testsuite: Fix for gcc-4.8: gdb.base/jit.exp gdb.base/jit-so.exp
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
3723fda8
SM
237 /* Describes offset of a value within lval of a structure in target
238 addressable memory units. If lval == lval_memory, this is an offset to
239 the address. If lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the member
241 embedded_offset below. */
91294c83
AC
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
294 offset of `type' within that larger type, in target addressable memory
295 units. The value_contents() macro takes `embedded_offset' into account,
296 so most GDB code continues to see the `type' portion of the value, just
297 as the inferior would.
91294c83
AC
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
301 the offset in target addressable memory units from the full object
302 to the pointed-to object -- that is, the value `embedded_offset' would
303 have if we followed the pointer and fetched the complete object.
304 (I don't really see the point. Why not just determine the
305 run-time type when you indirect, and avoid the special case? The
306 contents don't matter until you indirect anyway.)
91294c83
AC
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
e512cdbd
SM
343/* See value.h. */
344
345struct gdbarch *
346get_value_arch (const struct value *value)
347{
348 return get_type_arch (value_type (value));
349}
350
4e07d55f 351int
bdf22206 352value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
353{
354 gdb_assert (!value->lazy);
355
356 return !ranges_contain (value->unavailable, offset, length);
357}
358
bdf22206
AB
359int
360value_bytes_available (const struct value *value, int offset, int length)
361{
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
365}
366
9a0dc9e3
PA
367int
368value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
369{
370 gdb_assert (!value->lazy);
371
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
373}
374
ec0a52e1
PA
375int
376value_entirely_available (struct value *value)
377{
378 /* We can only tell whether the whole value is available when we try
379 to read it. */
380 if (value->lazy)
381 value_fetch_lazy (value);
382
383 if (VEC_empty (range_s, value->unavailable))
384 return 1;
385 return 0;
386}
387
9a0dc9e3
PA
388/* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
391
392static int
393value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
6211c335 395{
9a0dc9e3
PA
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
6211c335
YQ
398 if (value->lazy)
399 value_fetch_lazy (value);
400
9a0dc9e3 401 if (VEC_length (range_s, *ranges) == 1)
6211c335 402 {
9a0dc9e3 403 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
404
405 if (t->offset == 0
64c46ce4
JB
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
408 return 1;
409 }
410
411 return 0;
412}
413
9a0dc9e3
PA
414int
415value_entirely_unavailable (struct value *value)
416{
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
418}
419
420int
421value_entirely_optimized_out (struct value *value)
422{
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424}
425
426/* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
428
429static void
430insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
431{
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
9a0dc9e3 521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
522 if (i > 0)
523 {
9a0dc9e3 524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
529 ULONGEST l = min (bef->offset, offset);
530 ULONGEST h = max (bef->offset + bef->length, offset + length);
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
9a0dc9e3 545 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
546 }
547 }
548 else
549 {
550 /* #4 */
9a0dc9e3 551 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
9a0dc9e3 556 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
9a0dc9e3 564 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
565 removed = 0;
566
567 i = next;
9a0dc9e3 568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
573 l = min (t->offset, r->offset);
574 h = max (t->offset + t->length, r->offset + r->length);
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
9a0dc9e3 590 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
591 }
592}
593
9a0dc9e3
PA
594void
595mark_value_bits_unavailable (struct value *value, int offset, int length)
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206
AB
600void
601mark_value_bytes_unavailable (struct value *value, int offset, int length)
602{
603 mark_value_bits_unavailable (value,
604 offset * TARGET_CHAR_BIT,
605 length * TARGET_CHAR_BIT);
606}
607
c8c1c22f
PA
608/* Find the first range in RANGES that overlaps the range defined by
609 OFFSET and LENGTH, starting at element POS in the RANGES vector,
610 Returns the index into RANGES where such overlapping range was
611 found, or -1 if none was found. */
612
613static int
614find_first_range_overlap (VEC(range_s) *ranges, int pos,
615 int offset, int length)
616{
617 range_s *r;
618 int i;
619
620 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
621 if (ranges_overlap (r->offset, r->length, offset, length))
622 return i;
623
624 return -1;
625}
626
bdf22206
AB
627/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
628 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
629 return non-zero.
630
631 It must always be the case that:
632 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
633
634 It is assumed that memory can be accessed from:
635 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
636 to:
637 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
638 / TARGET_CHAR_BIT) */
639static int
640memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
641 const gdb_byte *ptr2, size_t offset2_bits,
642 size_t length_bits)
643{
644 gdb_assert (offset1_bits % TARGET_CHAR_BIT
645 == offset2_bits % TARGET_CHAR_BIT);
646
647 if (offset1_bits % TARGET_CHAR_BIT != 0)
648 {
649 size_t bits;
650 gdb_byte mask, b1, b2;
651
652 /* The offset from the base pointers PTR1 and PTR2 is not a complete
653 number of bytes. A number of bits up to either the next exact
654 byte boundary, or LENGTH_BITS (which ever is sooner) will be
655 compared. */
656 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
657 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
658 mask = (1 << bits) - 1;
659
660 if (length_bits < bits)
661 {
662 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
663 bits = length_bits;
664 }
665
666 /* Now load the two bytes and mask off the bits we care about. */
667 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
668 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
669
670 if (b1 != b2)
671 return 1;
672
673 /* Now update the length and offsets to take account of the bits
674 we've just compared. */
675 length_bits -= bits;
676 offset1_bits += bits;
677 offset2_bits += bits;
678 }
679
680 if (length_bits % TARGET_CHAR_BIT != 0)
681 {
682 size_t bits;
683 size_t o1, o2;
684 gdb_byte mask, b1, b2;
685
686 /* The length is not an exact number of bytes. After the previous
687 IF.. block then the offsets are byte aligned, or the
688 length is zero (in which case this code is not reached). Compare
689 a number of bits at the end of the region, starting from an exact
690 byte boundary. */
691 bits = length_bits % TARGET_CHAR_BIT;
692 o1 = offset1_bits + length_bits - bits;
693 o2 = offset2_bits + length_bits - bits;
694
695 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
696 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
697
698 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
699 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
700
701 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
702 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
703
704 if (b1 != b2)
705 return 1;
706
707 length_bits -= bits;
708 }
709
710 if (length_bits > 0)
711 {
712 /* We've now taken care of any stray "bits" at the start, or end of
713 the region to compare, the remainder can be covered with a simple
714 memcmp. */
715 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
716 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
718
719 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
720 ptr2 + offset2_bits / TARGET_CHAR_BIT,
721 length_bits / TARGET_CHAR_BIT);
722 }
723
724 /* Length is zero, regions match. */
725 return 0;
726}
727
9a0dc9e3
PA
728/* Helper struct for find_first_range_overlap_and_match and
729 value_contents_bits_eq. Keep track of which slot of a given ranges
730 vector have we last looked at. */
bdf22206 731
9a0dc9e3
PA
732struct ranges_and_idx
733{
734 /* The ranges. */
735 VEC(range_s) *ranges;
736
737 /* The range we've last found in RANGES. Given ranges are sorted,
738 we can start the next lookup here. */
739 int idx;
740};
741
742/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
743 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
744 ranges starting at OFFSET2 bits. Return true if the ranges match
745 and fill in *L and *H with the overlapping window relative to
746 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
747
748static int
9a0dc9e3
PA
749find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
750 struct ranges_and_idx *rp2,
751 int offset1, int offset2,
752 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 753{
9a0dc9e3
PA
754 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
755 offset1, length);
756 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
757 offset2, length);
c8c1c22f 758
9a0dc9e3
PA
759 if (rp1->idx == -1 && rp2->idx == -1)
760 {
761 *l = length;
762 *h = length;
763 return 1;
764 }
765 else if (rp1->idx == -1 || rp2->idx == -1)
766 return 0;
767 else
c8c1c22f
PA
768 {
769 range_s *r1, *r2;
770 ULONGEST l1, h1;
771 ULONGEST l2, h2;
772
9a0dc9e3
PA
773 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
774 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
775
776 /* Get the unavailable windows intersected by the incoming
777 ranges. The first and last ranges that overlap the argument
778 range may be wider than said incoming arguments ranges. */
779 l1 = max (offset1, r1->offset);
780 h1 = min (offset1 + length, r1->offset + r1->length);
781
782 l2 = max (offset2, r2->offset);
9a0dc9e3 783 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
784
785 /* Make them relative to the respective start offsets, so we can
786 compare them for equality. */
787 l1 -= offset1;
788 h1 -= offset1;
789
790 l2 -= offset2;
791 h2 -= offset2;
792
9a0dc9e3 793 /* Different ranges, no match. */
c8c1c22f
PA
794 if (l1 != l2 || h1 != h2)
795 return 0;
796
9a0dc9e3
PA
797 *h = h1;
798 *l = l1;
799 return 1;
800 }
801}
802
803/* Helper function for value_contents_eq. The only difference is that
804 this function is bit rather than byte based.
805
806 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
807 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
808 Return true if the available bits match. */
809
810static int
811value_contents_bits_eq (const struct value *val1, int offset1,
812 const struct value *val2, int offset2,
813 int length)
814{
815 /* Each array element corresponds to a ranges source (unavailable,
816 optimized out). '1' is for VAL1, '2' for VAL2. */
817 struct ranges_and_idx rp1[2], rp2[2];
818
819 /* See function description in value.h. */
820 gdb_assert (!val1->lazy && !val2->lazy);
821
822 /* We shouldn't be trying to compare past the end of the values. */
823 gdb_assert (offset1 + length
824 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
825 gdb_assert (offset2 + length
826 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
827
828 memset (&rp1, 0, sizeof (rp1));
829 memset (&rp2, 0, sizeof (rp2));
830 rp1[0].ranges = val1->unavailable;
831 rp2[0].ranges = val2->unavailable;
832 rp1[1].ranges = val1->optimized_out;
833 rp2[1].ranges = val2->optimized_out;
834
835 while (length > 0)
836 {
000339af 837 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
838 int i;
839
840 for (i = 0; i < 2; i++)
841 {
842 ULONGEST l_tmp, h_tmp;
843
844 /* The contents only match equal if the invalid/unavailable
845 contents ranges match as well. */
846 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
847 offset1, offset2, length,
848 &l_tmp, &h_tmp))
849 return 0;
850
851 /* We're interested in the lowest/first range found. */
852 if (i == 0 || l_tmp < l)
853 {
854 l = l_tmp;
855 h = h_tmp;
856 }
857 }
858
859 /* Compare the available/valid contents. */
bdf22206 860 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 861 val2->contents, offset2, l) != 0)
c8c1c22f
PA
862 return 0;
863
9a0dc9e3
PA
864 length -= h;
865 offset1 += h;
866 offset2 += h;
c8c1c22f
PA
867 }
868
869 return 1;
870}
871
bdf22206 872int
9a0dc9e3
PA
873value_contents_eq (const struct value *val1, int offset1,
874 const struct value *val2, int offset2,
875 int length)
bdf22206 876{
9a0dc9e3
PA
877 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
878 val2, offset2 * TARGET_CHAR_BIT,
879 length * TARGET_CHAR_BIT);
bdf22206
AB
880}
881
581e13c1 882/* Prototypes for local functions. */
c906108c 883
a14ed312 884static void show_values (char *, int);
c906108c 885
a14ed312 886static void show_convenience (char *, int);
c906108c 887
c906108c
SS
888
889/* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895#define VALUE_HISTORY_CHUNK 60
896
897struct value_history_chunk
c5aa993b
JM
898 {
899 struct value_history_chunk *next;
f23631e4 900 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 901 };
c906108c
SS
902
903/* Chain of chunks now in use. */
904
905static struct value_history_chunk *value_history_chain;
906
581e13c1 907static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 908
c906108c
SS
909\f
910/* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
f23631e4 914static struct value *all_values;
c906108c 915
3e3d7139
JG
916/* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
c906108c 919
f23631e4 920struct value *
3e3d7139 921allocate_value_lazy (struct type *type)
c906108c 922{
f23631e4 923 struct value *val;
c54eabfa
JK
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
c906108c 932
8d749320 933 val = XCNEW (struct value);
3e3d7139 934 val->contents = NULL;
df407dfe 935 val->next = all_values;
c906108c 936 all_values = val;
df407dfe 937 val->type = type;
4754a64e 938 val->enclosing_type = type;
c906108c 939 VALUE_LVAL (val) = not_lval;
42ae5230 940 val->location.address = 0;
1df6926e 941 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
942 val->offset = 0;
943 val->bitpos = 0;
944 val->bitsize = 0;
9ee8fc9d 945 VALUE_REGNUM (val) = -1;
3e3d7139 946 val->lazy = 1;
13c3b5f5 947 val->embedded_offset = 0;
b44d461b 948 val->pointed_to_offset = 0;
c906108c 949 val->modifiable = 1;
42be36b3 950 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
951
952 /* Values start out on the all_values chain. */
953 val->reference_count = 1;
954
c906108c
SS
955 return val;
956}
957
5fdf6324
AB
958/* The maximum size, in bytes, that GDB will try to allocate for a value.
959 The initial value of 64k was not selected for any specific reason, it is
960 just a reasonable starting point. */
961
962static int max_value_size = 65536; /* 64k bytes */
963
964/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
965 LONGEST, otherwise GDB will not be able to parse integer values from the
966 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
967 be unable to parse "set max-value-size 2".
