e., before release_value is
1093 called), because after the error free_all_values will get called before
1094 long. */
170ce852 1095 value_free (var->value);
c906108c 1096 var->value = newval;
0d20ae72 1097 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
1098 release_value (newval);
1099 /* End code which must not call error(). */
1100}
1101
1102char *
fba45db2 1103internalvar_name (struct internalvar *var)
c906108c
SS
1104{
1105 return var->name;
1106}
1107
bc3b79fd
TJB
1108static struct value *
1109value_create_internal_function (const char *name,
1110 internal_function_fn handler,
1111 void *cookie)
1112{
1113 struct value *result = allocate_value (internal_fn_type);
1114 gdb_byte *addr = value_contents_writeable (result);
1115 struct internal_function **fnp = (struct internal_function **) addr;
1116 struct internal_function *ifn = XNEW (struct internal_function);
1117 ifn->name = xstrdup (name);
1118 ifn->handler = handler;
1119 ifn->cookie = cookie;
1120 *fnp = ifn;
1121 return result;
1122}
1123
1124char *
1125value_internal_function_name (struct value *val)
1126{
1127 gdb_byte *addr = value_contents_writeable (val);
1128 struct internal_function *ifn = * (struct internal_function **) addr;
1129 return ifn->name;
1130}
1131
1132struct value *
1133call_internal_function (struct value *func, int argc, struct value **argv)
1134{
1135 gdb_byte *addr = value_contents_writeable (func);
1136 struct internal_function *ifn = * (struct internal_function **) addr;
1137 return (*ifn->handler) (ifn->cookie, argc, argv);
1138}
1139
1140/* The 'function' command. This does nothing -- it is just a
1141 placeholder to let "help function NAME" work. This is also used as
1142 the implementation of the sub-command that is created when
1143 registering an internal function. */
1144static void
1145function_command (char *command, int from_tty)
1146{
1147 /* Do nothing. */
1148}
1149
1150/* Clean up if an internal function's command is destroyed. */
1151static void
1152function_destroyer (struct cmd_list_element *self, void *ignore)
1153{
1154 xfree (self->name);
1155 xfree (self->doc);
1156}
1157
1158/* Add a new internal function. NAME is the name of the function; DOC
1159 is a documentation string describing the function. HANDLER is
1160 called when the function is invoked. COOKIE is an arbitrary
1161 pointer which is passed to HANDLER and is intended for "user
1162 data". */
1163void
1164add_internal_function (const char *name, const char *doc,
1165 internal_function_fn handler, void *cookie)
1166{
1167 struct cmd_list_element *cmd;
1168 struct internalvar *var = lookup_internalvar (name);
1169 struct value *fnval = value_create_internal_function (name, handler, cookie);
1170 set_internalvar (var, fnval);
1171 var->canonical = 1;
1172
1173 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1174 &functionlist);
1175 cmd->destroyer = function_destroyer;
1176}
1177
ae5a43e0
DJ
1178/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1179 prevent cycles / duplicates. */
1180
1181static void
1182preserve_one_value (struct value *value, struct objfile *objfile,
1183 htab_t copied_types)
1184{
1185 if (TYPE_OBJFILE (value->type) == objfile)
1186 value->type = copy_type_recursive (objfile, value->type, copied_types);
1187
1188 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1189 value->enclosing_type = copy_type_recursive (objfile,
1190 value->enclosing_type,
1191 copied_types);
1192}
1193
1194/* Update the internal variables and value history when OBJFILE is
1195 discarded; we must copy the types out of the objfile. New global types
1196 will be created for every convenience variable which currently points to
1197 this objfile's types, and the convenience variables will be adjusted to
1198 use the new global types. */
c906108c
SS
1199
1200void
ae5a43e0 1201preserve_values (struct objfile *objfile)
c906108c 1202{
ae5a43e0
DJ
1203 htab_t copied_types;
1204 struct value_history_chunk *cur;
52f0bd74 1205 struct internalvar *var;
a08702d6 1206 struct value *val;
ae5a43e0 1207 int i;
c906108c 1208
ae5a43e0
DJ
1209 /* Create the hash table. We allocate on the objfile's obstack, since
