Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
b811d2c2 | 3 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
e17c207e | 21 | #include "arch-utils.h" |
c906108c SS |
22 | #include "symtab.h" |
23 | #include "gdbtypes.h" | |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
c906108c SS |
26 | #include "command.h" |
27 | #include "gdbcmd.h" | |
28 | #include "target.h" | |
29 | #include "language.h" | |
c906108c | 30 | #include "demangle.h" |
36160dc4 | 31 | #include "regcache.h" |
fe898f56 | 32 | #include "block.h" |
70100014 | 33 | #include "target-float.h" |
bccdca4a | 34 | #include "objfiles.h" |
79a45b7d | 35 | #include "valprint.h" |
bc3b79fd | 36 | #include "cli/cli-decode.h" |
6dddc817 | 37 | #include "extension.h" |
3bd0f5ef | 38 | #include <ctype.h> |
0914bcdb | 39 | #include "tracepoint.h" |
be335936 | 40 | #include "cp-abi.h" |
a58e2656 | 41 | #include "user-regs.h" |
325fac50 | 42 | #include <algorithm> |
eb3ff9a5 | 43 | #include "completer.h" |
268a13a5 TT |
44 | #include "gdbsupport/selftest.h" |
45 | #include "gdbsupport/array-view.h" | |
7f6aba03 | 46 | #include "cli/cli-style.h" |
0914bcdb | 47 | |
bc3b79fd TJB |
48 | /* Definition of a user function. */ |
49 | struct internal_function | |
50 | { | |
51 | /* The name of the function. It is a bit odd to have this in the | |
52 | function itself -- the user might use a differently-named | |
53 | convenience variable to hold the function. */ | |
54 | char *name; | |
55 | ||
56 | /* The handler. */ | |
57 | internal_function_fn handler; | |
58 | ||
59 | /* User data for the handler. */ | |
60 | void *cookie; | |
61 | }; | |
62 | ||
4e07d55f PA |
63 | /* Defines an [OFFSET, OFFSET + LENGTH) range. */ |
64 | ||
65 | struct range | |
66 | { | |
67 | /* Lowest offset in the range. */ | |
6b850546 | 68 | LONGEST offset; |
4e07d55f PA |
69 | |
70 | /* Length of the range. */ | |
6b850546 | 71 | LONGEST length; |
4e07d55f | 72 | |
0c7e6dd8 TT |
73 | /* Returns true if THIS is strictly less than OTHER, useful for |
74 | searching. We keep ranges sorted by offset and coalesce | |
75 | overlapping and contiguous ranges, so this just compares the | |
76 | starting offset. */ | |
4e07d55f | 77 | |
0c7e6dd8 TT |
78 | bool operator< (const range &other) const |
79 | { | |
80 | return offset < other.offset; | |
81 | } | |
d5f4488f SM |
82 | |
83 | /* Returns true if THIS is equal to OTHER. */ | |
84 | bool operator== (const range &other) const | |
85 | { | |
86 | return offset == other.offset && length == other.length; | |
87 | } | |
0c7e6dd8 | 88 | }; |
4e07d55f PA |
89 | |
90 | /* Returns true if the ranges defined by [offset1, offset1+len1) and | |
91 | [offset2, offset2+len2) overlap. */ | |
92 | ||
93 | static int | |
6b850546 DT |
94 | ranges_overlap (LONGEST offset1, LONGEST len1, |
95 | LONGEST offset2, LONGEST len2) | |
4e07d55f PA |
96 | { |
97 | ULONGEST h, l; | |
98 | ||
325fac50 PA |
99 | l = std::max (offset1, offset2); |
100 | h = std::min (offset1 + len1, offset2 + len2); | |
4e07d55f PA |
101 | return (l < h); |
102 | } | |
103 | ||
4e07d55f PA |
104 | /* Returns true if RANGES contains any range that overlaps [OFFSET, |
105 | OFFSET+LENGTH). */ | |
106 | ||
107 | static int | |
0c7e6dd8 TT |
108 | ranges_contain (const std::vector<range> &ranges, LONGEST offset, |
109 | LONGEST length) | |
4e07d55f | 110 | { |
0c7e6dd8 | 111 | range what; |
4e07d55f PA |
112 | |
113 | what.offset = offset; | |
114 | what.length = length; | |
115 | ||
116 | /* We keep ranges sorted by offset and coalesce overlapping and | |
117 | contiguous ranges, so to check if a range list contains a given | |
118 | range, we can do a binary search for the position the given range | |
119 | would be inserted if we only considered the starting OFFSET of | |
120 | ranges. We call that position I. Since we also have LENGTH to | |
121 | care for (this is a range afterall), we need to check if the | |
122 | _previous_ range overlaps the I range. E.g., | |
123 | ||
124 | R | |
125 | |---| | |
126 | |---| |---| |------| ... |--| | |
127 | 0 1 2 N | |
128 | ||
129 | I=1 | |
130 | ||
131 | In the case above, the binary search would return `I=1', meaning, | |
132 | this OFFSET should be inserted at position 1, and the current | |
133 | position 1 should be pushed further (and before 2). But, `0' | |
134 | overlaps with R. | |
135 | ||
136 | Then we need to check if the I range overlaps the I range itself. | |
137 | E.g., | |
138 | ||
139 | R | |
140 | |---| | |
141 | |---| |---| |-------| ... |--| | |
142 | 0 1 2 N | |
143 | ||
144 | I=1 | |
145 | */ | |
146 | ||
4e07d55f | 147 | |
0c7e6dd8 TT |
148 | auto i = std::lower_bound (ranges.begin (), ranges.end (), what); |
149 | ||
150 | if (i > ranges.begin ()) | |
4e07d55f | 151 | { |
0c7e6dd8 | 152 | const struct range &bef = *(i - 1); |
4e07d55f | 153 | |
0c7e6dd8 | 154 | if (ranges_overlap (bef.offset, bef.length, offset, length)) |
4e07d55f PA |
155 | return 1; |
156 | } | |
157 | ||
0c7e6dd8 | 158 | if (i < ranges.end ()) |
4e07d55f | 159 | { |
0c7e6dd8 | 160 | const struct range &r = *i; |
4e07d55f | 161 | |
0c7e6dd8 | 162 | if (ranges_overlap (r.offset, r.length, offset, length)) |
4e07d55f PA |
163 | return 1; |
164 | } | |
165 | ||
166 | return 0; | |
167 | } | |
168 | ||
bc3b79fd TJB |
169 | static struct cmd_list_element *functionlist; |
170 | ||
87784a47 TT |
171 | /* Note that the fields in this structure are arranged to save a bit |
172 | of memory. */ | |
173 | ||
91294c83 AC |
174 | struct value |
175 | { | |
466ce3ae TT |
176 | explicit value (struct type *type_) |
177 | : modifiable (1), | |
178 | lazy (1), | |
179 | initialized (1), | |
180 | stack (0), | |
181 | type (type_), | |
182 | enclosing_type (type_) | |
183 | { | |
466ce3ae TT |
184 | } |
185 | ||
186 | ~value () | |
187 | { | |
466ce3ae TT |
188 | if (VALUE_LVAL (this) == lval_computed) |
189 | { | |
190 | const struct lval_funcs *funcs = location.computed.funcs; | |
191 | ||
192 | if (funcs->free_closure) | |
193 | funcs->free_closure (this); | |
194 | } | |
195 | else if (VALUE_LVAL (this) == lval_xcallable) | |
196 | delete location.xm_worker; | |
466ce3ae TT |
197 | } |
198 | ||
199 | DISABLE_COPY_AND_ASSIGN (value); | |
200 | ||
91294c83 AC |
201 | /* Type of value; either not an lval, or one of the various |
202 | different possible kinds of lval. */ | |
466ce3ae | 203 | enum lval_type lval = not_lval; |
91294c83 AC |
204 | |
205 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
87784a47 TT |
206 | unsigned int modifiable : 1; |
207 | ||
208 | /* If zero, contents of this value are in the contents field. If | |
209 | nonzero, contents are in inferior. If the lval field is lval_memory, | |
210 | the contents are in inferior memory at location.address plus offset. | |
211 | The lval field may also be lval_register. | |
212 | ||
213 | WARNING: This field is used by the code which handles watchpoints | |
214 | (see breakpoint.c) to decide whether a particular value can be | |
215 | watched by hardware watchpoints. If the lazy flag is set for | |
216 | some member of a value chain, it is assumed that this member of | |
217 | the chain doesn't need to be watched as part of watching the | |
218 | value itself. This is how GDB avoids watching the entire struct | |
219 | or array when the user wants to watch a single struct member or | |
220 | array element. If you ever change the way lazy flag is set and | |
221 | reset, be sure to consider this use as well! */ | |
222 | unsigned int lazy : 1; | |
223 | ||
87784a47 TT |
224 | /* If value is a variable, is it initialized or not. */ |
225 | unsigned int initialized : 1; | |
226 | ||
227 | /* If value is from the stack. If this is set, read_stack will be | |
228 | used instead of read_memory to enable extra caching. */ | |
229 | unsigned int stack : 1; | |
91294c83 AC |
230 | |
231 | /* Location of value (if lval). */ | |
232 | union | |
233 | { | |
7dc54575 | 234 | /* If lval == lval_memory, this is the address in the inferior */ |
91294c83 AC |
235 | CORE_ADDR address; |
236 | ||
7dc54575 YQ |
237 | /*If lval == lval_register, the value is from a register. */ |
238 | struct | |
239 | { | |
240 | /* Register number. */ | |
241 | int regnum; | |
242 | /* Frame ID of "next" frame to which a register value is relative. | |
243 | If the register value is found relative to frame F, then the | |
244 | frame id of F->next will be stored in next_frame_id. */ | |
245 | struct frame_id next_frame_id; | |
246 | } reg; | |
247 | ||
91294c83 AC |
248 | /* Pointer to internal variable. */ |
249 | struct internalvar *internalvar; | |
5f5233d4 | 250 | |
e81e7f5e SC |
251 | /* Pointer to xmethod worker. */ |
252 | struct xmethod_worker *xm_worker; | |
253 | ||
5f5233d4 PA |
254 | /* If lval == lval_computed, this is a set of function pointers |
255 | to use to access and describe the value, and a closure pointer | |
256 | for them to use. */ | |
257 | struct | |
258 | { | |
c8f2448a JK |
259 | /* Functions to call. */ |
260 | const struct lval_funcs *funcs; | |
261 | ||
262 | /* Closure for those functions to use. */ | |
263 | void *closure; | |
5f5233d4 | 264 | } computed; |
41a883c8 | 265 | } location {}; |
91294c83 | 266 | |
3723fda8 | 267 | /* Describes offset of a value within lval of a structure in target |
7dc54575 YQ |
268 | addressable memory units. Note also the member embedded_offset |
269 | below. */ | |
466ce3ae | 270 | LONGEST offset = 0; |
91294c83 AC |
271 | |
272 | /* Only used for bitfields; number of bits contained in them. */ | |
466ce3ae | 273 | LONGEST bitsize = 0; |
91294c83 AC |
274 | |
275 | /* Only used for bitfields; position of start of field. For | |
d5a22e77 TT |
276 | little-endian targets, it is the position of the LSB. For |
277 | big-endian targets, it is the position of the MSB. */ | |
466ce3ae | 278 | LONGEST bitpos = 0; |
91294c83 | 279 | |
87784a47 TT |
280 | /* The number of references to this value. When a value is created, |
281 | the value chain holds a reference, so REFERENCE_COUNT is 1. If | |
282 | release_value is called, this value is removed from the chain but | |
283 | the caller of release_value now has a reference to this value. | |
284 | The caller must arrange for a call to value_free later. */ | |
466ce3ae | 285 | int reference_count = 1; |
87784a47 | 286 | |
4ea48cc1 DJ |
287 | /* Only used for bitfields; the containing value. This allows a |
288 | single read from the target when displaying multiple | |
289 | bitfields. */ | |
2c8331b9 | 290 | value_ref_ptr parent; |
4ea48cc1 | 291 | |
91294c83 AC |
292 | /* Type of the value. */ |
293 | struct type *type; | |
294 | ||
295 | /* If a value represents a C++ object, then the `type' field gives | |
296 | the object's compile-time type. If the object actually belongs | |
297 | to some class derived from `type', perhaps with other base | |
298 | classes and additional members, then `type' is just a subobject | |
299 | of the real thing, and the full object is probably larger than | |
300 | `type' would suggest. | |