968
969 As we want a consistent GDB experience across hosts with different sizes
970 of LONGEST, this arbitrary minimum value was selected, so long as this
971 is bigger than LONGEST on all GDB supported hosts we're fine. */
972
973#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
974gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
975
976/* Implement the "set max-value-size" command. */
977
978static void
979set_max_value_size (char *args, int from_tty,
980 struct cmd_list_element *c)
981{
982 gdb_assert (max_value_size == -1 || max_value_size >= 0);
983
984 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
985 {
986 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
987 error (_("max-value-size set too low, increasing to %d bytes"),
988 max_value_size);
989 }
990}
991
992/* Implement the "show max-value-size" command. */
993
994static void
995show_max_value_size (struct ui_file *file, int from_tty,
996 struct cmd_list_element *c, const char *value)
997{
998 if (max_value_size == -1)
999 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1000 else
1001 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1002 max_value_size);
1003}
1004
1005/* Called before we attempt to allocate or reallocate a buffer for the
1006 contents of a value. TYPE is the type of the value for which we are
1007 allocating the buffer. If the buffer is too large (based on the user
1008 controllable setting) then throw an error. If this function returns
1009 then we should attempt to allocate the buffer. */
1010
1011static void
1012check_type_length_before_alloc (const struct type *type)
1013{
1014 unsigned int length = TYPE_LENGTH (type);
1015
1016 if (max_value_size > -1 && length > max_value_size)
1017 {
1018 if (TYPE_NAME (type) != NULL)
1019 error (_("value of type `%s' requires %u bytes, which is more "
1020 "than max-value-size"), TYPE_NAME (type), length);
1021 else
1022 error (_("value requires %u bytes, which is more than "
1023 "max-value-size"), length);
1024 }
1025}
1026
3e3d7139
JG
1027/* Allocate the contents of VAL if it has not been allocated yet. */
1028
548b762d 1029static void
3e3d7139
JG
1030allocate_value_contents (struct value *val)
1031{
1032 if (!val->contents)
5fdf6324
AB
1033 {
1034 check_type_length_before_alloc (val->enclosing_type);
1035 val->contents
1036 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1037 }
3e3d7139
JG
1038}
1039
1040/* Allocate a value and its contents for type TYPE. */
1041
1042struct value *
1043allocate_value (struct type *type)
1044{
1045 struct value *val = allocate_value_lazy (type);
a109c7c1 1046
3e3d7139
JG
1047 allocate_value_contents (val);
1048 val->lazy = 0;
1049 return val;
1050}
1051
c906108c 1052/* Allocate a value that has the correct length
938f5214 1053 for COUNT repetitions of type TYPE. */
c906108c 1054
f23631e4 1055struct value *
fba45db2 1056allocate_repeat_value (struct type *type, int count)
c906108c 1057{
c5aa993b 1058 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1059 /* FIXME-type-allocation: need a way to free this type when we are
1060 done with it. */
e3506a9f
UW
1061 struct type *array_type
1062 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1063
e3506a9f 1064 return allocate_value (array_type);
c906108c
SS
1065}
1066
5f5233d4
PA
1067struct value *
1068allocate_computed_value (struct type *type,
c8f2448a 1069 const struct lval_funcs *funcs,
5f5233d4
PA
1070 void *closure)
1071{
41e8491f 1072 struct value *v = allocate_value_lazy (type);
a109c7c1 1073
5f5233d4
PA
1074 VALUE_LVAL (v) = lval_computed;
1075 v->location.computed.funcs = funcs;
1076 v->location.computed.closure = closure;
5f5233d4
PA
1077
1078 return v;
1079}
1080
a7035dbb
JK
1081/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1082
1083struct value *
1084allocate_optimized_out_value (struct type *type)
1085{
1086 struct value *retval = allocate_value_lazy (type);
1087
9a0dc9e3
PA
1088 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1089 set_value_lazy (retval, 0);
a7035dbb
JK
1090 return retval;
1091}
1092
df407dfe
AC
1093/* Accessor methods. */
1094
17cf0ecd
AC
1095struct value *
1096value_next (struct value *value)
1097{
1098 return value->next;
1099}
1100
df407dfe 1101struct type *
0e03807e 1102value_type (const struct value *value)
df407dfe
AC
1103{
1104 return value->type;
1105}
04624583
AC
1106void
1107deprecated_set_value_type (struct value *value, struct type *type)
1108{
1109 value->type = type;
1110}
df407dfe
AC
1111
1112int
0e03807e 1113value_offset (const struct value *value)
df407dfe
AC
1114{
1115 return value->offset;
1116}
f5cf64a7
AC
1117void
1118set_value_offset (struct value *value, int offset)
1119{
1120 value->offset = offset;
1121}
df407dfe
AC
1122
1123int
0e03807e 1124value_bitpos (const struct value *value)
df407dfe
AC
1125{
1126 return value->bitpos;
1127}
9bbda503
AC
1128void
1129set_value_bitpos (struct value *value, int bit)
1130{
1131 value->bitpos = bit;
1132}
df407dfe
AC
1133
1134int
0e03807e 1135value_bitsize (const struct value *value)
df407dfe
AC
1136{
1137 return value->bitsize;
1138}
9bbda503
AC
1139void
1140set_value_bitsize (struct value *value, int bit)
1141{
1142 value->bitsize = bit;
1143}
df407dfe 1144
4ea48cc1
DJ
1145struct value *
1146value_parent (struct value *value)
1147{
1148 return value->parent;
1149}
1150
53ba8333
JB
1151/* See value.h. */
1152
1153void
1154set_value_parent (struct value *value, struct value *parent)
1155{
40501e00
TT
1156 struct value *old = value->parent;
1157
53ba8333 1158 value->parent = parent;
40501e00
TT
1159 if (parent != NULL)
1160 value_incref (parent);
1161 value_free (old);
53ba8333
JB
1162}
1163
fc1a4b47 1164gdb_byte *
990a07ab
AC
1165value_contents_raw (struct value *value)
1166{
3ae385af
SM
1167 struct gdbarch *arch = get_value_arch (value);
1168 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1169
3e3d7139 1170 allocate_value_contents (value);
3ae385af 1171 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1172}
1173
fc1a4b47 1174gdb_byte *
990a07ab
AC
1175value_contents_all_raw (struct value *value)
1176{
3e3d7139
JG
1177 allocate_value_contents (value);
1178 return value->contents;
990a07ab
AC
1179}
1180
4754a64e
AC
1181struct type *
1182value_enclosing_type (struct value *value)
1183{
1184 return value->enclosing_type;
1185}
1186
8264ba82
AG
1187/* Look at value.h for description. */
1188
1189struct type *
1190value_actual_type (struct value *value, int resolve_simple_types,
1191 int *real_type_found)
1192{
1193 struct value_print_options opts;
8264ba82
AG
1194 struct type *result;
1195
1196 get_user_print_options (&opts);
1197
1198 if (real_type_found)
1199 *real_type_found = 0;
1200 result = value_type (value);
1201 if (opts.objectprint)
1202 {
5e34c6c3
LM
1203 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1204 fetch its rtti type. */
1205 if ((TYPE_CODE (result) == TYPE_CODE_PTR
444bca65 1206 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3 1207 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1208 == TYPE_CODE_STRUCT
1209 && !value_optimized_out (value))
8264ba82
AG
1210 {
1211 struct type *real_type;
1212
1213 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1214 if (real_type)
1215 {
1216 if (real_type_found)
1217 *real_type_found = 1;
1218 result = real_type;
1219 }
1220 }
1221 else if (resolve_simple_types)
1222 {
1223 if (real_type_found)
1224 *real_type_found = 1;
1225 result = value_enclosing_type (value);
1226 }
1227 }
1228
1229 return result;
1230}
1231
901461f8
PA
1232void
1233error_value_optimized_out (void)
1234{
1235 error (_("value has been optimized out"));
1236}
1237
0e03807e 1238static void
4e07d55f 1239require_not_optimized_out (const struct value *value)
0e03807e 1240{
9a0dc9e3 1241 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1242 {
1243 if (value->lval == lval_register)
1244 error (_("register has not been saved in frame"));
1245 else
1246 error_value_optimized_out ();
1247 }
0e03807e
TT
1248}
1249
4e07d55f
PA
1250static void
1251require_available (const struct value *value)
1252{
1253 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1254 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1255}
1256
fc1a4b47 1257const gdb_byte *
0e03807e 1258value_contents_for_printing (struct value *value)
46615f07
AC
1259{
1260 if (value->lazy)
1261 value_fetch_lazy (value);
3e3d7139 1262 return value->contents;
46615f07
AC
1263}
1264
de4127a3
PA
1265const gdb_byte *
1266value_contents_for_printing_const (const struct value *value)
1267{
1268 gdb_assert (!value->lazy);
1269 return value->contents;
1270}
1271
0e03807e
TT
1272const gdb_byte *
1273value_contents_all (struct value *value)
1274{
1275 const gdb_byte *result = value_contents_for_printing (value);
1276 require_not_optimized_out (value);
4e07d55f 1277 require_available (value);
0e03807e
TT
1278 return result;
1279}
1280
9a0dc9e3
PA
1281/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1282 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1283
1284static void
1285ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1286 VEC (range_s) *src_range, int src_bit_offset,
1287 int bit_length)
1288{
1289 range_s *r;
1290 int i;
1291
1292 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1293 {
1294 ULONGEST h, l;
1295
1296 l = max (r->offset, src_bit_offset);
1297 h = min (r->offset + r->length, src_bit_offset + bit_length);
1298
1299 if (l < h)
1300 insert_into_bit_range_vector (dst_range,
1301 dst_bit_offset + (l - src_bit_offset),
1302 h - l);
1303 }
1304}
1305
4875ffdb
PA
1306/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1307 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1308
1309static void
1310value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1311 const struct value *src, int src_bit_offset,
1312 int bit_length)
1313{
1314 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1315 src->unavailable, src_bit_offset,
1316 bit_length);
1317 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1318 src->optimized_out, src_bit_offset,
1319 bit_length);
1320}
1321
3ae385af 1322/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1323 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1324 contents, starting at DST_OFFSET. If unavailable contents are
1325 being copied from SRC, the corresponding DST contents are marked
1326 unavailable accordingly. Neither DST nor SRC may be lazy
1327 values.
1328
1329 It is assumed the contents of DST in the [DST_OFFSET,
1330 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1331
1332void
1333value_contents_copy_raw (struct value *dst, int dst_offset,
1334 struct value *src, int src_offset, int length)
1335{
1336 range_s *r;
bdf22206 1337 int src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1338 struct gdbarch *arch = get_value_arch (src);
1339 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1340
1341 /* A lazy DST would make that this copy operation useless, since as
1342 soon as DST's contents were un-lazied (by a later value_contents
1343 call, say), the contents would be overwritten. A lazy SRC would
1344 mean we'd be copying garbage. */
1345 gdb_assert (!dst->lazy && !src->lazy);
1346
29976f3f
PA
1347 /* The overwritten DST range gets unavailability ORed in, not
1348 replaced. Make sure to remember to implement replacing if it
1349 turns out actually necessary. */
1350 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1351 gdb_assert (!value_bits_any_optimized_out (dst,
1352 TARGET_CHAR_BIT * dst_offset,
1353 TARGET_CHAR_BIT * length));
29976f3f 1354
39d37385 1355 /* Copy the data. */
3ae385af
SM
1356 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1357 value_contents_all_raw (src) + src_offset * unit_size,
1358 length * unit_size);
39d37385
PA
1359
1360 /* Copy the meta-data, adjusted. */
3ae385af
SM
1361 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1362 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1363 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1364
4875ffdb
PA
1365 value_ranges_copy_adjusted (dst, dst_bit_offset,
1366 src, src_bit_offset,
1367 bit_length);
39d37385
PA
1368}
1369
29976f3f
PA
1370/* Copy LENGTH bytes of SRC value's (all) contents
1371 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1372 (all) contents, starting at DST_OFFSET. If unavailable contents
1373 are being copied from SRC, the corresponding DST contents are
1374 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1375 lazy, it will be fetched now.