1210 it is soon to be deleted. */
1211 copied_types = create_copied_types_hash (objfile);
1212
1213 for (cur = value_history_chain; cur; cur = cur->next)
1214 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1215 if (cur->values[i])
1216 preserve_one_value (cur->values[i], objfile, copied_types);
1217
1218 for (var = internalvars; var; var = var->next)
4aa995e1
PA
1219 if (var->value)
1220 preserve_one_value (var->value, objfile, copied_types);
ae5a43e0 1221
a08702d6
TJB
1222 for (val = values_in_python; val; val = val->next)
1223 preserve_one_value (val, objfile, copied_types);
1224
ae5a43e0 1225 htab_delete (copied_types);
c906108c
SS
1226}
1227
1228static void
fba45db2 1229show_convenience (char *ignore, int from_tty)
c906108c 1230{
52f0bd74 1231 struct internalvar *var;
c906108c 1232 int varseen = 0;
79a45b7d 1233 struct value_print_options opts;
c906108c 1234
79a45b7d 1235 get_user_print_options (&opts);
c906108c
SS
1236 for (var = internalvars; var; var = var->next)
1237 {
c906108c
SS
1238 if (!varseen)
1239 {
1240 varseen = 1;
1241 }
a3f17187 1242 printf_filtered (("$%s = "), var->name);
d3c139e9 1243 value_print (value_of_internalvar (var), gdb_stdout,
79a45b7d 1244 &opts);
a3f17187 1245 printf_filtered (("\n"));
c906108c
SS
1246 }
1247 if (!varseen)
a3f17187
AC
1248 printf_unfiltered (_("\
1249No debugger convenience variables now defined.\n\
c906108c 1250Convenience variables have names starting with \"$\";\n\
a3f17187 1251use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1252}
1253\f
1254/* Extract a value as a C number (either long or double).
1255 Knows how to convert fixed values to double, or
1256 floating values to long.
1257 Does not deallocate the value. */
1258
1259LONGEST
f23631e4 1260value_as_long (struct value *val)
c906108c
SS
1261{
1262 /* This coerces arrays and functions, which is necessary (e.g.
1263 in disassemble_command). It also dereferences references, which
1264 I suspect is the most logical thing to do. */
994b9211 1265 val = coerce_array (val);
0fd88904 1266 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1267}
1268
1269DOUBLEST
f23631e4 1270value_as_double (struct value *val)
c906108c
SS
1271{
1272 DOUBLEST foo;
1273 int inv;
c5aa993b 1274
0fd88904 1275 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1276 if (inv)
8a3fe4f8 1277 error (_("Invalid floating value found in program."));
c906108c
SS
1278 return foo;
1279}
4ef30785 1280
4478b372
JB
1281/* Extract a value as a C pointer. Does not deallocate the value.
1282 Note that val's type may not actually be a pointer; value_as_long
1283 handles all the cases. */
c906108c 1284CORE_ADDR
f23631e4 1285value_as_address (struct value *val)
c906108c
SS
1286{
1287 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1288 whether we want this to be true eventually. */
1289#if 0
bf6ae464 1290 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1291 non-address (e.g. argument to "signal", "info break", etc.), or
1292 for pointers to char, in which the low bits *are* significant. */
bf6ae464 1293 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 1294#else
f312f057
JB
1295
1296 /* There are several targets (IA-64, PowerPC, and others) which
1297 don't represent pointers to functions as simply the address of
1298 the function's entry point. For example, on the IA-64, a
1299 function pointer points to a two-word descriptor, generated by
1300 the linker, which contains the function's entry point, and the
1301 value the IA-64 "global pointer" register should have --- to
1302 support position-independent code. The linker generates
1303 descriptors only for those functions whose addresses are taken.
1304
1305 On such targets, it's difficult for GDB to convert an arbitrary
1306 function address into a function pointer; it has to either find
1307 an existing descriptor for that function, or call malloc and
1308 build its own. On some targets, it is impossible for GDB to
1309 build a descriptor at all: the descriptor must contain a jump
1310 instruction; data memory cannot be executed; and code memory
1311 cannot be modified.
