Eliminate exceptions.c:print_any_exception.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
6dddc817 41#include "extension.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
a58e2656 45#include "user-regs.h"
0914bcdb 46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
87784a47
TT
172/* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
91294c83
AC
175struct value
176{
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
901461f8
PA
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
87784a47
TT
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
91294c83 215
e848a8a5
TT
216 /* If the value has been released. */
217 unsigned int released : 1;
218
98b1cfdc
TT
219 /* Register number if the value is from a register. */
220 short regnum;
221
91294c83
AC
222 /* Location of value (if lval). */
223 union
224 {
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
228 CORE_ADDR address;
229
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
5f5233d4 232
e81e7f5e
SC
233 /* Pointer to xmethod worker. */
234 struct xmethod_worker *xm_worker;
235
5f5233d4
PA
236 /* If lval == lval_computed, this is a set of function pointers
237 to use to access and describe the value, and a closure pointer
238 for them to use. */
239 struct
240 {
c8f2448a
JK
241 /* Functions to call. */
242 const struct lval_funcs *funcs;
243
244 /* Closure for those functions to use. */
245 void *closure;
5f5233d4 246 } computed;
91294c83
AC
247 } location;
248
249 /* Describes offset of a value within lval of a structure in bytes.
250 If lval == lval_memory, this is an offset to the address. If
251 lval == lval_register, this is a further offset from
252 location.address within the registers structure. Note also the
253 member embedded_offset below. */
254 int offset;
255
256 /* Only used for bitfields; number of bits contained in them. */
257 int bitsize;
258
259 /* Only used for bitfields; position of start of field. For
32c9a795 260 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 261 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
262 int bitpos;
263
87784a47
TT
264 /* The number of references to this value. When a value is created,
265 the value chain holds a reference, so REFERENCE_COUNT is 1. If
266 release_value is called, this value is removed from the chain but
267 the caller of release_value now has a reference to this value.
268 The caller must arrange for a call to value_free later. */
269 int reference_count;
270
4ea48cc1
DJ
271 /* Only used for bitfields; the containing value. This allows a
272 single read from the target when displaying multiple
273 bitfields. */
274 struct value *parent;
275
91294c83
AC
276 /* Frame register value is relative to. This will be described in
277 the lval enum above as "lval_register". */
278 struct frame_id frame_id;
279
280 /* Type of the value. */
281 struct type *type;
282
283 /* If a value represents a C++ object, then the `type' field gives
284 the object's compile-time type. If the object actually belongs
285 to some class derived from `type', perhaps with other base
286 classes and additional members, then `type' is just a subobject
287 of the real thing, and the full object is probably larger than
288 `type' would suggest.
289
290 If `type' is a dynamic class (i.e. one with a vtable), then GDB
291 can actually determine the object's run-time type by looking at
292 the run-time type information in the vtable. When this
293 information is available, we may elect to read in the entire
294 object, for several reasons:
295
296 - When printing the value, the user would probably rather see the
297 full object, not just the limited portion apparent from the
298 compile-time type.
299
300 - If `type' has virtual base classes, then even printing `type'
301 alone may require reaching outside the `type' portion of the
302 object to wherever the virtual base class has been stored.
303
304 When we store the entire object, `enclosing_type' is the run-time
305 type -- the complete object -- and `embedded_offset' is the
306 offset of `type' within that larger type, in bytes. The
307 value_contents() macro takes `embedded_offset' into account, so
308 most GDB code continues to see the `type' portion of the value,
309 just as the inferior would.
310
311 If `type' is a pointer to an object, then `enclosing_type' is a
312 pointer to the object's run-time type, and `pointed_to_offset' is
313 the offset in bytes from the full object to the pointed-to object
314 -- that is, the value `embedded_offset' would have if we followed
315 the pointer and fetched the complete object. (I don't really see
316 the point. Why not just determine the run-time type when you
317 indirect, and avoid the special case? The contents don't matter
318 until you indirect anyway.)
319
320 If we're not doing anything fancy, `enclosing_type' is equal to
321 `type', and `embedded_offset' is zero, so everything works
322 normally. */
323 struct type *enclosing_type;
324 int embedded_offset;
325 int pointed_to_offset;
326
327 /* Values are stored in a chain, so that they can be deleted easily
328 over calls to the inferior. Values assigned to internal
a08702d6
TJB
329 variables, put into the value history or exposed to Python are
330 taken off this list. */
91294c83
AC
331 struct value *next;
332
3e3d7139
JG
333 /* Actual contents of the value. Target byte-order. NULL or not
334 valid if lazy is nonzero. */
335 gdb_byte *contents;
828d3400 336
4e07d55f
PA
337 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
338 rather than available, since the common and default case is for a
bdf22206
AB
339 value to be available. This is filled in at value read time. The
340 unavailable ranges are tracked in bits. */
4e07d55f 341 VEC(range_s) *unavailable;
91294c83
AC
342};
343
4e07d55f 344int
bdf22206 345value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
346{
347 gdb_assert (!value->lazy);
348
349 return !ranges_contain (value->unavailable, offset, length);
350}
351
bdf22206
AB
352int
353value_bytes_available (const struct value *value, int offset, int length)
354{
355 return value_bits_available (value,
356 offset * TARGET_CHAR_BIT,
357 length * TARGET_CHAR_BIT);
358}
359
ec0a52e1
PA
360int
361value_entirely_available (struct value *value)
362{
363 /* We can only tell whether the whole value is available when we try
364 to read it. */
365 if (value->lazy)
366 value_fetch_lazy (value);
367
368 if (VEC_empty (range_s, value->unavailable))
369 return 1;
370 return 0;
371}
372
6211c335
YQ
373int
374value_entirely_unavailable (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_length (range_s, value->unavailable) == 1)
382 {
383 struct range *t = VEC_index (range_s, value->unavailable, 0);
384
385 if (t->offset == 0
64c46ce4
JB
386 && t->length == (TARGET_CHAR_BIT
387 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
388 return 1;
389 }
390
391 return 0;
392}
393
4e07d55f 394void
bdf22206 395mark_value_bits_unavailable (struct value *value, int offset, int length)
4e07d55f
PA
396{
397 range_s newr;
398 int i;
399
400 /* Insert the range sorted. If there's overlap or the new range
401 would be contiguous with an existing range, merge. */
402
403 newr.offset = offset;
404 newr.length = length;
405
406 /* Do a binary search for the position the given range would be
407 inserted if we only considered the starting OFFSET of ranges.
408 Call that position I. Since we also have LENGTH to care for
409 (this is a range afterall), we need to check if the _previous_
410 range overlaps the I range. E.g., calling R the new range:
411
412 #1 - overlaps with previous
413
414 R
415 |-...-|
416 |---| |---| |------| ... |--|
417 0 1 2 N
418
419 I=1
420
421 In the case #1 above, the binary search would return `I=1',
422 meaning, this OFFSET should be inserted at position 1, and the
423 current position 1 should be pushed further (and become 2). But,
424 note that `0' overlaps with R, so we want to merge them.
425
426 A similar consideration needs to be taken if the new range would
427 be contiguous with the previous range:
428
429 #2 - contiguous with previous
430
431 R
432 |-...-|
433 |--| |---| |------| ... |--|
434 0 1 2 N
435
436 I=1
437
438 If there's no overlap with the previous range, as in:
439
440 #3 - not overlapping and not contiguous
441
442 R
443 |-...-|
444 |--| |---| |------| ... |--|
445 0 1 2 N
446
447 I=1
448
449 or if I is 0:
450
451 #4 - R is the range with lowest offset
452
453 R
454 |-...-|
455 |--| |---| |------| ... |--|
456 0 1 2 N
457
458 I=0
459
460 ... we just push the new range to I.
461
462 All the 4 cases above need to consider that the new range may
463 also overlap several of the ranges that follow, or that R may be
464 contiguous with the following range, and merge. E.g.,
465
466 #5 - overlapping following ranges
467
468 R
469 |------------------------|
470 |--| |---| |------| ... |--|
471 0 1 2 N
472
473 I=0
474
475 or:
476
477 R
478 |-------|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 */
485
486 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
487 if (i > 0)
488 {
6bfc80c7 489 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
490
491 if (ranges_overlap (bef->offset, bef->length, offset, length))
492 {
493 /* #1 */
494 ULONGEST l = min (bef->offset, offset);
495 ULONGEST h = max (bef->offset + bef->length, offset + length);
496
497 bef->offset = l;
498 bef->length = h - l;
499 i--;
500 }
501 else if (offset == bef->offset + bef->length)
502 {
503 /* #2 */
504 bef->length += length;
505 i--;
506 }
507 else
508 {
509 /* #3 */
510 VEC_safe_insert (range_s, value->unavailable, i, &newr);
511 }
512 }
513 else
514 {
515 /* #4 */
516 VEC_safe_insert (range_s, value->unavailable, i, &newr);
517 }
518
519 /* Check whether the ranges following the one we've just added or
520 touched can be folded in (#5 above). */
521 if (i + 1 < VEC_length (range_s, value->unavailable))
522 {
523 struct range *t;
524 struct range *r;
525 int removed = 0;
526 int next = i + 1;
527
528 /* Get the range we just touched. */
529 t = VEC_index (range_s, value->unavailable, i);
530 removed = 0;
531
532 i = next;
533 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
534 if (r->offset <= t->offset + t->length)
535 {
536 ULONGEST l, h;
537
538 l = min (t->offset, r->offset);
539 h = max (t->offset + t->length, r->offset + r->length);
540
541 t->offset = l;
542 t->length = h - l;
543
544 removed++;
545 }
546 else
547 {
548 /* If we couldn't merge this one, we won't be able to
549 merge following ones either, since the ranges are
550 always sorted by OFFSET. */
551 break;
552 }
553
554 if (removed != 0)
555 VEC_block_remove (range_s, value->unavailable, next, removed);
556 }
557}
558
bdf22206
AB
559void
560mark_value_bytes_unavailable (struct value *value, int offset, int length)
561{
562 mark_value_bits_unavailable (value,
563 offset * TARGET_CHAR_BIT,
564 length * TARGET_CHAR_BIT);
565}
566
c8c1c22f
PA
567/* Find the first range in RANGES that overlaps the range defined by
568 OFFSET and LENGTH, starting at element POS in the RANGES vector,
569 Returns the index into RANGES where such overlapping range was
570 found, or -1 if none was found. */
571
572static int
573find_first_range_overlap (VEC(range_s) *ranges, int pos,
574 int offset, int length)
575{
576 range_s *r;
577 int i;
578
579 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
580 if (ranges_overlap (r->offset, r->length, offset, length))
581 return i;
582
583 return -1;
584}
585
bdf22206
AB
586/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
587 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
588 return non-zero.
589
590 It must always be the case that:
591 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
592
593 It is assumed that memory can be accessed from:
594 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
595 to:
596 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
597 / TARGET_CHAR_BIT) */
598static int
599memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
600 const gdb_byte *ptr2, size_t offset2_bits,
601 size_t length_bits)
602{
603 gdb_assert (offset1_bits % TARGET_CHAR_BIT
604 == offset2_bits % TARGET_CHAR_BIT);
605
606 if (offset1_bits % TARGET_CHAR_BIT != 0)
607 {
608 size_t bits;
609 gdb_byte mask, b1, b2;
610
611 /* The offset from the base pointers PTR1 and PTR2 is not a complete
612 number of bytes. A number of bits up to either the next exact
613 byte boundary, or LENGTH_BITS (which ever is sooner) will be
614 compared. */
615 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
616 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
617 mask = (1 << bits) - 1;
618
619 if (length_bits < bits)
620 {
621 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
622 bits = length_bits;
623 }
624
625 /* Now load the two bytes and mask off the bits we care about. */
626 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
627 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
628
629 if (b1 != b2)
630 return 1;
631
632 /* Now update the length and offsets to take account of the bits
633 we've just compared. */
634 length_bits -= bits;
635 offset1_bits += bits;
636 offset2_bits += bits;
637 }
638
639 if (length_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 size_t o1, o2;
643 gdb_byte mask, b1, b2;
644
645 /* The length is not an exact number of bytes. After the previous
646 IF.. block then the offsets are byte aligned, or the
647 length is zero (in which case this code is not reached). Compare
648 a number of bits at the end of the region, starting from an exact
649 byte boundary. */
650 bits = length_bits % TARGET_CHAR_BIT;
651 o1 = offset1_bits + length_bits - bits;
652 o2 = offset2_bits + length_bits - bits;
653
654 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
655 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
656
657 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
658 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
659
660 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
661 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
662
663 if (b1 != b2)
664 return 1;
665
666 length_bits -= bits;
667 }
668
669 if (length_bits > 0)
670 {
671 /* We've now taken care of any stray "bits" at the start, or end of
672 the region to compare, the remainder can be covered with a simple
673 memcmp. */
674 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
675 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
676 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
677
678 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
679 ptr2 + offset2_bits / TARGET_CHAR_BIT,
680 length_bits / TARGET_CHAR_BIT);
681 }
682
683 /* Length is zero, regions match. */
684 return 0;
685}
686
687/* Helper function for value_available_contents_eq. The only difference is
688 that this function is bit rather than byte based.