301 | ||
302 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
303 | can actually determine the object's run-time type by looking at | |
304 | the run-time type information in the vtable. When this | |
305 | information is available, we may elect to read in the entire | |
306 | object, for several reasons: | |
307 | ||
308 | - When printing the value, the user would probably rather see the | |
309 | full object, not just the limited portion apparent from the | |
310 | compile-time type. | |
311 | ||
312 | - If `type' has virtual base classes, then even printing `type' | |
313 | alone may require reaching outside the `type' portion of the | |
314 | object to wherever the virtual base class has been stored. | |
315 | ||
316 | When we store the entire object, `enclosing_type' is the run-time | |
317 | type -- the complete object -- and `embedded_offset' is the | |
3723fda8 SM |
318 | offset of `type' within that larger type, in target addressable memory |
319 | units. The value_contents() macro takes `embedded_offset' into account, | |
320 | so most GDB code continues to see the `type' portion of the value, just | |
321 | as the inferior would. | |
91294c83 AC |
322 | |
323 | If `type' is a pointer to an object, then `enclosing_type' is a | |
324 | pointer to the object's run-time type, and `pointed_to_offset' is | |
3723fda8 SM |
325 | the offset in target addressable memory units from the full object |
326 | to the pointed-to object -- that is, the value `embedded_offset' would | |
327 | have if we followed the pointer and fetched the complete object. | |
328 | (I don't really see the point. Why not just determine the | |
329 | run-time type when you indirect, and avoid the special case? The | |
330 | contents don't matter until you indirect anyway.) | |
91294c83 AC |
331 | |
332 | If we're not doing anything fancy, `enclosing_type' is equal to | |
333 | `type', and `embedded_offset' is zero, so everything works | |
334 | normally. */ | |
335 | struct type *enclosing_type; | |
466ce3ae TT |
336 | LONGEST embedded_offset = 0; |
337 | LONGEST pointed_to_offset = 0; | |
91294c83 | 338 | |
3e3d7139 JG |
339 | /* Actual contents of the value. Target byte-order. NULL or not |
340 | valid if lazy is nonzero. */ | |
14c88955 | 341 | gdb::unique_xmalloc_ptr<gdb_byte> contents; |
828d3400 | 342 | |
4e07d55f PA |
343 | /* Unavailable ranges in CONTENTS. We mark unavailable ranges, |
344 | rather than available, since the common and default case is for a | |
9a0dc9e3 PA |
345 | value to be available. This is filled in at value read time. |
346 | The unavailable ranges are tracked in bits. Note that a contents | |
347 | bit that has been optimized out doesn't really exist in the | |
348 | program, so it can't be marked unavailable either. */ | |
0c7e6dd8 | 349 | std::vector<range> unavailable; |
9a0dc9e3 PA |
350 | |
351 | /* Likewise, but for optimized out contents (a chunk of the value of | |
352 | a variable that does not actually exist in the program). If LVAL | |
353 | is lval_register, this is a register ($pc, $sp, etc., never a | |
354 | program variable) that has not been saved in the frame. Not | |
355 | saved registers and optimized-out program variables values are | |
356 | treated pretty much the same, except not-saved registers have a | |
357 | different string representation and related error strings. */ | |
0c7e6dd8 | 358 | std::vector<range> optimized_out; |
91294c83 AC |
359 | }; |
360 | ||
e512cdbd SM |
361 | /* See value.h. */ |
362 | ||
363 | struct gdbarch * | |
364 | get_value_arch (const struct value *value) | |
365 | { | |
366 | return get_type_arch (value_type (value)); | |
367 | } | |
368 | ||
4e07d55f | 369 | int |
6b850546 | 370 | value_bits_available (const struct value *value, LONGEST offset, LONGEST length) |
4e07d55f PA |
371 | { |
372 | gdb_assert (!value->lazy); | |
373 | ||
374 | return !ranges_contain (value->unavailable, offset, length); | |
375 | } | |
376 | ||
bdf22206 | 377 | int |
6b850546 DT |
378 | value_bytes_available (const struct value *value, |
379 | LONGEST offset, LONGEST length) | |
bdf22206 AB |
380 | { |
381 | return value_bits_available (value, | |
382 | offset * TARGET_CHAR_BIT, | |
383 | length * TARGET_CHAR_BIT); | |
384 | } | |
385 | ||
9a0dc9e3 PA |
386 | int |
387 | value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length) | |
388 | { | |
389 | gdb_assert (!value->lazy); | |
390 | ||
391 | return ranges_contain (value->optimized_out, bit_offset, bit_length); | |
392 | } | |
393 | ||
ec0a52e1 PA |
394 | int |
395 | value_entirely_available (struct value *value) | |
396 | { | |
397 | /* We can only tell whether the whole value is available when we try | |
398 | to read it. */ | |
399 | if (value->lazy) | |
400 | value_fetch_lazy (value); | |
401 | ||
0c7e6dd8 | 402 | if (value->unavailable.empty ()) |
ec0a52e1 PA |
403 | return 1; |
404 | return 0; | |
405 | } | |
406 | ||
9a0dc9e3 PA |
407 | /* Returns true if VALUE is entirely covered by RANGES. If the value |
408 | is lazy, it'll be read now. Note that RANGE is a pointer to | |
409 | pointer because reading the value might change *RANGE. */ | |
410 | ||
411 | static int | |
412 | value_entirely_covered_by_range_vector (struct value *value, | |
0c7e6dd8 | 413 | const std::vector<range> &ranges) |
6211c335 | 414 | { |
9a0dc9e3 PA |
415 | /* We can only tell whether the whole value is optimized out / |
416 | unavailable when we try to read it. */ | |
6211c335 YQ |
417 | if (value->lazy) |
418 | value_fetch_lazy (value); | |
419 | ||
0c7e6dd8 | 420 | if (ranges.size () == 1) |
6211c335 | 421 | { |
0c7e6dd8 | 422 | const struct range &t = ranges[0]; |
6211c335 | 423 | |
0c7e6dd8 TT |
424 | if (t.offset == 0 |
425 | && t.length == (TARGET_CHAR_BIT | |
426 | * TYPE_LENGTH (value_enclosing_type (value)))) | |
6211c335 YQ |
427 | return 1; |
428 | } | |
429 | ||
430 | return 0; | |
431 | } | |
432 | ||
9a0dc9e3 PA |
433 | int |
434 | value_entirely_unavailable (struct value *value) | |
435 | { | |
0c7e6dd8 | 436 | return value_entirely_covered_by_range_vector (value, value->unavailable); |
9a0dc9e3 PA |
437 | } |
438 | ||
439 | int | |
440 | value_entirely_optimized_out (struct value *value) | |
441 | { | |
0c7e6dd8 | 442 | return value_entirely_covered_by_range_vector (value, value->optimized_out); |
9a0dc9e3 PA |
443 | } |
444 | ||
445 | /* Insert into the vector pointed to by VECTORP the bit range starting of | |
446 | OFFSET bits, and extending for the next LENGTH bits. */ | |
447 | ||
448 | static void | |
0c7e6dd8 | 449 | insert_into_bit_range_vector (std::vector<range> *vectorp, |
6b850546 | 450 | LONGEST offset, LONGEST length) |
4e07d55f | 451 | { |
0c7e6dd8 | 452 | range newr; |
4e07d55f PA |
453 | |
454 | /* Insert the range sorted. If there's overlap or the new range | |
455 | would be contiguous with an existing range, merge. */ | |
456 | ||
457 | newr.offset = offset; | |
458 | newr.length = length; | |
459 | ||
460 | /* Do a binary search for the position the given range would be | |
461 | inserted if we only considered the starting OFFSET of ranges. | |
462 | Call that position I. Since we also have LENGTH to care for | |
463 | (this is a range afterall), we need to check if the _previous_ | |
464 | range overlaps the I range. E.g., calling R the new range: | |
465 | ||
466 | #1 - overlaps with previous | |
467 | ||
468 | R | |
469 | |-...-| | |
470 | |---| |---| |------| ... |--| | |
471 | 0 1 2 N | |
472 | ||
473 | I=1 | |
474 | ||
475 | In the case #1 above, the binary search would return `I=1', | |
476 | meaning, this OFFSET should be inserted at position 1, and the | |
477 | current position 1 should be pushed further (and become 2). But, | |
478 | note that `0' overlaps with R, so we want to merge them. | |
479 | ||
480 | A similar consideration needs to be taken if the new range would | |
481 | be contiguous with the previous range: | |
482 | ||
483 | #2 - contiguous with previous | |
484 | ||
485 | R | |
486 | |-...-| | |
487 | |--| |---| |------| ... |--| | |
488 | 0 1 2 N | |
489 | ||
490 | I=1 | |
491 | ||
492 | If there's no overlap with the previous range, as in: | |
493 | ||
494 | #3 - not overlapping and not contiguous | |
495 | ||
496 | R | |
497 | |-...-| | |
498 | |--| |---| |------| ... |--| | |
499 | 0 1 2 N | |
500 | ||
501 | I=1 | |
502 | ||
503 | or if I is 0: | |
504 | ||
505 | #4 - R is the range with lowest offset | |
506 | ||
507 | R | |
508 | |-...-| | |
509 | |--| |---| |------| ... |--| | |
510 | 0 1 2 N | |
511 | ||
512 | I=0 | |
513 | ||
514 | ... we just push the new range to I. | |
515 | ||
516 | All the 4 cases above need to consider that the new range may | |
517 | also overlap several of the ranges that follow, or that R may be | |
518 | contiguous with the following range, and merge. E.g., | |
519 | ||
520 | #5 - overlapping following ranges | |
521 | ||
522 | R | |
523 | |------------------------| | |
524 | |--| |---| |------| ... |--| | |
525 | 0 1 2 N | |
526 | ||
527 | I=0 | |
528 | ||
529 | or: | |
530 | ||
531 | R | |
532 | |-------| | |
533 | |--| |---| |------| ... |--| | |
534 | 0 1 2 N | |
535 | ||
536 | I=1 | |
537 | ||
538 | */ | |
539 | ||
0c7e6dd8 TT |
540 | auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr); |
541 | if (i > vectorp->begin ()) | |
4e07d55f | 542 | { |
0c7e6dd8 | 543 | struct range &bef = *(i - 1); |
4e07d55f | 544 | |
0c7e6dd8 | 545 | if (ranges_overlap (bef.offset, bef.length, offset, length)) |
4e07d55f PA |
546 | { |
547 | /* #1 */ | |
0c7e6dd8 TT |
548 | ULONGEST l = std::min (bef.offset, offset); |
549 | ULONGEST h = std::max (bef.offset + bef.length, offset + length); | |
4e07d55f | 550 | |
0c7e6dd8 TT |
551 | bef.offset = l; |
552 | bef.length = h - l; | |
4e07d55f PA |
553 | i--; |
554 | } | |
0c7e6dd8 | 555 | else if (offset == bef.offset + bef.length) |
4e07d55f PA |
556 | { |
557 | /* #2 */ | |
0c7e6dd8 | 558 | bef.length += length; |
4e07d55f PA |
559 | i--; |
560 | } | |
561 | else | |
562 | { | |
563 | /* #3 */ | |
0c7e6dd8 | 564 | i = vectorp->insert (i, newr); |
4e07d55f PA |
565 | } |
566 | } | |
567 | else | |
568 | { | |
569 | /* #4 */ | |
0c7e6dd8 | 570 | i = vectorp->insert (i, newr); |
4e07d55f PA |
571 | } |
572 | ||
573 | /* Check whether the ranges following the one we've just added or | |
574 | touched can be folded in (#5 above). */ | |
0c7e6dd8 | 575 | if (i != vectorp->end () && i + 1 < vectorp->end ()) |
4e07d55f | 576 | { |
4e07d55f | 577 | int removed = 0; |
0c7e6dd8 | 578 | auto next = i + 1; |
4e07d55f PA |
579 | |
580 | /* Get the range we just touched. */ | |
0c7e6dd8 | 581 | struct range &t = *i; |
4e07d55f PA |
582 | removed = 0; |
583 | ||
584 | i = next; | |
0c7e6dd8 TT |
585 | for (; i < vectorp->end (); i++) |
586 | { | |
587 | struct range &r = *i; | |
588 | if (r.offset <= t.offset + t.length) | |
589 | { | |
590 | ULONGEST l, h; | |
591 | ||
592 | l = std::min (t.offset, r.offset); | |
593 | h = std::max (t.offset + t.length, r.offset + r.length); | |