1312
1313 Upon entry to this function, if VAL is a value of type `function'
1314 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1315 value_address (val) is the address of the function. This is what
f312f057
JB
1316 you'll get if you evaluate an expression like `main'. The call
1317 to COERCE_ARRAY below actually does all the usual unary
1318 conversions, which includes converting values of type `function'
1319 to `pointer to function'. This is the challenging conversion
1320 discussed above. Then, `unpack_long' will convert that pointer
1321 back into an address.
1322
1323 So, suppose the user types `disassemble foo' on an architecture
1324 with a strange function pointer representation, on which GDB
1325 cannot build its own descriptors, and suppose further that `foo'
1326 has no linker-built descriptor. The address->pointer conversion
1327 will signal an error and prevent the command from running, even
1328 though the next step would have been to convert the pointer
1329 directly back into the same address.
1330
1331 The following shortcut avoids this whole mess. If VAL is a
1332 function, just return its address directly. */
df407dfe
AC
1333 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1334 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1335 return value_address (val);
f312f057 1336
994b9211 1337 val = coerce_array (val);
fc0c74b1
AC
1338
1339 /* Some architectures (e.g. Harvard), map instruction and data
1340 addresses onto a single large unified address space. For
1341 instance: An architecture may consider a large integer in the
1342 range 0x10000000 .. 0x1000ffff to already represent a data
1343 addresses (hence not need a pointer to address conversion) while
1344 a small integer would still need to be converted integer to
1345 pointer to address. Just assume such architectures handle all
1346 integer conversions in a single function. */
1347
1348 /* JimB writes:
1349
1350 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1351 must admonish GDB hackers to make sure its behavior matches the
1352 compiler's, whenever possible.
1353
1354 In general, I think GDB should evaluate expressions the same way
1355 the compiler does. When the user copies an expression out of
1356 their source code and hands it to a `print' command, they should
1357 get the same value the compiler would have computed. Any
1358 deviation from this rule can cause major confusion and annoyance,
1359 and needs to be justified carefully. In other words, GDB doesn't
1360 really have the freedom to do these conversions in clever and
1361 useful ways.
1362
1363 AndrewC pointed out that users aren't complaining about how GDB
1364 casts integers to pointers; they are complaining that they can't
1365 take an address from a disassembly listing and give it to `x/i'.
1366 This is certainly important.
1367
79dd2d24 1368 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1369 makes it possible for GDB to "get it right" in all circumstances
1370 --- the target has complete control over how things get done, so
1371 people can Do The Right Thing for their target without breaking
1372 anyone else. The standard doesn't specify how integers get
1373 converted to pointers; usually, the ABI doesn't either, but
1374 ABI-specific code is a more reasonable place to handle it. */
1375
df407dfe
AC
1376 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1377 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1378 && gdbarch_integer_to_address_p (current_gdbarch))
1379 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1380 value_contents (val));
fc0c74b1 1381
0fd88904 1382 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1383#endif
1384}
1385\f
1386/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1387 as a long, or as a double, assuming the raw data is described
1388 by type TYPE. Knows how to convert different sizes of values
1389 and can convert between fixed and floating point. We don't assume
1390 any alignment for the raw data. Return value is in host byte order.
1391
1392 If you want functions and arrays to be coerced to pointers, and
1393 references to be dereferenced, call value_as_long() instead.
1394
1395 C++: It is assumed that the front-end has taken care of
1396 all matters concerning pointers to members. A pointer
1397 to member which reaches here is considered to be equivalent
1398 to an INT (or some size). After all, it is only an offset. */
1399
1400LONGEST
fc1a4b47 1401unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1402{
52f0bd74
AC
1403 enum type_code code = TYPE_CODE (type);
1404 int len = TYPE_LENGTH (type);
1405 int nosign = TYPE_UNSIGNED (type);
c906108c 1406
c906108c
SS
1407 switch (code)
1408 {
1409 case TYPE_CODE_TYPEDEF:
1410 return unpack_long (check_typedef (type), valaddr);
1411 case TYPE_CODE_ENUM:
4f2aea11 1412 case TYPE_CODE_FLAGS:
c906108c
SS
1413 case TYPE_CODE_BOOL:
1414 case TYPE_CODE_INT:
1415 case TYPE_CODE_CHAR:
1416 case TYPE_CODE_RANGE:
0d5de010 1417 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1418 if (nosign)
1419 return extract_unsigned_integer (valaddr, len);
1420 else
1421 return extract_signed_integer (valaddr, len);
1422
1423 case TYPE_CODE_FLT:
96d2f608 1424 return extract_typed_floating (valaddr, type);
c906108c 1425
4ef30785
TJB
1426 case TYPE_CODE_DECFLOAT:
1427 /* libdecnumber has a function to convert from decimal to integer, but
1428 it doesn't work when the decimal number has a fractional part. */
ba759613 1429 return decimal_to_doublest (valaddr, len);
4ef30785 1430
c906108c
SS
1431 case TYPE_CODE_PTR:
1432 case TYPE_CODE_REF:
1433 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1434 whether we want this to be true eventually. */
4478b372 1435 return extract_typed_address (valaddr, type);
c906108c 1436
c906108c 1437 default:
8a3fe4f8 1438 error (_("Value can't be converted to integer."));
c906108c 1439 }
c5aa993b 1440 return 0; /* Placate lint. */
c906108c
SS
1441}
1442
1443/* Return a double value from the specified type and address.