689
690 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
691 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
692 if the available bits match. */
693
694static int
695value_available_contents_bits_eq (const struct value *val1, int offset1,
696 const struct value *val2, int offset2,
697 int length)
c8c1c22f 698{
c8c1c22f 699 int idx1 = 0, idx2 = 0;
c8c1c22f 700
4eb59108 701 /* See function description in value.h. */
c8c1c22f
PA
702 gdb_assert (!val1->lazy && !val2->lazy);
703
c8c1c22f
PA
704 while (length > 0)
705 {
706 range_s *r1, *r2;
707 ULONGEST l1, h1;
708 ULONGEST l2, h2;
709
710 idx1 = find_first_range_overlap (val1->unavailable, idx1,
711 offset1, length);
712 idx2 = find_first_range_overlap (val2->unavailable, idx2,
713 offset2, length);
714
715 /* The usual case is for both values to be completely available. */
716 if (idx1 == -1 && idx2 == -1)
bdf22206
AB
717 return (memcmp_with_bit_offsets (val1->contents, offset1,
718 val2->contents, offset2,
719 length) == 0);
c8c1c22f
PA
720 /* The contents only match equal if the available set matches as
721 well. */
722 else if (idx1 == -1 || idx2 == -1)
723 return 0;
724
725 gdb_assert (idx1 != -1 && idx2 != -1);
726
727 r1 = VEC_index (range_s, val1->unavailable, idx1);
728 r2 = VEC_index (range_s, val2->unavailable, idx2);
729
730 /* Get the unavailable windows intersected by the incoming
731 ranges. The first and last ranges that overlap the argument
732 range may be wider than said incoming arguments ranges. */
733 l1 = max (offset1, r1->offset);
734 h1 = min (offset1 + length, r1->offset + r1->length);
735
736 l2 = max (offset2, r2->offset);
737 h2 = min (offset2 + length, r2->offset + r2->length);
738
739 /* Make them relative to the respective start offsets, so we can
740 compare them for equality. */
741 l1 -= offset1;
742 h1 -= offset1;
743
744 l2 -= offset2;
745 h2 -= offset2;
746
747 /* Different availability, no match. */
748 if (l1 != l2 || h1 != h2)
749 return 0;
750
751 /* Compare the _available_ contents. */
bdf22206
AB
752 if (memcmp_with_bit_offsets (val1->contents, offset1,
753 val2->contents, offset2, l1) != 0)
c8c1c22f
PA
754 return 0;
755
c8c1c22f
PA
756 length -= h1;
757 offset1 += h1;
758 offset2 += h1;
759 }
760
761 return 1;
762}
763
bdf22206
AB
764int
765value_available_contents_eq (const struct value *val1, int offset1,
766 const struct value *val2, int offset2,
767 int length)
768{
769 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
770 val2, offset2 * TARGET_CHAR_BIT,
771 length * TARGET_CHAR_BIT);
772}
773
581e13c1 774/* Prototypes for local functions. */
c906108c 775
a14ed312 776static void show_values (char *, int);
c906108c 777
a14ed312 778static void show_convenience (char *, int);
c906108c 779
c906108c
SS
780
781/* The value-history records all the values printed
782 by print commands during this session. Each chunk
783 records 60 consecutive values. The first chunk on
784 the chain records the most recent values.
785 The total number of values is in value_history_count. */
786
787#define VALUE_HISTORY_CHUNK 60
788
789struct value_history_chunk
c5aa993b
JM
790 {
791 struct value_history_chunk *next;
f23631e4 792 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 793 };
c906108c
SS
794
795/* Chain of chunks now in use. */
796
797static struct value_history_chunk *value_history_chain;
798
581e13c1 799static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 800
c906108c
SS
801\f
802/* List of all value objects currently allocated
803 (except for those released by calls to release_value)
804 This is so they can be freed after each command. */
805
f23631e4 806static struct value *all_values;
c906108c 807
3e3d7139
JG
808/* Allocate a lazy value for type TYPE. Its actual content is
809 "lazily" allocated too: the content field of the return value is
810 NULL; it will be allocated when it is fetched from the target. */
c906108c 811
f23631e4 812struct value *
3e3d7139 813allocate_value_lazy (struct type *type)
c906108c 814{
f23631e4 815 struct value *val;
c54eabfa
JK
816
817 /* Call check_typedef on our type to make sure that, if TYPE
818 is a TYPE_CODE_TYPEDEF, its length is set to the length
819 of the target type instead of zero. However, we do not
820 replace the typedef type by the target type, because we want
821 to keep the typedef in order to be able to set the VAL's type
822 description correctly. */
823 check_typedef (type);
c906108c 824
3e3d7139
JG
825 val = (struct value *) xzalloc (sizeof (struct value));
826 val->contents = NULL;
df407dfe 827 val->next = all_values;
c906108c 828 all_values = val;
df407dfe 829 val->type = type;
4754a64e 830 val->enclosing_type = type;
c906108c 831 VALUE_LVAL (val) = not_lval;
42ae5230 832 val->location.address = 0;
1df6926e 833 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
834 val->offset = 0;
835 val->bitpos = 0;
836 val->bitsize = 0;
9ee8fc9d 837 VALUE_REGNUM (val) = -1;
3e3d7139 838 val->lazy = 1;
feb13ab0 839 val->optimized_out = 0;
13c3b5f5 840 val->embedded_offset = 0;
b44d461b 841 val->pointed_to_offset = 0;
c906108c 842 val->modifiable = 1;
42be36b3 843 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
844
845 /* Values start out on the all_values chain. */
846 val->reference_count = 1;
847
c906108c
SS
848 return val;
849}
850
3e3d7139
JG
851/* Allocate the contents of VAL if it has not been allocated yet. */
852
548b762d 853static void
3e3d7139
JG
854allocate_value_contents (struct value *val)
855{
856 if (!val->contents)
857 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
858}
859
860/* Allocate a value and its contents for type TYPE. */
861
862struct value *
863allocate_value (struct type *type)
864{
865 struct value *val = allocate_value_lazy (type);
a109c7c1 866
3e3d7139
JG
867 allocate_value_contents (val);
868 val->lazy = 0;
869 return val;
870}
871
c906108c 872/* Allocate a value that has the correct length
938f5214 873 for COUNT repetitions of type TYPE. */
c906108c 874
f23631e4 875struct value *
fba45db2 876allocate_repeat_value (struct type *type, int count)
c906108c 877{
c5aa993b 878 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
879 /* FIXME-type-allocation: need a way to free this type when we are
880 done with it. */
e3506a9f
UW
881 struct type *array_type
882 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 883
e3506a9f 884 return allocate_value (array_type);
c906108c
SS
885}
886
5f5233d4
PA
887struct value *
888allocate_computed_value (struct type *type,
c8f2448a 889 const struct lval_funcs *funcs,
5f5233d4
PA
890 void *closure)
891{
41e8491f 892 struct value *v = allocate_value_lazy (type);
a109c7c1 893
5f5233d4
PA
894 VALUE_LVAL (v) = lval_computed;
895 v->location.computed.funcs = funcs;
896 v->location.computed.closure = closure;
5f5233d4
PA
897
898 return v;
899}
900
a7035dbb
JK
901/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
902
903struct value *
904allocate_optimized_out_value (struct type *type)
905{
906 struct value *retval = allocate_value_lazy (type);
907
908 set_value_optimized_out (retval, 1);
4f14910f 909 set_value_lazy (retval, 0);
a7035dbb
JK
910 return retval;
911}
912
df407dfe
AC
913/* Accessor methods. */
914
17cf0ecd
AC
915struct value *
916value_next (struct value *value)
917{
918 return value->next;
919}
920
df407dfe 921struct type *
0e03807e 922value_type (const struct value *value)
df407dfe
AC
923{
924 return value->type;
925}
04624583
AC
926void
927deprecated_set_value_type (struct value *value, struct type *type)
928{
929 value->type = type;
930}
df407dfe
AC
931
932int
0e03807e 933value_offset (const struct value *value)
df407dfe
AC
934{
935 return value->offset;
936}
f5cf64a7
AC
937void
938set_value_offset (struct value *value, int offset)
939{
940 value->offset = offset;
941}
df407dfe
AC
942
943int
0e03807e 944value_bitpos (const struct value *value)
df407dfe
AC
945{
946 return value->bitpos;
947}
9bbda503
AC
948void
949set_value_bitpos (struct value *value, int bit)
950{
951 value->bitpos = bit;
952}
df407dfe
AC
953
954int
0e03807e 955value_bitsize (const struct value *value)
df407dfe
AC
956{
957 return value->bitsize;
958}
9bbda503
AC
959void
960set_value_bitsize (struct value *value, int bit)
961{
962 value->bitsize = bit;
963}
df407dfe 964
4ea48cc1
DJ
965struct value *
966value_parent (struct value *value)
967{
968 return value->parent;
969}
970
53ba8333
JB
971/* See value.h. */
972
973void
974set_value_parent (struct value *value, struct value *parent)
975{
40501e00
TT
976 struct value *old = value->parent;
977
53ba8333 978 value->parent = parent;
40501e00
TT
979 if (parent != NULL)
980 value_incref (parent);
981 value_free (old);
53ba8333
JB
982}
983
fc1a4b47 984gdb_byte *
990a07ab
AC
985value_contents_raw (struct value *value)
986{
3e3d7139
JG
987 allocate_value_contents (value);
988 return value->contents + value->embedded_offset;
990a07ab
AC
989}
990
fc1a4b47 991gdb_byte *
990a07ab
AC
992value_contents_all_raw (struct value *value)
993{
3e3d7139
JG
994 allocate_value_contents (value);
995 return value->contents;
990a07ab
AC
996}
997
4754a64e
AC
998struct type *
999value_enclosing_type (struct value *value)
1000{
1001 return value->enclosing_type;
1002}
1003
8264ba82
AG
1004/* Look at value.h for description. */
1005
1006struct type *
1007value_actual_type (struct value *value, int resolve_simple_types,
1008 int *real_type_found)
1009{
1010 struct value_print_options opts;
8264ba82
AG
1011 struct type *result;
1012
1013 get_user_print_options (&opts);
1014
1015 if (real_type_found)
1016 *real_type_found = 0;
1017 result = value_type (value);
1018 if (opts.objectprint)
1019 {
5e34c6c3
LM
1020 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1021 fetch its rtti type. */
1022 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1023 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1024 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1025 == TYPE_CODE_STRUCT)
8264ba82
AG
1026 {
1027 struct type *real_type;
1028
1029 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1030 if (real_type)
1031 {
1032 if (real_type_found)
1033 *real_type_found = 1;
1034 result = real_type;
1035 }
1036 }
1037 else if (resolve_simple_types)
1038 {
1039 if (real_type_found)
1040 *real_type_found = 1;
1041 result = value_enclosing_type (value);
1042 }
1043 }
1044
1045 return result;
1046}
1047
901461f8
PA
1048void
1049error_value_optimized_out (void)
1050{
1051 error (_("value has been optimized out"));
1052}
1053
0e03807e 1054static void
4e07d55f 1055require_not_optimized_out (const struct value *value)
0e03807e
TT
1056{
1057 if (value->optimized_out)
901461f8
PA
1058 {
1059 if (value->lval == lval_register)
1060 error (_("register has not been saved in frame"));
1061 else
1062 error_value_optimized_out ();
1063 }
0e03807e
TT
1064}
1065
4e07d55f
PA
1066static void
1067require_available (const struct value *value)
1068{
1069 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1070 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1071}
1072
fc1a4b47 1073const gdb_byte *
0e03807e 1074value_contents_for_printing (struct value *value)
46615f07
AC
1075{
1076 if (value->lazy)
1077 value_fetch_lazy (value);
3e3d7139 1078 return value->contents;
46615f07
AC
1079}
1080
de4127a3
PA
1081const gdb_byte *
1082value_contents_for_printing_const (const struct value *value)
1083{
1084 gdb_assert (!value->lazy);
1085 return value->contents;
1086}
1087
0e03807e
TT
1088const gdb_byte *
1089value_contents_all (struct value *value)
1090{
1091 const gdb_byte *result = value_contents_for_printing (value);
1092 require_not_optimized_out (value);
4e07d55f 1093 require_available (value);
0e03807e
TT
1094 return result;
1095}
1096
29976f3f
PA
1097/* Copy LENGTH bytes of SRC value's (all) contents
1098 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1099 contents, starting at DST_OFFSET. If unavailable contents are
1100 being copied from SRC, the corresponding DST contents are marked
1101 unavailable accordingly. Neither DST nor SRC may be lazy
1102 values.
1103
1104 It is assumed the contents of DST in the [DST_OFFSET,
1105 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1106
1107void
1108value_contents_copy_raw (struct value *dst, int dst_offset,
1109 struct value *src, int src_offset, int length)
1110{
1111 range_s *r;
1112 int i;
bdf22206 1113 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1114
1115 /* A lazy DST would make that this copy operation useless, since as
1116 soon as DST's contents were un-lazied (by a later value_contents
1117 call, say), the contents would be overwritten. A lazy SRC would
1118 mean we'd be copying garbage. */
1119 gdb_assert (!dst->lazy && !src->lazy);
1120
29976f3f
PA
1121 /* The overwritten DST range gets unavailability ORed in, not
1122 replaced. Make sure to remember to implement replacing if it
1123 turns out actually necessary. */
1124 gdb_assert (value_bytes_available (dst, dst_offset, length));
1125
39d37385
PA
1126 /* Copy the data. */
1127 memcpy (value_contents_all_raw (dst) + dst_offset,
1128 value_contents_all_raw (src) + src_offset,
1129 length);
1130
1131 /* Copy the meta-data, adjusted. */
bdf22206
AB
1132 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1133 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1134 bit_length = length * TARGET_CHAR_BIT;
39d37385
PA
1135 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1136 {
1137 ULONGEST h, l;
1138
bdf22206
AB
1139 l = max (r->offset, src_bit_offset);
1140 h = min (r->offset + r->length, src_bit_offset + bit_length);
39d37385
PA
1141
1142 if (l < h)
bdf22206
AB
1143 mark_value_bits_unavailable (dst,
1144 dst_bit_offset + (l - src_bit_offset),
1145 h - l);
39d37385
PA
1146 }
1147}
1148
29976f3f
PA
1149/* Copy LENGTH bytes of SRC value's (all) contents
1150 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1151 (all) contents, starting at DST_OFFSET. If unavailable contents
1152 are being copied from SRC, the corresponding DST contents are
1153 marked unavailable accordingly. DST must not be lazy. If SRC is
1154 lazy, it will be fetched now. If SRC is not valid (is optimized
1155 out), an error is thrown.