29976f3f
PA
1376
1377 It is assumed the contents of DST in the [DST_OFFSET,
1378 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1379
1380void
1381value_contents_copy (struct value *dst, int dst_offset,
1382 struct value *src, int src_offset, int length)
1383{
39d37385
PA
1384 if (src->lazy)
1385 value_fetch_lazy (src);
1386
1387 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1388}
1389
d69fe07e
AC
1390int
1391value_lazy (struct value *value)
1392{
1393 return value->lazy;
1394}
1395
dfa52d88
AC
1396void
1397set_value_lazy (struct value *value, int val)
1398{
1399 value->lazy = val;
1400}
1401
4e5d721f
DE
1402int
1403value_stack (struct value *value)
1404{
1405 return value->stack;
1406}
1407
1408void
1409set_value_stack (struct value *value, int val)
1410{
1411 value->stack = val;
1412}
1413
fc1a4b47 1414const gdb_byte *
0fd88904
AC
1415value_contents (struct value *value)
1416{
0e03807e
TT
1417 const gdb_byte *result = value_contents_writeable (value);
1418 require_not_optimized_out (value);
4e07d55f 1419 require_available (value);
0e03807e 1420 return result;
0fd88904
AC
1421}
1422
fc1a4b47 1423gdb_byte *
0fd88904
AC
1424value_contents_writeable (struct value *value)
1425{
1426 if (value->lazy)
1427 value_fetch_lazy (value);
fc0c53a0 1428 return value_contents_raw (value);
0fd88904
AC
1429}
1430
feb13ab0
AC
1431int
1432value_optimized_out (struct value *value)
1433{
691a26f5
AB
1434 /* We can only know if a value is optimized out once we have tried to
1435 fetch it. */
9a0dc9e3 1436 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1437 {
1438 TRY
1439 {
1440 value_fetch_lazy (value);
1441 }
1442 CATCH (ex, RETURN_MASK_ERROR)
1443 {
1444 /* Fall back to checking value->optimized_out. */
1445 }
1446 END_CATCH
1447 }
691a26f5 1448
9a0dc9e3 1449 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1450}
1451
9a0dc9e3
PA
1452/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1453 the following LENGTH bytes. */
eca07816 1454
feb13ab0 1455void
9a0dc9e3 1456mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1457{
9a0dc9e3
PA
1458 mark_value_bits_optimized_out (value,
1459 offset * TARGET_CHAR_BIT,
1460 length * TARGET_CHAR_BIT);
feb13ab0 1461}
13c3b5f5 1462
9a0dc9e3 1463/* See value.h. */
0e03807e 1464
9a0dc9e3
PA
1465void
1466mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1467{
9a0dc9e3 1468 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1469}
1470
8cf6f0b1
TT
1471int
1472value_bits_synthetic_pointer (const struct value *value,
1473 int offset, int length)
1474{
e7303042 1475 if (value->lval != lval_computed
8cf6f0b1
TT
1476 || !value->location.computed.funcs->check_synthetic_pointer)
1477 return 0;
1478 return value->location.computed.funcs->check_synthetic_pointer (value,
1479 offset,
1480 length);
1481}
1482
13c3b5f5
AC
1483int
1484value_embedded_offset (struct value *value)
1485{
1486 return value->embedded_offset;
1487}
1488
1489void
1490set_value_embedded_offset (struct value *value, int val)
1491{
1492 value->embedded_offset = val;
1493}
b44d461b
AC
1494
1495int
1496value_pointed_to_offset (struct value *value)
1497{
1498 return value->pointed_to_offset;
1499}
1500
1501void
1502set_value_pointed_to_offset (struct value *value, int val)
1503{
1504 value->pointed_to_offset = val;
1505}
13bb5560 1506
c8f2448a 1507const struct lval_funcs *
a471c594 1508value_computed_funcs (const struct value *v)
5f5233d4 1509{
a471c594 1510 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1511
1512 return v->location.computed.funcs;
1513}
1514
1515void *
0e03807e 1516value_computed_closure (const struct value *v)
5f5233d4 1517{
0e03807e 1518 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1519
1520 return v->location.computed.closure;
1521}
1522
13bb5560
AC
1523enum lval_type *
1524deprecated_value_lval_hack (struct value *value)
1525{
1526 return &value->lval;
1527}
1528
a471c594
JK
1529enum lval_type
1530value_lval_const (const struct value *value)
1531{
1532 return value->lval;
1533}
1534
42ae5230 1535CORE_ADDR
de4127a3 1536value_address (const struct value *value)
42ae5230
TT
1537{
1538 if (value->lval == lval_internalvar
e81e7f5e
SC
1539 || value->lval == lval_internalvar_component
1540 || value->lval == lval_xcallable)
42ae5230 1541 return 0;
53ba8333
JB
1542 if (value->parent != NULL)
1543 return value_address (value->parent) + value->offset;
1544 else
1545 return value->location.address + value->offset;
42ae5230
TT
1546}
1547
1548CORE_ADDR
1549value_raw_address (struct value *value)
1550{
1551 if (value->lval == lval_internalvar
e81e7f5e
SC
1552 || value->lval == lval_internalvar_component
1553 || value->lval == lval_xcallable)
42ae5230
TT
1554 return 0;
1555 return value->location.address;
1556}
1557
1558void
1559set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1560{
42ae5230 1561 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1562 && value->lval != lval_internalvar_component
1563 && value->lval != lval_xcallable);
42ae5230 1564 value->location.address = addr;
13bb5560
AC
1565}
1566
1567struct internalvar **
1568deprecated_value_internalvar_hack (struct value *value)
1569{
1570 return &value->location.internalvar;
1571}
1572
1573struct frame_id *
1574deprecated_value_frame_id_hack (struct value *value)
1575{
1576 return &value->frame_id;
1577}
1578
1579short *
1580deprecated_value_regnum_hack (struct value *value)
1581{
1582 return &value->regnum;
1583}
88e3b34b
AC
1584
1585int
1586deprecated_value_modifiable (struct value *value)
1587{
1588 return value->modifiable;
1589}
990a07ab 1590\f
c906108c
SS
1591/* Return a mark in the value chain. All values allocated after the
1592 mark is obtained (except for those released) are subject to being freed
1593 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1594struct value *
fba45db2 1595value_mark (void)
c906108c
SS
1596{
1597 return all_values;
1598}
1599
828d3400
DJ
1600/* Take a reference to VAL. VAL will not be deallocated until all
1601 references are released. */
1602
1603void
1604value_incref (struct value *val)
1605{
1606 val->reference_count++;
1607}
1608
1609/* Release a reference to VAL, which was acquired with value_incref.
1610 This function is also called to deallocate values from the value
1611 chain. */
1612
3e3d7139
JG
1613void
1614value_free (struct value *val)
1615{
1616 if (val)
5f5233d4 1617 {
828d3400
DJ
1618 gdb_assert (val->reference_count > 0);
1619 val->reference_count--;
1620 if (val->reference_count > 0)
1621 return;
1622
4ea48cc1
DJ
1623 /* If there's an associated parent value, drop our reference to
1624 it. */
1625 if (val->parent != NULL)
1626 value_free (val->parent);
1627
5f5233d4
PA
1628 if (VALUE_LVAL (val) == lval_computed)
1629 {
c8f2448a 1630 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1631
1632 if (funcs->free_closure)
1633 funcs->free_closure (val);
1634 }
e81e7f5e
SC
1635 else if (VALUE_LVAL (val) == lval_xcallable)
1636 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1637
1638 xfree (val->contents);
4e07d55f 1639 VEC_free (range_s, val->unavailable);
5f5233d4 1640 }
3e3d7139
JG
1641 xfree (val);
1642}
1643
c906108c
SS
1644/* Free all values allocated since MARK was obtained by value_mark
1645 (except for those released). */
1646void
f23631e4 1647value_free_to_mark (struct value *mark)
c906108c 1648{
f23631e4
AC
1649 struct value *val;
1650 struct value *next;
c906108c
SS
1651
1652 for (val = all_values; val && val != mark; val = next)
1653 {
df407dfe 1654 next = val->next;
e848a8a5 1655 val->released = 1;
c906108c
SS
1656 value_free (val);
1657 }
1658 all_values = val;
1659}
1660
1661/* Free all the values that have been allocated (except for those released).
725e88af
DE
1662 Call after each command, successful or not.
1663 In practice this is called before each command, which is sufficient. */
c906108c
SS
1664
1665void
fba45db2 1666free_all_values (void)
c906108c 1667{
f23631e4
AC
1668 struct value *val;
1669 struct value *next;
c906108c
SS
1670
1671 for (val = all_values; val; val = next)
1672 {
df407dfe 1673 next = val->next;
e848a8a5 1674 val->released = 1;
c906108c
SS
1675 value_free (val);
1676 }
1677
1678 all_values = 0;
1679}
1680
0cf6dd15
TJB
1681/* Frees all the elements in a chain of values. */
1682
1683void
1684free_value_chain (struct value *v)
1685{
1686 struct value *next;
1687
1688 for (; v; v = next)
1689 {
1690 next = value_next (v);
1691 value_free (v);
1692 }
1693}
1694
c906108c
SS
1695/* Remove VAL from the chain all_values
1696 so it will not be freed automatically. */
1697
1698void
f23631e4 1699release_value (struct value *val)
c906108c 1700{
f23631e4 1701 struct value *v;
c906108c
SS
1702
1703 if (all_values == val)
1704 {
1705 all_values = val->next;
06a64a0b 1706 val->next = NULL;
e848a8a5 1707 val->released = 1;
c906108c
SS
1708 return;
1709 }
1710
1711 for (v = all_values; v; v = v->next)
1712 {
1713 if (v->next == val)
1714 {
1715 v->next = val->next;
06a64a0b 1716 val->next = NULL;
e848a8a5 1717 val->released = 1;
c906108c
SS
1718 break;
1719 }
1720 }
1721}
1722
e848a8a5
TT
1723/* If the value is not already released, release it.
1724 If the value is already released, increment its reference count.
1725 That is, this function ensures that the value is released from the
1726 value chain and that the caller owns a reference to it. */
1727
1728void
1729release_value_or_incref (struct value *val)
1730{
1731 if (val->released)
1732 value_incref (val);
1733 else
1734 release_value (val);
1735}
1736
c906108c 1737/* Release all values up to mark */
f23631e4
AC
1738struct value *
1739value_release_to_mark (struct value *mark)
c906108c 1740{
f23631e4
AC
1741 struct value *val;
1742 struct value *next;
c906108c 1743
df407dfe 1744 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1745 {
1746 if (next->next == mark)
1747 {
1748 all_values = next->next;
1749 next->next = NULL;
1750 return val;
1751 }
1752 next->released = 1;
1753 }
c906108c
SS
1754 all_values = 0;
1755 return val;
1756}
1757
1758/* Return a copy of the value ARG.
1759 It contains the same contents, for same memory address,
1760 but it's a different block of storage. */
1761
f23631e4
AC
1762struct value *
1763value_copy (struct value *arg)
c906108c 1764{
4754a64e 1765 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1766 struct value *val;
1767
1768 if (value_lazy (arg))
1769 val = allocate_value_lazy (encl_type);
1770 else
1771 val = allocate_value (encl_type);
df407dfe 1772 val->type = arg->type;
c906108c 1773 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1774 val->location = arg->location;
df407dfe
AC
1775 val->offset = arg->offset;
1776 val->bitpos = arg->bitpos;
1777 val->bitsize = arg->bitsize;
1df6926e 1778 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1779 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1780 val->lazy = arg->lazy;
13c3b5f5 1781 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1782 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1783 val->modifiable = arg->modifiable;
d69fe07e 1784 if (!value_lazy (val))
c906108c 1785 {
990a07ab 1786 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1787 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1788
1789 }
4e07d55f 1790 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1791 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1792 set_value_parent (val, arg->parent);
5f5233d4
PA
1793 if (VALUE_LVAL (val) == lval_computed)
1794 {
c8f2448a 1795 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1796
1797 if (funcs->copy_closure)
1798 val->location.computed.closure = funcs->copy_closure (val);
1799 }
c906108c
SS
1800 return val;
1801}
74bcbdf3 1802
4c082a81
SC
1803/* Return a "const" and/or "volatile" qualified version of the value V.
1804 If CNST is true, then the returned value will be qualified with
1805 "const".
1806 if VOLTL is true, then the returned value will be qualified with
1807 "volatile". */
1808
1809struct value *
1810make_cv_value (int cnst, int voltl, struct value *v)
1811{
1812 struct type *val_type = value_type (v);
1813 struct type *enclosing_type = value_enclosing_type (v);
1814 struct value *cv_val = value_copy (v);
1815
1816 deprecated_set_value_type (cv_val,
1817 make_cv_type (cnst, voltl, val_type, NULL));
1818 set_value_enclosing_type (cv_val,
1819 make_cv_type (cnst, voltl, enclosing_type, NULL));
1820
1821 return cv_val;
1822}
1823
c37f7098
KW
1824/* Return a version of ARG that is non-lvalue. */
1825
1826struct value *
1827value_non_lval (struct value *arg)
1828{
1829 if (VALUE_LVAL (arg) != not_lval)
1830 {
1831 struct type *enc_type = value_enclosing_type (arg);
1832 struct value *val = allocate_value (enc_type);
1833
1834 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1835 TYPE_LENGTH (enc_type));
1836 val->type = arg->type;
1837 set_value_embedded_offset (val, value_embedded_offset (arg));
1838 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1839 return val;
1840 }
1841 return arg;
1842}
1843
6c659fc2
SC
1844/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1845
1846void
1847value_force_lval (struct value *v, CORE_ADDR addr)
1848{
1849 gdb_assert (VALUE_LVAL (v) == not_lval);
1850
1851 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1852 v->lval = lval_memory;
1853 v->location.address = addr;
1854}
1855
74bcbdf3 1856void
0e03807e
TT
1857set_value_component_location (struct value *component,
1858 const struct value *whole)
74bcbdf3 1859{
e81e7f5e
SC
1860 gdb_assert (whole->lval != lval_xcallable);
1861
0e03807e 1862 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1863 VALUE_LVAL (component) = lval_internalvar_component;
1864 else
0e03807e 1865 VALUE_LVAL (component) = whole->lval;
5f5233d4 1866
74bcbdf3 1867 component->location = whole->location;
0e03807e 1868 if (whole->lval == lval_computed)
5f5233d4 1869 {
c8f2448a 1870 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1871
1872 if (funcs->copy_closure)
1873 component->location.computed.closure = funcs->copy_closure (whole);
1874 }
74bcbdf3
PA
1875}
1876
c906108c
SS
1877\f
1878/* Access to the value history. */
1879
1880/* Record a new value in the value history.
eddf0bae 1881 Returns the absolute history index of the entry. */
c906108c
SS
1882
1883int
f23631e4 1884record_latest_value (struct value *val)
c906108c
SS
1885{
1886 int i;
1887
1888 /* We don't want this value to have anything to do with the inferior anymore.
1889 In particular, "set $1 = 50" should not affect the variable from which
1890 the value was taken, and fast watchpoints should be able to assume that
1891 a value on the value history never changes. */
d69fe07e 1892 if (value_lazy (val))
c906108c
SS
1893 value_fetch_lazy (val);
1894 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1895 from. This is a bit dubious, because then *&$1 does not just return $1
1896 but the current contents of that location. c'est la vie... */
1897 val->modifiable = 0;
350e1a76
DE
1898
1899 /* The value may have already been released, in which case we're adding a
1900 new reference for its entry in the history. That is why we call
1901 release_value_or_incref here instead of release_value. */
1902 release_value_or_incref (val);
c906108c
SS
1903
1904 /* Here we treat value_history_count as origin-zero
1905 and applying to the value being stored now. */
1906
1907 i = value_history_count % VALUE_HISTORY_CHUNK;
1908 if (i == 0)
1909 {
8d749320 1910 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1911
fe978cb0
PA
1912 newobj->next = value_history_chain;
1913 value_history_chain = newobj;
c906108c
SS
1914 }
1915
1916 value_history_chain->values[i] = val;
1917
1918 /* Now we regard value_history_count as origin-one
1919 and applying to the value just stored. */
1920
1921 return ++value_history_count;
1922}
1923
1924/* Return a copy of the value in the history with sequence number NUM. */
1925
f23631e4 1926struct value *
fba45db2 1927access_value_history (int num)
c906108c 1928{
f23631e4 1929 struct value_history_chunk *chunk;
52f0bd74
AC
1930 int i;
1931 int absnum = num;
c906108c
SS
1932
1933 if (absnum <= 0)
1934 absnum += value_history_count;
1935
1936 if (absnum <= 0)
1937 {
1938 if (num == 0)
8a3fe4f8 1939 error (_("The history is empty."));
c906108c 1940 else if (num == 1)
8a3fe4f8 1941 error (_("There is only one value in the history."));
c906108c 1942 else
8a3fe4f8 1943 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1944 }
1945 if (absnum > value_history_count)
8a3fe4f8 1946 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1947
1948 absnum--;
1949
1950 /* Now absnum is always absolute and origin zero. */
1951
1952 chunk = value_history_chain;
3e43a32a
MS
1953 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1954 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1955 i > 0; i--)
1956 chunk = chunk->next;
1957
1958 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1959}
1960
c906108c 1961static void
fba45db2 1962show_values (char *num_exp, int from_tty)
c906108c 1963{
52f0bd74 1964 int i;
f23631e4 1965 struct value *val;
c906108c
SS
1966 static int num = 1;
1967
1968 if (num_exp)
1969 {
f132ba9d
TJB
1970 /* "show values +" should print from the stored position.