594 | ||
595 | t.offset = l; | |
596 | t.length = h - l; | |
597 | ||
598 | removed++; | |
599 | } | |
600 | else | |
601 | { | |
602 | /* If we couldn't merge this one, we won't be able to | |
603 | merge following ones either, since the ranges are | |
604 | always sorted by OFFSET. */ | |
605 | break; | |
606 | } | |
607 | } | |
4e07d55f PA |
608 | |
609 | if (removed != 0) | |
0c7e6dd8 | 610 | vectorp->erase (next, next + removed); |
4e07d55f PA |
611 | } |
612 | } | |
613 | ||
9a0dc9e3 | 614 | void |
6b850546 DT |
615 | mark_value_bits_unavailable (struct value *value, |
616 | LONGEST offset, LONGEST length) | |
9a0dc9e3 PA |
617 | { |
618 | insert_into_bit_range_vector (&value->unavailable, offset, length); | |
619 | } | |
620 | ||
bdf22206 | 621 | void |
6b850546 DT |
622 | mark_value_bytes_unavailable (struct value *value, |
623 | LONGEST offset, LONGEST length) | |
bdf22206 AB |
624 | { |
625 | mark_value_bits_unavailable (value, | |
626 | offset * TARGET_CHAR_BIT, | |
627 | length * TARGET_CHAR_BIT); | |
628 | } | |
629 | ||
c8c1c22f PA |
630 | /* Find the first range in RANGES that overlaps the range defined by |
631 | OFFSET and LENGTH, starting at element POS in the RANGES vector, | |
632 | Returns the index into RANGES where such overlapping range was | |
633 | found, or -1 if none was found. */ | |
634 | ||
635 | static int | |
0c7e6dd8 | 636 | find_first_range_overlap (const std::vector<range> *ranges, int pos, |
6b850546 | 637 | LONGEST offset, LONGEST length) |
c8c1c22f | 638 | { |
c8c1c22f PA |
639 | int i; |
640 | ||
0c7e6dd8 TT |
641 | for (i = pos; i < ranges->size (); i++) |
642 | { | |
643 | const range &r = (*ranges)[i]; | |
644 | if (ranges_overlap (r.offset, r.length, offset, length)) | |
645 | return i; | |
646 | } | |
c8c1c22f PA |
647 | |
648 | return -1; | |
649 | } | |
650 | ||
bdf22206 AB |
651 | /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at |
652 | PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise | |
653 | return non-zero. | |
654 | ||
655 | It must always be the case that: | |
656 | OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT | |
657 | ||
658 | It is assumed that memory can be accessed from: | |
659 | PTR + (OFFSET_BITS / TARGET_CHAR_BIT) | |
660 | to: | |
661 | PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1) | |
662 | / TARGET_CHAR_BIT) */ | |
663 | static int | |
664 | memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits, | |
665 | const gdb_byte *ptr2, size_t offset2_bits, | |
666 | size_t length_bits) | |
667 | { | |
668 | gdb_assert (offset1_bits % TARGET_CHAR_BIT | |
669 | == offset2_bits % TARGET_CHAR_BIT); | |
670 | ||
671 | if (offset1_bits % TARGET_CHAR_BIT != 0) | |
672 | { | |
673 | size_t bits; | |
674 | gdb_byte mask, b1, b2; | |
675 | ||
676 | /* The offset from the base pointers PTR1 and PTR2 is not a complete | |
677 | number of bytes. A number of bits up to either the next exact | |
678 | byte boundary, or LENGTH_BITS (which ever is sooner) will be | |
679 | compared. */ | |
680 | bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT; | |
681 | gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); | |
682 | mask = (1 << bits) - 1; | |
683 | ||
684 | if (length_bits < bits) | |
685 | { | |
686 | mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1); | |
687 | bits = length_bits; | |
688 | } | |
689 | ||
690 | /* Now load the two bytes and mask off the bits we care about. */ | |
691 | b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask; | |
692 | b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask; | |
693 | ||
694 | if (b1 != b2) | |
695 | return 1; | |
696 | ||
697 | /* Now update the length and offsets to take account of the bits | |
698 | we've just compared. */ | |
699 | length_bits -= bits; | |
700 | offset1_bits += bits; | |
701 | offset2_bits += bits; | |
702 | } | |
703 | ||
704 | if (length_bits % TARGET_CHAR_BIT != 0) | |
705 | { | |
706 | size_t bits; | |
707 | size_t o1, o2; | |
708 | gdb_byte mask, b1, b2; | |
709 | ||
710 | /* The length is not an exact number of bytes. After the previous | |
711 | IF.. block then the offsets are byte aligned, or the | |
712 | length is zero (in which case this code is not reached). Compare | |
713 | a number of bits at the end of the region, starting from an exact | |
714 | byte boundary. */ | |
715 | bits = length_bits % TARGET_CHAR_BIT; | |
716 | o1 = offset1_bits + length_bits - bits; | |
717 | o2 = offset2_bits + length_bits - bits; | |
718 | ||
719 | gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); | |
720 | mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits); | |
721 | ||
722 | gdb_assert (o1 % TARGET_CHAR_BIT == 0); | |
723 | gdb_assert (o2 % TARGET_CHAR_BIT == 0); | |
724 | ||
725 | b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask; | |
726 | b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask; | |
727 | ||
728 | if (b1 != b2) | |
729 | return 1; | |
730 | ||
731 | length_bits -= bits; | |
732 | } | |
733 | ||
734 | if (length_bits > 0) | |
735 | { | |
736 | /* We've now taken care of any stray "bits" at the start, or end of | |
737 | the region to compare, the remainder can be covered with a simple | |
738 | memcmp. */ | |
739 | gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0); | |
740 | gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0); | |
741 | gdb_assert (length_bits % TARGET_CHAR_BIT == 0); | |
742 | ||
743 | return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT, | |
744 | ptr2 + offset2_bits / TARGET_CHAR_BIT, | |
745 | length_bits / TARGET_CHAR_BIT); | |
746 | } | |
747 | ||
748 | /* Length is zero, regions match. */ | |
749 | return 0; | |
750 | } | |
751 | ||
9a0dc9e3 PA |
752 | /* Helper struct for find_first_range_overlap_and_match and |
753 | value_contents_bits_eq. Keep track of which slot of a given ranges | |
754 | vector have we last looked at. */ | |
bdf22206 | 755 | |
9a0dc9e3 PA |
756 | struct ranges_and_idx |
757 | { | |
758 | /* The ranges. */ | |
0c7e6dd8 | 759 | const std::vector<range> *ranges; |
9a0dc9e3 PA |
760 | |
761 | /* The range we've last found in RANGES. Given ranges are sorted, | |
762 | we can start the next lookup here. */ | |
763 | int idx; | |
764 | }; | |
765 | ||
766 | /* Helper function for value_contents_bits_eq. Compare LENGTH bits of | |
767 | RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's | |
768 | ranges starting at OFFSET2 bits. Return true if the ranges match | |
769 | and fill in *L and *H with the overlapping window relative to | |
770 | (both) OFFSET1 or OFFSET2. */ | |
bdf22206 AB |
771 | |
772 | static int | |
9a0dc9e3 PA |
773 | find_first_range_overlap_and_match (struct ranges_and_idx *rp1, |
774 | struct ranges_and_idx *rp2, | |
6b850546 DT |
775 | LONGEST offset1, LONGEST offset2, |
776 | LONGEST length, ULONGEST *l, ULONGEST *h) | |
c8c1c22f | 777 | { |
9a0dc9e3 PA |
778 | rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx, |
779 | offset1, length); | |
780 | rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx, | |
781 | offset2, length); | |
c8c1c22f | 782 | |
9a0dc9e3 PA |
783 | if (rp1->idx == -1 && rp2->idx == -1) |
784 | { | |
785 | *l = length; | |
786 | *h = length; | |
787 | return 1; | |
788 | } | |
789 | else if (rp1->idx == -1 || rp2->idx == -1) | |
790 | return 0; | |
791 | else | |
c8c1c22f | 792 | { |
0c7e6dd8 | 793 | const range *r1, *r2; |
c8c1c22f PA |
794 | ULONGEST l1, h1; |
795 | ULONGEST l2, h2; | |
796 | ||
0c7e6dd8 TT |
797 | r1 = &(*rp1->ranges)[rp1->idx]; |
798 | r2 = &(*rp2->ranges)[rp2->idx]; | |
c8c1c22f PA |
799 | |
800 | /* Get the unavailable windows intersected by the incoming | |
801 | ranges. The first and last ranges that overlap the argument | |
802 | range may be wider than said incoming arguments ranges. */ | |
325fac50 PA |
803 | l1 = std::max (offset1, r1->offset); |
804 | h1 = std::min (offset1 + length, r1->offset + r1->length); | |
c8c1c22f | 805 | |
325fac50 PA |
806 | l2 = std::max (offset2, r2->offset); |
807 | h2 = std::min (offset2 + length, offset2 + r2->length); | |
c8c1c22f PA |
808 | |
809 | /* Make them relative to the respective start offsets, so we can | |
810 | compare them for equality. */ | |
811 | l1 -= offset1; | |
812 | h1 -= offset1; | |
813 | ||
814 | l2 -= offset2; | |
815 | h2 -= offset2; | |
816 | ||
9a0dc9e3 | 817 | /* Different ranges, no match. */ |
c8c1c22f PA |
818 | if (l1 != l2 || h1 != h2) |
819 | return 0; | |
820 | ||
9a0dc9e3 PA |
821 | *h = h1; |
822 | *l = l1; | |
823 | return 1; | |
824 | } | |
825 | } | |
826 | ||
827 | /* Helper function for value_contents_eq. The only difference is that | |
828 | this function is bit rather than byte based. | |
829 | ||
830 | Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits | |
831 | with LENGTH bits of VAL2's contents starting at OFFSET2 bits. | |
832 | Return true if the available bits match. */ | |
833 | ||
98ead37e | 834 | static bool |
9a0dc9e3 PA |
835 | value_contents_bits_eq (const struct value *val1, int offset1, |
836 | const struct value *val2, int offset2, | |
837 | int length) | |
838 | { | |
839 | /* Each array element corresponds to a ranges source (unavailable, | |
840 | optimized out). '1' is for VAL1, '2' for VAL2. */ | |
841 | struct ranges_and_idx rp1[2], rp2[2]; | |
842 | ||
843 | /* See function description in value.h. */ | |
844 | gdb_assert (!val1->lazy && !val2->lazy); | |
845 | ||
846 | /* We shouldn't be trying to compare past the end of the values. */ | |
847 | gdb_assert (offset1 + length | |
848 | <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT); | |
849 | gdb_assert (offset2 + length | |
850 | <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT); | |
851 | ||
852 | memset (&rp1, 0, sizeof (rp1)); | |
853 | memset (&rp2, 0, sizeof (rp2)); | |
0c7e6dd8 TT |
854 | rp1[0].ranges = &val1->unavailable; |
855 | rp2[0].ranges = &val2->unavailable; | |
856 | rp1[1].ranges = &val1->optimized_out; | |
857 | rp2[1].ranges = &val2->optimized_out; | |
9a0dc9e3 PA |
858 | |
859 | while (length > 0) | |
860 | { | |
000339af | 861 | ULONGEST l = 0, h = 0; /* init for gcc -Wall */ |
9a0dc9e3 PA |
862 | int i; |
863 | ||
864 | for (i = 0; i < 2; i++) | |
865 | { | |
866 | ULONGEST l_tmp, h_tmp; | |
867 | ||
868 | /* The contents only match equal if the invalid/unavailable | |
869 | contents ranges match as well. */ | |
870 | if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i], | |
871 | offset1, offset2, length, | |
872 | &l_tmp, &h_tmp)) | |
98ead37e | 873 | return false; |
9a0dc9e3 PA |
874 | |
875 | /* We're interested in the lowest/first range found. */ | |
876 | if (i == 0 || l_tmp < l) | |
877 | { | |
878 | l = l_tmp; | |
879 | h = h_tmp; | |
880 | } | |
881 | } | |
882 | ||
883 | /* Compare the available/valid contents. */ | |
14c88955 TT |
884 | if (memcmp_with_bit_offsets (val1->contents.get (), offset1, |
885 | val2->contents.get (), offset2, l) != 0) | |
98ead37e | 886 | return false; |
c8c1c22f | 887 | |
9a0dc9e3 PA |
888 | length -= h; |