1156
1157 It is assumed the contents of DST in the [DST_OFFSET,
1158 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1159
1160void
1161value_contents_copy (struct value *dst, int dst_offset,
1162 struct value *src, int src_offset, int length)
1163{
1164 require_not_optimized_out (src);
1165
1166 if (src->lazy)
1167 value_fetch_lazy (src);
1168
1169 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1170}
1171
d69fe07e
AC
1172int
1173value_lazy (struct value *value)
1174{
1175 return value->lazy;
1176}
1177
dfa52d88
AC
1178void
1179set_value_lazy (struct value *value, int val)
1180{
1181 value->lazy = val;
1182}
1183
4e5d721f
DE
1184int
1185value_stack (struct value *value)
1186{
1187 return value->stack;
1188}
1189
1190void
1191set_value_stack (struct value *value, int val)
1192{
1193 value->stack = val;
1194}
1195
fc1a4b47 1196const gdb_byte *
0fd88904
AC
1197value_contents (struct value *value)
1198{
0e03807e
TT
1199 const gdb_byte *result = value_contents_writeable (value);
1200 require_not_optimized_out (value);
4e07d55f 1201 require_available (value);
0e03807e 1202 return result;
0fd88904
AC
1203}
1204
fc1a4b47 1205gdb_byte *
0fd88904
AC
1206value_contents_writeable (struct value *value)
1207{
1208 if (value->lazy)
1209 value_fetch_lazy (value);
fc0c53a0 1210 return value_contents_raw (value);
0fd88904
AC
1211}
1212
feb13ab0
AC
1213int
1214value_optimized_out (struct value *value)
1215{
691a26f5
AB
1216 /* We can only know if a value is optimized out once we have tried to
1217 fetch it. */
1218 if (!value->optimized_out && value->lazy)
1219 value_fetch_lazy (value);
1220
feb13ab0
AC
1221 return value->optimized_out;
1222}
1223
eca07816
JB
1224int
1225value_optimized_out_const (const struct value *value)
1226{
1227 return value->optimized_out;
1228}
1229
feb13ab0
AC
1230void
1231set_value_optimized_out (struct value *value, int val)
1232{
1233 value->optimized_out = val;
1234}
13c3b5f5 1235
0e03807e
TT
1236int
1237value_entirely_optimized_out (const struct value *value)
1238{
1239 if (!value->optimized_out)
1240 return 0;
1241 if (value->lval != lval_computed
ba19bb4d 1242 || !value->location.computed.funcs->check_any_valid)
0e03807e 1243 return 1;
b65c7efe 1244 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1245}
1246
1247int
1248value_bits_valid (const struct value *value, int offset, int length)
1249{
466c1fca
AB
1250 if (!value->optimized_out)
1251 return 1;
0e03807e
TT
1252 if (value->lval != lval_computed
1253 || !value->location.computed.funcs->check_validity)
466c1fca
AB
1254 return 0;
1255 return value->location.computed.funcs->check_validity (value, offset,
1256 length);
0e03807e
TT
1257}
1258
8cf6f0b1
TT
1259int
1260value_bits_synthetic_pointer (const struct value *value,
1261 int offset, int length)
1262{
e7303042 1263 if (value->lval != lval_computed
8cf6f0b1
TT
1264 || !value->location.computed.funcs->check_synthetic_pointer)
1265 return 0;
1266 return value->location.computed.funcs->check_synthetic_pointer (value,
1267 offset,
1268 length);
1269}
1270
13c3b5f5
AC
1271int
1272value_embedded_offset (struct value *value)
1273{
1274 return value->embedded_offset;
1275}
1276
1277void
1278set_value_embedded_offset (struct value *value, int val)
1279{
1280 value->embedded_offset = val;
1281}
b44d461b
AC
1282
1283int
1284value_pointed_to_offset (struct value *value)
1285{
1286 return value->pointed_to_offset;
1287}
1288
1289void
1290set_value_pointed_to_offset (struct value *value, int val)
1291{
1292 value->pointed_to_offset = val;
1293}
13bb5560 1294
c8f2448a 1295const struct lval_funcs *
a471c594 1296value_computed_funcs (const struct value *v)
5f5233d4 1297{
a471c594 1298 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1299
1300 return v->location.computed.funcs;
1301}
1302
1303void *
0e03807e 1304value_computed_closure (const struct value *v)
5f5233d4 1305{
0e03807e 1306 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1307
1308 return v->location.computed.closure;
1309}
1310
13bb5560
AC
1311enum lval_type *
1312deprecated_value_lval_hack (struct value *value)
1313{
1314 return &value->lval;
1315}
1316
a471c594
JK
1317enum lval_type
1318value_lval_const (const struct value *value)
1319{
1320 return value->lval;
1321}
1322
42ae5230 1323CORE_ADDR
de4127a3 1324value_address (const struct value *value)
42ae5230
TT
1325{
1326 if (value->lval == lval_internalvar
e81e7f5e
SC
1327 || value->lval == lval_internalvar_component
1328 || value->lval == lval_xcallable)
42ae5230 1329 return 0;
53ba8333
JB
1330 if (value->parent != NULL)
1331 return value_address (value->parent) + value->offset;
1332 else
1333 return value->location.address + value->offset;
42ae5230
TT
1334}
1335
1336CORE_ADDR
1337value_raw_address (struct value *value)
1338{
1339 if (value->lval == lval_internalvar
e81e7f5e
SC
1340 || value->lval == lval_internalvar_component
1341 || value->lval == lval_xcallable)
42ae5230
TT
1342 return 0;
1343 return value->location.address;
1344}
1345
1346void
1347set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1348{
42ae5230 1349 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1350 && value->lval != lval_internalvar_component
1351 && value->lval != lval_xcallable);
42ae5230 1352 value->location.address = addr;
13bb5560
AC
1353}
1354
1355struct internalvar **
1356deprecated_value_internalvar_hack (struct value *value)
1357{
1358 return &value->location.internalvar;
1359}
1360
1361struct frame_id *
1362deprecated_value_frame_id_hack (struct value *value)
1363{
1364 return &value->frame_id;
1365}
1366
1367short *
1368deprecated_value_regnum_hack (struct value *value)
1369{
1370 return &value->regnum;
1371}
88e3b34b
AC
1372
1373int
1374deprecated_value_modifiable (struct value *value)
1375{
1376 return value->modifiable;
1377}
990a07ab 1378\f
c906108c
SS
1379/* Return a mark in the value chain. All values allocated after the
1380 mark is obtained (except for those released) are subject to being freed
1381 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1382struct value *
fba45db2 1383value_mark (void)
c906108c
SS
1384{
1385 return all_values;
1386}
1387
828d3400
DJ
1388/* Take a reference to VAL. VAL will not be deallocated until all
1389 references are released. */
1390
1391void
1392value_incref (struct value *val)
1393{
1394 val->reference_count++;
1395}
1396
1397/* Release a reference to VAL, which was acquired with value_incref.
1398 This function is also called to deallocate values from the value
1399 chain. */
1400
3e3d7139
JG
1401void
1402value_free (struct value *val)
1403{
1404 if (val)
5f5233d4 1405 {
828d3400
DJ
1406 gdb_assert (val->reference_count > 0);
1407 val->reference_count--;
1408 if (val->reference_count > 0)
1409 return;
1410
4ea48cc1
DJ
1411 /* If there's an associated parent value, drop our reference to
1412 it. */
1413 if (val->parent != NULL)
1414 value_free (val->parent);
1415
5f5233d4
PA
1416 if (VALUE_LVAL (val) == lval_computed)
1417 {
c8f2448a 1418 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1419
1420 if (funcs->free_closure)
1421 funcs->free_closure (val);
1422 }
e81e7f5e
SC
1423 else if (VALUE_LVAL (val) == lval_xcallable)
1424 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1425
1426 xfree (val->contents);
4e07d55f 1427 VEC_free (range_s, val->unavailable);
5f5233d4 1428 }
3e3d7139
JG
1429 xfree (val);
1430}
1431
c906108c
SS
1432/* Free all values allocated since MARK was obtained by value_mark
1433 (except for those released). */
1434void
f23631e4 1435value_free_to_mark (struct value *mark)
c906108c 1436{
f23631e4
AC
1437 struct value *val;
1438 struct value *next;
c906108c
SS
1439
1440 for (val = all_values; val && val != mark; val = next)
1441 {
df407dfe 1442 next = val->next;
e848a8a5 1443 val->released = 1;
c906108c
SS
1444 value_free (val);
1445 }
1446 all_values = val;
1447}
1448
1449/* Free all the values that have been allocated (except for those released).
725e88af
DE
1450 Call after each command, successful or not.
1451 In practice this is called before each command, which is sufficient. */
c906108c
SS
1452
1453void
fba45db2 1454free_all_values (void)
c906108c 1455{
f23631e4
AC
1456 struct value *val;
1457 struct value *next;
c906108c
SS
1458
1459 for (val = all_values; val; val = next)
1460 {
df407dfe 1461 next = val->next;
e848a8a5 1462 val->released = 1;
c906108c
SS
1463 value_free (val);
1464 }
1465
1466 all_values = 0;
1467}
1468
0cf6dd15
TJB
1469/* Frees all the elements in a chain of values. */
1470
1471void
1472free_value_chain (struct value *v)
1473{
1474 struct value *next;
1475
1476 for (; v; v = next)
1477 {
1478 next = value_next (v);
1479 value_free (v);
1480 }
1481}
1482
c906108c
SS
1483/* Remove VAL from the chain all_values
1484 so it will not be freed automatically. */
1485
1486void
f23631e4 1487release_value (struct value *val)
c906108c 1488{
f23631e4 1489 struct value *v;
c906108c
SS
1490
1491 if (all_values == val)
1492 {
1493 all_values = val->next;
06a64a0b 1494 val->next = NULL;
e848a8a5 1495 val->released = 1;
c906108c
SS
1496 return;
1497 }
1498
1499 for (v = all_values; v; v = v->next)
1500 {
1501 if (v->next == val)
1502 {
1503 v->next = val->next;
06a64a0b 1504 val->next = NULL;
e848a8a5 1505 val->released = 1;
c906108c
SS
1506 break;
1507 }
1508 }
1509}
1510
e848a8a5
TT
1511/* If the value is not already released, release it.
1512 If the value is already released, increment its reference count.
1513 That is, this function ensures that the value is released from the
1514 value chain and that the caller owns a reference to it. */
1515
1516void
1517release_value_or_incref (struct value *val)
1518{
1519 if (val->released)
1520 value_incref (val);
1521 else
1522 release_value (val);
1523}
1524
c906108c 1525/* Release all values up to mark */
f23631e4
AC
1526struct value *
1527value_release_to_mark (struct value *mark)
c906108c 1528{
f23631e4
AC
1529 struct value *val;
1530 struct value *next;
c906108c 1531
df407dfe 1532 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1533 {
1534 if (next->next == mark)
1535 {
1536 all_values = next->next;
1537 next->next = NULL;
1538 return val;
1539 }
1540 next->released = 1;
1541 }
c906108c
SS
1542 all_values = 0;
1543 return val;
1544}
1545
1546/* Return a copy of the value ARG.
1547 It contains the same contents, for same memory address,
1548 but it's a different block of storage. */
1549
f23631e4
AC
1550struct value *
1551value_copy (struct value *arg)
c906108c 1552{
4754a64e 1553 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1554 struct value *val;
1555
1556 if (value_lazy (arg))
1557 val = allocate_value_lazy (encl_type);
1558 else
1559 val = allocate_value (encl_type);
df407dfe 1560 val->type = arg->type;
c906108c 1561 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1562 val->location = arg->location;
df407dfe
AC
1563 val->offset = arg->offset;
1564 val->bitpos = arg->bitpos;
1565 val->bitsize = arg->bitsize;
1df6926e 1566 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1567 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1568 val->lazy = arg->lazy;
feb13ab0 1569 val->optimized_out = arg->optimized_out;
13c3b5f5 1570 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1571 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1572 val->modifiable = arg->modifiable;
d69fe07e 1573 if (!value_lazy (val))
c906108c 1574 {
990a07ab 1575 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1576 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1577
1578 }
4e07d55f 1579 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1580 set_value_parent (val, arg->parent);
5f5233d4
PA
1581 if (VALUE_LVAL (val) == lval_computed)
1582 {
c8f2448a 1583 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1584
1585 if (funcs->copy_closure)
1586 val->location.computed.closure = funcs->copy_closure (val);
1587 }
c906108c
SS
1588 return val;
1589}
74bcbdf3 1590
c37f7098
KW
1591/* Return a version of ARG that is non-lvalue. */
1592
1593struct value *
1594value_non_lval (struct value *arg)
1595{
1596 if (VALUE_LVAL (arg) != not_lval)
1597 {
1598 struct type *enc_type = value_enclosing_type (arg);
1599 struct value *val = allocate_value (enc_type);
1600
1601 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1602 TYPE_LENGTH (enc_type));
1603 val->type = arg->type;
1604 set_value_embedded_offset (val, value_embedded_offset (arg));
1605 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1606 return val;
1607 }
1608 return arg;
1609}
1610
74bcbdf3 1611void
0e03807e
TT
1612set_value_component_location (struct value *component,
1613 const struct value *whole)
74bcbdf3 1614{
e81e7f5e
SC
1615 gdb_assert (whole->lval != lval_xcallable);
1616
0e03807e 1617 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1618 VALUE_LVAL (component) = lval_internalvar_component;
1619 else
0e03807e 1620 VALUE_LVAL (component) = whole->lval;
5f5233d4 1621
74bcbdf3 1622 component->location = whole->location;
0e03807e 1623 if (whole->lval == lval_computed)
5f5233d4 1624 {
c8f2448a 1625 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1626
1627 if (funcs->copy_closure)
1628 component->location.computed.closure = funcs->copy_closure (whole);
1629 }
74bcbdf3
PA
1630}
1631
c906108c
SS
1632\f
1633/* Access to the value history. */
1634
1635/* Record a new value in the value history.
eddf0bae 1636 Returns the absolute history index of the entry. */
c906108c
SS
1637
1638int
f23631e4 1639record_latest_value (struct value *val)
c906108c
SS
1640{
1641 int i;
1642
1643 /* We don't want this value to have anything to do with the inferior anymore.