1971 "show values <exp>" should print around value number <exp>. */
c906108c 1972 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1973 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1974 }
1975 else
1976 {
f132ba9d 1977 /* "show values" means print the last 10 values. */
c906108c
SS
1978 num = value_history_count - 9;
1979 }
1980
1981 if (num <= 0)
1982 num = 1;
1983
1984 for (i = num; i < num + 10 && i <= value_history_count; i++)
1985 {
79a45b7d 1986 struct value_print_options opts;
a109c7c1 1987
c906108c 1988 val = access_value_history (i);
a3f17187 1989 printf_filtered (("$%d = "), i);
79a45b7d
TT
1990 get_user_print_options (&opts);
1991 value_print (val, gdb_stdout, &opts);
a3f17187 1992 printf_filtered (("\n"));
c906108c
SS
1993 }
1994
f132ba9d 1995 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1996 num += 10;
1997
1998 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1999 "show values +". If num_exp is null, this is unnecessary, since
2000 "show values +" is not useful after "show values". */
c906108c
SS
2001 if (from_tty && num_exp)
2002 {
2003 num_exp[0] = '+';
2004 num_exp[1] = '\0';
2005 }
2006}
2007\f
52059ffd
TT
2008enum internalvar_kind
2009{
2010 /* The internal variable is empty. */
2011 INTERNALVAR_VOID,
2012
2013 /* The value of the internal variable is provided directly as
2014 a GDB value object. */
2015 INTERNALVAR_VALUE,
2016
2017 /* A fresh value is computed via a call-back routine on every
2018 access to the internal variable. */
2019 INTERNALVAR_MAKE_VALUE,
2020
2021 /* The internal variable holds a GDB internal convenience function. */
2022 INTERNALVAR_FUNCTION,
2023
2024 /* The variable holds an integer value. */
2025 INTERNALVAR_INTEGER,
2026
2027 /* The variable holds a GDB-provided string. */
2028 INTERNALVAR_STRING,
2029};
2030
2031union internalvar_data
2032{
2033 /* A value object used with INTERNALVAR_VALUE. */
2034 struct value *value;
2035
2036 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2037 struct
2038 {
2039 /* The functions to call. */
2040 const struct internalvar_funcs *functions;
2041
2042 /* The function's user-data. */
2043 void *data;
2044 } make_value;
2045
2046 /* The internal function used with INTERNALVAR_FUNCTION. */
2047 struct
2048 {
2049 struct internal_function *function;
2050 /* True if this is the canonical name for the function. */
2051 int canonical;
2052 } fn;
2053
2054 /* An integer value used with INTERNALVAR_INTEGER. */
2055 struct
2056 {
2057 /* If type is non-NULL, it will be used as the type to generate
2058 a value for this internal variable. If type is NULL, a default
2059 integer type for the architecture is used. */
2060 struct type *type;
2061 LONGEST val;
2062 } integer;
2063
2064 /* A string value used with INTERNALVAR_STRING. */
2065 char *string;
2066};
2067
c906108c
SS
2068/* Internal variables. These are variables within the debugger
2069 that hold values assigned by debugger commands.
2070 The user refers to them with a '$' prefix
2071 that does not appear in the variable names stored internally. */
2072
4fa62494
UW
2073struct internalvar
2074{
2075 struct internalvar *next;
2076 char *name;
4fa62494 2077
78267919
UW
2078 /* We support various different kinds of content of an internal variable.
2079 enum internalvar_kind specifies the kind, and union internalvar_data
2080 provides the data associated with this particular kind. */
2081
52059ffd 2082 enum internalvar_kind kind;
4fa62494 2083
52059ffd 2084 union internalvar_data u;
4fa62494
UW
2085};
2086
c906108c
SS
2087static struct internalvar *internalvars;
2088
3e43a32a
MS
2089/* If the variable does not already exist create it and give it the
2090 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2091static void
2092init_if_undefined_command (char* args, int from_tty)
2093{
2094 struct internalvar* intvar;
2095
2096 /* Parse the expression - this is taken from set_command(). */
2097 struct expression *expr = parse_expression (args);
2098 register struct cleanup *old_chain =
2099 make_cleanup (free_current_contents, &expr);
2100
2101 /* Validate the expression.
2102 Was the expression an assignment?
2103 Or even an expression at all? */
2104 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2105 error (_("Init-if-undefined requires an assignment expression."));
2106
2107 /* Extract the variable from the parsed expression.
2108 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2109 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2110 error (_("The first parameter to init-if-undefined "
2111 "should be a GDB variable."));
53e5f3cf
AS
2112 intvar = expr->elts[2].internalvar;
2113
2114 /* Only evaluate the expression if the lvalue is void.
2115 This may still fail if the expresssion is invalid. */
78267919 2116 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2117 evaluate_expression (expr);
2118
2119 do_cleanups (old_chain);
2120}
2121
2122
c906108c
SS
2123/* Look up an internal variable with name NAME. NAME should not
2124 normally include a dollar sign.
2125
2126 If the specified internal variable does not exist,
c4a3d09a 2127 the return value is NULL. */
c906108c
SS
2128
2129struct internalvar *
bc3b79fd 2130lookup_only_internalvar (const char *name)
c906108c 2131{
52f0bd74 2132 struct internalvar *var;
c906108c
SS
2133
2134 for (var = internalvars; var; var = var->next)
5cb316ef 2135 if (strcmp (var->name, name) == 0)
c906108c
SS
2136 return var;
2137
c4a3d09a
MF
2138 return NULL;
2139}
2140
d55637df
TT
2141/* Complete NAME by comparing it to the names of internal variables.
2142 Returns a vector of newly allocated strings, or NULL if no matches
2143 were found. */
2144
2145VEC (char_ptr) *
2146complete_internalvar (const char *name)
2147{
2148 VEC (char_ptr) *result = NULL;
2149 struct internalvar *var;
2150 int len;
2151
2152 len = strlen (name);
2153
2154 for (var = internalvars; var; var = var->next)
2155 if (strncmp (var->name, name, len) == 0)
2156 {
2157 char *r = xstrdup (var->name);
2158
2159 VEC_safe_push (char_ptr, result, r);
2160 }
2161
2162 return result;
2163}
c4a3d09a
MF
2164
2165/* Create an internal variable with name NAME and with a void value.
2166 NAME should not normally include a dollar sign. */
2167
2168struct internalvar *
bc3b79fd 2169create_internalvar (const char *name)
c4a3d09a 2170{
8d749320 2171 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2172
1754f103 2173 var->name = concat (name, (char *)NULL);
78267919 2174 var->kind = INTERNALVAR_VOID;
c906108c
SS
2175 var->next = internalvars;
2176 internalvars = var;
2177 return var;
2178}
2179
4aa995e1
PA
2180/* Create an internal variable with name NAME and register FUN as the
2181 function that value_of_internalvar uses to create a value whenever
2182 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2183 dollar sign. DATA is passed uninterpreted to FUN when it is
2184 called. CLEANUP, if not NULL, is called when the internal variable
2185 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2186
2187struct internalvar *
22d2b532
SDJ
2188create_internalvar_type_lazy (const char *name,
2189 const struct internalvar_funcs *funcs,
2190 void *data)
4aa995e1 2191{
4fa62494 2192 struct internalvar *var = create_internalvar (name);
a109c7c1 2193
78267919 2194 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2195 var->u.make_value.functions = funcs;
2196 var->u.make_value.data = data;
4aa995e1
PA
2197 return var;
2198}
c4a3d09a 2199
22d2b532
SDJ
2200/* See documentation in value.h. */
2201
2202int
2203compile_internalvar_to_ax (struct internalvar *var,
2204 struct agent_expr *expr,
2205 struct axs_value *value)
2206{
2207 if (var->kind != INTERNALVAR_MAKE_VALUE
2208 || var->u.make_value.functions->compile_to_ax == NULL)
2209 return 0;
2210
2211 var->u.make_value.functions->compile_to_ax (var, expr, value,
2212 var->u.make_value.data);
2213 return 1;
2214}
2215
c4a3d09a
MF
2216/* Look up an internal variable with name NAME. NAME should not
2217 normally include a dollar sign.
2218
2219 If the specified internal variable does not exist,
2220 one is created, with a void value. */
2221
2222struct internalvar *
bc3b79fd 2223lookup_internalvar (const char *name)
c4a3d09a
MF
2224{
2225 struct internalvar *var;
2226
2227 var = lookup_only_internalvar (name);
2228 if (var)
2229 return var;
2230
2231 return create_internalvar (name);
2232}
2233
78267919
UW
2234/* Return current value of internal variable VAR. For variables that
2235 are not inherently typed, use a value type appropriate for GDBARCH. */
2236
f23631e4 2237struct value *
78267919 2238value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2239{
f23631e4 2240 struct value *val;
0914bcdb
SS
2241 struct trace_state_variable *tsv;
2242
2243 /* If there is a trace state variable of the same name, assume that
2244 is what we really want to see. */
2245 tsv = find_trace_state_variable (var->name);
2246 if (tsv)
2247 {
2248 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2249 &(tsv->value));
2250 if (tsv->value_known)
2251 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2252 tsv->value);
2253 else
2254 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2255 return val;
2256 }
c906108c 2257
78267919 2258 switch (var->kind)
5f5233d4 2259 {
78267919
UW
2260 case INTERNALVAR_VOID:
2261 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2262 break;
4fa62494 2263
78267919
UW
2264 case INTERNALVAR_FUNCTION:
2265 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2266 break;
4fa62494 2267
cab0c772
UW
2268 case INTERNALVAR_INTEGER:
2269 if (!var->u.integer.type)
78267919 2270 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2271 var->u.integer.val);
78267919 2272 else
cab0c772
UW
2273 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2274 break;
2275
78267919
UW
2276 case INTERNALVAR_STRING:
2277 val = value_cstring (var->u.string, strlen (var->u.string),
2278 builtin_type (gdbarch)->builtin_char);
2279 break;
4fa62494 2280
78267919
UW
2281 case INTERNALVAR_VALUE:
2282 val = value_copy (var->u.value);
4aa995e1
PA
2283 if (value_lazy (val))
2284 value_fetch_lazy (val);
78267919 2285 break;
4aa995e1 2286
78267919 2287 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2288 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2289 var->u.make_value.data);
78267919
UW
2290 break;
2291
2292 default:
9b20d036 2293 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2294 }
2295
2296 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2297 on this value go back to affect the original internal variable.
2298
2299 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2300 no underlying modifyable state in the internal variable.
2301
2302 Likewise, if the variable's value is a computed lvalue, we want
2303 references to it to produce another computed lvalue, where
2304 references and assignments actually operate through the
2305 computed value's functions.