889 | offset1 += h; | |
890 | offset2 += h; | |
c8c1c22f PA |
891 | } |
892 | ||
98ead37e | 893 | return true; |
c8c1c22f PA |
894 | } |
895 | ||
98ead37e | 896 | bool |
6b850546 DT |
897 | value_contents_eq (const struct value *val1, LONGEST offset1, |
898 | const struct value *val2, LONGEST offset2, | |
899 | LONGEST length) | |
bdf22206 | 900 | { |
9a0dc9e3 PA |
901 | return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT, |
902 | val2, offset2 * TARGET_CHAR_BIT, | |
903 | length * TARGET_CHAR_BIT); | |
bdf22206 AB |
904 | } |
905 | ||
c906108c | 906 | |
4d0266a0 TT |
907 | /* The value-history records all the values printed by print commands |
908 | during this session. */ | |
c906108c | 909 | |
4d0266a0 | 910 | static std::vector<value_ref_ptr> value_history; |
bc3b79fd | 911 | |
c906108c SS |
912 | \f |
913 | /* List of all value objects currently allocated | |
914 | (except for those released by calls to release_value) | |
915 | This is so they can be freed after each command. */ | |
916 | ||
062d818d | 917 | static std::vector<value_ref_ptr> all_values; |
c906108c | 918 | |
3e3d7139 JG |
919 | /* Allocate a lazy value for type TYPE. Its actual content is |
920 | "lazily" allocated too: the content field of the return value is | |
921 | NULL; it will be allocated when it is fetched from the target. */ | |
c906108c | 922 | |
f23631e4 | 923 | struct value * |
3e3d7139 | 924 | allocate_value_lazy (struct type *type) |
c906108c | 925 | { |
f23631e4 | 926 | struct value *val; |
c54eabfa JK |
927 | |
928 | /* Call check_typedef on our type to make sure that, if TYPE | |
929 | is a TYPE_CODE_TYPEDEF, its length is set to the length | |
930 | of the target type instead of zero. However, we do not | |
931 | replace the typedef type by the target type, because we want | |
932 | to keep the typedef in order to be able to set the VAL's type | |
933 | description correctly. */ | |
934 | check_typedef (type); | |
c906108c | 935 | |
466ce3ae | 936 | val = new struct value (type); |
828d3400 DJ |
937 | |
938 | /* Values start out on the all_values chain. */ | |
062d818d | 939 | all_values.emplace_back (val); |
828d3400 | 940 | |
c906108c SS |
941 | return val; |
942 | } | |
943 | ||
5fdf6324 AB |
944 | /* The maximum size, in bytes, that GDB will try to allocate for a value. |
945 | The initial value of 64k was not selected for any specific reason, it is | |
946 | just a reasonable starting point. */ | |
947 | ||
948 | static int max_value_size = 65536; /* 64k bytes */ | |
949 | ||
950 | /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of | |
951 | LONGEST, otherwise GDB will not be able to parse integer values from the | |
952 | CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would | |
953 | be unable to parse "set max-value-size 2". | |
954 | ||
955 | As we want a consistent GDB experience across hosts with different sizes | |
956 | of LONGEST, this arbitrary minimum value was selected, so long as this | |
957 | is bigger than LONGEST on all GDB supported hosts we're fine. */ | |
958 | ||
959 | #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16 | |
960 | gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE); | |
961 | ||
962 | /* Implement the "set max-value-size" command. */ | |
963 | ||
964 | static void | |
eb4c3f4a | 965 | set_max_value_size (const char *args, int from_tty, |
5fdf6324 AB |
966 | struct cmd_list_element *c) |
967 | { | |
968 | gdb_assert (max_value_size == -1 || max_value_size >= 0); | |
969 | ||
970 | if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE) | |
971 | { | |
972 | max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE; | |
973 | error (_("max-value-size set too low, increasing to %d bytes"), | |
974 | max_value_size); | |
975 | } | |
976 | } | |
977 | ||
978 | /* Implement the "show max-value-size" command. */ | |
979 | ||
980 | static void | |
981 | show_max_value_size (struct ui_file *file, int from_tty, | |
982 | struct cmd_list_element *c, const char *value) | |
983 | { | |
984 | if (max_value_size == -1) | |
985 | fprintf_filtered (file, _("Maximum value size is unlimited.\n")); | |
986 | else | |
987 | fprintf_filtered (file, _("Maximum value size is %d bytes.\n"), | |
988 | max_value_size); | |
989 | } | |
990 | ||
991 | /* Called before we attempt to allocate or reallocate a buffer for the | |
992 | contents of a value. TYPE is the type of the value for which we are | |
993 | allocating the buffer. If the buffer is too large (based on the user | |
994 | controllable setting) then throw an error. If this function returns | |
995 | then we should attempt to allocate the buffer. */ | |
996 | ||
997 | static void | |
998 | check_type_length_before_alloc (const struct type *type) | |
999 | { | |
1000 | unsigned int length = TYPE_LENGTH (type); | |
1001 | ||
1002 | if (max_value_size > -1 && length > max_value_size) | |
1003 | { | |
1004 | if (TYPE_NAME (type) != NULL) | |
1005 | error (_("value of type `%s' requires %u bytes, which is more " | |
1006 | "than max-value-size"), TYPE_NAME (type), length); | |
1007 | else | |
1008 | error (_("value requires %u bytes, which is more than " | |
1009 | "max-value-size"), length); | |
1010 | } | |
1011 | } | |
1012 | ||
3e3d7139 JG |
1013 | /* Allocate the contents of VAL if it has not been allocated yet. */ |
1014 | ||
548b762d | 1015 | static void |
3e3d7139 JG |
1016 | allocate_value_contents (struct value *val) |
1017 | { | |
1018 | if (!val->contents) | |
5fdf6324 AB |
1019 | { |
1020 | check_type_length_before_alloc (val->enclosing_type); | |
14c88955 TT |
1021 | val->contents.reset |
1022 | ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type))); | |
5fdf6324 | 1023 | } |
3e3d7139 JG |
1024 | } |
1025 | ||
1026 | /* Allocate a value and its contents for type TYPE. */ | |
1027 | ||
1028 | struct value * | |
1029 | allocate_value (struct type *type) | |
1030 | { | |
1031 | struct value *val = allocate_value_lazy (type); | |
a109c7c1 | 1032 | |
3e3d7139 JG |
1033 | allocate_value_contents (val); |
1034 | val->lazy = 0; | |
1035 | return val; | |
1036 | } | |
1037 | ||
c906108c | 1038 | /* Allocate a value that has the correct length |
938f5214 | 1039 | for COUNT repetitions of type TYPE. */ |
c906108c | 1040 | |
f23631e4 | 1041 | struct value * |
fba45db2 | 1042 | allocate_repeat_value (struct type *type, int count) |
c906108c | 1043 | { |
c5aa993b | 1044 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
1045 | /* FIXME-type-allocation: need a way to free this type when we are |
1046 | done with it. */ | |
e3506a9f UW |
1047 | struct type *array_type |
1048 | = lookup_array_range_type (type, low_bound, count + low_bound - 1); | |
a109c7c1 | 1049 | |
e3506a9f | 1050 | return allocate_value (array_type); |
c906108c SS |
1051 | } |
1052 | ||
5f5233d4 PA |
1053 | struct value * |
1054 | allocate_computed_value (struct type *type, | |
c8f2448a | 1055 | const struct lval_funcs *funcs, |
5f5233d4 PA |
1056 | void *closure) |
1057 | { | |
41e8491f | 1058 | struct value *v = allocate_value_lazy (type); |
a109c7c1 | 1059 | |
5f5233d4 PA |
1060 | VALUE_LVAL (v) = lval_computed; |
1061 | v->location.computed.funcs = funcs; | |
1062 | v->location.computed.closure = closure; | |
5f5233d4 PA |
1063 | |
1064 | return v; | |
1065 | } | |
1066 | ||
a7035dbb JK |
1067 | /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */ |
1068 | ||
1069 | struct value * | |
1070 | allocate_optimized_out_value (struct type *type) | |
1071 | { | |
1072 | struct value *retval = allocate_value_lazy (type); | |
1073 | ||
9a0dc9e3 PA |
1074 | mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type)); |
1075 | set_value_lazy (retval, 0); | |
a7035dbb JK |
1076 | return retval; |
1077 | } | |
1078 | ||
df407dfe AC |
1079 | /* Accessor methods. */ |
1080 | ||
1081 | struct type * | |
0e03807e | 1082 | value_type (const struct value *value) |
df407dfe AC |
1083 | { |
1084 | return value->type; | |
1085 | } | |
04624583 AC |
1086 | void |
1087 | deprecated_set_value_type (struct value *value, struct type *type) | |
1088 | { | |
1089 | value->type = type; | |
1090 | } | |
df407dfe | 1091 | |
6b850546 | 1092 | LONGEST |
0e03807e | 1093 | value_offset (const struct value *value) |
df407dfe AC |
1094 | { |
1095 | return value->offset; | |
1096 | } | |
f5cf64a7 | 1097 | void |
6b850546 | 1098 | set_value_offset (struct value *value, LONGEST offset) |
f5cf64a7 AC |
1099 | { |
1100 | value->offset = offset; | |
1101 | } | |
df407dfe | 1102 | |
6b850546 | 1103 | LONGEST |
0e03807e | 1104 | value_bitpos (const struct value *value) |
df407dfe AC |
1105 | { |
1106 | return value->bitpos; | |
1107 | } | |
9bbda503 | 1108 | void |
6b850546 | 1109 | set_value_bitpos (struct value *value, LONGEST bit) |
9bbda503 AC |
1110 | { |
1111 | value->bitpos = bit; | |
1112 | } | |
df407dfe | 1113 | |
6b850546 | 1114 | LONGEST |
0e03807e | 1115 | value_bitsize (const struct value *value) |
df407dfe AC |
1116 | { |
1117 | return value->bitsize; | |
1118 | } | |
9bbda503 | 1119 | void |
6b850546 | 1120 | set_value_bitsize (struct value *value, LONGEST bit) |
9bbda503 AC |
1121 | { |
1122 | value->bitsize = bit; | |
1123 | } | |
df407dfe | 1124 | |
4ea48cc1 | 1125 | struct value * |
4bf7b526 | 1126 | value_parent (const struct value *value) |
4ea48cc1 | 1127 | { |
2c8331b9 | 1128 | return value->parent.get (); |
4ea48cc1 DJ |
1129 | } |
1130 | ||
53ba8333 JB |
1131 | /* See value.h. */ |
1132 | ||
1133 | void | |
1134 | set_value_parent (struct value *value, struct value *parent) | |
1135 | { | |
bbfa6f00 | 1136 | value->parent = value_ref_ptr::new_reference (parent); |
53ba8333 JB |
1137 | } |
1138 | ||
fc1a4b47 | 1139 | gdb_byte * |
990a07ab AC |
1140 | value_contents_raw (struct value *value) |
1141 | { | |
3ae385af SM |
1142 | struct gdbarch *arch = get_value_arch (value); |
1143 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
1144 | ||
3e3d7139 | 1145 | allocate_value_contents (value); |
14c88955 | 1146 | return value->contents.get () + value->embedded_offset * unit_size; |
990a07ab AC |
1147 | } |
1148 | ||
fc1a4b47 | 1149 | gdb_byte * |
990a07ab AC |
1150 | value_contents_all_raw (struct value *value) |
1151 | { | |
3e3d7139 | 1152 | allocate_value_contents (value); |
14c88955 | 1153 | return value->contents.get (); |
990a07ab AC |
1154 | } |
1155 | ||
4754a64e | 1156 | struct type * |
4bf7b526 | 1157 | value_enclosing_type (const struct value *value) |
4754a64e AC |
1158 | { |
1159 | return value->enclosing_type; | |
1160 | } | |
1161 | ||
8264ba82 AG |
1162 | /* Look at value.h for description. */ |
1163 | ||
1164 | struct type * | |
1165 | value_actual_type (struct value *value, int resolve_simple_types, | |
1166 | int *real_type_found) | |
1167 | { | |
1168 | struct value_print_options opts; | |
8264ba82 AG |
1169 | struct type *result; |
1170 | ||
1171 | get_user_print_options (&opts); | |
1172 | ||
1173 | if (real_type_found) | |
1174 | *real_type_found = 0; | |
1175 | result = value_type (value); | |
1176 | if (opts.objectprint) | |