1644 In particular, "set $1 = 50" should not affect the variable from which
1645 the value was taken, and fast watchpoints should be able to assume that
1646 a value on the value history never changes. */
d69fe07e 1647 if (value_lazy (val))
c906108c
SS
1648 value_fetch_lazy (val);
1649 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1650 from. This is a bit dubious, because then *&$1 does not just return $1
1651 but the current contents of that location. c'est la vie... */
1652 val->modifiable = 0;
350e1a76
DE
1653
1654 /* The value may have already been released, in which case we're adding a
1655 new reference for its entry in the history. That is why we call
1656 release_value_or_incref here instead of release_value. */
1657 release_value_or_incref (val);
c906108c
SS
1658
1659 /* Here we treat value_history_count as origin-zero
1660 and applying to the value being stored now. */
1661
1662 i = value_history_count % VALUE_HISTORY_CHUNK;
1663 if (i == 0)
1664 {
f23631e4 1665 struct value_history_chunk *new
a109c7c1
MS
1666 = (struct value_history_chunk *)
1667
c5aa993b 1668 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1669 memset (new->values, 0, sizeof new->values);
1670 new->next = value_history_chain;
1671 value_history_chain = new;
1672 }
1673
1674 value_history_chain->values[i] = val;
1675
1676 /* Now we regard value_history_count as origin-one
1677 and applying to the value just stored. */
1678
1679 return ++value_history_count;
1680}
1681
1682/* Return a copy of the value in the history with sequence number NUM. */
1683
f23631e4 1684struct value *
fba45db2 1685access_value_history (int num)
c906108c 1686{
f23631e4 1687 struct value_history_chunk *chunk;
52f0bd74
AC
1688 int i;
1689 int absnum = num;
c906108c
SS
1690
1691 if (absnum <= 0)
1692 absnum += value_history_count;
1693
1694 if (absnum <= 0)
1695 {
1696 if (num == 0)
8a3fe4f8 1697 error (_("The history is empty."));
c906108c 1698 else if (num == 1)
8a3fe4f8 1699 error (_("There is only one value in the history."));
c906108c 1700 else
8a3fe4f8 1701 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1702 }
1703 if (absnum > value_history_count)
8a3fe4f8 1704 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1705
1706 absnum--;
1707
1708 /* Now absnum is always absolute and origin zero. */
1709
1710 chunk = value_history_chain;
3e43a32a
MS
1711 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1712 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1713 i > 0; i--)
1714 chunk = chunk->next;
1715
1716 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1717}
1718
c906108c 1719static void
fba45db2 1720show_values (char *num_exp, int from_tty)
c906108c 1721{
52f0bd74 1722 int i;
f23631e4 1723 struct value *val;
c906108c
SS
1724 static int num = 1;
1725
1726 if (num_exp)
1727 {
f132ba9d
TJB
1728 /* "show values +" should print from the stored position.
1729 "show values <exp>" should print around value number <exp>. */
c906108c 1730 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1731 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1732 }
1733 else
1734 {
f132ba9d 1735 /* "show values" means print the last 10 values. */
c906108c
SS
1736 num = value_history_count - 9;
1737 }
1738
1739 if (num <= 0)
1740 num = 1;
1741
1742 for (i = num; i < num + 10 && i <= value_history_count; i++)
1743 {
79a45b7d 1744 struct value_print_options opts;
a109c7c1 1745
c906108c 1746 val = access_value_history (i);
a3f17187 1747 printf_filtered (("$%d = "), i);
79a45b7d
TT
1748 get_user_print_options (&opts);
1749 value_print (val, gdb_stdout, &opts);
a3f17187 1750 printf_filtered (("\n"));
c906108c
SS
1751 }
1752
f132ba9d 1753 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1754 num += 10;
1755
1756 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1757 "show values +". If num_exp is null, this is unnecessary, since
1758 "show values +" is not useful after "show values". */
c906108c
SS
1759 if (from_tty && num_exp)
1760 {
1761 num_exp[0] = '+';
1762 num_exp[1] = '\0';
1763 }
1764}
1765\f
1766/* Internal variables. These are variables within the debugger
1767 that hold values assigned by debugger commands.
1768 The user refers to them with a '$' prefix
1769 that does not appear in the variable names stored internally. */
1770
4fa62494
UW
1771struct internalvar
1772{
1773 struct internalvar *next;
1774 char *name;
4fa62494 1775
78267919
UW
1776 /* We support various different kinds of content of an internal variable.
1777 enum internalvar_kind specifies the kind, and union internalvar_data
1778 provides the data associated with this particular kind. */
1779
1780 enum internalvar_kind
1781 {
1782 /* The internal variable is empty. */
1783 INTERNALVAR_VOID,
1784
1785 /* The value of the internal variable is provided directly as
1786 a GDB value object. */
1787 INTERNALVAR_VALUE,
1788
1789 /* A fresh value is computed via a call-back routine on every
1790 access to the internal variable. */
1791 INTERNALVAR_MAKE_VALUE,
4fa62494 1792
78267919
UW
1793 /* The internal variable holds a GDB internal convenience function. */
1794 INTERNALVAR_FUNCTION,
1795
cab0c772
UW
1796 /* The variable holds an integer value. */
1797 INTERNALVAR_INTEGER,
1798
78267919
UW
1799 /* The variable holds a GDB-provided string. */
1800 INTERNALVAR_STRING,
1801
1802 } kind;
4fa62494 1803
4fa62494
UW
1804 union internalvar_data
1805 {
78267919
UW
1806 /* A value object used with INTERNALVAR_VALUE. */
1807 struct value *value;
1808
1809 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1810 struct
1811 {
1812 /* The functions to call. */
1813 const struct internalvar_funcs *functions;
1814
1815 /* The function's user-data. */
1816 void *data;
1817 } make_value;
78267919
UW
1818
1819 /* The internal function used with INTERNALVAR_FUNCTION. */
1820 struct
1821 {
1822 struct internal_function *function;
1823 /* True if this is the canonical name for the function. */
1824 int canonical;
1825 } fn;
1826
cab0c772 1827 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1828 struct
1829 {
1830 /* If type is non-NULL, it will be used as the type to generate
1831 a value for this internal variable. If type is NULL, a default
1832 integer type for the architecture is used. */
1833 struct type *type;
cab0c772
UW
1834 LONGEST val;
1835 } integer;
1836
78267919
UW
1837 /* A string value used with INTERNALVAR_STRING. */
1838 char *string;
4fa62494
UW
1839 } u;
1840};
1841
c906108c
SS
1842static struct internalvar *internalvars;
1843
3e43a32a
MS
1844/* If the variable does not already exist create it and give it the
1845 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1846static void
1847init_if_undefined_command (char* args, int from_tty)
1848{
1849 struct internalvar* intvar;
1850
1851 /* Parse the expression - this is taken from set_command(). */
1852 struct expression *expr = parse_expression (args);
1853 register struct cleanup *old_chain =
1854 make_cleanup (free_current_contents, &expr);
1855
1856 /* Validate the expression.
1857 Was the expression an assignment?
1858 Or even an expression at all? */
1859 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1860 error (_("Init-if-undefined requires an assignment expression."));
1861
1862 /* Extract the variable from the parsed expression.
1863 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1864 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1865 error (_("The first parameter to init-if-undefined "
1866 "should be a GDB variable."));
53e5f3cf
AS
1867 intvar = expr->elts[2].internalvar;
1868
1869 /* Only evaluate the expression if the lvalue is void.
1870 This may still fail if the expresssion is invalid. */
78267919 1871 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1872 evaluate_expression (expr);
1873
1874 do_cleanups (old_chain);
1875}
1876
1877
c906108c
SS
1878/* Look up an internal variable with name NAME. NAME should not
1879 normally include a dollar sign.
1880
1881 If the specified internal variable does not exist,
c4a3d09a 1882 the return value is NULL. */
c906108c
SS
1883
1884struct internalvar *
bc3b79fd 1885lookup_only_internalvar (const char *name)
c906108c 1886{
52f0bd74 1887 struct internalvar *var;
c906108c
SS
1888
1889 for (var = internalvars; var; var = var->next)
5cb316ef 1890 if (strcmp (var->name, name) == 0)
c906108c
SS
1891 return var;
1892
c4a3d09a
MF
1893 return NULL;
1894}
1895
d55637df
TT
1896/* Complete NAME by comparing it to the names of internal variables.
1897 Returns a vector of newly allocated strings, or NULL if no matches
1898 were found. */
1899
1900VEC (char_ptr) *
1901complete_internalvar (const char *name)
1902{
1903 VEC (char_ptr) *result = NULL;
1904 struct internalvar *var;
1905 int len;
1906
1907 len = strlen (name);
1908
1909 for (var = internalvars; var; var = var->next)
1910 if (strncmp (var->name, name, len) == 0)
1911 {
1912 char *r = xstrdup (var->name);
1913
1914 VEC_safe_push (char_ptr, result, r);
1915 }
1916
1917 return result;
1918}
c4a3d09a
MF
1919
1920/* Create an internal variable with name NAME and with a void value.
1921 NAME should not normally include a dollar sign. */
1922
1923struct internalvar *
bc3b79fd 1924create_internalvar (const char *name)
c4a3d09a
MF
1925{
1926 struct internalvar *var;
a109c7c1 1927
c906108c 1928 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1929 var->name = concat (name, (char *)NULL);
78267919 1930 var->kind = INTERNALVAR_VOID;
c906108c
SS
1931 var->next = internalvars;
1932 internalvars = var;
1933 return var;
1934}
1935
4aa995e1
PA
1936/* Create an internal variable with name NAME and register FUN as the
1937 function that value_of_internalvar uses to create a value whenever
1938 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1939 dollar sign. DATA is passed uninterpreted to FUN when it is
1940 called. CLEANUP, if not NULL, is called when the internal variable
1941 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1942
1943struct internalvar *
22d2b532
SDJ
1944create_internalvar_type_lazy (const char *name,
1945 const struct internalvar_funcs *funcs,
1946 void *data)
4aa995e1 1947{
4fa62494 1948 struct internalvar *var = create_internalvar (name);
a109c7c1 1949
78267919 1950 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1951 var->u.make_value.functions = funcs;
1952 var->u.make_value.data = data;
4aa995e1
PA
1953 return var;
1954}
c4a3d09a 1955
22d2b532
SDJ
1956/* See documentation in value.h. */
1957
1958int
1959compile_internalvar_to_ax (struct internalvar *var,
1960 struct agent_expr *expr,
1961 struct axs_value *value)
1962{
1963 if (var->kind != INTERNALVAR_MAKE_VALUE
1964 || var->u.make_value.functions->compile_to_ax == NULL)
1965 return 0;
1966
1967 var->u.make_value.functions->compile_to_ax (var, expr, value,
1968 var->u.make_value.data);
1969 return 1;
1970}
1971
c4a3d09a
MF
1972/* Look up an internal variable with name NAME. NAME should not
1973 normally include a dollar sign.
1974
1975 If the specified internal variable does not exist,
1976 one is created, with a void value. */
1977
1978struct internalvar *
bc3b79fd 1979lookup_internalvar (const char *name)
c4a3d09a
MF
1980{
1981 struct internalvar *var;
1982
1983 var = lookup_only_internalvar (name);
1984 if (var)
1985 return var;
1986
1987 return create_internalvar (name);
1988}
1989
78267919
UW
1990/* Return current value of internal variable VAR. For variables that
1991 are not inherently typed, use a value type appropriate for GDBARCH. */
1992
f23631e4 1993struct value *
78267919 1994value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1995{
f23631e4 1996 struct value *val;
0914bcdb
SS
1997 struct trace_state_variable *tsv;
1998
1999 /* If there is a trace state variable of the same name, assume that
2000 is what we really want to see. */
2001 tsv = find_trace_state_variable (var->name);
2002 if (tsv)
2003 {
2004 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2005 &(tsv->value));
2006 if (tsv->value_known)
2007 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2008 tsv->value);
2009 else
2010 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2011 return val;
2012 }
c906108c 2013
78267919 2014 switch (var->kind)
5f5233d4 2015 {
78267919
UW
2016 case INTERNALVAR_VOID:
2017 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2018 break;
4fa62494 2019
78267919
UW
2020 case INTERNALVAR_FUNCTION:
2021 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2022 break;
4fa62494 2023
cab0c772
UW
2024 case INTERNALVAR_INTEGER:
2025 if (!var->u.integer.type)
78267919 2026 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2027 var->u.integer.val);
78267919 2028 else
cab0c772
UW
2029 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2030 break;
2031
78267919
UW
2032 case INTERNALVAR_STRING:
2033 val = value_cstring (var->u.string, strlen (var->u.string),
2034 builtin_type (gdbarch)->builtin_char);
2035 break;
4fa62494 2036
78267919
UW
2037 case INTERNALVAR_VALUE:
2038 val = value_copy (var->u.value);
4aa995e1
PA
2039 if (value_lazy (val))
2040 value_fetch_lazy (val);
78267919 2041 break;
4aa995e1 2042
78267919 2043 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2044 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2045 var->u.make_value.data);
78267919
UW
2046 break;
2047
2048 default:
9b20d036 2049 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2050 }
2051
2052 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2053 on this value go back to affect the original internal variable.
2054
2055 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2056 no underlying modifyable state in the internal variable.
2057
2058 Likewise, if the variable's value is a computed lvalue, we want
2059 references to it to produce another computed lvalue, where
2060 references and assignments actually operate through the
2061 computed value's functions.