1444 INVP points to an int which is set to 0 for valid value,
1445 1 for invalid value (bad float format). In either case,
1446 the returned double is OK to use. Argument is in target
1447 format, result is in host format. */
1448
1449DOUBLEST
fc1a4b47 1450unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1451{
1452 enum type_code code;
1453 int len;
1454 int nosign;
1455
1456 *invp = 0; /* Assume valid. */
1457 CHECK_TYPEDEF (type);
1458 code = TYPE_CODE (type);
1459 len = TYPE_LENGTH (type);
1460 nosign = TYPE_UNSIGNED (type);
1461 if (code == TYPE_CODE_FLT)
1462 {
75bc7ddf
AC
1463 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1464 floating-point value was valid (using the macro
1465 INVALID_FLOAT). That test/macro have been removed.
1466
1467 It turns out that only the VAX defined this macro and then
1468 only in a non-portable way. Fixing the portability problem
1469 wouldn't help since the VAX floating-point code is also badly
1470 bit-rotten. The target needs to add definitions for the
ea06eb3d 1471 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1472 exactly describe the target floating-point format. The
1473 problem here is that the corresponding floatformat_vax_f and
1474 floatformat_vax_d values these methods should be set to are
1475 also not defined either. Oops!
1476
1477 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1478 definitions and the new cases for floatformat_is_valid (). */
1479
1480 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1481 {
1482 *invp = 1;
1483 return 0.0;
1484 }
1485
96d2f608 1486 return extract_typed_floating (valaddr, type);
c906108c 1487 }
4ef30785 1488 else if (code == TYPE_CODE_DECFLOAT)
ba759613 1489 return decimal_to_doublest (valaddr, len);
c906108c
SS
1490 else if (nosign)
1491 {
1492 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1493 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1494 }
1495 else
1496 {
1497 /* Signed -- we are OK with unpack_long. */
1498 return unpack_long (type, valaddr);
1499 }
1500}
1501
1502/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1503 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1504 We don't assume any alignment for the raw data. Return value is in
1505 host byte order.
1506
1507 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1508 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1509
1510 C++: It is assumed that the front-end has taken care of
1511 all matters concerning pointers to members. A pointer
1512 to member which reaches here is considered to be equivalent
1513 to an INT (or some size). After all, it is only an offset. */
1514
1515CORE_ADDR
fc1a4b47 1516unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1517{
1518 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1519 whether we want this to be true eventually. */
1520 return unpack_long (type, valaddr);
1521}
4478b372 1522
c906108c 1523\f
2c2738a0
DC
1524/* Get the value of the FIELDN'th field (which must be static) of
1525 TYPE. Return NULL if the field doesn't exist or has been
1526 optimized out. */
c906108c 1527
f23631e4 1528struct value *
fba45db2 1529value_static_field (struct type *type, int fieldno)
c906108c 1530{
948e66d9
DJ
1531 struct value *retval;
1532
d6a843b5 1533 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1534 {
948e66d9 1535 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1536 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1537 }
1538 else
1539 {
1540 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1541 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1542 if (sym == NULL)
c906108c
SS
1543 {
1544 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1545 as non-debuggable symbols */
1546 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1547 if (!msym)
1548 return NULL;
1549 else
c5aa993b 1550 {
948e66d9 1551 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1552 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1553 }
1554 }
1555 else
1556 {
948e66d9
DJ
1557 /* SYM should never have a SYMBOL_CLASS which will require
1558 read_var_value to use the FRAME parameter. */
1559 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1560 warning (_("static field's value depends on the current "
1561 "frame - bad debug info?"));
948e66d9 1562 retval = read_var_value (sym, NULL);
2b127877 1563 }
948e66d9
DJ
1564 if (retval && VALUE_LVAL (retval) == lval_memory)
1565 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1566 value_address (retval));
c906108c 1567 }
948e66d9 1568 return retval;
c906108c
SS
1569}
1570
2b127877
DB
1571/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1572 You have to be careful here, since the size of the data area for the value
1573 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1574 than the old enclosing type, you have to allocate more space for the data.