2306
2307 This means that internal variables with computed values
2308 behave a little differently from other internal variables:
2309 assignments to them don't just replace the previous value
2310 altogether. At the moment, this seems like the behavior we
2311 want. */
2312
2313 if (var->kind != INTERNALVAR_MAKE_VALUE
2314 && val->lval != lval_computed)
2315 {
2316 VALUE_LVAL (val) = lval_internalvar;
2317 VALUE_INTERNALVAR (val) = var;
5f5233d4 2318 }
d3c139e9 2319
4fa62494
UW
2320 return val;
2321}
d3c139e9 2322
4fa62494
UW
2323int
2324get_internalvar_integer (struct internalvar *var, LONGEST *result)
2325{
3158c6ed 2326 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2327 {
cab0c772
UW
2328 *result = var->u.integer.val;
2329 return 1;
3158c6ed 2330 }
d3c139e9 2331
3158c6ed
PA
2332 if (var->kind == INTERNALVAR_VALUE)
2333 {
2334 struct type *type = check_typedef (value_type (var->u.value));
2335
2336 if (TYPE_CODE (type) == TYPE_CODE_INT)
2337 {
2338 *result = value_as_long (var->u.value);
2339 return 1;
2340 }
4fa62494 2341 }
3158c6ed
PA
2342
2343 return 0;
4fa62494 2344}
d3c139e9 2345
4fa62494
UW
2346static int
2347get_internalvar_function (struct internalvar *var,
2348 struct internal_function **result)
2349{
78267919 2350 switch (var->kind)
d3c139e9 2351 {
78267919
UW
2352 case INTERNALVAR_FUNCTION:
2353 *result = var->u.fn.function;
4fa62494 2354 return 1;
d3c139e9 2355
4fa62494
UW
2356 default:
2357 return 0;
2358 }
c906108c
SS
2359}
2360
2361void
fba45db2 2362set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2363 int bitsize, struct value *newval)
c906108c 2364{
4fa62494 2365 gdb_byte *addr;
3ae385af
SM
2366 struct gdbarch *arch;
2367 int unit_size;
c906108c 2368
78267919 2369 switch (var->kind)
4fa62494 2370 {
78267919
UW
2371 case INTERNALVAR_VALUE:
2372 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2373 arch = get_value_arch (var->u.value);
2374 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2375
2376 if (bitsize)
50810684 2377 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2378 value_as_long (newval), bitpos, bitsize);
2379 else
3ae385af 2380 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2381 TYPE_LENGTH (value_type (newval)));
2382 break;
78267919
UW
2383
2384 default:
2385 /* We can never get a component of any other kind. */
9b20d036 2386 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2387 }
c906108c
SS
2388}
2389
2390void
f23631e4 2391set_internalvar (struct internalvar *var, struct value *val)
c906108c 2392{
78267919 2393 enum internalvar_kind new_kind;
4fa62494 2394 union internalvar_data new_data = { 0 };
c906108c 2395
78267919 2396 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2397 error (_("Cannot overwrite convenience function %s"), var->name);
2398
4fa62494 2399 /* Prepare new contents. */
78267919 2400 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2401 {
2402 case TYPE_CODE_VOID:
78267919 2403 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2404 break;
2405
2406 case TYPE_CODE_INTERNAL_FUNCTION:
2407 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2408 new_kind = INTERNALVAR_FUNCTION;
2409 get_internalvar_function (VALUE_INTERNALVAR (val),
2410 &new_data.fn.function);
2411 /* Copies created here are never canonical. */
4fa62494
UW
2412 break;
2413
4fa62494 2414 default:
78267919
UW
2415 new_kind = INTERNALVAR_VALUE;
2416 new_data.value = value_copy (val);
2417 new_data.value->modifiable = 1;
4fa62494
UW
2418
2419 /* Force the value to be fetched from the target now, to avoid problems
2420 later when this internalvar is referenced and the target is gone or
2421 has changed. */
78267919
UW
2422 if (value_lazy (new_data.value))
2423 value_fetch_lazy (new_data.value);
4fa62494
UW
2424
2425 /* Release the value from the value chain to prevent it from being
2426 deleted by free_all_values. From here on this function should not
2427 call error () until new_data is installed into the var->u to avoid
2428 leaking memory. */
78267919 2429 release_value (new_data.value);
4fa62494
UW
2430 break;
2431 }
2432
2433 /* Clean up old contents. */
2434 clear_internalvar (var);
2435
2436 /* Switch over. */
78267919 2437 var->kind = new_kind;
4fa62494 2438 var->u = new_data;
c906108c
SS
2439 /* End code which must not call error(). */
2440}
2441
4fa62494
UW
2442void
2443set_internalvar_integer (struct internalvar *var, LONGEST l)
2444{
2445 /* Clean up old contents. */
2446 clear_internalvar (var);
2447
cab0c772
UW
2448 var->kind = INTERNALVAR_INTEGER;
2449 var->u.integer.type = NULL;
2450 var->u.integer.val = l;
78267919
UW
2451}
2452
2453void
2454set_internalvar_string (struct internalvar *var, const char *string)
2455{
2456 /* Clean up old contents. */
2457 clear_internalvar (var);
2458
2459 var->kind = INTERNALVAR_STRING;
2460 var->u.string = xstrdup (string);
4fa62494
UW
2461}
2462
2463static void
2464set_internalvar_function (struct internalvar *var, struct internal_function *f)
2465{
2466 /* Clean up old contents. */
2467 clear_internalvar (var);
2468
78267919
UW
2469 var->kind = INTERNALVAR_FUNCTION;
2470 var->u.fn.function = f;
2471 var->u.fn.canonical = 1;
2472 /* Variables installed here are always the canonical version. */
4fa62494
UW
2473}
2474
2475void
2476clear_internalvar (struct internalvar *var)
2477{
2478 /* Clean up old contents. */
78267919 2479 switch (var->kind)
4fa62494 2480 {
78267919
UW
2481 case INTERNALVAR_VALUE:
2482 value_free (var->u.value);
2483 break;
2484
2485 case INTERNALVAR_STRING:
2486 xfree (var->u.string);
4fa62494
UW
2487 break;
2488
22d2b532
SDJ
2489 case INTERNALVAR_MAKE_VALUE:
2490 if (var->u.make_value.functions->destroy != NULL)
2491 var->u.make_value.functions->destroy (var->u.make_value.data);
2492 break;
2493
4fa62494 2494 default:
4fa62494
UW
2495 break;
2496 }
2497
78267919
UW
2498 /* Reset to void kind. */
2499 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2500}
2501
c906108c 2502char *
fba45db2 2503internalvar_name (struct internalvar *var)
c906108c
SS
2504{
2505 return var->name;
2506}
2507
4fa62494
UW
2508static struct internal_function *
2509create_internal_function (const char *name,
2510 internal_function_fn handler, void *cookie)
bc3b79fd 2511{
bc3b79fd 2512 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2513
bc3b79fd
TJB
2514 ifn->name = xstrdup (name);
2515 ifn->handler = handler;
2516 ifn->cookie = cookie;
4fa62494 2517 return ifn;
bc3b79fd
TJB
2518}
2519
2520char *
2521value_internal_function_name (struct value *val)
2522{
4fa62494
UW
2523 struct internal_function *ifn;
2524 int result;
2525
2526 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2527 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2528 gdb_assert (result);
2529
bc3b79fd
TJB
2530 return ifn->name;
2531}
2532
2533struct value *
d452c4bc
UW
2534call_internal_function (struct gdbarch *gdbarch,
2535 const struct language_defn *language,
2536 struct value *func, int argc, struct value **argv)
bc3b79fd 2537{
4fa62494
UW
2538 struct internal_function *ifn;
2539 int result;
2540
2541 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2542 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2543 gdb_assert (result);
2544
d452c4bc 2545 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2546}
2547
2548/* The 'function' command. This does nothing -- it is just a
2549 placeholder to let "help function NAME" work. This is also used as
2550 the implementation of the sub-command that is created when
2551 registering an internal function. */
2552static void
2553function_command (char *command, int from_tty)
2554{
2555 /* Do nothing. */
2556}
2557
2558/* Clean up if an internal function's command is destroyed. */
2559static void
2560function_destroyer (struct cmd_list_element *self, void *ignore)
2561{
6f937416 2562 xfree ((char *) self->name);
1947513d 2563 xfree ((char *) self->doc);
bc3b79fd
TJB
2564}
2565
2566/* Add a new internal function. NAME is the name of the function; DOC
2567 is a documentation string describing the function. HANDLER is
2568 called when the function is invoked. COOKIE is an arbitrary
2569 pointer which is passed to HANDLER and is intended for "user
2570 data". */
2571void
2572add_internal_function (const char *name, const char *doc,
2573 internal_function_fn handler, void *cookie)
2574{
2575 struct cmd_list_element *cmd;
4fa62494 2576 struct internal_function *ifn;
bc3b79fd 2577 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2578
2579 ifn = create_internal_function (name, handler, cookie);
2580 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2581
2582 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2583 &functionlist);
2584 cmd->destroyer = function_destroyer;
2585}
2586
ae5a43e0
DJ
2587/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2588 prevent cycles / duplicates. */
2589
4e7a5ef5 2590void
ae5a43e0
DJ
2591preserve_one_value (struct value *value, struct objfile *objfile,
2592 htab_t copied_types)
2593{
2594 if (TYPE_OBJFILE (value->type) == objfile)
2595 value->type = copy_type_recursive (objfile, value->type, copied_types);
2596
2597 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2598 value->enclosing_type = copy_type_recursive (objfile,
2599 value->enclosing_type,
2600 copied_types);
2601}
2602
78267919
UW
2603/* Likewise for internal variable VAR. */
2604
2605static void
2606preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2607 htab_t copied_types)
2608{
2609 switch (var->kind)
2610 {
cab0c772
UW
2611 case INTERNALVAR_INTEGER:
2612 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2613 var->u.integer.type
2614 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2615 break;
2616
78267919
UW
2617 case INTERNALVAR_VALUE:
2618 preserve_one_value (var->u.value, objfile, copied_types);
2619 break;
2620 }
2621}
2622
ae5a43e0
DJ
2623/* Update the internal variables and value history when OBJFILE is
2624 discarded; we must copy the types out of the objfile. New global types
2625 will be created for every convenience variable which currently points to
2626 this objfile's types, and the convenience variables will be adjusted to
2627 use the new global types. */
c906108c
SS
2628
2629void
ae5a43e0 2630preserve_values (struct objfile *objfile)
c906108c 2631{
ae5a43e0
DJ
2632 htab_t copied_types;
2633 struct value_history_chunk *cur;
52f0bd74 2634 struct internalvar *var;
ae5a43e0 2635 int i;
c906108c 2636
ae5a43e0
DJ
2637 /* Create the hash table. We allocate on the objfile's obstack, since
2638 it is soon to be deleted. */
2639 copied_types = create_copied_types_hash (objfile);
2640
2641 for (cur = value_history_chain; cur; cur = cur->next)
2642 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2643 if (cur->values[i])
2644 preserve_one_value (cur->values[i], objfile, copied_types);
2645
2646 for (var = internalvars; var; var = var->next)
78267919 2647 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2648
6dddc817 2649 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2650
ae5a43e0 2651 htab_delete (copied_types);
c906108c
SS
2652}
2653
2654static void
fba45db2 2655show_convenience (char *ignore, int from_tty)
c906108c 2656{
e17c207e 2657 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2658 struct internalvar *var;
c906108c 2659 int varseen = 0;
79a45b7d 2660 struct value_print_options opts;
c906108c 2661
79a45b7d 2662 get_user_print_options (&opts);
c906108c
SS
2663 for (var = internalvars; var; var = var->next)
2664 {
c709acd1 2665
c906108c
SS
2666 if (!varseen)
2667 {
2668 varseen = 1;
2669 }
a3f17187 2670 printf_filtered (("$%s = "), var->name);
c709acd1 2671
492d29ea 2672 TRY
c709acd1
PA
2673 {
2674 struct value *val;
2675
2676 val = value_of_internalvar (gdbarch, var);
2677 value_print (val, gdb_stdout, &opts);
2678 }
492d29ea
PA
2679 CATCH (ex, RETURN_MASK_ERROR)
2680 {
2681 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2682 }
2683 END_CATCH
2684
a3f17187 2685 printf_filtered (("\n"));
c906108c
SS
2686 }
2687 if (!varseen)
f47f77df
DE
2688 {
2689 /* This text does not mention convenience functions on purpose.
2690 The user can't create them except via Python, and if Python support
2691 is installed this message will never be printed ($_streq will
2692 exist). */
2693 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2694 "Convenience variables have "
2695 "names starting with \"$\";\n"
2696 "use \"set\" as in \"set "
2697 "$foo = 5\" to define them.\n"));
2698 }
c906108c
SS
2699}
2700\f
e81e7f5e
SC
2701/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2702
2703struct value *
2704value_of_xmethod (struct xmethod_worker *worker)
2705{
2706 if (worker->value == NULL)
2707 {
2708 struct value *v;
2709
2710 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2711 v->lval = lval_xcallable;
2712 v->location.xm_worker = worker;
2713 v->modifiable = 0;
2714 worker->value = v;
2715 }
2716
2717 return worker->value;
2718}
2719
2ce1cdbf
DE
2720/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2721
2722struct type *
2723result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2724{
2725 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2726 && method->lval == lval_xcallable && argc > 0);
2727
2728 return get_xmethod_result_type (method->location.xm_worker,
2729 argv[0], argv + 1, argc - 1);
2730}
2731
e81e7f5e
SC
2732/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2733
2734struct value *
2735call_xmethod (struct value *method, int argc, struct value **argv)
2736{
2737 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2738 && method->lval == lval_xcallable && argc > 0);
2739
2740 return invoke_xmethod (method->location.xm_worker,
2741 argv[0], argv + 1, argc - 1);
2742}
2743\f
c906108c
SS
2744/* Extract a value as a C number (either long or double).
2745 Knows how to convert fixed values to double, or
2746 floating values to long.
2747 Does not deallocate the value. */
2748
2749LONGEST
f23631e4 2750value_as_long (struct value *val)
c906108c
SS
2751{
2752 /* This coerces arrays and functions, which is necessary (e.g.
2753 in disassemble_command). It also dereferences references, which
2754 I suspect is the most logical thing to do. */
994b9211 2755 val = coerce_array (val);
0fd88904 2756 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2757}
2758
2759DOUBLEST
f23631e4 2760value_as_double (struct value *val)
c906108c
SS
2761{
2762 DOUBLEST foo;
2763 int inv;
c5aa993b 2764
0fd88904 2765 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2766 if (inv)
8a3fe4f8 2767 error (_("Invalid floating value found in program."));
c906108c
SS
2768 return foo;
2769}
4ef30785 2770
581e13c1 2771/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2772 Note that val's type may not actually be a pointer; value_as_long
2773 handles all the cases. */
c906108c 2774CORE_ADDR
f23631e4 2775value_as_address (struct value *val)
c906108c 2776{
50810684
UW
2777 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2778
c906108c
SS
2779 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2780 whether we want this to be true eventually. */
2781#if 0
bf6ae464 2782 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2783 non-address (e.g. argument to "signal", "info break", etc.), or
2784 for pointers to char, in which the low bits *are* significant. */
50810684 2785 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2786#else
f312f057
JB
2787
2788 /* There are several targets (IA-64, PowerPC, and others) which
2789 don't represent pointers to functions as simply the address of
2790 the function's entry point. For example, on the IA-64, a
2791 function pointer points to a two-word descriptor, generated by
2792 the linker, which contains the function's entry point, and the
2793 value the IA-64 "global pointer" register should have --- to
2794 support position-independent code. The linker generates
2795 descriptors only for those functions whose addresses are taken.
2796
2797 On such targets, it's difficult for GDB to convert an arbitrary
2798 function address into a function pointer; it has to either find
2799 an existing descriptor for that function, or call malloc and
2800 build its own. On some targets, it is impossible for GDB to
2801 build a descriptor at all: the descriptor must contain a jump
2802 instruction; data memory cannot be executed; and code memory
2803 cannot be modified.
2804
2805 Upon entry to this function, if VAL is a value of type `function'
2806 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2807 value_address (val) is the address of the function. This is what
f312f057
JB
2808 you'll get if you evaluate an expression like `main'. The call
2809 to COERCE_ARRAY below actually does all the usual unary
2810 conversions, which includes converting values of type `function'
2811 to `pointer to function'. This is the challenging conversion
2812 discussed above. Then, `unpack_long' will convert that pointer
2813 back into an address.
2814
2815 So, suppose the user types `disassemble foo' on an architecture
2816 with a strange function pointer representation, on which GDB
2817 cannot build its own descriptors, and suppose further that `foo'
2818 has no linker-built descriptor. The address->pointer conversion
2819 will signal an error and prevent the command from running, even
2820 though the next step would have been to convert the pointer
2821 directly back into the same address.