2062
2063 This means that internal variables with computed values
2064 behave a little differently from other internal variables:
2065 assignments to them don't just replace the previous value
2066 altogether. At the moment, this seems like the behavior we
2067 want. */
2068
2069 if (var->kind != INTERNALVAR_MAKE_VALUE
2070 && val->lval != lval_computed)
2071 {
2072 VALUE_LVAL (val) = lval_internalvar;
2073 VALUE_INTERNALVAR (val) = var;
5f5233d4 2074 }
d3c139e9 2075
4fa62494
UW
2076 return val;
2077}
d3c139e9 2078
4fa62494
UW
2079int
2080get_internalvar_integer (struct internalvar *var, LONGEST *result)
2081{
3158c6ed 2082 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2083 {
cab0c772
UW
2084 *result = var->u.integer.val;
2085 return 1;
3158c6ed 2086 }
d3c139e9 2087
3158c6ed
PA
2088 if (var->kind == INTERNALVAR_VALUE)
2089 {
2090 struct type *type = check_typedef (value_type (var->u.value));
2091
2092 if (TYPE_CODE (type) == TYPE_CODE_INT)
2093 {
2094 *result = value_as_long (var->u.value);
2095 return 1;
2096 }
4fa62494 2097 }
3158c6ed
PA
2098
2099 return 0;
4fa62494 2100}
d3c139e9 2101
4fa62494
UW
2102static int
2103get_internalvar_function (struct internalvar *var,
2104 struct internal_function **result)
2105{
78267919 2106 switch (var->kind)
d3c139e9 2107 {
78267919
UW
2108 case INTERNALVAR_FUNCTION:
2109 *result = var->u.fn.function;
4fa62494 2110 return 1;
d3c139e9 2111
4fa62494
UW
2112 default:
2113 return 0;
2114 }
c906108c
SS
2115}
2116
2117void
fba45db2 2118set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2119 int bitsize, struct value *newval)
c906108c 2120{
4fa62494 2121 gdb_byte *addr;
c906108c 2122
78267919 2123 switch (var->kind)
4fa62494 2124 {
78267919
UW
2125 case INTERNALVAR_VALUE:
2126 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2127
2128 if (bitsize)
50810684 2129 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2130 value_as_long (newval), bitpos, bitsize);
2131 else
2132 memcpy (addr + offset, value_contents (newval),
2133 TYPE_LENGTH (value_type (newval)));
2134 break;
78267919
UW
2135
2136 default:
2137 /* We can never get a component of any other kind. */
9b20d036 2138 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2139 }
c906108c
SS
2140}
2141
2142void
f23631e4 2143set_internalvar (struct internalvar *var, struct value *val)
c906108c 2144{
78267919 2145 enum internalvar_kind new_kind;
4fa62494 2146 union internalvar_data new_data = { 0 };
c906108c 2147
78267919 2148 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2149 error (_("Cannot overwrite convenience function %s"), var->name);
2150
4fa62494 2151 /* Prepare new contents. */
78267919 2152 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2153 {
2154 case TYPE_CODE_VOID:
78267919 2155 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2156 break;
2157
2158 case TYPE_CODE_INTERNAL_FUNCTION:
2159 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2160 new_kind = INTERNALVAR_FUNCTION;
2161 get_internalvar_function (VALUE_INTERNALVAR (val),
2162 &new_data.fn.function);
2163 /* Copies created here are never canonical. */
4fa62494
UW
2164 break;
2165
4fa62494 2166 default:
78267919
UW
2167 new_kind = INTERNALVAR_VALUE;
2168 new_data.value = value_copy (val);
2169 new_data.value->modifiable = 1;
4fa62494
UW
2170
2171 /* Force the value to be fetched from the target now, to avoid problems
2172 later when this internalvar is referenced and the target is gone or
2173 has changed. */
78267919
UW
2174 if (value_lazy (new_data.value))
2175 value_fetch_lazy (new_data.value);
4fa62494
UW
2176
2177 /* Release the value from the value chain to prevent it from being
2178 deleted by free_all_values. From here on this function should not
2179 call error () until new_data is installed into the var->u to avoid
2180 leaking memory. */
78267919 2181 release_value (new_data.value);
4fa62494
UW
2182 break;
2183 }
2184
2185 /* Clean up old contents. */
2186 clear_internalvar (var);
2187
2188 /* Switch over. */
78267919 2189 var->kind = new_kind;
4fa62494 2190 var->u = new_data;
c906108c
SS
2191 /* End code which must not call error(). */
2192}
2193
4fa62494
UW
2194void
2195set_internalvar_integer (struct internalvar *var, LONGEST l)
2196{
2197 /* Clean up old contents. */
2198 clear_internalvar (var);
2199
cab0c772
UW
2200 var->kind = INTERNALVAR_INTEGER;
2201 var->u.integer.type = NULL;
2202 var->u.integer.val = l;
78267919
UW
2203}
2204
2205void
2206set_internalvar_string (struct internalvar *var, const char *string)
2207{
2208 /* Clean up old contents. */
2209 clear_internalvar (var);
2210
2211 var->kind = INTERNALVAR_STRING;
2212 var->u.string = xstrdup (string);
4fa62494
UW
2213}
2214
2215static void
2216set_internalvar_function (struct internalvar *var, struct internal_function *f)
2217{
2218 /* Clean up old contents. */
2219 clear_internalvar (var);
2220
78267919
UW
2221 var->kind = INTERNALVAR_FUNCTION;
2222 var->u.fn.function = f;
2223 var->u.fn.canonical = 1;
2224 /* Variables installed here are always the canonical version. */
4fa62494
UW
2225}
2226
2227void
2228clear_internalvar (struct internalvar *var)
2229{
2230 /* Clean up old contents. */
78267919 2231 switch (var->kind)
4fa62494 2232 {
78267919
UW
2233 case INTERNALVAR_VALUE:
2234 value_free (var->u.value);
2235 break;
2236
2237 case INTERNALVAR_STRING:
2238 xfree (var->u.string);
4fa62494
UW
2239 break;
2240
22d2b532
SDJ
2241 case INTERNALVAR_MAKE_VALUE:
2242 if (var->u.make_value.functions->destroy != NULL)
2243 var->u.make_value.functions->destroy (var->u.make_value.data);
2244 break;
2245
4fa62494 2246 default:
4fa62494
UW
2247 break;
2248 }
2249
78267919
UW
2250 /* Reset to void kind. */
2251 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2252}
2253
c906108c 2254char *
fba45db2 2255internalvar_name (struct internalvar *var)
c906108c
SS
2256{
2257 return var->name;
2258}
2259
4fa62494
UW
2260static struct internal_function *
2261create_internal_function (const char *name,
2262 internal_function_fn handler, void *cookie)
bc3b79fd 2263{
bc3b79fd 2264 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2265
bc3b79fd
TJB
2266 ifn->name = xstrdup (name);
2267 ifn->handler = handler;
2268 ifn->cookie = cookie;
4fa62494 2269 return ifn;
bc3b79fd
TJB
2270}
2271
2272char *
2273value_internal_function_name (struct value *val)
2274{
4fa62494
UW
2275 struct internal_function *ifn;
2276 int result;
2277
2278 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2279 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2280 gdb_assert (result);
2281
bc3b79fd
TJB
2282 return ifn->name;
2283}
2284
2285struct value *
d452c4bc
UW
2286call_internal_function (struct gdbarch *gdbarch,
2287 const struct language_defn *language,
2288 struct value *func, int argc, struct value **argv)
bc3b79fd 2289{
4fa62494
UW
2290 struct internal_function *ifn;
2291 int result;
2292
2293 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2294 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2295 gdb_assert (result);
2296
d452c4bc 2297 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2298}
2299
2300/* The 'function' command. This does nothing -- it is just a
2301 placeholder to let "help function NAME" work. This is also used as
2302 the implementation of the sub-command that is created when
2303 registering an internal function. */
2304static void
2305function_command (char *command, int from_tty)
2306{
2307 /* Do nothing. */
2308}
2309
2310/* Clean up if an internal function's command is destroyed. */
2311static void
2312function_destroyer (struct cmd_list_element *self, void *ignore)
2313{
6f937416 2314 xfree ((char *) self->name);
bc3b79fd
TJB
2315 xfree (self->doc);
2316}
2317
2318/* Add a new internal function. NAME is the name of the function; DOC
2319 is a documentation string describing the function. HANDLER is
2320 called when the function is invoked. COOKIE is an arbitrary
2321 pointer which is passed to HANDLER and is intended for "user
2322 data". */
2323void
2324add_internal_function (const char *name, const char *doc,
2325 internal_function_fn handler, void *cookie)
2326{
2327 struct cmd_list_element *cmd;
4fa62494 2328 struct internal_function *ifn;
bc3b79fd 2329 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2330
2331 ifn = create_internal_function (name, handler, cookie);
2332 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2333
2334 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2335 &functionlist);
2336 cmd->destroyer = function_destroyer;
2337}
2338
ae5a43e0
DJ
2339/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2340 prevent cycles / duplicates. */
2341
4e7a5ef5 2342void
ae5a43e0
DJ
2343preserve_one_value (struct value *value, struct objfile *objfile,
2344 htab_t copied_types)
2345{
2346 if (TYPE_OBJFILE (value->type) == objfile)
2347 value->type = copy_type_recursive (objfile, value->type, copied_types);
2348
2349 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2350 value->enclosing_type = copy_type_recursive (objfile,
2351 value->enclosing_type,
2352 copied_types);
2353}
2354
78267919
UW
2355/* Likewise for internal variable VAR. */
2356
2357static void
2358preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2359 htab_t copied_types)
2360{
2361 switch (var->kind)
2362 {
cab0c772
UW
2363 case INTERNALVAR_INTEGER:
2364 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2365 var->u.integer.type
2366 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2367 break;
2368
78267919
UW
2369 case INTERNALVAR_VALUE:
2370 preserve_one_value (var->u.value, objfile, copied_types);
2371 break;
2372 }
2373}
2374
ae5a43e0
DJ
2375/* Update the internal variables and value history when OBJFILE is
2376 discarded; we must copy the types out of the objfile. New global types
2377 will be created for every convenience variable which currently points to
2378 this objfile's types, and the convenience variables will be adjusted to
2379 use the new global types. */
c906108c
SS
2380
2381void
ae5a43e0 2382preserve_values (struct objfile *objfile)
c906108c 2383{
ae5a43e0
DJ
2384 htab_t copied_types;
2385 struct value_history_chunk *cur;
52f0bd74 2386 struct internalvar *var;
ae5a43e0 2387 int i;
c906108c 2388
ae5a43e0
DJ
2389 /* Create the hash table. We allocate on the objfile's obstack, since
2390 it is soon to be deleted. */
2391 copied_types = create_copied_types_hash (objfile);
2392
2393 for (cur = value_history_chain; cur; cur = cur->next)
2394 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2395 if (cur->values[i])
2396 preserve_one_value (cur->values[i], objfile, copied_types);
2397
2398 for (var = internalvars; var; var = var->next)
78267919 2399 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2400
6dddc817 2401 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2402
ae5a43e0 2403 htab_delete (copied_types);
c906108c
SS
2404}
2405
2406static void
fba45db2 2407show_convenience (char *ignore, int from_tty)
c906108c 2408{
e17c207e 2409 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2410 struct internalvar *var;
c906108c 2411 int varseen = 0;
79a45b7d 2412 struct value_print_options opts;
c906108c 2413
79a45b7d 2414 get_user_print_options (&opts);
c906108c
SS
2415 for (var = internalvars; var; var = var->next)
2416 {
c709acd1
PA
2417 volatile struct gdb_exception ex;
2418
c906108c
SS
2419 if (!varseen)
2420 {
2421 varseen = 1;
2422 }
a3f17187 2423 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2424
2425 TRY_CATCH (ex, RETURN_MASK_ERROR)
2426 {
2427 struct value *val;
2428
2429 val = value_of_internalvar (gdbarch, var);
2430 value_print (val, gdb_stdout, &opts);
2431 }
2432 if (ex.reason < 0)
2433 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2434 printf_filtered (("\n"));
c906108c
SS
2435 }
2436 if (!varseen)
f47f77df
DE
2437 {
2438 /* This text does not mention convenience functions on purpose.
2439 The user can't create them except via Python, and if Python support
2440 is installed this message will never be printed ($_streq will
2441 exist). */
2442 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2443 "Convenience variables have "
2444 "names starting with \"$\";\n"
2445 "use \"set\" as in \"set "
2446 "$foo = 5\" to define them.\n"));
2447 }
c906108c
SS
2448}
2449\f
e81e7f5e
SC
2450/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2451
2452struct value *
2453value_of_xmethod (struct xmethod_worker *worker)
2454{
2455 if (worker->value == NULL)
2456 {
2457 struct value *v;
2458
2459 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2460 v->lval = lval_xcallable;
2461 v->location.xm_worker = worker;
2462 v->modifiable = 0;
2463 worker->value = v;
2464 }
2465
2466 return worker->value;
2467}
2468
2469/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2470
2471struct value *
2472call_xmethod (struct value *method, int argc, struct value **argv)
2473{
2474 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2475 && method->lval == lval_xcallable && argc > 0);
2476
2477 return invoke_xmethod (method->location.xm_worker,
2478 argv[0], argv + 1, argc - 1);
2479}
2480\f
c906108c
SS
2481/* Extract a value as a C number (either long or double).
2482 Knows how to convert fixed values to double, or
2483 floating values to long.
2484 Does not deallocate the value. */
2485
2486LONGEST
f23631e4 2487value_as_long (struct value *val)
c906108c
SS
2488{
2489 /* This coerces arrays and functions, which is necessary (e.g.
2490 in disassemble_command). It also dereferences references, which
2491 I suspect is the most logical thing to do. */
994b9211 2492 val = coerce_array (val);
0fd88904 2493 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2494}
2495
2496DOUBLEST
f23631e4 2497value_as_double (struct value *val)
c906108c
SS
2498{
2499 DOUBLEST foo;
2500 int inv;
c5aa993b 2501
0fd88904 2502 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2503 if (inv)
8a3fe4f8 2504 error (_("Invalid floating value found in program."));
c906108c
SS
2505 return foo;
2506}
4ef30785 2507
581e13c1 2508/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2509 Note that val's type may not actually be a pointer; value_as_long
2510 handles all the cases. */
c906108c 2511CORE_ADDR
f23631e4 2512value_as_address (struct value *val)
c906108c 2513{
50810684
UW
2514 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2515
c906108c
SS
2516 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2517 whether we want this to be true eventually. */
2518#if 0
bf6ae464 2519 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2520 non-address (e.g. argument to "signal", "info break", etc.), or
2521 for pointers to char, in which the low bits *are* significant. */
50810684 2522 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2523#else
f312f057
JB
2524
2525 /* There are several targets (IA-64, PowerPC, and others) which
2526 don't represent pointers to functions as simply the address of
2527 the function's entry point. For example, on the IA-64, a
2528 function pointer points to a two-word descriptor, generated by
2529 the linker, which contains the function's entry point, and the
2530 value the IA-64 "global pointer" register should have --- to
2531 support position-independent code. The linker generates
2532 descriptors only for those functions whose addresses are taken.
2533
2534 On such targets, it's difficult for GDB to convert an arbitrary
2535 function address into a function pointer; it has to either find
2536 an existing descriptor for that function, or call malloc and
2537 build its own. On some targets, it is impossible for GDB to
2538 build a descriptor at all: the descriptor must contain a jump
2539 instruction; data memory cannot be executed; and code memory
2540 cannot be modified.
2541
2542 Upon entry to this function, if VAL is a value of type `function'
2543 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2544 value_address (val) is the address of the function. This is what
f312f057
JB
2545 you'll get if you evaluate an expression like `main'. The call
2546 to COERCE_ARRAY below actually does all the usual unary
2547 conversions, which includes converting values of type `function'
2548 to `pointer to function'. This is the challenging conversion
2549 discussed above. Then, `unpack_long' will convert that pointer
2550 back into an address.