1575 The return value is a pointer to the new version of this value structure. */
1576
f23631e4
AC
1577struct value *
1578value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1579{
3e3d7139
JG
1580 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1581 val->contents =
1582 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1583
1584 val->enclosing_type = new_encl_type;
1585 return val;
2b127877
DB
1586}
1587
c906108c
SS
1588/* Given a value ARG1 (offset by OFFSET bytes)
1589 of a struct or union type ARG_TYPE,
1590 extract and return the value of one of its (non-static) fields.
1591 FIELDNO says which field. */
1592
f23631e4
AC
1593struct value *
1594value_primitive_field (struct value *arg1, int offset,
aa1ee363 1595 int fieldno, struct type *arg_type)
c906108c 1596{
f23631e4 1597 struct value *v;
52f0bd74 1598 struct type *type;
c906108c
SS
1599
1600 CHECK_TYPEDEF (arg_type);
1601 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1602
1603 /* Handle packed fields */
1604
1605 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1606 {
1607 v = value_from_longest (type,
1608 unpack_field_as_long (arg_type,
0fd88904 1609 value_contents (arg1)
c5aa993b 1610 + offset,
c906108c 1611 fieldno));
df407dfe
AC
1612 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1613 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1614 v->offset = value_offset (arg1) + offset
2e70b7b9 1615 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1616 }
1617 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1618 {
1619 /* This field is actually a base subobject, so preserve the
1620 entire object's contents for later references to virtual
1621 bases, etc. */
a4e2ee12
DJ
1622
1623 /* Lazy register values with offsets are not supported. */
1624 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1625 value_fetch_lazy (arg1);
1626
1627 if (value_lazy (arg1))
3e3d7139 1628 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1629 else
3e3d7139
JG
1630 {
1631 v = allocate_value (value_enclosing_type (arg1));
1632 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1633 TYPE_LENGTH (value_enclosing_type (arg1)));
1634 }
1635 v->type = type;
df407dfe 1636 v->offset = value_offset (arg1);
13c3b5f5
AC
1637 v->embedded_offset = (offset + value_embedded_offset (arg1)
1638 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1639 }
1640 else
1641 {
1642 /* Plain old data member */
1643 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1644
1645 /* Lazy register values with offsets are not supported. */
1646 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1647 value_fetch_lazy (arg1);
1648
1649 if (value_lazy (arg1))
3e3d7139 1650 v = allocate_value_lazy (type);
c906108c 1651 else
3e3d7139
JG
1652 {
1653 v = allocate_value (type);
1654 memcpy (value_contents_raw (v),
1655 value_contents_raw (arg1) + offset,
1656 TYPE_LENGTH (type));
1657 }
df407dfe 1658 v->offset = (value_offset (arg1) + offset
13c3b5f5 1659 + value_embedded_offset (arg1));
c906108c 1660 }
74bcbdf3 1661 set_value_component_location (v, arg1);
9ee8fc9d 1662 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1663 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1664 return v;
1665}
1666
1667/* Given a value ARG1 of a struct or union type,
1668 extract and return the value of one of its (non-static) fields.
1669 FIELDNO says which field. */
1670
f23631e4 1671struct value *
aa1ee363 1672value_field (struct value *arg1, int fieldno)
c906108c 1673{
df407dfe 1674 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1675}
1676
1677/* Return a non-virtual function as a value.