2822
2823 The following shortcut avoids this whole mess. If VAL is a
2824 function, just return its address directly. */
df407dfe
AC
2825 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2826 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2827 return value_address (val);
f312f057 2828
994b9211 2829 val = coerce_array (val);
fc0c74b1
AC
2830
2831 /* Some architectures (e.g. Harvard), map instruction and data
2832 addresses onto a single large unified address space. For
2833 instance: An architecture may consider a large integer in the
2834 range 0x10000000 .. 0x1000ffff to already represent a data
2835 addresses (hence not need a pointer to address conversion) while
2836 a small integer would still need to be converted integer to
2837 pointer to address. Just assume such architectures handle all
2838 integer conversions in a single function. */
2839
2840 /* JimB writes:
2841
2842 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2843 must admonish GDB hackers to make sure its behavior matches the
2844 compiler's, whenever possible.
2845
2846 In general, I think GDB should evaluate expressions the same way
2847 the compiler does. When the user copies an expression out of
2848 their source code and hands it to a `print' command, they should
2849 get the same value the compiler would have computed. Any
2850 deviation from this rule can cause major confusion and annoyance,
2851 and needs to be justified carefully. In other words, GDB doesn't
2852 really have the freedom to do these conversions in clever and
2853 useful ways.
2854
2855 AndrewC pointed out that users aren't complaining about how GDB
2856 casts integers to pointers; they are complaining that they can't
2857 take an address from a disassembly listing and give it to `x/i'.
2858 This is certainly important.
2859
79dd2d24 2860 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2861 makes it possible for GDB to "get it right" in all circumstances
2862 --- the target has complete control over how things get done, so
2863 people can Do The Right Thing for their target without breaking
2864 anyone else. The standard doesn't specify how integers get
2865 converted to pointers; usually, the ABI doesn't either, but
2866 ABI-specific code is a more reasonable place to handle it. */
2867
df407dfe
AC
2868 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2869 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2870 && gdbarch_integer_to_address_p (gdbarch))
2871 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2872 value_contents (val));
fc0c74b1 2873
0fd88904 2874 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2875#endif
2876}
2877\f
2878/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2879 as a long, or as a double, assuming the raw data is described
2880 by type TYPE. Knows how to convert different sizes of values
2881 and can convert between fixed and floating point. We don't assume
2882 any alignment for the raw data. Return value is in host byte order.
2883
2884 If you want functions and arrays to be coerced to pointers, and
2885 references to be dereferenced, call value_as_long() instead.
2886
2887 C++: It is assumed that the front-end has taken care of
2888 all matters concerning pointers to members. A pointer
2889 to member which reaches here is considered to be equivalent
2890 to an INT (or some size). After all, it is only an offset. */
2891
2892LONGEST
fc1a4b47 2893unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2894{
e17a4113 2895 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2896 enum type_code code = TYPE_CODE (type);
2897 int len = TYPE_LENGTH (type);
2898 int nosign = TYPE_UNSIGNED (type);
c906108c 2899
c906108c
SS
2900 switch (code)
2901 {
2902 case TYPE_CODE_TYPEDEF:
2903 return unpack_long (check_typedef (type), valaddr);
2904 case TYPE_CODE_ENUM:
4f2aea11 2905 case TYPE_CODE_FLAGS:
c906108c
SS
2906 case TYPE_CODE_BOOL:
2907 case TYPE_CODE_INT:
2908 case TYPE_CODE_CHAR:
2909 case TYPE_CODE_RANGE:
0d5de010 2910 case TYPE_CODE_MEMBERPTR:
c906108c 2911 if (nosign)
e17a4113 2912 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2913 else
e17a4113 2914 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2915
2916 case TYPE_CODE_FLT:
96d2f608 2917 return extract_typed_floating (valaddr, type);
c906108c 2918
4ef30785
TJB
2919 case TYPE_CODE_DECFLOAT:
2920 /* libdecnumber has a function to convert from decimal to integer, but
2921 it doesn't work when the decimal number has a fractional part. */
e17a4113 2922 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2923
c906108c
SS
2924 case TYPE_CODE_PTR:
2925 case TYPE_CODE_REF:
2926 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2927 whether we want this to be true eventually. */
4478b372 2928 return extract_typed_address (valaddr, type);
c906108c 2929
c906108c 2930 default:
8a3fe4f8 2931 error (_("Value can't be converted to integer."));
c906108c 2932 }
c5aa993b 2933 return 0; /* Placate lint. */
c906108c
SS
2934}
2935
2936/* Return a double value from the specified type and address.
2937 INVP points to an int which is set to 0 for valid value,
2938 1 for invalid value (bad float format). In either case,
2939 the returned double is OK to use. Argument is in target
2940 format, result is in host format. */
2941
2942DOUBLEST
fc1a4b47 2943unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2944{
e17a4113 2945 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2946 enum type_code code;
2947 int len;
2948 int nosign;
2949
581e13c1 2950 *invp = 0; /* Assume valid. */
f168693b 2951 type = check_typedef (type);
c906108c
SS
2952 code = TYPE_CODE (type);
2953 len = TYPE_LENGTH (type);
2954 nosign = TYPE_UNSIGNED (type);
2955 if (code == TYPE_CODE_FLT)
2956 {
75bc7ddf
AC
2957 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2958 floating-point value was valid (using the macro
2959 INVALID_FLOAT). That test/macro have been removed.
2960
2961 It turns out that only the VAX defined this macro and then
2962 only in a non-portable way. Fixing the portability problem
2963 wouldn't help since the VAX floating-point code is also badly
2964 bit-rotten. The target needs to add definitions for the
ea06eb3d 2965 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2966 exactly describe the target floating-point format. The
2967 problem here is that the corresponding floatformat_vax_f and
2968 floatformat_vax_d values these methods should be set to are
2969 also not defined either. Oops!
2970
2971 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2972 definitions and the new cases for floatformat_is_valid (). */
2973
2974 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2975 {
2976 *invp = 1;
2977 return 0.0;
2978 }
2979
96d2f608 2980 return extract_typed_floating (valaddr, type);
c906108c 2981 }
4ef30785 2982 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2983 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2984 else if (nosign)
2985 {
2986 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2987 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2988 }
2989 else
2990 {
2991 /* Signed -- we are OK with unpack_long. */
2992 return unpack_long (type, valaddr);
2993 }
2994}
2995
2996/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2997 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2998 We don't assume any alignment for the raw data. Return value is in
2999 host byte order.
3000
3001 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3002 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3003
3004 C++: It is assumed that the front-end has taken care of
3005 all matters concerning pointers to members. A pointer
3006 to member which reaches here is considered to be equivalent
3007 to an INT (or some size). After all, it is only an offset. */
3008
3009CORE_ADDR
fc1a4b47 3010unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3011{
3012 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3013 whether we want this to be true eventually. */
3014 return unpack_long (type, valaddr);
3015}
4478b372 3016
c906108c 3017\f
1596cb5d 3018/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3019 TYPE. */
c906108c 3020
f23631e4 3021struct value *
fba45db2 3022value_static_field (struct type *type, int fieldno)
c906108c 3023{
948e66d9
DJ
3024 struct value *retval;
3025
1596cb5d 3026 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3027 {
1596cb5d 3028 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3029 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3030 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3031 break;
3032 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3033 {
ff355380 3034 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3035 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3036 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3037
d12307c1 3038 if (sym.symbol == NULL)
c906108c 3039 {
a109c7c1 3040 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3041 reported as non-debuggable symbols. */
3b7344d5
TT
3042 struct bound_minimal_symbol msym
3043 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3044
3b7344d5 3045 if (!msym.minsym)
686d4def 3046 return allocate_optimized_out_value (type);
c906108c 3047 else
c5aa993b 3048 {
52e9fde8 3049 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3050 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3051 }
3052 }
3053 else
d12307c1 3054 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3055 break;
c906108c 3056 }
1596cb5d 3057 default:
f3574227 3058 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3059 }
3060
948e66d9 3061 return retval;
c906108c
SS
3062}
3063
4dfea560
DE
3064/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3065 You have to be careful here, since the size of the data area for the value
3066 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3067 than the old enclosing type, you have to allocate more space for the
3068 data. */
2b127877 3069
4dfea560
DE
3070void
3071set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3072{
5fdf6324
AB
3073 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3074 {
3075 check_type_length_before_alloc (new_encl_type);
3076 val->contents
3077 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3078 }
3e3d7139
JG
3079
3080 val->enclosing_type = new_encl_type;
2b127877
DB
3081}
3082
c906108c
SS
3083/* Given a value ARG1 (offset by OFFSET bytes)
3084 of a struct or union type ARG_TYPE,
3085 extract and return the value of one of its (non-static) fields.
581e13c1 3086 FIELDNO says which field. */
c906108c 3087
f23631e4
AC
3088struct value *
3089value_primitive_field (struct value *arg1, int offset,
aa1ee363 3090 int fieldno, struct type *arg_type)
c906108c 3091{
f23631e4 3092 struct value *v;
52f0bd74 3093 struct type *type;
3ae385af
SM
3094 struct gdbarch *arch = get_value_arch (arg1);
3095 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3096
f168693b 3097 arg_type = check_typedef (arg_type);
c906108c 3098 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3099
3100 /* Call check_typedef on our type to make sure that, if TYPE
3101 is a TYPE_CODE_TYPEDEF, its length is set to the length
3102 of the target type instead of zero. However, we do not
3103 replace the typedef type by the target type, because we want
3104 to keep the typedef in order to be able to print the type
3105 description correctly. */
3106 check_typedef (type);
c906108c 3107
691a26f5 3108 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3109 {
22c05d8a
JK
3110 /* Handle packed fields.
3111
3112 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3113 set. If possible, arrange offset and bitpos so that we can
3114 do a single aligned read of the size of the containing type.
3115 Otherwise, adjust offset to the byte containing the first
3116 bit. Assume that the address, offset, and embedded offset
3117 are sufficiently aligned. */
22c05d8a 3118
4ea48cc1
DJ
3119 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3120 int container_bitsize = TYPE_LENGTH (type) * 8;
3121
9a0dc9e3
PA
3122 v = allocate_value_lazy (type);
3123 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3124 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3125 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3126 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3127 else
9a0dc9e3
PA
3128 v->bitpos = bitpos % 8;
3129 v->offset = (value_embedded_offset (arg1)
3130 + offset
3131 + (bitpos - v->bitpos) / 8);
3132 set_value_parent (v, arg1);
3133 if (!value_lazy (arg1))
3134 value_fetch_lazy (v);
c906108c
SS
3135 }
3136 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3137 {
3138 /* This field is actually a base subobject, so preserve the
39d37385
PA
3139 entire object's contents for later references to virtual
3140 bases, etc. */
be335936 3141 int boffset;
a4e2ee12
DJ
3142
3143 /* Lazy register values with offsets are not supported. */
3144 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3145 value_fetch_lazy (arg1);
3146
9a0dc9e3
PA
3147 /* We special case virtual inheritance here because this
3148 requires access to the contents, which we would rather avoid
3149 for references to ordinary fields of unavailable values. */
3150 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3151 boffset = baseclass_offset (arg_type, fieldno,
3152 value_contents (arg1),
3153 value_embedded_offset (arg1),
3154 value_address (arg1),
3155 arg1);
c906108c 3156 else
9a0dc9e3 3157 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3158
9a0dc9e3
PA
3159 if (value_lazy (arg1))
3160 v = allocate_value_lazy (value_enclosing_type (arg1));
3161 else
3162 {
3163 v = allocate_value (value_enclosing_type (arg1));
3164 value_contents_copy_raw (v, 0, arg1, 0,
3165 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3166 }
9a0dc9e3
PA
3167 v->type = type;
3168 v->offset = value_offset (arg1);
3169 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3170 }
3171 else
3172 {
3173 /* Plain old data member */
3ae385af
SM
3174 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3175 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3176
3177 /* Lazy register values with offsets are not supported. */
3178 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3179 value_fetch_lazy (arg1);
3180
9a0dc9e3 3181 if (value_lazy (arg1))
3e3d7139 3182 v = allocate_value_lazy (type);
c906108c 3183 else
3e3d7139
JG
3184 {
3185 v = allocate_value (type);
39d37385
PA
3186 value_contents_copy_raw (v, value_embedded_offset (v),
3187 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3188 type_length_units (type));
3e3d7139 3189 }
df407dfe 3190 v->offset = (value_offset (arg1) + offset
13c3b5f5 3191 + value_embedded_offset (arg1));
c906108c 3192 }
74bcbdf3 3193 set_value_component_location (v, arg1);
9ee8fc9d 3194 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3195 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3196 return v;
3197}
3198
3199/* Given a value ARG1 of a struct or union type,
3200 extract and return the value of one of its (non-static) fields.
581e13c1 3201 FIELDNO says which field. */
c906108c 3202
f23631e4 3203struct value *
aa1ee363 3204value_field (struct value *arg1, int fieldno)
c906108c 3205{
df407dfe 3206 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3207}
3208
3209/* Return a non-virtual function as a value.
3210 F is the list of member functions which contains the desired method.
0478d61c
FF
3211 J is an index into F which provides the desired method.
3212
3213 We only use the symbol for its address, so be happy with either a
581e13c1 3214 full symbol or a minimal symbol. */
c906108c 3215
f23631e4 3216struct value *
3e43a32a
MS
3217value_fn_field (struct value **arg1p, struct fn_field *f,
3218 int j, struct type *type,
fba45db2 3219 int offset)
c906108c 3220{
f23631e4 3221 struct value *v;
52f0bd74 3222 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3223 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3224 struct symbol *sym;
7c7b6655 3225 struct bound_minimal_symbol msym;
c906108c 3226
d12307c1 3227 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3228 if (sym != NULL)
0478d61c 3229 {
7c7b6655 3230 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3231 }
3232 else
3233 {
3234 gdb_assert (sym == NULL);
7c7b6655
TT
3235 msym = lookup_bound_minimal_symbol (physname);
3236 if (msym.minsym == NULL)
5ae326fa 3237 return NULL;
0478d61c
FF
3238 }
3239
c906108c 3240 v = allocate_value (ftype);
0478d61c
FF
3241 if (sym)
3242 {
42ae5230 3243 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3244 }
3245 else
3246 {
bccdca4a
UW
3247 /* The minimal symbol might point to a function descriptor;
3248 resolve it to the actual code address instead. */
7c7b6655 3249 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3250 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3251
42ae5230
TT
3252 set_value_address (v,
3253 gdbarch_convert_from_func_ptr_addr
77e371c0 3254 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3255 }
c906108c
SS
3256
3257 if (arg1p)
c5aa993b 3258 {
df407dfe 3259 if (type != value_type (*arg1p))
c5aa993b
JM
3260 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3261 value_addr (*arg1p)));
3262
070ad9f0 3263 /* Move the `this' pointer according to the offset.