2551
2552 So, suppose the user types `disassemble foo' on an architecture
2553 with a strange function pointer representation, on which GDB
2554 cannot build its own descriptors, and suppose further that `foo'
2555 has no linker-built descriptor. The address->pointer conversion
2556 will signal an error and prevent the command from running, even
2557 though the next step would have been to convert the pointer
2558 directly back into the same address.
2559
2560 The following shortcut avoids this whole mess. If VAL is a
2561 function, just return its address directly. */
df407dfe
AC
2562 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2563 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2564 return value_address (val);
f312f057 2565
994b9211 2566 val = coerce_array (val);
fc0c74b1
AC
2567
2568 /* Some architectures (e.g. Harvard), map instruction and data
2569 addresses onto a single large unified address space. For
2570 instance: An architecture may consider a large integer in the
2571 range 0x10000000 .. 0x1000ffff to already represent a data
2572 addresses (hence not need a pointer to address conversion) while
2573 a small integer would still need to be converted integer to
2574 pointer to address. Just assume such architectures handle all
2575 integer conversions in a single function. */
2576
2577 /* JimB writes:
2578
2579 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2580 must admonish GDB hackers to make sure its behavior matches the
2581 compiler's, whenever possible.
2582
2583 In general, I think GDB should evaluate expressions the same way
2584 the compiler does. When the user copies an expression out of
2585 their source code and hands it to a `print' command, they should
2586 get the same value the compiler would have computed. Any
2587 deviation from this rule can cause major confusion and annoyance,
2588 and needs to be justified carefully. In other words, GDB doesn't
2589 really have the freedom to do these conversions in clever and
2590 useful ways.
2591
2592 AndrewC pointed out that users aren't complaining about how GDB
2593 casts integers to pointers; they are complaining that they can't
2594 take an address from a disassembly listing and give it to `x/i'.
2595 This is certainly important.
2596
79dd2d24 2597 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2598 makes it possible for GDB to "get it right" in all circumstances
2599 --- the target has complete control over how things get done, so
2600 people can Do The Right Thing for their target without breaking
2601 anyone else. The standard doesn't specify how integers get
2602 converted to pointers; usually, the ABI doesn't either, but
2603 ABI-specific code is a more reasonable place to handle it. */
2604
df407dfe
AC
2605 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2606 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2607 && gdbarch_integer_to_address_p (gdbarch))
2608 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2609 value_contents (val));
fc0c74b1 2610
0fd88904 2611 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2612#endif
2613}
2614\f
2615/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2616 as a long, or as a double, assuming the raw data is described
2617 by type TYPE. Knows how to convert different sizes of values
2618 and can convert between fixed and floating point. We don't assume
2619 any alignment for the raw data. Return value is in host byte order.
2620
2621 If you want functions and arrays to be coerced to pointers, and
2622 references to be dereferenced, call value_as_long() instead.
2623
2624 C++: It is assumed that the front-end has taken care of
2625 all matters concerning pointers to members. A pointer
2626 to member which reaches here is considered to be equivalent
2627 to an INT (or some size). After all, it is only an offset. */
2628
2629LONGEST
fc1a4b47 2630unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2631{
e17a4113 2632 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2633 enum type_code code = TYPE_CODE (type);
2634 int len = TYPE_LENGTH (type);
2635 int nosign = TYPE_UNSIGNED (type);
c906108c 2636
c906108c
SS
2637 switch (code)
2638 {
2639 case TYPE_CODE_TYPEDEF:
2640 return unpack_long (check_typedef (type), valaddr);
2641 case TYPE_CODE_ENUM:
4f2aea11 2642 case TYPE_CODE_FLAGS:
c906108c
SS
2643 case TYPE_CODE_BOOL:
2644 case TYPE_CODE_INT:
2645 case TYPE_CODE_CHAR:
2646 case TYPE_CODE_RANGE:
0d5de010 2647 case TYPE_CODE_MEMBERPTR:
c906108c 2648 if (nosign)
e17a4113 2649 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2650 else
e17a4113 2651 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2652
2653 case TYPE_CODE_FLT:
96d2f608 2654 return extract_typed_floating (valaddr, type);
c906108c 2655
4ef30785
TJB
2656 case TYPE_CODE_DECFLOAT:
2657 /* libdecnumber has a function to convert from decimal to integer, but
2658 it doesn't work when the decimal number has a fractional part. */
e17a4113 2659 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2660
c906108c
SS
2661 case TYPE_CODE_PTR:
2662 case TYPE_CODE_REF:
2663 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2664 whether we want this to be true eventually. */
4478b372 2665 return extract_typed_address (valaddr, type);
c906108c 2666
c906108c 2667 default:
8a3fe4f8 2668 error (_("Value can't be converted to integer."));
c906108c 2669 }
c5aa993b 2670 return 0; /* Placate lint. */
c906108c
SS
2671}
2672
2673/* Return a double value from the specified type and address.
2674 INVP points to an int which is set to 0 for valid value,
2675 1 for invalid value (bad float format). In either case,
2676 the returned double is OK to use. Argument is in target
2677 format, result is in host format. */
2678
2679DOUBLEST
fc1a4b47 2680unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2681{
e17a4113 2682 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2683 enum type_code code;
2684 int len;
2685 int nosign;
2686
581e13c1 2687 *invp = 0; /* Assume valid. */
c906108c
SS
2688 CHECK_TYPEDEF (type);
2689 code = TYPE_CODE (type);
2690 len = TYPE_LENGTH (type);
2691 nosign = TYPE_UNSIGNED (type);
2692 if (code == TYPE_CODE_FLT)
2693 {
75bc7ddf
AC
2694 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2695 floating-point value was valid (using the macro
2696 INVALID_FLOAT). That test/macro have been removed.
2697
2698 It turns out that only the VAX defined this macro and then
2699 only in a non-portable way. Fixing the portability problem
2700 wouldn't help since the VAX floating-point code is also badly
2701 bit-rotten. The target needs to add definitions for the
ea06eb3d 2702 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2703 exactly describe the target floating-point format. The
2704 problem here is that the corresponding floatformat_vax_f and
2705 floatformat_vax_d values these methods should be set to are
2706 also not defined either. Oops!
2707
2708 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2709 definitions and the new cases for floatformat_is_valid (). */
2710
2711 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2712 {
2713 *invp = 1;
2714 return 0.0;
2715 }
2716
96d2f608 2717 return extract_typed_floating (valaddr, type);
c906108c 2718 }
4ef30785 2719 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2720 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2721 else if (nosign)
2722 {
2723 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2724 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2725 }
2726 else
2727 {
2728 /* Signed -- we are OK with unpack_long. */
2729 return unpack_long (type, valaddr);
2730 }
2731}
2732
2733/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2734 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2735 We don't assume any alignment for the raw data. Return value is in
2736 host byte order.
2737
2738 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2739 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2740
2741 C++: It is assumed that the front-end has taken care of
2742 all matters concerning pointers to members. A pointer
2743 to member which reaches here is considered to be equivalent
2744 to an INT (or some size). After all, it is only an offset. */
2745
2746CORE_ADDR
fc1a4b47 2747unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2748{
2749 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2750 whether we want this to be true eventually. */
2751 return unpack_long (type, valaddr);
2752}
4478b372 2753
c906108c 2754\f
1596cb5d 2755/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2756 TYPE. */
c906108c 2757
f23631e4 2758struct value *
fba45db2 2759value_static_field (struct type *type, int fieldno)
c906108c 2760{
948e66d9
DJ
2761 struct value *retval;
2762
1596cb5d 2763 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2764 {
1596cb5d 2765 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2766 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2767 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2768 break;
2769 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2770 {
ff355380 2771 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2772 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2773 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2774
948e66d9 2775 if (sym == NULL)
c906108c 2776 {
a109c7c1 2777 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2778 reported as non-debuggable symbols. */
3b7344d5
TT
2779 struct bound_minimal_symbol msym
2780 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2781
3b7344d5 2782 if (!msym.minsym)
686d4def 2783 return allocate_optimized_out_value (type);
c906108c 2784 else
c5aa993b 2785 {
52e9fde8 2786 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2787 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2788 }
2789 }
2790 else
515ed532 2791 retval = value_of_variable (sym, NULL);
1596cb5d 2792 break;
c906108c 2793 }
1596cb5d 2794 default:
f3574227 2795 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2796 }
2797
948e66d9 2798 return retval;
c906108c
SS
2799}
2800
4dfea560
DE
2801/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2802 You have to be careful here, since the size of the data area for the value
2803 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2804 than the old enclosing type, you have to allocate more space for the
2805 data. */
2b127877 2806
4dfea560
DE
2807void
2808set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2809{
3e3d7139
JG
2810 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2811 val->contents =
2812 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2813
2814 val->enclosing_type = new_encl_type;
2b127877
DB
2815}
2816
c906108c
SS
2817/* Given a value ARG1 (offset by OFFSET bytes)
2818 of a struct or union type ARG_TYPE,
2819 extract and return the value of one of its (non-static) fields.
581e13c1 2820 FIELDNO says which field. */
c906108c 2821
f23631e4
AC
2822struct value *
2823value_primitive_field (struct value *arg1, int offset,
aa1ee363 2824 int fieldno, struct type *arg_type)
c906108c 2825{
f23631e4 2826 struct value *v;
52f0bd74 2827 struct type *type;
c906108c
SS
2828
2829 CHECK_TYPEDEF (arg_type);
2830 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2831
2832 /* Call check_typedef on our type to make sure that, if TYPE
2833 is a TYPE_CODE_TYPEDEF, its length is set to the length
2834 of the target type instead of zero. However, we do not
2835 replace the typedef type by the target type, because we want
2836 to keep the typedef in order to be able to print the type
2837 description correctly. */
2838 check_typedef (type);
c906108c 2839
691a26f5 2840 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2841 {
22c05d8a
JK
2842 /* Handle packed fields.
2843
2844 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2845 set. If possible, arrange offset and bitpos so that we can
2846 do a single aligned read of the size of the containing type.
2847 Otherwise, adjust offset to the byte containing the first
2848 bit. Assume that the address, offset, and embedded offset
2849 are sufficiently aligned. */
22c05d8a 2850
4ea48cc1
DJ
2851 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2852 int container_bitsize = TYPE_LENGTH (type) * 8;
2853
691a26f5
AB
2854 if (arg1->optimized_out)
2855 v = allocate_optimized_out_value (type);
4ea48cc1 2856 else
691a26f5
AB
2857 {
2858 v = allocate_value_lazy (type);
2859 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2860 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2861 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2862 v->bitpos = bitpos % container_bitsize;
2863 else
2864 v->bitpos = bitpos % 8;
2865 v->offset = (value_embedded_offset (arg1)
2866 + offset
2867 + (bitpos - v->bitpos) / 8);
2868 set_value_parent (v, arg1);
2869 if (!value_lazy (arg1))
2870 value_fetch_lazy (v);
2871 }
c906108c
SS
2872 }
2873 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2874 {
2875 /* This field is actually a base subobject, so preserve the
39d37385
PA
2876 entire object's contents for later references to virtual
2877 bases, etc. */
be335936 2878 int boffset;
a4e2ee12
DJ
2879
2880 /* Lazy register values with offsets are not supported. */
2881 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2882 value_fetch_lazy (arg1);
2883
691a26f5
AB
2884 /* The optimized_out flag is only set correctly once a lazy value is
2885 loaded, having just loaded some lazy values we should check the
2886 optimized out case now. */
2887 if (arg1->optimized_out)
2888 v = allocate_optimized_out_value (type);
c906108c 2889 else
3e3d7139 2890 {
691a26f5
AB
2891 /* We special case virtual inheritance here because this
2892 requires access to the contents, which we would rather avoid
2893 for references to ordinary fields of unavailable values. */
2894 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2895 boffset = baseclass_offset (arg_type, fieldno,
2896 value_contents (arg1),
2897 value_embedded_offset (arg1),
2898 value_address (arg1),
2899 arg1);
2900 else
2901 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2902
2903 if (value_lazy (arg1))
2904 v = allocate_value_lazy (value_enclosing_type (arg1));
2905 else
2906 {
2907 v = allocate_value (value_enclosing_type (arg1));
2908 value_contents_copy_raw (v, 0, arg1, 0,
2909 TYPE_LENGTH (value_enclosing_type (arg1)));
2910 }
2911 v->type = type;
2912 v->offset = value_offset (arg1);
2913 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3e3d7139 2914 }
c906108c
SS
2915 }
2916 else
2917 {
2918 /* Plain old data member */
2919 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2920
2921 /* Lazy register values with offsets are not supported. */
2922 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2923 value_fetch_lazy (arg1);
2924
691a26f5
AB
2925 /* The optimized_out flag is only set correctly once a lazy value is
2926 loaded, having just loaded some lazy values we should check for
2927 the optimized out case now. */
2928 if (arg1->optimized_out)
2929 v = allocate_optimized_out_value (type);
2930 else if (value_lazy (arg1))
3e3d7139 2931 v = allocate_value_lazy (type);
c906108c 2932 else
3e3d7139
JG
2933 {
2934 v = allocate_value (type);
39d37385
PA
2935 value_contents_copy_raw (v, value_embedded_offset (v),
2936 arg1, value_embedded_offset (arg1) + offset,
2937 TYPE_LENGTH (type));
3e3d7139 2938 }
df407dfe 2939 v->offset = (value_offset (arg1) + offset
13c3b5f5 2940 + value_embedded_offset (arg1));
c906108c 2941 }
74bcbdf3 2942 set_value_component_location (v, arg1);
9ee8fc9d 2943 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2944 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2945 return v;
2946}
2947
2948/* Given a value ARG1 of a struct or union type,
2949 extract and return the value of one of its (non-static) fields.
581e13c1 2950 FIELDNO says which field. */
c906108c 2951
f23631e4 2952struct value *
aa1ee363 2953value_field (struct value *arg1, int fieldno)
c906108c 2954{
df407dfe 2955 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2956}
2957
2958/* Return a non-virtual function as a value.