1177 | { | |
5e34c6c3 LM |
1178 | /* If result's target type is TYPE_CODE_STRUCT, proceed to |
1179 | fetch its rtti type. */ | |
aa006118 | 1180 | if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result)) |
5e34c6c3 | 1181 | && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result))) |
ecf2e90c DB |
1182 | == TYPE_CODE_STRUCT |
1183 | && !value_optimized_out (value)) | |
8264ba82 AG |
1184 | { |
1185 | struct type *real_type; | |
1186 | ||
1187 | real_type = value_rtti_indirect_type (value, NULL, NULL, NULL); | |
1188 | if (real_type) | |
1189 | { | |
1190 | if (real_type_found) | |
1191 | *real_type_found = 1; | |
1192 | result = real_type; | |
1193 | } | |
1194 | } | |
1195 | else if (resolve_simple_types) | |
1196 | { | |
1197 | if (real_type_found) | |
1198 | *real_type_found = 1; | |
1199 | result = value_enclosing_type (value); | |
1200 | } | |
1201 | } | |
1202 | ||
1203 | return result; | |
1204 | } | |
1205 | ||
901461f8 PA |
1206 | void |
1207 | error_value_optimized_out (void) | |
1208 | { | |
1209 | error (_("value has been optimized out")); | |
1210 | } | |
1211 | ||
0e03807e | 1212 | static void |
4e07d55f | 1213 | require_not_optimized_out (const struct value *value) |
0e03807e | 1214 | { |
0c7e6dd8 | 1215 | if (!value->optimized_out.empty ()) |
901461f8 PA |
1216 | { |
1217 | if (value->lval == lval_register) | |
1218 | error (_("register has not been saved in frame")); | |
1219 | else | |
1220 | error_value_optimized_out (); | |
1221 | } | |
0e03807e TT |
1222 | } |
1223 | ||
4e07d55f PA |
1224 | static void |
1225 | require_available (const struct value *value) | |
1226 | { | |
0c7e6dd8 | 1227 | if (!value->unavailable.empty ()) |
8af8e3bc | 1228 | throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); |
4e07d55f PA |
1229 | } |
1230 | ||
fc1a4b47 | 1231 | const gdb_byte * |
0e03807e | 1232 | value_contents_for_printing (struct value *value) |
46615f07 AC |
1233 | { |
1234 | if (value->lazy) | |
1235 | value_fetch_lazy (value); | |
14c88955 | 1236 | return value->contents.get (); |
46615f07 AC |
1237 | } |
1238 | ||
de4127a3 PA |
1239 | const gdb_byte * |
1240 | value_contents_for_printing_const (const struct value *value) | |
1241 | { | |
1242 | gdb_assert (!value->lazy); | |
14c88955 | 1243 | return value->contents.get (); |
de4127a3 PA |
1244 | } |
1245 | ||
0e03807e TT |
1246 | const gdb_byte * |
1247 | value_contents_all (struct value *value) | |
1248 | { | |
1249 | const gdb_byte *result = value_contents_for_printing (value); | |
1250 | require_not_optimized_out (value); | |
4e07d55f | 1251 | require_available (value); |
0e03807e TT |
1252 | return result; |
1253 | } | |
1254 | ||
9a0dc9e3 PA |
1255 | /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET, |
1256 | SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */ | |
1257 | ||
1258 | static void | |
0c7e6dd8 TT |
1259 | ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset, |
1260 | const std::vector<range> &src_range, int src_bit_offset, | |
9a0dc9e3 PA |
1261 | int bit_length) |
1262 | { | |
0c7e6dd8 | 1263 | for (const range &r : src_range) |
9a0dc9e3 PA |
1264 | { |
1265 | ULONGEST h, l; | |
1266 | ||
0c7e6dd8 TT |
1267 | l = std::max (r.offset, (LONGEST) src_bit_offset); |
1268 | h = std::min (r.offset + r.length, | |
325fac50 | 1269 | (LONGEST) src_bit_offset + bit_length); |
9a0dc9e3 PA |
1270 | |
1271 | if (l < h) | |
1272 | insert_into_bit_range_vector (dst_range, | |
1273 | dst_bit_offset + (l - src_bit_offset), | |
1274 | h - l); | |
1275 | } | |
1276 | } | |
1277 | ||
4875ffdb PA |
1278 | /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET, |
1279 | SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */ | |
1280 | ||
1281 | static void | |
1282 | value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset, | |
1283 | const struct value *src, int src_bit_offset, | |
1284 | int bit_length) | |
1285 | { | |
1286 | ranges_copy_adjusted (&dst->unavailable, dst_bit_offset, | |
1287 | src->unavailable, src_bit_offset, | |
1288 | bit_length); | |
1289 | ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset, | |
1290 | src->optimized_out, src_bit_offset, | |
1291 | bit_length); | |
1292 | } | |
1293 | ||
3ae385af | 1294 | /* Copy LENGTH target addressable memory units of SRC value's (all) contents |
29976f3f PA |
1295 | (value_contents_all) starting at SRC_OFFSET, into DST value's (all) |
1296 | contents, starting at DST_OFFSET. If unavailable contents are | |
1297 | being copied from SRC, the corresponding DST contents are marked | |
1298 | unavailable accordingly. Neither DST nor SRC may be lazy | |
1299 | values. | |
1300 | ||
1301 | It is assumed the contents of DST in the [DST_OFFSET, | |
1302 | DST_OFFSET+LENGTH) range are wholly available. */ | |
39d37385 PA |
1303 | |
1304 | void | |
6b850546 DT |
1305 | value_contents_copy_raw (struct value *dst, LONGEST dst_offset, |
1306 | struct value *src, LONGEST src_offset, LONGEST length) | |
39d37385 | 1307 | { |
6b850546 | 1308 | LONGEST src_bit_offset, dst_bit_offset, bit_length; |
3ae385af SM |
1309 | struct gdbarch *arch = get_value_arch (src); |
1310 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
39d37385 PA |
1311 | |
1312 | /* A lazy DST would make that this copy operation useless, since as | |
1313 | soon as DST's contents were un-lazied (by a later value_contents | |
1314 | call, say), the contents would be overwritten. A lazy SRC would | |
1315 | mean we'd be copying garbage. */ | |
1316 | gdb_assert (!dst->lazy && !src->lazy); | |
1317 | ||
29976f3f PA |
1318 | /* The overwritten DST range gets unavailability ORed in, not |
1319 | replaced. Make sure to remember to implement replacing if it | |
1320 | turns out actually necessary. */ | |
1321 | gdb_assert (value_bytes_available (dst, dst_offset, length)); | |
9a0dc9e3 PA |
1322 | gdb_assert (!value_bits_any_optimized_out (dst, |
1323 | TARGET_CHAR_BIT * dst_offset, | |
1324 | TARGET_CHAR_BIT * length)); | |
29976f3f | 1325 | |
39d37385 | 1326 | /* Copy the data. */ |
3ae385af SM |
1327 | memcpy (value_contents_all_raw (dst) + dst_offset * unit_size, |
1328 | value_contents_all_raw (src) + src_offset * unit_size, | |
1329 | length * unit_size); | |
39d37385 PA |
1330 | |
1331 | /* Copy the meta-data, adjusted. */ | |
3ae385af SM |
1332 | src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT; |
1333 | dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT; | |
1334 | bit_length = length * unit_size * HOST_CHAR_BIT; | |
39d37385 | 1335 | |
4875ffdb PA |
1336 | value_ranges_copy_adjusted (dst, dst_bit_offset, |
1337 | src, src_bit_offset, | |
1338 | bit_length); | |
39d37385 PA |
1339 | } |
1340 | ||
29976f3f PA |
1341 | /* Copy LENGTH bytes of SRC value's (all) contents |
1342 | (value_contents_all) starting at SRC_OFFSET byte, into DST value's | |
1343 | (all) contents, starting at DST_OFFSET. If unavailable contents | |
1344 | are being copied from SRC, the corresponding DST contents are | |
1345 | marked unavailable accordingly. DST must not be lazy. If SRC is | |
9a0dc9e3 | 1346 | lazy, it will be fetched now. |
29976f3f PA |
1347 | |
1348 | It is assumed the contents of DST in the [DST_OFFSET, | |
1349 | DST_OFFSET+LENGTH) range are wholly available. */ | |
39d37385 PA |
1350 | |
1351 | void | |
6b850546 DT |
1352 | value_contents_copy (struct value *dst, LONGEST dst_offset, |
1353 | struct value *src, LONGEST src_offset, LONGEST length) | |
39d37385 | 1354 | { |
39d37385 PA |
1355 | if (src->lazy) |
1356 | value_fetch_lazy (src); | |
1357 | ||
1358 | value_contents_copy_raw (dst, dst_offset, src, src_offset, length); | |
1359 | } | |
1360 | ||
d69fe07e | 1361 | int |
4bf7b526 | 1362 | value_lazy (const struct value *value) |
d69fe07e AC |
1363 | { |
1364 | return value->lazy; | |
1365 | } | |
1366 | ||
dfa52d88 AC |
1367 | void |
1368 | set_value_lazy (struct value *value, int val) | |
1369 | { | |
1370 | value->lazy = val; | |
1371 | } | |
1372 | ||
4e5d721f | 1373 | int |
4bf7b526 | 1374 | value_stack (const struct value *value) |
4e5d721f DE |
1375 | { |
1376 | return value->stack; | |
1377 | } | |
1378 | ||
1379 | void | |
1380 | set_value_stack (struct value *value, int val) | |
1381 | { | |
1382 | value->stack = val; | |
1383 | } | |
1384 | ||
fc1a4b47 | 1385 | const gdb_byte * |
0fd88904 AC |
1386 | value_contents (struct value *value) |
1387 | { | |
0e03807e TT |
1388 | const gdb_byte *result = value_contents_writeable (value); |
1389 | require_not_optimized_out (value); | |
4e07d55f | 1390 | require_available (value); |
0e03807e | 1391 | return result; |
0fd88904 AC |
1392 | } |
1393 | ||
fc1a4b47 | 1394 | gdb_byte * |
0fd88904 AC |
1395 | value_contents_writeable (struct value *value) |
1396 | { | |
1397 | if (value->lazy) | |
1398 | value_fetch_lazy (value); | |
fc0c53a0 | 1399 | return value_contents_raw (value); |
0fd88904 AC |
1400 | } |
1401 | ||
feb13ab0 AC |
1402 | int |
1403 | value_optimized_out (struct value *value) | |
1404 | { | |
691a26f5 AB |
1405 | /* We can only know if a value is optimized out once we have tried to |
1406 | fetch it. */ | |
0c7e6dd8 | 1407 | if (value->optimized_out.empty () && value->lazy) |
ecf2e90c | 1408 | { |
a70b8144 | 1409 | try |
ecf2e90c DB |
1410 | { |
1411 | value_fetch_lazy (value); | |
1412 | } | |
230d2906 | 1413 | catch (const gdb_exception_error &ex) |
ecf2e90c DB |
1414 | { |
1415 | /* Fall back to checking value->optimized_out. */ | |
1416 | } | |
ecf2e90c | 1417 | } |
691a26f5 | 1418 | |
0c7e6dd8 | 1419 | return !value->optimized_out.empty (); |
feb13ab0 AC |
1420 | } |
1421 | ||
9a0dc9e3 PA |
1422 | /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and |
1423 | the following LENGTH bytes. */ | |
eca07816 | 1424 | |
feb13ab0 | 1425 | void |
9a0dc9e3 | 1426 | mark_value_bytes_optimized_out (struct value *value, int offset, int length) |
feb13ab0 | 1427 | { |
9a0dc9e3 PA |
1428 | mark_value_bits_optimized_out (value, |
1429 | offset * TARGET_CHAR_BIT, | |
1430 | length * TARGET_CHAR_BIT); | |
feb13ab0 | 1431 | } |
13c3b5f5 | 1432 | |
9a0dc9e3 | 1433 | /* See value.h. */ |
0e03807e | 1434 | |
9a0dc9e3 | 1435 | void |
6b850546 DT |
1436 | mark_value_bits_optimized_out (struct value *value, |
1437 | LONGEST offset, LONGEST length) | |
0e03807e | 1438 | { |
9a0dc9e3 | 1439 | insert_into_bit_range_vector (&value->optimized_out, offset, length); |
0e03807e TT |
1440 | } |
1441 | ||
8cf6f0b1 TT |
1442 | int |
1443 | value_bits_synthetic_pointer (const struct value *value, | |
6b850546 | 1444 | LONGEST offset, LONGEST length) |
8cf6f0b1 | 1445 | { |
e7303042 | 1446 | if (value->lval != lval_computed |
8cf6f0b1 TT |
1447 | || !value->location.computed.funcs->check_synthetic_pointer) |
1448 | return 0; | |
1449 | return value->location.computed.funcs->check_synthetic_pointer (value, | |
1450 | offset, | |
1451 | length); | |
1452 | } | |
1453 | ||
6b850546 | 1454 | LONGEST |
4bf7b526 | 1455 | value_embedded_offset (const struct value *value) |
13c3b5f5 AC |
1456 | { |
1457 | return value->embedded_offset; | |