581e13c1 3264 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3265 }
3266
3267 return v;
3268}
3269
c906108c 3270\f
c906108c 3271
4875ffdb
PA
3272/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3273 VALADDR, and store the result in *RESULT.
3274 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3275
4875ffdb
PA
3276 Extracting bits depends on endianness of the machine. Compute the
3277 number of least significant bits to discard. For big endian machines,
3278 we compute the total number of bits in the anonymous object, subtract
3279 off the bit count from the MSB of the object to the MSB of the
3280 bitfield, then the size of the bitfield, which leaves the LSB discard
3281 count. For little endian machines, the discard count is simply the
3282 number of bits from the LSB of the anonymous object to the LSB of the
3283 bitfield.
3284
3285 If the field is signed, we also do sign extension. */
3286
3287static LONGEST
3288unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3289 int bitpos, int bitsize)
c906108c 3290{
4ea48cc1 3291 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3292 ULONGEST val;
3293 ULONGEST valmask;
c906108c 3294 int lsbcount;
4a76eae5 3295 int bytes_read;
5467c6c8 3296 int read_offset;
c906108c 3297
4a76eae5
DJ
3298 /* Read the minimum number of bytes required; there may not be
3299 enough bytes to read an entire ULONGEST. */
f168693b 3300 field_type = check_typedef (field_type);
4a76eae5
DJ
3301 if (bitsize)
3302 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3303 else
3304 bytes_read = TYPE_LENGTH (field_type);
3305
5467c6c8
PA
3306 read_offset = bitpos / 8;
3307
4875ffdb 3308 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3309 bytes_read, byte_order);
c906108c 3310
581e13c1 3311 /* Extract bits. See comment above. */
c906108c 3312
4ea48cc1 3313 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3314 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3315 else
3316 lsbcount = (bitpos % 8);
3317 val >>= lsbcount;
3318
3319 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3320 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3321
3322 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3323 {
3324 valmask = (((ULONGEST) 1) << bitsize) - 1;
3325 val &= valmask;
3326 if (!TYPE_UNSIGNED (field_type))
3327 {
3328 if (val & (valmask ^ (valmask >> 1)))
3329 {
3330 val |= ~valmask;
3331 }
3332 }
3333 }
5467c6c8 3334
4875ffdb 3335 return val;
5467c6c8
PA
3336}
3337
3338/* Unpack a field FIELDNO of the specified TYPE, from the object at
3339 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3340 ORIGINAL_VALUE, which must not be NULL. See
3341 unpack_value_bits_as_long for more details. */
3342
3343int
3344unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3345 int embedded_offset, int fieldno,
3346 const struct value *val, LONGEST *result)
3347{
4875ffdb
PA
3348 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3349 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3350 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3351 int bit_offset;
3352
5467c6c8
PA
3353 gdb_assert (val != NULL);
3354
4875ffdb
PA
3355 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3356 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3357 || !value_bits_available (val, bit_offset, bitsize))
3358 return 0;
3359
3360 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3361 bitpos, bitsize);
3362 return 1;
5467c6c8
PA
3363}
3364
3365/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3366 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3367
3368LONGEST
3369unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3370{
4875ffdb
PA
3371 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3372 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3373 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3374
4875ffdb
PA
3375 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3376}
3377
3378/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3379 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3380 the contents in DEST_VAL, zero or sign extending if the type of
3381 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3382 VAL. If the VAL's contents required to extract the bitfield from
3383 are unavailable/optimized out, DEST_VAL is correspondingly
3384 marked unavailable/optimized out. */
3385
bb9d5f81 3386void
4875ffdb
PA
3387unpack_value_bitfield (struct value *dest_val,
3388 int bitpos, int bitsize,
3389 const gdb_byte *valaddr, int embedded_offset,
3390 const struct value *val)
3391{
3392 enum bfd_endian byte_order;
3393 int src_bit_offset;
3394 int dst_bit_offset;
3395 LONGEST num;
3396 struct type *field_type = value_type (dest_val);
3397
3398 /* First, unpack and sign extend the bitfield as if it was wholly
3399 available. Invalid/unavailable bits are read as zero, but that's
3400 OK, as they'll end up marked below. */
3401 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3402 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3403 bitpos, bitsize);
3404 store_signed_integer (value_contents_raw (dest_val),
3405 TYPE_LENGTH (field_type), byte_order, num);
3406
3407 /* Now copy the optimized out / unavailability ranges to the right
3408 bits. */
3409 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3410 if (byte_order == BFD_ENDIAN_BIG)
3411 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3412 else
3413 dst_bit_offset = 0;
3414 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3415 val, src_bit_offset, bitsize);
5467c6c8
PA
3416}
3417
3418/* Return a new value with type TYPE, which is FIELDNO field of the
3419 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3420 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3421 from are unavailable/optimized out, the new value is
3422 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3423
3424struct value *
3425value_field_bitfield (struct type *type, int fieldno,
3426 const gdb_byte *valaddr,
3427 int embedded_offset, const struct value *val)
3428{
4875ffdb
PA
3429 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3430 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3431 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3432
4875ffdb
PA
3433 unpack_value_bitfield (res_val, bitpos, bitsize,
3434 valaddr, embedded_offset, val);
3435
3436 return res_val;
4ea48cc1
DJ
3437}
3438
c906108c
SS
3439/* Modify the value of a bitfield. ADDR points to a block of memory in
3440 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3441 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3442 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3443 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3444 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3445
3446void
50810684
UW
3447modify_field (struct type *type, gdb_byte *addr,
3448 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3449{
e17a4113 3450 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3451 ULONGEST oword;
3452 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3453 int bytesize;
3454
3455 /* Normalize BITPOS. */
3456 addr += bitpos / 8;
3457 bitpos %= 8;
c906108c
SS
3458
3459 /* If a negative fieldval fits in the field in question, chop
3460 off the sign extension bits. */
f4e88c8e
PH
3461 if ((~fieldval & ~(mask >> 1)) == 0)
3462 fieldval &= mask;
c906108c
SS
3463
3464 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3465 if (0 != (fieldval & ~mask))
c906108c
SS
3466 {
3467 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3468 we don't have a sprintf_longest. */
8a3fe4f8 3469 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3470
3471 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3472 fieldval &= mask;
c906108c
SS
3473 }
3474
19f220c3
JK
3475 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3476 false valgrind reports. */
3477
3478 bytesize = (bitpos + bitsize + 7) / 8;
3479 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3480
3481 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3482 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3483 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3484
f4e88c8e 3485 oword &= ~(mask << bitpos);
c906108c
SS
3486 oword |= fieldval << bitpos;
3487
19f220c3 3488 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3489}
3490\f
14d06750 3491/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3492
14d06750
DJ
3493void
3494pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3495{
e17a4113 3496 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3497 int len;
14d06750
DJ
3498
3499 type = check_typedef (type);
c906108c
SS
3500 len = TYPE_LENGTH (type);
3501
14d06750 3502 switch (TYPE_CODE (type))
c906108c 3503 {
c906108c
SS
3504 case TYPE_CODE_INT:
3505 case TYPE_CODE_CHAR:
3506 case TYPE_CODE_ENUM:
4f2aea11 3507 case TYPE_CODE_FLAGS:
c906108c
SS
3508 case TYPE_CODE_BOOL:
3509 case TYPE_CODE_RANGE:
0d5de010 3510 case TYPE_CODE_MEMBERPTR:
e17a4113 3511 store_signed_integer (buf, len, byte_order, num);
c906108c 3512 break;
c5aa993b 3513
c906108c
SS
3514 case TYPE_CODE_REF:
3515 case TYPE_CODE_PTR:
14d06750 3516 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3517 break;
c5aa993b 3518
c906108c 3519 default:
14d06750
DJ
3520 error (_("Unexpected type (%d) encountered for integer constant."),
3521 TYPE_CODE (type));
c906108c 3522 }
14d06750
DJ
3523}
3524
3525
595939de
PM
3526/* Pack NUM into BUF using a target format of TYPE. */
3527
70221824 3528static void
595939de
PM
3529pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3530{
3531 int len;
3532 enum bfd_endian byte_order;
3533
3534 type = check_typedef (type);
3535 len = TYPE_LENGTH (type);
3536 byte_order = gdbarch_byte_order (get_type_arch (type));
3537
3538 switch (TYPE_CODE (type))
3539 {
3540 case TYPE_CODE_INT:
3541 case TYPE_CODE_CHAR:
3542 case TYPE_CODE_ENUM:
3543 case TYPE_CODE_FLAGS:
3544 case TYPE_CODE_BOOL:
3545 case TYPE_CODE_RANGE:
3546 case TYPE_CODE_MEMBERPTR:
3547 store_unsigned_integer (buf, len, byte_order, num);
3548 break;
3549
3550 case TYPE_CODE_REF:
3551 case TYPE_CODE_PTR:
3552 store_typed_address (buf, type, (CORE_ADDR) num);
3553 break;
3554
3555 default:
3e43a32a
MS
3556 error (_("Unexpected type (%d) encountered "
3557 "for unsigned integer constant."),
595939de
PM
3558 TYPE_CODE (type));
3559 }
3560}
3561
3562
14d06750
DJ
3563/* Convert C numbers into newly allocated values. */
3564
3565struct value *
3566value_from_longest (struct type *type, LONGEST num)
3567{
3568 struct value *val = allocate_value (type);
3569
3570 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3571 return val;
3572}
3573
4478b372 3574
595939de
PM
3575/* Convert C unsigned numbers into newly allocated values. */
3576
3577struct value *
3578value_from_ulongest (struct type *type, ULONGEST num)
3579{
3580 struct value *val = allocate_value (type);
3581
3582 pack_unsigned_long (value_contents_raw (val), type, num);
3583
3584 return val;
3585}
3586
3587
4478b372 3588/* Create a value representing a pointer of type TYPE to the address
cb417230 3589 ADDR. */
80180f79 3590
f23631e4 3591struct value *
4478b372
JB
3592value_from_pointer (struct type *type, CORE_ADDR addr)
3593{
cb417230 3594 struct value *val = allocate_value (type);
a109c7c1 3595
80180f79 3596 store_typed_address (value_contents_raw (val),
cb417230 3597 check_typedef (type), addr);
4478b372
JB
3598 return val;
3599}
3600
3601
012370f6
TT
3602/* Create a value of type TYPE whose contents come from VALADDR, if it
3603 is non-null, and whose memory address (in the inferior) is
3604 ADDRESS. The type of the created value may differ from the passed
3605 type TYPE. Make sure to retrieve values new type after this call.
3606 Note that TYPE is not passed through resolve_dynamic_type; this is
3607 a special API intended for use only by Ada. */
3608
3609struct value *
3610value_from_contents_and_address_unresolved (struct type *type,
3611 const gdb_byte *valaddr,
3612 CORE_ADDR address)
3613{
3614 struct value *v;
3615
3616 if (valaddr == NULL)
3617 v = allocate_value_lazy (type);
3618 else
3619 v = value_from_contents (type, valaddr);
3620 set_value_address (v, address);
3621 VALUE_LVAL (v) = lval_memory;
3622 return v;
3623}
3624
8acb6b92
TT
3625/* Create a value of type TYPE whose contents come from VALADDR, if it
3626 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3627 ADDRESS. The type of the created value may differ from the passed
3628 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3629
3630struct value *
3631value_from_contents_and_address (struct type *type,
3632 const gdb_byte *valaddr,
3633 CORE_ADDR address)
3634{
c3345124 3635 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3636 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3637 struct value *v;
a109c7c1 3638
8acb6b92 3639 if (valaddr == NULL)
80180f79 3640 v = allocate_value_lazy (resolved_type);
8acb6b92 3641 else
80180f79 3642 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3643 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3644 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3645 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3646 set_value_address (v, address);
33d502b4 3647 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3648 return v;
3649}
3650
8a9b8146
TT
3651/* Create a value of type TYPE holding the contents CONTENTS.