2959 F is the list of member functions which contains the desired method.
0478d61c
FF
2960 J is an index into F which provides the desired method.
2961
2962 We only use the symbol for its address, so be happy with either a
581e13c1 2963 full symbol or a minimal symbol. */
c906108c 2964
f23631e4 2965struct value *
3e43a32a
MS
2966value_fn_field (struct value **arg1p, struct fn_field *f,
2967 int j, struct type *type,
fba45db2 2968 int offset)
c906108c 2969{
f23631e4 2970 struct value *v;
52f0bd74 2971 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2972 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2973 struct symbol *sym;
7c7b6655 2974 struct bound_minimal_symbol msym;
c906108c 2975
2570f2b7 2976 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2977 if (sym != NULL)
0478d61c 2978 {
7c7b6655 2979 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
2980 }
2981 else
2982 {
2983 gdb_assert (sym == NULL);
7c7b6655
TT
2984 msym = lookup_bound_minimal_symbol (physname);
2985 if (msym.minsym == NULL)
5ae326fa 2986 return NULL;
0478d61c
FF
2987 }
2988
c906108c 2989 v = allocate_value (ftype);
0478d61c
FF
2990 if (sym)
2991 {
42ae5230 2992 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2993 }
2994 else
2995 {
bccdca4a
UW
2996 /* The minimal symbol might point to a function descriptor;
2997 resolve it to the actual code address instead. */
7c7b6655 2998 struct objfile *objfile = msym.objfile;
bccdca4a
UW
2999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3000
42ae5230
TT
3001 set_value_address (v,
3002 gdbarch_convert_from_func_ptr_addr
77e371c0 3003 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3004 }
c906108c
SS
3005
3006 if (arg1p)
c5aa993b 3007 {
df407dfe 3008 if (type != value_type (*arg1p))
c5aa993b
JM
3009 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3010 value_addr (*arg1p)));
3011
070ad9f0 3012 /* Move the `this' pointer according to the offset.
581e13c1 3013 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3014 }
3015
3016 return v;
3017}
3018
c906108c 3019\f
c906108c 3020
5467c6c8
PA
3021/* Helper function for both unpack_value_bits_as_long and
3022 unpack_bits_as_long. See those functions for more details on the
3023 interface; the only difference is that this function accepts either
3024 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 3025
5467c6c8
PA
3026static int
3027unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3028 int embedded_offset, int bitpos, int bitsize,
3029 const struct value *original_value,
3030 LONGEST *result)
c906108c 3031{
4ea48cc1 3032 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3033 ULONGEST val;
3034 ULONGEST valmask;
c906108c 3035 int lsbcount;
4a76eae5 3036 int bytes_read;
5467c6c8 3037 int read_offset;
c906108c 3038
4a76eae5
DJ
3039 /* Read the minimum number of bytes required; there may not be
3040 enough bytes to read an entire ULONGEST. */
c906108c 3041 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3042 if (bitsize)
3043 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3044 else
3045 bytes_read = TYPE_LENGTH (field_type);
3046
5467c6c8
PA
3047 read_offset = bitpos / 8;
3048
3049 if (original_value != NULL
bdf22206
AB
3050 && !value_bits_available (original_value, embedded_offset + bitpos,
3051 bitsize))
5467c6c8
PA
3052 return 0;
3053
3054 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 3055 bytes_read, byte_order);
c906108c 3056
581e13c1 3057 /* Extract bits. See comment above. */
c906108c 3058
4ea48cc1 3059 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3060 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3061 else
3062 lsbcount = (bitpos % 8);
3063 val >>= lsbcount;
3064
3065 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3066 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3067
3068 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3069 {
3070 valmask = (((ULONGEST) 1) << bitsize) - 1;
3071 val &= valmask;
3072 if (!TYPE_UNSIGNED (field_type))
3073 {
3074 if (val & (valmask ^ (valmask >> 1)))
3075 {
3076 val |= ~valmask;
3077 }
3078 }
3079 }
5467c6c8
PA
3080
3081 *result = val;
3082 return 1;
c906108c
SS
3083}
3084
5467c6c8
PA
3085/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3086 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3087 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3088 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3089 bits.
4ea48cc1 3090
5467c6c8
PA
3091 Returns false if the value contents are unavailable, otherwise
3092 returns true, indicating a valid value has been stored in *RESULT.
3093
3094 Extracting bits depends on endianness of the machine. Compute the
3095 number of least significant bits to discard. For big endian machines,
3096 we compute the total number of bits in the anonymous object, subtract
3097 off the bit count from the MSB of the object to the MSB of the
3098 bitfield, then the size of the bitfield, which leaves the LSB discard
3099 count. For little endian machines, the discard count is simply the
3100 number of bits from the LSB of the anonymous object to the LSB of the
3101 bitfield.
3102
3103 If the field is signed, we also do sign extension. */
3104
3105int
3106unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3107 int embedded_offset, int bitpos, int bitsize,
3108 const struct value *original_value,
3109 LONGEST *result)
3110{
3111 gdb_assert (original_value != NULL);
3112
3113 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3114 bitpos, bitsize, original_value, result);
3115
3116}
3117
3118/* Unpack a field FIELDNO of the specified TYPE, from the object at
3119 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3120 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3121 details. */
3122
3123static int
3124unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3125 int embedded_offset, int fieldno,
3126 const struct value *val, LONGEST *result)
4ea48cc1
DJ
3127{
3128 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3129 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3130 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3131
5467c6c8
PA
3132 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3133 bitpos, bitsize, val,
3134 result);
3135}
3136
3137/* Unpack a field FIELDNO of the specified TYPE, from the object at
3138 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3139 ORIGINAL_VALUE, which must not be NULL. See
3140 unpack_value_bits_as_long for more details. */
3141
3142int
3143unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3144 int embedded_offset, int fieldno,
3145 const struct value *val, LONGEST *result)
3146{
3147 gdb_assert (val != NULL);
3148
3149 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3150 fieldno, val, result);
3151}
3152
3153/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3154 object at VALADDR. See unpack_value_bits_as_long for more details.
3155 This function differs from unpack_value_field_as_long in that it
3156 operates without a struct value object. */
3157
3158LONGEST
3159unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3160{
3161 LONGEST result;
3162
3163 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3164 return result;
3165}
3166
3167/* Return a new value with type TYPE, which is FIELDNO field of the
3168 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3169 of VAL. If the VAL's contents required to extract the bitfield
3170 from are unavailable, the new value is correspondingly marked as
3171 unavailable. */
3172
3173struct value *
3174value_field_bitfield (struct type *type, int fieldno,
3175 const gdb_byte *valaddr,
3176 int embedded_offset, const struct value *val)
3177{
3178 LONGEST l;
3179
3180 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3181 val, &l))
3182 {
3183 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3184 struct value *retval = allocate_value (field_type);
3185 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3186 return retval;
3187 }
3188 else
3189 {
3190 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3191 }
4ea48cc1
DJ
3192}
3193
c906108c
SS
3194/* Modify the value of a bitfield. ADDR points to a block of memory in
3195 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3196 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3197 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3198 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3199 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3200
3201void
50810684
UW
3202modify_field (struct type *type, gdb_byte *addr,
3203 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3204{
e17a4113 3205 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3206 ULONGEST oword;
3207 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3208 int bytesize;
3209
3210 /* Normalize BITPOS. */
3211 addr += bitpos / 8;
3212 bitpos %= 8;
c906108c
SS
3213
3214 /* If a negative fieldval fits in the field in question, chop
3215 off the sign extension bits. */
f4e88c8e
PH
3216 if ((~fieldval & ~(mask >> 1)) == 0)
3217 fieldval &= mask;
c906108c
SS
3218
3219 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3220 if (0 != (fieldval & ~mask))
c906108c
SS
3221 {
3222 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3223 we don't have a sprintf_longest. */
8a3fe4f8 3224 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3225
3226 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3227 fieldval &= mask;
c906108c
SS
3228 }
3229
19f220c3
JK
3230 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3231 false valgrind reports. */
3232
3233 bytesize = (bitpos + bitsize + 7) / 8;
3234 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3235
3236 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3237 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3238 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3239
f4e88c8e 3240 oword &= ~(mask << bitpos);
c906108c
SS
3241 oword |= fieldval << bitpos;
3242
19f220c3 3243 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3244}
3245\f
14d06750 3246/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3247
14d06750
DJ
3248void
3249pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3250{
e17a4113 3251 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3252 int len;
14d06750
DJ
3253
3254 type = check_typedef (type);
c906108c
SS
3255 len = TYPE_LENGTH (type);
3256
14d06750 3257 switch (TYPE_CODE (type))
c906108c 3258 {
c906108c
SS
3259 case TYPE_CODE_INT:
3260 case TYPE_CODE_CHAR:
3261 case TYPE_CODE_ENUM:
4f2aea11 3262 case TYPE_CODE_FLAGS:
c906108c
SS
3263 case TYPE_CODE_BOOL:
3264 case TYPE_CODE_RANGE:
0d5de010 3265 case TYPE_CODE_MEMBERPTR:
e17a4113 3266 store_signed_integer (buf, len, byte_order, num);
c906108c 3267 break;
c5aa993b 3268
c906108c
SS
3269 case TYPE_CODE_REF:
3270 case TYPE_CODE_PTR:
14d06750 3271 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3272 break;
c5aa993b 3273
c906108c 3274 default:
14d06750
DJ
3275 error (_("Unexpected type (%d) encountered for integer constant."),
3276 TYPE_CODE (type));
c906108c 3277 }
14d06750
DJ
3278}
3279
3280
595939de
PM
3281/* Pack NUM into BUF using a target format of TYPE. */
3282
70221824 3283static void
595939de
PM
3284pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3285{
3286 int len;
3287 enum bfd_endian byte_order;
3288
3289 type = check_typedef (type);
3290 len = TYPE_LENGTH (type);
3291 byte_order = gdbarch_byte_order (get_type_arch (type));
3292
3293 switch (TYPE_CODE (type))
3294 {
3295 case TYPE_CODE_INT:
3296 case TYPE_CODE_CHAR:
3297 case TYPE_CODE_ENUM:
3298 case TYPE_CODE_FLAGS:
3299 case TYPE_CODE_BOOL:
3300 case TYPE_CODE_RANGE:
3301 case TYPE_CODE_MEMBERPTR:
3302 store_unsigned_integer (buf, len, byte_order, num);
3303 break;
3304
3305 case TYPE_CODE_REF:
3306 case TYPE_CODE_PTR:
3307 store_typed_address (buf, type, (CORE_ADDR) num);
3308 break;
3309
3310 default:
3e43a32a
MS
3311 error (_("Unexpected type (%d) encountered "
3312 "for unsigned integer constant."),
595939de
PM
3313 TYPE_CODE (type));
3314 }
3315}
3316
3317
14d06750
DJ
3318/* Convert C numbers into newly allocated values. */
3319
3320struct value *
3321value_from_longest (struct type *type, LONGEST num)
3322{
3323 struct value *val = allocate_value (type);
3324
3325 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3326 return val;
3327}
3328
4478b372 3329
595939de
PM
3330/* Convert C unsigned numbers into newly allocated values. */
3331
3332struct value *
3333value_from_ulongest (struct type *type, ULONGEST num)
3334{
3335 struct value *val = allocate_value (type);
3336
3337 pack_unsigned_long (value_contents_raw (val), type, num);
3338
3339 return val;
3340}
3341
3342
4478b372 3343/* Create a value representing a pointer of type TYPE to the address
80180f79
SA
3344 ADDR. The type of the created value may differ from the passed
3345 type TYPE. Make sure to retrieve the returned values's new type
3346 after this call e.g. in case of an variable length array. */
3347
f23631e4 3348struct value *
4478b372
JB
3349value_from_pointer (struct type *type, CORE_ADDR addr)
3350{
80180f79
SA
3351 struct type *resolved_type = resolve_dynamic_type (type, addr);
3352 struct value *val = allocate_value (resolved_type);
a109c7c1 3353
80180f79
SA
3354 store_typed_address (value_contents_raw (val),
3355 check_typedef (resolved_type), addr);
4478b372
JB
3356 return val;
3357}
3358
3359
012370f6
TT
3360/* Create a value of type TYPE whose contents come from VALADDR, if it
3361 is non-null, and whose memory address (in the inferior) is
3362 ADDRESS. The type of the created value may differ from the passed
3363 type TYPE. Make sure to retrieve values new type after this call.
3364 Note that TYPE is not passed through resolve_dynamic_type; this is
3365 a special API intended for use only by Ada. */
3366
3367struct value *
3368value_from_contents_and_address_unresolved (struct type *type,
3369 const gdb_byte *valaddr,
3370 CORE_ADDR address)
3371{
3372 struct value *v;
3373
3374 if (valaddr == NULL)
3375 v = allocate_value_lazy (type);
3376 else
3377 v = value_from_contents (type, valaddr);
3378 set_value_address (v, address);
3379 VALUE_LVAL (v) = lval_memory;
3380 return v;
3381}
3382
8acb6b92
TT
3383/* Create a value of type TYPE whose contents come from VALADDR, if it
3384 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3385 ADDRESS. The type of the created value may differ from the passed
3386 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3387
3388struct value *
3389value_from_contents_and_address (struct type *type,
3390 const gdb_byte *valaddr,
3391 CORE_ADDR address)
3392{
80180f79 3393 struct type *resolved_type = resolve_dynamic_type (type, address);
41e8491f 3394 struct value *v;
a109c7c1 3395
8acb6b92 3396 if (valaddr == NULL)
80180f79 3397 v = allocate_value_lazy (resolved_type);
8acb6b92 3398 else
80180f79 3399 v = value_from_contents (resolved_type, valaddr);
42ae5230 3400 set_value_address (v, address);
33d502b4 3401 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3402 return v;
3403}
3404
8a9b8146
TT
3405/* Create a value of type TYPE holding the contents CONTENTS.