1458 | } | |
1459 | ||
1460 | void | |
6b850546 | 1461 | set_value_embedded_offset (struct value *value, LONGEST val) |
13c3b5f5 AC |
1462 | { |
1463 | value->embedded_offset = val; | |
1464 | } | |
b44d461b | 1465 | |
6b850546 | 1466 | LONGEST |
4bf7b526 | 1467 | value_pointed_to_offset (const struct value *value) |
b44d461b AC |
1468 | { |
1469 | return value->pointed_to_offset; | |
1470 | } | |
1471 | ||
1472 | void | |
6b850546 | 1473 | set_value_pointed_to_offset (struct value *value, LONGEST val) |
b44d461b AC |
1474 | { |
1475 | value->pointed_to_offset = val; | |
1476 | } | |
13bb5560 | 1477 | |
c8f2448a | 1478 | const struct lval_funcs * |
a471c594 | 1479 | value_computed_funcs (const struct value *v) |
5f5233d4 | 1480 | { |
a471c594 | 1481 | gdb_assert (value_lval_const (v) == lval_computed); |
5f5233d4 PA |
1482 | |
1483 | return v->location.computed.funcs; | |
1484 | } | |
1485 | ||
1486 | void * | |
0e03807e | 1487 | value_computed_closure (const struct value *v) |
5f5233d4 | 1488 | { |
0e03807e | 1489 | gdb_assert (v->lval == lval_computed); |
5f5233d4 PA |
1490 | |
1491 | return v->location.computed.closure; | |
1492 | } | |
1493 | ||
13bb5560 AC |
1494 | enum lval_type * |
1495 | deprecated_value_lval_hack (struct value *value) | |
1496 | { | |
1497 | return &value->lval; | |
1498 | } | |
1499 | ||
a471c594 JK |
1500 | enum lval_type |
1501 | value_lval_const (const struct value *value) | |
1502 | { | |
1503 | return value->lval; | |
1504 | } | |
1505 | ||
42ae5230 | 1506 | CORE_ADDR |
de4127a3 | 1507 | value_address (const struct value *value) |
42ae5230 | 1508 | { |
1a088441 | 1509 | if (value->lval != lval_memory) |
42ae5230 | 1510 | return 0; |
53ba8333 | 1511 | if (value->parent != NULL) |
2c8331b9 | 1512 | return value_address (value->parent.get ()) + value->offset; |
9920b434 BH |
1513 | if (NULL != TYPE_DATA_LOCATION (value_type (value))) |
1514 | { | |
1515 | gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value))); | |
1516 | return TYPE_DATA_LOCATION_ADDR (value_type (value)); | |
1517 | } | |
1518 | ||
1519 | return value->location.address + value->offset; | |
42ae5230 TT |
1520 | } |
1521 | ||
1522 | CORE_ADDR | |
4bf7b526 | 1523 | value_raw_address (const struct value *value) |
42ae5230 | 1524 | { |
1a088441 | 1525 | if (value->lval != lval_memory) |
42ae5230 TT |
1526 | return 0; |
1527 | return value->location.address; | |
1528 | } | |
1529 | ||
1530 | void | |
1531 | set_value_address (struct value *value, CORE_ADDR addr) | |
13bb5560 | 1532 | { |
1a088441 | 1533 | gdb_assert (value->lval == lval_memory); |
42ae5230 | 1534 | value->location.address = addr; |
13bb5560 AC |
1535 | } |
1536 | ||
1537 | struct internalvar ** | |
1538 | deprecated_value_internalvar_hack (struct value *value) | |
1539 | { | |
1540 | return &value->location.internalvar; | |
1541 | } | |
1542 | ||
1543 | struct frame_id * | |
41b56feb | 1544 | deprecated_value_next_frame_id_hack (struct value *value) |
13bb5560 | 1545 | { |
7c2ba67e | 1546 | gdb_assert (value->lval == lval_register); |
7dc54575 | 1547 | return &value->location.reg.next_frame_id; |
13bb5560 AC |
1548 | } |
1549 | ||
7dc54575 | 1550 | int * |
13bb5560 AC |
1551 | deprecated_value_regnum_hack (struct value *value) |
1552 | { | |
7c2ba67e | 1553 | gdb_assert (value->lval == lval_register); |
7dc54575 | 1554 | return &value->location.reg.regnum; |
13bb5560 | 1555 | } |
88e3b34b AC |
1556 | |
1557 | int | |
4bf7b526 | 1558 | deprecated_value_modifiable (const struct value *value) |
88e3b34b AC |
1559 | { |
1560 | return value->modifiable; | |
1561 | } | |
990a07ab | 1562 | \f |
c906108c SS |
1563 | /* Return a mark in the value chain. All values allocated after the |
1564 | mark is obtained (except for those released) are subject to being freed | |
1565 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 1566 | struct value * |
fba45db2 | 1567 | value_mark (void) |
c906108c | 1568 | { |
062d818d TT |
1569 | if (all_values.empty ()) |
1570 | return nullptr; | |
1571 | return all_values.back ().get (); | |
c906108c SS |
1572 | } |
1573 | ||
bbfa6f00 | 1574 | /* See value.h. */ |
828d3400 | 1575 | |
bbfa6f00 | 1576 | void |
828d3400 DJ |
1577 | value_incref (struct value *val) |
1578 | { | |
1579 | val->reference_count++; | |
1580 | } | |
1581 | ||
1582 | /* Release a reference to VAL, which was acquired with value_incref. | |
1583 | This function is also called to deallocate values from the value | |
1584 | chain. */ | |
1585 | ||
3e3d7139 | 1586 | void |
22bc8444 | 1587 | value_decref (struct value *val) |
3e3d7139 | 1588 | { |
466ce3ae | 1589 | if (val != nullptr) |
5f5233d4 | 1590 | { |
828d3400 DJ |
1591 | gdb_assert (val->reference_count > 0); |
1592 | val->reference_count--; | |
466ce3ae TT |
1593 | if (val->reference_count == 0) |
1594 | delete val; | |
5f5233d4 | 1595 | } |
3e3d7139 JG |
1596 | } |
1597 | ||
c906108c SS |
1598 | /* Free all values allocated since MARK was obtained by value_mark |
1599 | (except for those released). */ | |
1600 | void | |
4bf7b526 | 1601 | value_free_to_mark (const struct value *mark) |
c906108c | 1602 | { |
062d818d TT |
1603 | auto iter = std::find (all_values.begin (), all_values.end (), mark); |
1604 | if (iter == all_values.end ()) | |
1605 | all_values.clear (); | |
1606 | else | |
1607 | all_values.erase (iter + 1, all_values.end ()); | |
c906108c SS |
1608 | } |
1609 | ||
c906108c SS |
1610 | /* Remove VAL from the chain all_values |
1611 | so it will not be freed automatically. */ | |
1612 | ||
22bc8444 | 1613 | value_ref_ptr |
f23631e4 | 1614 | release_value (struct value *val) |
c906108c | 1615 | { |
850645cf TT |
1616 | if (val == nullptr) |
1617 | return value_ref_ptr (); | |
1618 | ||
062d818d TT |
1619 | std::vector<value_ref_ptr>::reverse_iterator iter; |
1620 | for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter) | |
c906108c | 1621 | { |
062d818d | 1622 | if (*iter == val) |
c906108c | 1623 | { |
062d818d TT |
1624 | value_ref_ptr result = *iter; |
1625 | all_values.erase (iter.base () - 1); | |
1626 | return result; | |
c906108c SS |
1627 | } |
1628 | } | |
c906108c | 1629 | |
062d818d TT |
1630 | /* We must always return an owned reference. Normally this happens |
1631 | because we transfer the reference from the value chain, but in | |
1632 | this case the value was not on the chain. */ | |
bbfa6f00 | 1633 | return value_ref_ptr::new_reference (val); |
e848a8a5 TT |
1634 | } |
1635 | ||
a6535de1 TT |
1636 | /* See value.h. */ |
1637 | ||
1638 | std::vector<value_ref_ptr> | |
4bf7b526 | 1639 | value_release_to_mark (const struct value *mark) |
c906108c | 1640 | { |
a6535de1 | 1641 | std::vector<value_ref_ptr> result; |
c906108c | 1642 | |
062d818d TT |
1643 | auto iter = std::find (all_values.begin (), all_values.end (), mark); |
1644 | if (iter == all_values.end ()) | |
1645 | std::swap (result, all_values); | |
1646 | else | |
e848a8a5 | 1647 | { |
062d818d TT |
1648 | std::move (iter + 1, all_values.end (), std::back_inserter (result)); |
1649 | all_values.erase (iter + 1, all_values.end ()); | |
e848a8a5 | 1650 | } |
062d818d | 1651 | std::reverse (result.begin (), result.end ()); |
a6535de1 | 1652 | return result; |
c906108c SS |
1653 | } |
1654 | ||
1655 | /* Return a copy of the value ARG. | |
1656 | It contains the same contents, for same memory address, | |
1657 | but it's a different block of storage. */ | |
1658 | ||
f23631e4 AC |
1659 | struct value * |
1660 | value_copy (struct value *arg) | |
c906108c | 1661 | { |
4754a64e | 1662 | struct type *encl_type = value_enclosing_type (arg); |
3e3d7139 JG |
1663 | struct value *val; |
1664 | ||
1665 | if (value_lazy (arg)) | |
1666 | val = allocate_value_lazy (encl_type); | |
1667 | else | |
1668 | val = allocate_value (encl_type); | |
df407dfe | 1669 | val->type = arg->type; |
c906108c | 1670 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 1671 | val->location = arg->location; |
df407dfe AC |
1672 | val->offset = arg->offset; |
1673 | val->bitpos = arg->bitpos; | |
1674 | val->bitsize = arg->bitsize; | |
d69fe07e | 1675 | val->lazy = arg->lazy; |
13c3b5f5 | 1676 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 1677 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 1678 | val->modifiable = arg->modifiable; |
d69fe07e | 1679 | if (!value_lazy (val)) |
c906108c | 1680 | { |
990a07ab | 1681 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 1682 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
1683 | |
1684 | } | |
0c7e6dd8 TT |
1685 | val->unavailable = arg->unavailable; |
1686 | val->optimized_out = arg->optimized_out; | |
2c8331b9 | 1687 | val->parent = arg->parent; |
5f5233d4 PA |
1688 | if (VALUE_LVAL (val) == lval_computed) |
1689 | { | |
c8f2448a | 1690 | const struct lval_funcs *funcs = val->location.computed.funcs; |
5f5233d4 PA |
1691 | |
1692 | if (funcs->copy_closure) | |
1693 | val->location.computed.closure = funcs->copy_closure (val); | |
1694 | } | |
c906108c SS |
1695 | return val; |
1696 | } | |
74bcbdf3 | 1697 | |
4c082a81 SC |
1698 | /* Return a "const" and/or "volatile" qualified version of the value V. |
1699 | If CNST is true, then the returned value will be qualified with | |
1700 | "const". | |
1701 | if VOLTL is true, then the returned value will be qualified with | |
1702 | "volatile". */ | |
1703 | ||
1704 | struct value * | |
1705 | make_cv_value (int cnst, int voltl, struct value *v) | |
1706 | { | |
1707 | struct type *val_type = value_type (v); | |
1708 | struct type *enclosing_type = value_enclosing_type (v); | |
1709 | struct value *cv_val = value_copy (v); | |
1710 | ||
1711 | deprecated_set_value_type (cv_val, | |
1712 | make_cv_type (cnst, voltl, val_type, NULL)); | |
1713 | set_value_enclosing_type (cv_val, | |
1714 | make_cv_type (cnst, voltl, enclosing_type, NULL)); | |
1715 | ||
1716 | return cv_val; | |
1717 | } | |
1718 | ||
c37f7098 KW |
1719 | /* Return a version of ARG that is non-lvalue. */ |
1720 | ||
1721 | struct value * | |
1722 | value_non_lval (struct value *arg) | |
1723 | { | |
1724 | if (VALUE_LVAL (arg) != not_lval) | |
1725 | { | |
1726 | struct type *enc_type = value_enclosing_type (arg); | |
1727 | struct value *val = allocate_value (enc_type); | |
1728 | ||
1729 | memcpy (value_contents_all_raw (val), value_contents_all (arg), | |
1730 | TYPE_LENGTH (enc_type)); | |
1731 | val->type = arg->type; | |
1732 | set_value_embedded_offset (val, value_embedded_offset (arg)); | |
1733 | set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); | |
1734 | return val; | |
1735 | } | |
1736 | return arg; | |
1737 | } | |
1738 | ||
6c659fc2 SC |
1739 | /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */ |
1740 | ||
1741 | void | |
1742 | value_force_lval (struct value *v, CORE_ADDR addr) | |
1743 | { | |
1744 | gdb_assert (VALUE_LVAL (v) == not_lval); | |
1745 | ||
1746 | write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v))); | |
1747 | v->lval = lval_memory; | |
1748 | v->location.address = addr; | |
1749 | } | |