3652 The new value is `not_lval'. */
3653
3654struct value *
3655value_from_contents (struct type *type, const gdb_byte *contents)
3656{
3657 struct value *result;
3658
3659 result = allocate_value (type);
3660 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3661 return result;
3662}
3663
f23631e4 3664struct value *
fba45db2 3665value_from_double (struct type *type, DOUBLEST num)
c906108c 3666{
f23631e4 3667 struct value *val = allocate_value (type);
c906108c 3668 struct type *base_type = check_typedef (type);
52f0bd74 3669 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3670
3671 if (code == TYPE_CODE_FLT)
3672 {
990a07ab 3673 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3674 }
3675 else
8a3fe4f8 3676 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3677
3678 return val;
3679}
994b9211 3680
27bc4d80 3681struct value *
4ef30785 3682value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3683{
3684 struct value *val = allocate_value (type);
27bc4d80 3685
4ef30785 3686 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3687 return val;
3688}
3689
3bd0f5ef
MS
3690/* Extract a value from the history file. Input will be of the form
3691 $digits or $$digits. See block comment above 'write_dollar_variable'
3692 for details. */
3693
3694struct value *
e799154c 3695value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3696{
3697 int index, len;
3698
3699 if (h[0] == '$')
3700 len = 1;
3701 else
3702 return NULL;
3703
3704 if (h[1] == '$')
3705 len = 2;
3706
3707 /* Find length of numeral string. */
3708 for (; isdigit (h[len]); len++)
3709 ;
3710
3711 /* Make sure numeral string is not part of an identifier. */
3712 if (h[len] == '_' || isalpha (h[len]))
3713 return NULL;
3714
3715 /* Now collect the index value. */
3716 if (h[1] == '$')
3717 {
3718 if (len == 2)
3719 {
3720 /* For some bizarre reason, "$$" is equivalent to "$$1",
3721 rather than to "$$0" as it ought to be! */
3722 index = -1;
3723 *endp += len;
3724 }
3725 else
e799154c
TT
3726 {
3727 char *local_end;
3728
3729 index = -strtol (&h[2], &local_end, 10);
3730 *endp = local_end;
3731 }
3bd0f5ef
MS
3732 }
3733 else
3734 {
3735 if (len == 1)
3736 {
3737 /* "$" is equivalent to "$0". */
3738 index = 0;
3739 *endp += len;
3740 }
3741 else
e799154c
TT
3742 {
3743 char *local_end;
3744
3745 index = strtol (&h[1], &local_end, 10);
3746 *endp = local_end;
3747 }
3bd0f5ef
MS
3748 }
3749
3750 return access_value_history (index);
3751}
3752
a471c594
JK
3753struct value *
3754coerce_ref_if_computed (const struct value *arg)
3755{
3756 const struct lval_funcs *funcs;
3757
3758 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3759 return NULL;
3760
3761 if (value_lval_const (arg) != lval_computed)
3762 return NULL;
3763
3764 funcs = value_computed_funcs (arg);
3765 if (funcs->coerce_ref == NULL)
3766 return NULL;
3767
3768 return funcs->coerce_ref (arg);
3769}
3770
dfcee124
AG
3771/* Look at value.h for description. */
3772
3773struct value *
3774readjust_indirect_value_type (struct value *value, struct type *enc_type,
3775 struct type *original_type,
3776 struct value *original_value)
3777{
3778 /* Re-adjust type. */
3779 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3780
3781 /* Add embedding info. */
3782 set_value_enclosing_type (value, enc_type);
3783 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3784
3785 /* We may be pointing to an object of some derived type. */
3786 return value_full_object (value, NULL, 0, 0, 0);
3787}
3788
994b9211
AC
3789struct value *
3790coerce_ref (struct value *arg)
3791{
df407dfe 3792 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3793 struct value *retval;
dfcee124 3794 struct type *enc_type;
a109c7c1 3795
a471c594
JK
3796 retval = coerce_ref_if_computed (arg);
3797 if (retval)
3798 return retval;
3799
3800 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3801 return arg;
3802
dfcee124
AG
3803 enc_type = check_typedef (value_enclosing_type (arg));
3804 enc_type = TYPE_TARGET_TYPE (enc_type);
3805
3806 retval = value_at_lazy (enc_type,
3807 unpack_pointer (value_type (arg),
3808 value_contents (arg)));
9f1f738a 3809 enc_type = value_type (retval);
dfcee124
AG
3810 return readjust_indirect_value_type (retval, enc_type,
3811 value_type_arg_tmp, arg);
994b9211
AC
3812}
3813
3814struct value *
3815coerce_array (struct value *arg)
3816{
f3134b88
TT
3817 struct type *type;
3818
994b9211 3819 arg = coerce_ref (arg);
f3134b88
TT
3820 type = check_typedef (value_type (arg));
3821
3822 switch (TYPE_CODE (type))
3823 {
3824 case TYPE_CODE_ARRAY:
7346b668 3825 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3826 arg = value_coerce_array (arg);
3827 break;
3828 case TYPE_CODE_FUNC:
3829 arg = value_coerce_function (arg);
3830 break;
3831 }
994b9211
AC
3832 return arg;
3833}
c906108c 3834\f
c906108c 3835
bbfdfe1c
DM
3836/* Return the return value convention that will be used for the
3837 specified type. */
3838
3839enum return_value_convention
3840struct_return_convention (struct gdbarch *gdbarch,
3841 struct value *function, struct type *value_type)
3842{
3843 enum type_code code = TYPE_CODE (value_type);
3844
3845 if (code == TYPE_CODE_ERROR)
3846 error (_("Function return type unknown."));
3847
3848 /* Probe the architecture for the return-value convention. */
3849 return gdbarch_return_value (gdbarch, function, value_type,
3850 NULL, NULL, NULL);
3851}
3852
48436ce6
AC
3853/* Return true if the function returning the specified type is using
3854 the convention of returning structures in memory (passing in the
82585c72 3855 address as a hidden first parameter). */
c906108c
SS
3856
3857int
d80b854b 3858using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3859 struct value *function, struct type *value_type)
c906108c 3860{
bbfdfe1c 3861 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3862 /* A void return value is never in memory. See also corresponding
44e5158b 3863 code in "print_return_value". */
667e784f
AC
3864 return 0;
3865
bbfdfe1c 3866 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3867 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3868}
3869
42be36b3
CT
3870/* Set the initialized field in a value struct. */
3871
3872void
3873set_value_initialized (struct value *val, int status)
3874{
3875 val->initialized = status;
3876}
3877
3878/* Return the initialized field in a value struct. */
3879
3880int
3881value_initialized (struct value *val)
3882{
3883 return val->initialized;
3884}
3885
a844296a
SM
3886/* Load the actual content of a lazy value. Fetch the data from the
3887 user's process and clear the lazy flag to indicate that the data in
3888 the buffer is valid.
a58e2656
AB
3889
3890 If the value is zero-length, we avoid calling read_memory, which
3891 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3892 it. */
a58e2656 3893
a844296a 3894void
a58e2656
AB
3895value_fetch_lazy (struct value *val)
3896{
3897 gdb_assert (value_lazy (val));
3898 allocate_value_contents (val);
9a0dc9e3
PA
3899 /* A value is either lazy, or fully fetched. The
3900 availability/validity is only established as we try to fetch a
3901 value. */
3902 gdb_assert (VEC_empty (range_s, val->optimized_out));
3903 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3904 if (value_bitsize (val))
3905 {
3906 /* To read a lazy bitfield, read the entire enclosing value. This
3907 prevents reading the same block of (possibly volatile) memory once
3908 per bitfield. It would be even better to read only the containing
3909 word, but we have no way to record that just specific bits of a
3910 value have been fetched. */
3911 struct type *type = check_typedef (value_type (val));
a58e2656 3912 struct value *parent = value_parent (val);
a58e2656 3913
b0c54aa5
AB
3914 if (value_lazy (parent))
3915 value_fetch_lazy (parent);
3916
4875ffdb
PA
3917 unpack_value_bitfield (val,
3918 value_bitpos (val), value_bitsize (val),
3919 value_contents_for_printing (parent),
3920 value_offset (val), parent);
a58e2656
AB
3921 }
3922 else if (VALUE_LVAL (val) == lval_memory)
3923 {
3924 CORE_ADDR addr = value_address (val);
3925 struct type *type = check_typedef (value_enclosing_type (val));
3926
3927 if (TYPE_LENGTH (type))
3928 read_value_memory (val, 0, value_stack (val),
3929 addr, value_contents_all_raw (val),
3ae385af 3930 type_length_units (type));
a58e2656
AB
3931 }
3932 else if (VALUE_LVAL (val) == lval_register)
3933 {
3934 struct frame_info *frame;
3935 int regnum;
3936 struct type *type = check_typedef (value_type (val));
3937 struct value *new_val = val, *mark = value_mark ();
3938
3939 /* Offsets are not supported here; lazy register values must
3940 refer to the entire register. */
3941 gdb_assert (value_offset (val) == 0);
3942
3943 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3944 {
6eeee81c
TT
3945 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3946
3947 frame = frame_find_by_id (frame_id);
a58e2656
AB
3948 regnum = VALUE_REGNUM (new_val);
3949
3950 gdb_assert (frame != NULL);
3951
3952 /* Convertible register routines are used for multi-register
3953 values and for interpretation in different types
3954 (e.g. float or int from a double register). Lazy
3955 register values should have the register's natural type,
3956 so they do not apply. */
3957 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3958 regnum, type));
3959
3960 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3961
3962 /* If we get another lazy lval_register value, it means the
3963 register is found by reading it from the next frame.
3964 get_frame_register_value should never return a value with
3965 the frame id pointing to FRAME. If it does, it means we
3966 either have two consecutive frames with the same frame id
3967 in the frame chain, or some code is trying to unwind
3968 behind get_prev_frame's back (e.g., a frame unwind
3969 sniffer trying to unwind), bypassing its validations. In
3970 any case, it should always be an internal error to end up
3971 in this situation. */
3972 if (VALUE_LVAL (new_val) == lval_register
3973 && value_lazy (new_val)
3974 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3975 internal_error (__FILE__, __LINE__,
3976 _("infinite loop while fetching a register"));
a58e2656
AB
3977 }
3978
3979 /* If it's still lazy (for instance, a saved register on the
3980 stack), fetch it. */
3981 if (value_lazy (new_val))
3982 value_fetch_lazy (new_val);
3983
9a0dc9e3
PA
3984 /* Copy the contents and the unavailability/optimized-out
3985 meta-data from NEW_VAL to VAL. */
3986 set_value_lazy (val, 0);
3987 value_contents_copy (val, value_embedded_offset (val),
3988 new_val, value_embedded_offset (new_val),
3ae385af 3989 type_length_units (type));
a58e2656
AB
3990
3991 if (frame_debug)
3992 {
3993 struct gdbarch *gdbarch;
3994 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3995 regnum = VALUE_REGNUM (val);
3996 gdbarch = get_frame_arch (frame);
3997
3998 fprintf_unfiltered (gdb_stdlog,
3999 "{ value_fetch_lazy "
4000 "(frame=%d,regnum=%d(%s),...) ",
4001 frame_relative_level (frame), regnum,
4002 user_reg_map_regnum_to_name (gdbarch, regnum));
4003
4004 fprintf_unfiltered (gdb_stdlog, "->");
4005 if (value_optimized_out (new_val))
f6c01fc5
AB
4006 {
4007 fprintf_unfiltered (gdb_stdlog, " ");
4008 val_print_optimized_out (new_val, gdb_stdlog);
4009 }
a58e2656
AB
4010 else
4011 {
4012 int i;
4013 const gdb_byte *buf = value_contents (new_val);
4014
4015 if (VALUE_LVAL (new_val) == lval_register)
4016 fprintf_unfiltered (gdb_stdlog, " register=%d",
4017 VALUE_REGNUM (new_val));
4018 else if (VALUE_LVAL (new_val) == lval_memory)
4019 fprintf_unfiltered (gdb_stdlog, " address=%s",
4020 paddress (gdbarch,
4021 value_address (new_val)));
4022 else
4023 fprintf_unfiltered (gdb_stdlog, " computed");
4024
4025 fprintf_unfiltered (gdb_stdlog, " bytes=");
4026 fprintf_unfiltered (gdb_stdlog, "[");
4027 for (i = 0; i < register_size (gdbarch, regnum); i++)
4028 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4029 fprintf_unfiltered (gdb_stdlog, "]");
4030 }
4031
4032 fprintf_unfiltered (gdb_stdlog, " }\n");
4033 }
4034
4035 /* Dispose of the intermediate values. This prevents
4036 watchpoints from trying to watch the saved frame pointer. */
4037 value_free_to_mark (mark);
4038 }
4039 else if (VALUE_LVAL (val) == lval_computed
4040 && value_computed_funcs (val)->read != NULL)
4041 value_computed_funcs (val)->read (val);
a58e2656
AB
4042 else
4043 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4044
4045 set_value_lazy (val, 0);
a58e2656
AB
4046}
4047
a280dbd1
SDJ
4048/* Implementation of the convenience function $_isvoid. */
4049
4050static struct value *
4051isvoid_internal_fn (struct gdbarch *gdbarch,
4052 const struct language_defn *language,
4053 void *cookie, int argc, struct value **argv)
4054{
4055 int ret;
4056
4057 if (argc != 1)
6bc305f5 4058 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4059
4060 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4061
4062 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4063}
4064
c906108c 4065void
fba45db2 4066_initialize_values (void)
c906108c 4067{
1a966eab 4068 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4069Debugger convenience (\"$foo\") variables and functions.\n\
4070Convenience variables are created when you assign them values;\n\
4071thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4072\n\
c906108c
SS
4073A few convenience variables are given values automatically:\n\
4074\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4075\"$__\" holds the contents of the last address examined with \"x\"."
4076#ifdef HAVE_PYTHON
4077"\n\n\
4078Convenience functions are defined via the Python API."
4079#endif
4080 ), &showlist);
7e20dfcd 4081 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4082
db5f229b 4083 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4084Elements of value history around item number IDX (or last ten)."),
c906108c 4085 &showlist);
53e5f3cf
AS
4086
4087 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4088Initialize a convenience variable if necessary.\n\
4089init-if-undefined VARIABLE = EXPRESSION\n\
4090Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4091exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4092VARIABLE is already initialized."));
bc3b79fd
TJB
4093
4094 add_prefix_cmd ("function", no_class, function_command, _("\
4095Placeholder command for showing help on convenience functions."),
4096 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4097
4098 add_internal_function ("_isvoid", _("\
4099Check whether an expression is void.\n\
4100Usage: $_isvoid (expression)\n\
4101Return 1 if the expression is void, zero otherwise."),
4102 isvoid_internal_fn, NULL);
5fdf6324
AB
4103
4104 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4105 class_support, &max_value_size, _("\
4106Set maximum sized value gdb will load from the inferior."), _("\
4107Show maximum sized value gdb will load from the inferior."), _("\
4108Use this to control the maximum size, in bytes, of a value that gdb\n\
4109will load from the inferior. Setting this value to 'unlimited'\n\
4110disables checking.\n\
4111Setting this does not invalidate already allocated values, it only\n\
4112prevents future values, larger than this size, from being allocated."),
4113 set_max_value_size,
4114 show_max_value_size,
4115 &setlist, &showlist);
c906108c 4116}
This page took 2.275429 seconds and 4 git commands to generate.