3406 The new value is `not_lval'. */
3407
3408struct value *
3409value_from_contents (struct type *type, const gdb_byte *contents)
3410{
3411 struct value *result;
3412
3413 result = allocate_value (type);
3414 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3415 return result;
3416}
3417
f23631e4 3418struct value *
fba45db2 3419value_from_double (struct type *type, DOUBLEST num)
c906108c 3420{
f23631e4 3421 struct value *val = allocate_value (type);
c906108c 3422 struct type *base_type = check_typedef (type);
52f0bd74 3423 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3424
3425 if (code == TYPE_CODE_FLT)
3426 {
990a07ab 3427 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3428 }
3429 else
8a3fe4f8 3430 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3431
3432 return val;
3433}
994b9211 3434
27bc4d80 3435struct value *
4ef30785 3436value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3437{
3438 struct value *val = allocate_value (type);
27bc4d80 3439
4ef30785 3440 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3441 return val;
3442}
3443
3bd0f5ef
MS
3444/* Extract a value from the history file. Input will be of the form
3445 $digits or $$digits. See block comment above 'write_dollar_variable'
3446 for details. */
3447
3448struct value *
3449value_from_history_ref (char *h, char **endp)
3450{
3451 int index, len;
3452
3453 if (h[0] == '$')
3454 len = 1;
3455 else
3456 return NULL;
3457
3458 if (h[1] == '$')
3459 len = 2;
3460
3461 /* Find length of numeral string. */
3462 for (; isdigit (h[len]); len++)
3463 ;
3464
3465 /* Make sure numeral string is not part of an identifier. */
3466 if (h[len] == '_' || isalpha (h[len]))
3467 return NULL;
3468
3469 /* Now collect the index value. */
3470 if (h[1] == '$')
3471 {
3472 if (len == 2)
3473 {
3474 /* For some bizarre reason, "$$" is equivalent to "$$1",
3475 rather than to "$$0" as it ought to be! */
3476 index = -1;
3477 *endp += len;
3478 }
3479 else
3480 index = -strtol (&h[2], endp, 10);
3481 }
3482 else
3483 {
3484 if (len == 1)
3485 {
3486 /* "$" is equivalent to "$0". */
3487 index = 0;
3488 *endp += len;
3489 }
3490 else
3491 index = strtol (&h[1], endp, 10);
3492 }
3493
3494 return access_value_history (index);
3495}
3496
a471c594
JK
3497struct value *
3498coerce_ref_if_computed (const struct value *arg)
3499{
3500 const struct lval_funcs *funcs;
3501
3502 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3503 return NULL;
3504
3505 if (value_lval_const (arg) != lval_computed)
3506 return NULL;
3507
3508 funcs = value_computed_funcs (arg);
3509 if (funcs->coerce_ref == NULL)
3510 return NULL;
3511
3512 return funcs->coerce_ref (arg);
3513}
3514
dfcee124
AG
3515/* Look at value.h for description. */
3516
3517struct value *
3518readjust_indirect_value_type (struct value *value, struct type *enc_type,
3519 struct type *original_type,
3520 struct value *original_value)
3521{
3522 /* Re-adjust type. */
3523 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3524
3525 /* Add embedding info. */
3526 set_value_enclosing_type (value, enc_type);
3527 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3528
3529 /* We may be pointing to an object of some derived type. */
3530 return value_full_object (value, NULL, 0, 0, 0);
3531}
3532
994b9211
AC
3533struct value *
3534coerce_ref (struct value *arg)
3535{
df407dfe 3536 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3537 struct value *retval;
dfcee124 3538 struct type *enc_type;
a109c7c1 3539
a471c594
JK
3540 retval = coerce_ref_if_computed (arg);
3541 if (retval)
3542 return retval;
3543
3544 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3545 return arg;
3546
dfcee124
AG
3547 enc_type = check_typedef (value_enclosing_type (arg));
3548 enc_type = TYPE_TARGET_TYPE (enc_type);
3549
3550 retval = value_at_lazy (enc_type,
3551 unpack_pointer (value_type (arg),
3552 value_contents (arg)));
9f1f738a 3553 enc_type = value_type (retval);
dfcee124
AG
3554 return readjust_indirect_value_type (retval, enc_type,
3555 value_type_arg_tmp, arg);
994b9211
AC
3556}
3557
3558struct value *
3559coerce_array (struct value *arg)
3560{
f3134b88
TT
3561 struct type *type;
3562
994b9211 3563 arg = coerce_ref (arg);
f3134b88
TT
3564 type = check_typedef (value_type (arg));
3565
3566 switch (TYPE_CODE (type))
3567 {
3568 case TYPE_CODE_ARRAY:
7346b668 3569 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3570 arg = value_coerce_array (arg);
3571 break;
3572 case TYPE_CODE_FUNC:
3573 arg = value_coerce_function (arg);
3574 break;
3575 }
994b9211
AC
3576 return arg;
3577}
c906108c 3578\f
c906108c 3579
bbfdfe1c
DM
3580/* Return the return value convention that will be used for the
3581 specified type. */
3582
3583enum return_value_convention
3584struct_return_convention (struct gdbarch *gdbarch,
3585 struct value *function, struct type *value_type)
3586{
3587 enum type_code code = TYPE_CODE (value_type);
3588
3589 if (code == TYPE_CODE_ERROR)
3590 error (_("Function return type unknown."));
3591
3592 /* Probe the architecture for the return-value convention. */
3593 return gdbarch_return_value (gdbarch, function, value_type,
3594 NULL, NULL, NULL);
3595}
3596
48436ce6
AC
3597/* Return true if the function returning the specified type is using
3598 the convention of returning structures in memory (passing in the
82585c72 3599 address as a hidden first parameter). */
c906108c
SS
3600
3601int
d80b854b 3602using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3603 struct value *function, struct type *value_type)
c906108c 3604{
bbfdfe1c 3605 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3606 /* A void return value is never in memory. See also corresponding
44e5158b 3607 code in "print_return_value". */
667e784f
AC
3608 return 0;
3609
bbfdfe1c 3610 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3611 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3612}
3613
42be36b3
CT
3614/* Set the initialized field in a value struct. */
3615
3616void
3617set_value_initialized (struct value *val, int status)
3618{
3619 val->initialized = status;
3620}
3621
3622/* Return the initialized field in a value struct. */
3623
3624int
3625value_initialized (struct value *val)
3626{
3627 return val->initialized;
3628}
3629
a58e2656
AB
3630/* Called only from the value_contents and value_contents_all()
3631 macros, if the current data for a variable needs to be loaded into
3632 value_contents(VAL). Fetches the data from the user's process, and
3633 clears the lazy flag to indicate that the data in the buffer is
3634 valid.
3635
3636 If the value is zero-length, we avoid calling read_memory, which
3637 would abort. We mark the value as fetched anyway -- all 0 bytes of
3638 it.
3639
3640 This function returns a value because it is used in the
3641 value_contents macro as part of an expression, where a void would
3642 not work. The value is ignored. */
3643
3644int
3645value_fetch_lazy (struct value *val)
3646{
3647 gdb_assert (value_lazy (val));
3648 allocate_value_contents (val);
3649 if (value_bitsize (val))
3650 {
3651 /* To read a lazy bitfield, read the entire enclosing value. This
3652 prevents reading the same block of (possibly volatile) memory once
3653 per bitfield. It would be even better to read only the containing
3654 word, but we have no way to record that just specific bits of a
3655 value have been fetched. */
3656 struct type *type = check_typedef (value_type (val));
3657 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3658 struct value *parent = value_parent (val);
3659 LONGEST offset = value_offset (val);
3660 LONGEST num;
3661
b0c54aa5
AB
3662 if (value_lazy (parent))
3663 value_fetch_lazy (parent);
3664
3665 if (!value_bits_valid (parent,
a58e2656
AB
3666 TARGET_CHAR_BIT * offset + value_bitpos (val),
3667 value_bitsize (val)))
11b4b7cc
AB
3668 set_value_optimized_out (val, 1);
3669 else if (!unpack_value_bits_as_long (value_type (val),
a58e2656
AB
3670 value_contents_for_printing (parent),
3671 offset,
3672 value_bitpos (val),
3673 value_bitsize (val), parent, &num))
3674 mark_value_bytes_unavailable (val,
3675 value_embedded_offset (val),
3676 TYPE_LENGTH (type));
3677 else
3678 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3679 byte_order, num);
3680 }
3681 else if (VALUE_LVAL (val) == lval_memory)
3682 {
3683 CORE_ADDR addr = value_address (val);
3684 struct type *type = check_typedef (value_enclosing_type (val));
3685
3686 if (TYPE_LENGTH (type))
3687 read_value_memory (val, 0, value_stack (val),
3688 addr, value_contents_all_raw (val),
3689 TYPE_LENGTH (type));
3690 }
3691 else if (VALUE_LVAL (val) == lval_register)
3692 {
3693 struct frame_info *frame;
3694 int regnum;
3695 struct type *type = check_typedef (value_type (val));
3696 struct value *new_val = val, *mark = value_mark ();
3697
3698 /* Offsets are not supported here; lazy register values must
3699 refer to the entire register. */
3700 gdb_assert (value_offset (val) == 0);
3701
3702 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3703 {
6eeee81c
TT
3704 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3705
3706 frame = frame_find_by_id (frame_id);
a58e2656
AB
3707 regnum = VALUE_REGNUM (new_val);
3708
3709 gdb_assert (frame != NULL);
3710
3711 /* Convertible register routines are used for multi-register
3712 values and for interpretation in different types
3713 (e.g. float or int from a double register). Lazy
3714 register values should have the register's natural type,
3715 so they do not apply. */
3716 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3717 regnum, type));
3718
3719 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3720
3721 /* If we get another lazy lval_register value, it means the
3722 register is found by reading it from the next frame.
3723 get_frame_register_value should never return a value with
3724 the frame id pointing to FRAME. If it does, it means we
3725 either have two consecutive frames with the same frame id
3726 in the frame chain, or some code is trying to unwind
3727 behind get_prev_frame's back (e.g., a frame unwind
3728 sniffer trying to unwind), bypassing its validations. In
3729 any case, it should always be an internal error to end up
3730 in this situation. */
3731 if (VALUE_LVAL (new_val) == lval_register
3732 && value_lazy (new_val)
3733 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3734 internal_error (__FILE__, __LINE__,
3735 _("infinite loop while fetching a register"));
a58e2656
AB
3736 }
3737
3738 /* If it's still lazy (for instance, a saved register on the
3739 stack), fetch it. */
3740 if (value_lazy (new_val))
3741 value_fetch_lazy (new_val);
3742
3743 /* If the register was not saved, mark it optimized out. */
3744 if (value_optimized_out (new_val))
3745 set_value_optimized_out (val, 1);
3746 else
3747 {
3748 set_value_lazy (val, 0);
3749 value_contents_copy (val, value_embedded_offset (val),
3750 new_val, value_embedded_offset (new_val),
3751 TYPE_LENGTH (type));
3752 }
3753
3754 if (frame_debug)
3755 {
3756 struct gdbarch *gdbarch;
3757 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3758 regnum = VALUE_REGNUM (val);
3759 gdbarch = get_frame_arch (frame);
3760
3761 fprintf_unfiltered (gdb_stdlog,
3762 "{ value_fetch_lazy "
3763 "(frame=%d,regnum=%d(%s),...) ",
3764 frame_relative_level (frame), regnum,
3765 user_reg_map_regnum_to_name (gdbarch, regnum));
3766
3767 fprintf_unfiltered (gdb_stdlog, "->");
3768 if (value_optimized_out (new_val))
f6c01fc5
AB
3769 {
3770 fprintf_unfiltered (gdb_stdlog, " ");
3771 val_print_optimized_out (new_val, gdb_stdlog);
3772 }
a58e2656
AB
3773 else
3774 {
3775 int i;
3776 const gdb_byte *buf = value_contents (new_val);
3777
3778 if (VALUE_LVAL (new_val) == lval_register)
3779 fprintf_unfiltered (gdb_stdlog, " register=%d",
3780 VALUE_REGNUM (new_val));
3781 else if (VALUE_LVAL (new_val) == lval_memory)
3782 fprintf_unfiltered (gdb_stdlog, " address=%s",
3783 paddress (gdbarch,
3784 value_address (new_val)));
3785 else
3786 fprintf_unfiltered (gdb_stdlog, " computed");
3787
3788 fprintf_unfiltered (gdb_stdlog, " bytes=");
3789 fprintf_unfiltered (gdb_stdlog, "[");
3790 for (i = 0; i < register_size (gdbarch, regnum); i++)
3791 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3792 fprintf_unfiltered (gdb_stdlog, "]");
3793 }
3794
3795 fprintf_unfiltered (gdb_stdlog, " }\n");
3796 }
3797
3798 /* Dispose of the intermediate values. This prevents
3799 watchpoints from trying to watch the saved frame pointer. */
3800 value_free_to_mark (mark);
3801 }
3802 else if (VALUE_LVAL (val) == lval_computed
3803 && value_computed_funcs (val)->read != NULL)
3804 value_computed_funcs (val)->read (val);
691a26f5
AB
3805 /* Don't call value_optimized_out on val, doing so would result in a
3806 recursive call back to value_fetch_lazy, instead check the
3807 optimized_out flag directly. */
3808 else if (val->optimized_out)
a58e2656
AB
3809 /* Keep it optimized out. */;
3810 else
3811 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3812
3813 set_value_lazy (val, 0);
3814 return 0;
3815}
3816
a280dbd1
SDJ
3817/* Implementation of the convenience function $_isvoid. */
3818
3819static struct value *
3820isvoid_internal_fn (struct gdbarch *gdbarch,
3821 const struct language_defn *language,
3822 void *cookie, int argc, struct value **argv)
3823{
3824 int ret;
3825
3826 if (argc != 1)
6bc305f5 3827 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3828
3829 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3830
3831 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3832}
3833
c906108c 3834void
fba45db2 3835_initialize_values (void)
c906108c 3836{
1a966eab 3837 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3838Debugger convenience (\"$foo\") variables and functions.\n\
3839Convenience variables are created when you assign them values;\n\
3840thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3841\n\
c906108c
SS
3842A few convenience variables are given values automatically:\n\
3843\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3844\"$__\" holds the contents of the last address examined with \"x\"."
3845#ifdef HAVE_PYTHON
3846"\n\n\
3847Convenience functions are defined via the Python API."
3848#endif
3849 ), &showlist);
7e20dfcd 3850 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3851
db5f229b 3852 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3853Elements of value history around item number IDX (or last ten)."),
c906108c 3854 &showlist);
53e5f3cf
AS
3855
3856 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3857Initialize a convenience variable if necessary.\n\
3858init-if-undefined VARIABLE = EXPRESSION\n\
3859Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3860exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3861VARIABLE is already initialized."));
bc3b79fd
TJB
3862
3863 add_prefix_cmd ("function", no_class, function_command, _("\
3864Placeholder command for showing help on convenience functions."),
3865 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3866
3867 add_internal_function ("_isvoid", _("\
3868Check whether an expression is void.\n\
3869Usage: $_isvoid (expression)\n\
3870Return 1 if the expression is void, zero otherwise."),
3871 isvoid_internal_fn, NULL);
c906108c 3872}
This page took 2.681442 seconds and 4 git commands to generate.