1678 F is the list of member functions which contains the desired method.
0478d61c
FF
1679 J is an index into F which provides the desired method.
1680
1681 We only use the symbol for its address, so be happy with either a
1682 full symbol or a minimal symbol.
1683 */
c906108c 1684
f23631e4
AC
1685struct value *
1686value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1687 int offset)
c906108c 1688{
f23631e4 1689 struct value *v;
52f0bd74 1690 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1691 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1692 struct symbol *sym;
0478d61c 1693 struct minimal_symbol *msym;
c906108c 1694
2570f2b7 1695 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1696 if (sym != NULL)
0478d61c 1697 {
5ae326fa
AC
1698 msym = NULL;
1699 }
1700 else
1701 {
1702 gdb_assert (sym == NULL);
0478d61c 1703 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1704 if (msym == NULL)
1705 return NULL;
0478d61c
FF
1706 }
1707
c906108c 1708 v = allocate_value (ftype);
0478d61c
FF
1709 if (sym)
1710 {
42ae5230 1711 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
1712 }
1713 else
1714 {
bccdca4a
UW
1715 /* The minimal symbol might point to a function descriptor;
1716 resolve it to the actual code address instead. */
1717 struct objfile *objfile = msymbol_objfile (msym);
1718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1719
42ae5230
TT
1720 set_value_address (v,
1721 gdbarch_convert_from_func_ptr_addr
1722 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 1723 }
c906108c
SS
1724
1725 if (arg1p)
c5aa993b 1726 {
df407dfe 1727 if (type != value_type (*arg1p))
c5aa993b
JM
1728 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1729 value_addr (*arg1p)));
1730
070ad9f0 1731 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1732 VALUE_OFFSET (*arg1p) += offset;
1733 */
c906108c
SS
1734 }
1735
1736 return v;
1737}
1738
c906108c
SS
1739\f
1740/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1741 VALADDR.
1742
1743 Extracting bits depends on endianness of the machine. Compute the
1744 number of least significant bits to discard. For big endian machines,
1745 we compute the total number of bits in the anonymous object, subtract
1746 off the bit count from the MSB of the object to the MSB of the
1747 bitfield, then the size of the bitfield, which leaves the LSB discard
1748 count. For little endian machines, the discard count is simply the
1749 number of bits from the LSB of the anonymous object to the LSB of the
1750 bitfield.
1751
1752 If the field is signed, we also do sign extension. */
1753
1754LONGEST
fc1a4b47 1755unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1756{
1757 ULONGEST val;
1758 ULONGEST valmask;
1759 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1760 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1761 int lsbcount;
1762 struct type *field_type;
1763
1764 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1765 field_type = TYPE_FIELD_TYPE (type, fieldno);
1766 CHECK_TYPEDEF (field_type);
1767
1768 /* Extract bits. See comment above. */
1769
32c9a795 1770 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1771 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1772 else
1773 lsbcount = (bitpos % 8);
1774 val >>= lsbcount;
1775
1776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1777 If the field is signed, and is negative, then sign extend. */
1778
1779 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1780 {
1781 valmask = (((ULONGEST) 1) << bitsize) - 1;
1782 val &= valmask;
1783 if (!TYPE_UNSIGNED (field_type))
1784 {
1785 if (val & (valmask ^ (valmask >> 1)))
1786 {
1787 val |= ~valmask;
1788 }
1789 }
1790 }
1791 return (val);
1792}
1793
1794/* Modify the value of a bitfield. ADDR points to a block of memory in
1795 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1796 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1797 indicate which bits (in target bit order) comprise the bitfield.