1750 | ||
74bcbdf3 | 1751 | void |
0e03807e TT |
1752 | set_value_component_location (struct value *component, |
1753 | const struct value *whole) | |
74bcbdf3 | 1754 | { |
9920b434 BH |
1755 | struct type *type; |
1756 | ||
e81e7f5e SC |
1757 | gdb_assert (whole->lval != lval_xcallable); |
1758 | ||
0e03807e | 1759 | if (whole->lval == lval_internalvar) |
74bcbdf3 PA |
1760 | VALUE_LVAL (component) = lval_internalvar_component; |
1761 | else | |
0e03807e | 1762 | VALUE_LVAL (component) = whole->lval; |
5f5233d4 | 1763 | |
74bcbdf3 | 1764 | component->location = whole->location; |
0e03807e | 1765 | if (whole->lval == lval_computed) |
5f5233d4 | 1766 | { |
c8f2448a | 1767 | const struct lval_funcs *funcs = whole->location.computed.funcs; |
5f5233d4 PA |
1768 | |
1769 | if (funcs->copy_closure) | |
1770 | component->location.computed.closure = funcs->copy_closure (whole); | |
1771 | } | |
9920b434 BH |
1772 | |
1773 | /* If type has a dynamic resolved location property | |
1774 | update it's value address. */ | |
1775 | type = value_type (whole); | |
1776 | if (NULL != TYPE_DATA_LOCATION (type) | |
1777 | && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST) | |
1778 | set_value_address (component, TYPE_DATA_LOCATION_ADDR (type)); | |
74bcbdf3 PA |
1779 | } |
1780 | ||
c906108c SS |
1781 | /* Access to the value history. */ |
1782 | ||
1783 | /* Record a new value in the value history. | |
eddf0bae | 1784 | Returns the absolute history index of the entry. */ |
c906108c SS |
1785 | |
1786 | int | |
f23631e4 | 1787 | record_latest_value (struct value *val) |
c906108c | 1788 | { |
c906108c SS |
1789 | /* We don't want this value to have anything to do with the inferior anymore. |
1790 | In particular, "set $1 = 50" should not affect the variable from which | |
1791 | the value was taken, and fast watchpoints should be able to assume that | |
1792 | a value on the value history never changes. */ | |
d69fe07e | 1793 | if (value_lazy (val)) |
c906108c SS |
1794 | value_fetch_lazy (val); |
1795 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
1796 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
1797 | but the current contents of that location. c'est la vie... */ | |
1798 | val->modifiable = 0; | |
350e1a76 | 1799 | |
4d0266a0 | 1800 | value_history.push_back (release_value (val)); |
a109c7c1 | 1801 | |
4d0266a0 | 1802 | return value_history.size (); |
c906108c SS |
1803 | } |
1804 | ||
1805 | /* Return a copy of the value in the history with sequence number NUM. */ | |
1806 | ||
f23631e4 | 1807 | struct value * |
fba45db2 | 1808 | access_value_history (int num) |
c906108c | 1809 | { |
52f0bd74 | 1810 | int absnum = num; |
c906108c SS |
1811 | |
1812 | if (absnum <= 0) | |
4d0266a0 | 1813 | absnum += value_history.size (); |
c906108c SS |
1814 | |
1815 | if (absnum <= 0) | |
1816 | { | |
1817 | if (num == 0) | |
8a3fe4f8 | 1818 | error (_("The history is empty.")); |
c906108c | 1819 | else if (num == 1) |
8a3fe4f8 | 1820 | error (_("There is only one value in the history.")); |
c906108c | 1821 | else |
8a3fe4f8 | 1822 | error (_("History does not go back to $$%d."), -num); |
c906108c | 1823 | } |
4d0266a0 | 1824 | if (absnum > value_history.size ()) |
8a3fe4f8 | 1825 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
1826 | |
1827 | absnum--; | |
1828 | ||
4d0266a0 | 1829 | return value_copy (value_history[absnum].get ()); |
c906108c SS |
1830 | } |
1831 | ||
c906108c | 1832 | static void |
5fed81ff | 1833 | show_values (const char *num_exp, int from_tty) |
c906108c | 1834 | { |
52f0bd74 | 1835 | int i; |
f23631e4 | 1836 | struct value *val; |
c906108c SS |
1837 | static int num = 1; |
1838 | ||
1839 | if (num_exp) | |
1840 | { | |
f132ba9d TJB |
1841 | /* "show values +" should print from the stored position. |
1842 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 1843 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 1844 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
1845 | } |
1846 | else | |
1847 | { | |
f132ba9d | 1848 | /* "show values" means print the last 10 values. */ |
4d0266a0 | 1849 | num = value_history.size () - 9; |
c906108c SS |
1850 | } |
1851 | ||
1852 | if (num <= 0) | |
1853 | num = 1; | |
1854 | ||
4d0266a0 | 1855 | for (i = num; i < num + 10 && i <= value_history.size (); i++) |
c906108c | 1856 | { |
79a45b7d | 1857 | struct value_print_options opts; |
a109c7c1 | 1858 | |
c906108c | 1859 | val = access_value_history (i); |
a3f17187 | 1860 | printf_filtered (("$%d = "), i); |
79a45b7d TT |
1861 | get_user_print_options (&opts); |
1862 | value_print (val, gdb_stdout, &opts); | |
a3f17187 | 1863 | printf_filtered (("\n")); |
c906108c SS |
1864 | } |
1865 | ||
f132ba9d | 1866 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
1867 | num += 10; |
1868 | ||
1869 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
1870 | "show values +". If num_exp is null, this is unnecessary, since |
1871 | "show values +" is not useful after "show values". */ | |
c906108c | 1872 | if (from_tty && num_exp) |
85c4be7c | 1873 | set_repeat_arguments ("+"); |
c906108c SS |
1874 | } |
1875 | \f | |
52059ffd TT |
1876 | enum internalvar_kind |
1877 | { | |
1878 | /* The internal variable is empty. */ | |
1879 | INTERNALVAR_VOID, | |
1880 | ||
1881 | /* The value of the internal variable is provided directly as | |
1882 | a GDB value object. */ | |
1883 | INTERNALVAR_VALUE, | |
1884 | ||
1885 | /* A fresh value is computed via a call-back routine on every | |
1886 | access to the internal variable. */ | |
1887 | INTERNALVAR_MAKE_VALUE, | |
1888 | ||
1889 | /* The internal variable holds a GDB internal convenience function. */ | |
1890 | INTERNALVAR_FUNCTION, | |
1891 | ||
1892 | /* The variable holds an integer value. */ | |
1893 | INTERNALVAR_INTEGER, | |
1894 | ||
1895 | /* The variable holds a GDB-provided string. */ | |
1896 | INTERNALVAR_STRING, | |
1897 | }; | |
1898 | ||
1899 | union internalvar_data | |
1900 | { | |
1901 | /* A value object used with INTERNALVAR_VALUE. */ | |
1902 | struct value *value; | |
1903 | ||
1904 | /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ | |
1905 | struct | |
1906 | { | |
1907 | /* The functions to call. */ | |
1908 | const struct internalvar_funcs *functions; | |
1909 | ||
1910 | /* The function's user-data. */ | |
1911 | void *data; | |
1912 | } make_value; | |
1913 | ||
1914 | /* The internal function used with INTERNALVAR_FUNCTION. */ | |
1915 | struct | |
1916 | { | |
1917 | struct internal_function *function; | |
1918 | /* True if this is the canonical name for the function. */ | |
1919 | int canonical; | |
1920 | } fn; | |
1921 | ||
1922 | /* An integer value used with INTERNALVAR_INTEGER. */ | |
1923 | struct | |
1924 | { | |
1925 | /* If type is non-NULL, it will be used as the type to generate | |
1926 | a value for this internal variable. If type is NULL, a default | |
1927 | integer type for the architecture is used. */ | |
1928 | struct type *type; | |
1929 | LONGEST val; | |
1930 | } integer; | |
1931 | ||
1932 | /* A string value used with INTERNALVAR_STRING. */ | |
1933 | char *string; | |
1934 | }; | |
1935 | ||
c906108c SS |
1936 | /* Internal variables. These are variables within the debugger |
1937 | that hold values assigned by debugger commands. | |
1938 | The user refers to them with a '$' prefix | |
1939 | that does not appear in the variable names stored internally. */ | |
1940 | ||
4fa62494 UW |
1941 | struct internalvar |
1942 | { | |
1943 | struct internalvar *next; | |
1944 | char *name; | |
4fa62494 | 1945 | |
78267919 UW |
1946 | /* We support various different kinds of content of an internal variable. |
1947 | enum internalvar_kind specifies the kind, and union internalvar_data | |
1948 | provides the data associated with this particular kind. */ | |
1949 | ||
52059ffd | 1950 | enum internalvar_kind kind; |
4fa62494 | 1951 | |
52059ffd | 1952 | union internalvar_data u; |
4fa62494 UW |
1953 | }; |
1954 | ||
c906108c SS |
1955 | static struct internalvar *internalvars; |
1956 | ||
3e43a32a MS |
1957 | /* If the variable does not already exist create it and give it the |
1958 | value given. If no value is given then the default is zero. */ | |
53e5f3cf | 1959 | static void |
0b39b52e | 1960 | init_if_undefined_command (const char* args, int from_tty) |
53e5f3cf AS |
1961 | { |
1962 | struct internalvar* intvar; | |
1963 | ||
1964 | /* Parse the expression - this is taken from set_command(). */ | |
4d01a485 | 1965 | expression_up expr = parse_expression (args); |
53e5f3cf AS |
1966 | |
1967 | /* Validate the expression. | |
1968 | Was the expression an assignment? | |
1969 | Or even an expression at all? */ | |
1970 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
1971 | error (_("Init-if-undefined requires an assignment expression.")); | |
1972 | ||
1973 | /* Extract the variable from the parsed expression. | |
1974 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
1975 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
3e43a32a MS |
1976 | error (_("The first parameter to init-if-undefined " |
1977 | "should be a GDB variable.")); | |
53e5f3cf AS |
1978 | intvar = expr->elts[2].internalvar; |
1979 | ||
1980 | /* Only evaluate the expression if the lvalue is void. | |
85102364 | 1981 | This may still fail if the expression is invalid. */ |
78267919 | 1982 | if (intvar->kind == INTERNALVAR_VOID) |
4d01a485 | 1983 | evaluate_expression (expr.get ()); |
53e5f3cf AS |
1984 | } |
1985 | ||
1986 | ||
c906108c SS |
1987 | /* Look up an internal variable with name NAME. NAME should not |
1988 | normally include a dollar sign. | |
1989 | ||
1990 | If the specified internal variable does not exist, | |
c4a3d09a | 1991 | the return value is NULL. */ |
c906108c SS |
1992 | |
1993 | struct internalvar * | |
bc3b79fd | 1994 | lookup_only_internalvar (const char *name) |
c906108c | 1995 | { |
52f0bd74 | 1996 | struct internalvar *var; |
c906108c SS |
1997 | |
1998 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 1999 | if (strcmp (var->name, name) == 0) |
c906108c SS |
2000 | return var; |
2001 | ||
c4a3d09a MF |
2002 | return NULL; |
2003 | } | |
2004 | ||
eb3ff9a5 PA |
2005 | /* Complete NAME by comparing it to the names of internal |
2006 | variables. */ | |
d55637df | 2007 | |
eb3ff9a5 PA |
2008 | void |
2009 | complete_internalvar (completion_tracker &tracker, const char *name) | |
d55637df | 2010 | { |
d55637df TT |
2011 | struct internalvar *var; |
2012 | int len; | |
2013 | ||
2014 | len = strlen (name); | |
2015 | ||
2016 | for (var = internalvars; var; var = var->next) | |
2017 | if (strncmp (var->name, name, len) == 0) | |
b02f78f9 | 2018 | tracker.add_completion (make_unique_xstrdup (var->name)); |
d55637df | 2019 | } |
c4a3d09a MF |
2020 | |
2021 | /* Create an internal variable with name NAME and with a void value. | |
2022 | NAME should not normally include a dollar sign. */ | |
2023 | ||
2024 | struct internalvar * | |
bc3b79fd | 2025 | create_internalvar (const char *name) |