1798 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1799 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1800
1801void
fc1a4b47 1802modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1803{
f4e88c8e
PH
1804 ULONGEST oword;
1805 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1806
1807 /* If a negative fieldval fits in the field in question, chop
1808 off the sign extension bits. */
f4e88c8e
PH
1809 if ((~fieldval & ~(mask >> 1)) == 0)
1810 fieldval &= mask;
c906108c
SS
1811
1812 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1813 if (0 != (fieldval & ~mask))
c906108c
SS
1814 {
1815 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1816 we don't have a sprintf_longest. */
8a3fe4f8 1817 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1818
1819 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1820 fieldval &= mask;
c906108c
SS
1821 }
1822
f4e88c8e 1823 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1824
1825 /* Shifting for bit field depends on endianness of the target machine. */
32c9a795 1826 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1827 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1828
f4e88c8e 1829 oword &= ~(mask << bitpos);
c906108c
SS
1830 oword |= fieldval << bitpos;
1831
f4e88c8e 1832 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1833}
1834\f
14d06750 1835/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1836
14d06750
DJ
1837void
1838pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1839{
52f0bd74 1840 int len;
14d06750
DJ
1841
1842 type = check_typedef (type);
c906108c
SS
1843 len = TYPE_LENGTH (type);
1844
14d06750 1845 switch (TYPE_CODE (type))
c906108c 1846 {
c906108c
SS
1847 case TYPE_CODE_INT:
1848 case TYPE_CODE_CHAR:
1849 case TYPE_CODE_ENUM:
4f2aea11 1850 case TYPE_CODE_FLAGS:
c906108c
SS
1851 case TYPE_CODE_BOOL:
1852 case TYPE_CODE_RANGE:
0d5de010 1853 case TYPE_CODE_MEMBERPTR:
14d06750 1854 store_signed_integer (buf, len, num);
c906108c 1855 break;
c5aa993b 1856
c906108c
SS
1857 case TYPE_CODE_REF:
1858 case TYPE_CODE_PTR:
14d06750 1859 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1860 break;
c5aa993b 1861
c906108c 1862 default:
14d06750
DJ
1863 error (_("Unexpected type (%d) encountered for integer constant."),
1864 TYPE_CODE (type));
c906108c 1865 }
14d06750
DJ
1866}
1867
1868
1869/* Convert C numbers into newly allocated values. */
1870
1871struct value *
1872value_from_longest (struct type *type, LONGEST num)
1873{
1874 struct value *val = allocate_value (type);
1875
1876 pack_long (value_contents_raw (val), type, num);
1877
c906108c
SS
1878 return val;
1879}
1880
4478b372
JB
1881
1882/* Create a value representing a pointer of type TYPE to the address
1883 ADDR. */
f23631e4 1884struct value *
4478b372
JB
1885value_from_pointer (struct type *type, CORE_ADDR addr)
1886{
f23631e4 1887 struct value *val = allocate_value (type);
990a07ab 1888 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1889 return val;
1890}
1891
1892
0f71a2f6 1893/* Create a value for a string constant to be stored locally
070ad9f0 1894 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1895 This is analogous to value_from_longest, which also does not
1896 use inferior memory. String shall NOT contain embedded nulls. */
1897
f23631e4 1898struct value *
fba45db2 1899value_from_string (char *ptr)
0f71a2f6 1900{
f23631e4 1901 struct value *val;
c5aa993b 1902 int len = strlen (ptr);
0f71a2f6 1903 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1904 struct type *string_char_type;
1905 struct type *rangetype;
1906 struct type *stringtype;
1907
1908 rangetype = create_range_type ((struct type *) NULL,
6d84d3d8 1909 builtin_type_int32,
f290d38e
AC
1910 lowbound, len + lowbound - 1);
1911 string_char_type = language_string_char_type (current_language,
1912 current_gdbarch);
1913 stringtype = create_array_type ((struct type *) NULL,
1914 string_char_type,
1915 rangetype);
0f71a2f6 1916 val = allocate_value (stringtype);
990a07ab 1917 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1918 return val;
1919}
1920
8acb6b92
TT
1921/* Create a value of type TYPE whose contents come from VALADDR, if it
1922 is non-null, and whose memory address (in the inferior) is
1923 ADDRESS. */
1924
1925struct value *
1926value_from_contents_and_address (struct type *type,
1927 const gdb_byte *valaddr,
1928 CORE_ADDR address)
1929{
1930 struct value *v = allocate_value (type);
1931 if (valaddr == NULL)
1932 set_value_lazy (v, 1);
1933 else
1934 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 1935 set_value_address (v, address);
33d502b4 1936 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
1937 return v;
1938}
1939
f23631e4 1940struct value *
fba45db2 1941value_from_double (struct type *type, DOUBLEST num)
c906108c 1942{
f23631e4 1943 struct value *val = allocate_value (type);
c906108c 1944 struct type *base_type = check_typedef (type);
52f0bd74
AC
1945 enum type_code code = TYPE_CODE (base_type);
1946 int len = TYPE_LENGTH (base_type);
c906108c
SS
1947
1948 if (code == TYPE_CODE_FLT)
1949 {
990a07ab 1950 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1951 }
1952 else
8a3fe4f8 1953 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1954
1955 return val;
1956}
994b9211 1957
27bc4d80 1958struct value *
4ef30785 1959value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
1960{
1961 struct value *val = allocate_value (type);
27bc4d80 1962
4ef30785 1963 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 1964
27bc4d80
TJB
1965 return val;
1966}
1967
994b9211
AC
1968struct value *
1969coerce_ref (struct value *arg)
1970{
df407dfe 1971 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1972 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1973 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1974 unpack_pointer (value_type (arg),
0fd88904 1975 value_contents (arg)));
994b9211
AC
1976 return arg;
1977}
1978
1979struct value *
1980coerce_array (struct value *arg)
1981{
f3134b88
TT
1982 struct type *type;
1983
994b9211 1984 arg = coerce_ref (arg);
f3134b88
TT
1985 type = check_typedef (value_type (arg));
1986
1987 switch (TYPE_CODE (type))
1988 {
1989 case TYPE_CODE_ARRAY:
1990 if (current_language->c_style_arrays)
1991 arg = value_coerce_array (arg);
1992 break;
1993 case TYPE_CODE_FUNC:
1994 arg = value_coerce_function (arg);
1995 break;
1996 }
994b9211
AC
1997 return arg;
1998}
c906108c 1999\f
c906108c 2000
48436ce6
AC
2001/* Return true if the function returning the specified type is using
2002 the convention of returning structures in memory (passing in the
82585c72 2003 address as a hidden first parameter). */
c906108c
SS
2004
2005int
c055b101 2006using_struct_return (struct type *func_type, struct type *value_type)
c906108c 2007{
52f0bd74 2008 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2009
2010 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2011 error (_("Function return type unknown."));
c906108c 2012
667e784f
AC
2013 if (code == TYPE_CODE_VOID)
2014 /* A void return value is never in memory. See also corresponding
44e5158b 2015 code in "print_return_value". */
667e784f
AC
2016 return 0;
2017
92ad9cd9 2018 /* Probe the architecture for the return-value convention. */
c055b101 2019 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
92ad9cd9 2020 NULL, NULL, NULL)
31db7b6c 2021 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2022}
2023
42be36b3
CT
2024/* Set the initialized field in a value struct. */
2025
2026void
2027set_value_initialized (struct value *val, int status)
2028{
2029 val->initialized = status;
2030}
2031
2032/* Return the initialized field in a value struct. */
2033
2034int
2035value_initialized (struct value *val)
2036{
2037 return val->initialized;
2038}
2039
c906108c 2040void
fba45db2 2041_initialize_values (void)
c906108c 2042{
1a966eab
AC
2043 add_cmd ("convenience", no_class, show_convenience, _("\
2044Debugger convenience (\"$foo\") variables.\n\
c906108c 2045These variables are created when you assign them values;\n\
1a966eab
AC
2046thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2047\n\
c906108c
SS
2048A few convenience variables are given values automatically:\n\
2049\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2050\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2051 &showlist);
2052
2053 add_cmd ("values", no_class, show_values,
1a966eab 2054 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2055 &showlist);
53e5f3cf
AS
2056
2057 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2058Initialize a convenience variable if necessary.\n\
2059init-if-undefined VARIABLE = EXPRESSION\n\
2060Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2061exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2062VARIABLE is already initialized."));
bc3b79fd
TJB
2063
2064 add_prefix_cmd ("function", no_class, function_command, _("\
2065Placeholder command for showing help on convenience functions."),
2066 &functionlist, "function ", 0, &cmdlist);
2067
2068 internal_fn_type = alloc_type (NULL);
2069 TYPE_CODE (internal_fn_type) = TYPE_CODE_INTERNAL_FUNCTION;
2070 TYPE_LENGTH (internal_fn_type) = sizeof (struct internal_function *);
2071 TYPE_NAME (internal_fn_type) = "<internal function>";
c906108c 2072}
This page took 0.987446 seconds and 4 git commands to generate.