c4a3d09a | 2026 | { |
8d749320 | 2027 | struct internalvar *var = XNEW (struct internalvar); |
a109c7c1 | 2028 | |
395f9c91 | 2029 | var->name = xstrdup (name); |
78267919 | 2030 | var->kind = INTERNALVAR_VOID; |
c906108c SS |
2031 | var->next = internalvars; |
2032 | internalvars = var; | |
2033 | return var; | |
2034 | } | |
2035 | ||
4aa995e1 PA |
2036 | /* Create an internal variable with name NAME and register FUN as the |
2037 | function that value_of_internalvar uses to create a value whenever | |
2038 | this variable is referenced. NAME should not normally include a | |
22d2b532 SDJ |
2039 | dollar sign. DATA is passed uninterpreted to FUN when it is |
2040 | called. CLEANUP, if not NULL, is called when the internal variable | |
2041 | is destroyed. It is passed DATA as its only argument. */ | |
4aa995e1 PA |
2042 | |
2043 | struct internalvar * | |
22d2b532 SDJ |
2044 | create_internalvar_type_lazy (const char *name, |
2045 | const struct internalvar_funcs *funcs, | |
2046 | void *data) | |
4aa995e1 | 2047 | { |
4fa62494 | 2048 | struct internalvar *var = create_internalvar (name); |
a109c7c1 | 2049 | |
78267919 | 2050 | var->kind = INTERNALVAR_MAKE_VALUE; |
22d2b532 SDJ |
2051 | var->u.make_value.functions = funcs; |
2052 | var->u.make_value.data = data; | |
4aa995e1 PA |
2053 | return var; |
2054 | } | |
c4a3d09a | 2055 | |
22d2b532 SDJ |
2056 | /* See documentation in value.h. */ |
2057 | ||
2058 | int | |
2059 | compile_internalvar_to_ax (struct internalvar *var, | |
2060 | struct agent_expr *expr, | |
2061 | struct axs_value *value) | |
2062 | { | |
2063 | if (var->kind != INTERNALVAR_MAKE_VALUE | |
2064 | || var->u.make_value.functions->compile_to_ax == NULL) | |
2065 | return 0; | |
2066 | ||
2067 | var->u.make_value.functions->compile_to_ax (var, expr, value, | |
2068 | var->u.make_value.data); | |
2069 | return 1; | |
2070 | } | |
2071 | ||
c4a3d09a MF |
2072 | /* Look up an internal variable with name NAME. NAME should not |
2073 | normally include a dollar sign. | |
2074 | ||
2075 | If the specified internal variable does not exist, | |
2076 | one is created, with a void value. */ | |
2077 | ||
2078 | struct internalvar * | |
bc3b79fd | 2079 | lookup_internalvar (const char *name) |
c4a3d09a MF |
2080 | { |
2081 | struct internalvar *var; | |
2082 | ||
2083 | var = lookup_only_internalvar (name); | |
2084 | if (var) | |
2085 | return var; | |
2086 | ||
2087 | return create_internalvar (name); | |
2088 | } | |
2089 | ||
78267919 UW |
2090 | /* Return current value of internal variable VAR. For variables that |
2091 | are not inherently typed, use a value type appropriate for GDBARCH. */ | |
2092 | ||
f23631e4 | 2093 | struct value * |
78267919 | 2094 | value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) |
c906108c | 2095 | { |
f23631e4 | 2096 | struct value *val; |
0914bcdb SS |
2097 | struct trace_state_variable *tsv; |
2098 | ||
2099 | /* If there is a trace state variable of the same name, assume that | |
2100 | is what we really want to see. */ | |
2101 | tsv = find_trace_state_variable (var->name); | |
2102 | if (tsv) | |
2103 | { | |
2104 | tsv->value_known = target_get_trace_state_variable_value (tsv->number, | |
2105 | &(tsv->value)); | |
2106 | if (tsv->value_known) | |
2107 | val = value_from_longest (builtin_type (gdbarch)->builtin_int64, | |
2108 | tsv->value); | |
2109 | else | |
2110 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
2111 | return val; | |
2112 | } | |
c906108c | 2113 | |
78267919 | 2114 | switch (var->kind) |
5f5233d4 | 2115 | { |
78267919 UW |
2116 | case INTERNALVAR_VOID: |
2117 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
2118 | break; | |
4fa62494 | 2119 | |
78267919 UW |
2120 | case INTERNALVAR_FUNCTION: |
2121 | val = allocate_value (builtin_type (gdbarch)->internal_fn); | |
2122 | break; | |
4fa62494 | 2123 | |
cab0c772 UW |
2124 | case INTERNALVAR_INTEGER: |
2125 | if (!var->u.integer.type) | |
78267919 | 2126 | val = value_from_longest (builtin_type (gdbarch)->builtin_int, |
cab0c772 | 2127 | var->u.integer.val); |
78267919 | 2128 | else |
cab0c772 UW |
2129 | val = value_from_longest (var->u.integer.type, var->u.integer.val); |
2130 | break; | |
2131 | ||
78267919 UW |
2132 | case INTERNALVAR_STRING: |
2133 | val = value_cstring (var->u.string, strlen (var->u.string), | |
2134 | builtin_type (gdbarch)->builtin_char); | |
2135 | break; | |
4fa62494 | 2136 | |
78267919 UW |
2137 | case INTERNALVAR_VALUE: |
2138 | val = value_copy (var->u.value); | |
4aa995e1 PA |
2139 | if (value_lazy (val)) |
2140 | value_fetch_lazy (val); | |
78267919 | 2141 | break; |
4aa995e1 | 2142 | |
78267919 | 2143 | case INTERNALVAR_MAKE_VALUE: |
22d2b532 SDJ |
2144 | val = (*var->u.make_value.functions->make_value) (gdbarch, var, |
2145 | var->u.make_value.data); | |
78267919 UW |
2146 | break; |
2147 | ||
2148 | default: | |
9b20d036 | 2149 | internal_error (__FILE__, __LINE__, _("bad kind")); |
78267919 UW |
2150 | } |
2151 | ||
2152 | /* Change the VALUE_LVAL to lval_internalvar so that future operations | |
2153 | on this value go back to affect the original internal variable. | |
2154 | ||
2155 | Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have | |
30baf67b | 2156 | no underlying modifiable state in the internal variable. |
78267919 UW |
2157 | |
2158 | Likewise, if the variable's value is a computed lvalue, we want | |
2159 | references to it to produce another computed lvalue, where | |
2160 | references and assignments actually operate through the | |
2161 | computed value's functions. | |
2162 | ||
2163 | This means that internal variables with computed values | |
2164 | behave a little differently from other internal variables: | |
2165 | assignments to them don't just replace the previous value | |
2166 | altogether. At the moment, this seems like the behavior we | |
2167 | want. */ | |
2168 | ||
2169 | if (var->kind != INTERNALVAR_MAKE_VALUE | |
2170 | && val->lval != lval_computed) | |
2171 | { | |
2172 | VALUE_LVAL (val) = lval_internalvar; | |
2173 | VALUE_INTERNALVAR (val) = var; | |
5f5233d4 | 2174 | } |
d3c139e9 | 2175 | |
4fa62494 UW |
2176 | return val; |
2177 | } | |
d3c139e9 | 2178 | |
4fa62494 UW |
2179 | int |
2180 | get_internalvar_integer (struct internalvar *var, LONGEST *result) | |
2181 | { | |
3158c6ed | 2182 | if (var->kind == INTERNALVAR_INTEGER) |
4fa62494 | 2183 | { |
cab0c772 UW |
2184 | *result = var->u.integer.val; |
2185 | return 1; | |
3158c6ed | 2186 | } |
d3c139e9 | 2187 | |
3158c6ed PA |
2188 | if (var->kind == INTERNALVAR_VALUE) |
2189 | { | |
2190 | struct type *type = check_typedef (value_type (var->u.value)); | |
2191 | ||
2192 | if (TYPE_CODE (type) == TYPE_CODE_INT) | |
2193 | { | |
2194 | *result = value_as_long (var->u.value); | |
2195 | return 1; | |
2196 | } | |
4fa62494 | 2197 | } |
3158c6ed PA |
2198 | |
2199 | return 0; | |
4fa62494 | 2200 | } |
d3c139e9 | 2201 | |
4fa62494 UW |
2202 | static int |
2203 | get_internalvar_function (struct internalvar *var, | |
2204 | struct internal_function **result) | |
2205 | { | |
78267919 | 2206 | switch (var->kind) |
d3c139e9 | 2207 | { |
78267919 UW |
2208 | case INTERNALVAR_FUNCTION: |
2209 | *result = var->u.fn.function; | |
4fa62494 | 2210 | return 1; |
d3c139e9 | 2211 | |
4fa62494 UW |
2212 | default: |
2213 | return 0; | |
2214 | } | |
c906108c SS |
2215 | } |
2216 | ||
2217 | void | |
6b850546 DT |
2218 | set_internalvar_component (struct internalvar *var, |
2219 | LONGEST offset, LONGEST bitpos, | |
2220 | LONGEST bitsize, struct value *newval) | |
c906108c | 2221 | { |
4fa62494 | 2222 | gdb_byte *addr; |
3ae385af SM |
2223 | struct gdbarch *arch; |
2224 | int unit_size; | |
c906108c | 2225 | |
78267919 | 2226 | switch (var->kind) |
4fa62494 | 2227 | { |
78267919 UW |
2228 | case INTERNALVAR_VALUE: |
2229 | addr = value_contents_writeable (var->u.value); | |
3ae385af SM |
2230 | arch = get_value_arch (var->u.value); |
2231 | unit_size = gdbarch_addressable_memory_unit_size (arch); | |
4fa62494 UW |
2232 | |
2233 | if (bitsize) | |
50810684 | 2234 | modify_field (value_type (var->u.value), addr + offset, |
4fa62494 UW |
2235 | value_as_long (newval), bitpos, bitsize); |
2236 | else | |
3ae385af | 2237 | memcpy (addr + offset * unit_size, value_contents (newval), |
4fa62494 UW |
2238 | TYPE_LENGTH (value_type (newval))); |
2239 | break; | |
78267919 UW |
2240 | |
2241 | default: | |
2242 | /* We can never get a component of any other kind. */ | |
9b20d036 | 2243 | internal_error (__FILE__, __LINE__, _("set_internalvar_component")); |
4fa62494 | 2244 | } |
c906108c SS |
2245 | } |
2246 | ||
2247 | void | |
f23631e4 | 2248 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 2249 | { |
78267919 | 2250 | enum internalvar_kind new_kind; |
4fa62494 | 2251 | union internalvar_data new_data = { 0 }; |
c906108c | 2252 | |
78267919 | 2253 | if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) |
bc3b79fd TJB |
2254 | error (_("Cannot overwrite convenience function %s"), var->name); |
2255 | ||
4fa62494 | 2256 | /* Prepare new contents. */ |
78267919 | 2257 | switch (TYPE_CODE (check_typedef (value_type (val)))) |
4fa62494 UW |
2258 | { |
2259 | case TYPE_CODE_VOID: | |
78267919 | 2260 | new_kind = INTERNALVAR_VOID; |
4fa62494 UW |
2261 | break; |
2262 | ||
2263 | case TYPE_CODE_INTERNAL_FUNCTION: | |
2264 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
78267919 UW |
2265 | new_kind = INTERNALVAR_FUNCTION; |
2266 | get_internalvar_function (VALUE_INTERNALVAR (val), | |
2267 | &new_data.fn.function); | |
2268 | /* Copies created here are never canonical. */ | |
4fa62494 UW |
2269 | break; |
2270 | ||
4fa62494 | 2271 | default: |
78267919 | 2272 | new_kind = INTERNALVAR_VALUE; |
895dafa6 TT |
2273 | struct value *copy = value_copy (val); |
2274 | copy->modifiable = 1; | |
4fa62494 UW |
2275 | |
2276 | /* Force the value to be fetched from the target now, to avoid problems | |
2277 | later when this internalvar is referenced and the target is gone or | |
2278 | has changed. */ | |
895dafa6 TT |
2279 | if (value_lazy (copy)) |
2280 | value_fetch_lazy (copy); | |
4fa62494 UW |
2281 | |
2282 | /* Release the value from the value chain to prevent it from being | |
2283 | deleted by free_all_values. From here on this function should not | |
2284 | call error () until new_data is installed into the var->u to avoid | |
2285 | leaking memory. */ | |
895dafa6 | 2286 | new_data.value = release_value (copy).release (); |
9920b434 BH |
2287 | |
2288 | /* Internal variables which are created from values with a dynamic | |
2289 | location don't need the location property of the origin anymore. | |
2290 | The resolved dynamic location is used prior then any other address | |
2291 | when accessing the value. | |
2292 | If we keep it, we would still refer to the origin value. | |
2293 | Remove the location property in case it exist. */ | |
2294 | remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value)); | |
2295 | ||
4fa62494 UW |
2296 | break; |
2297 | } | |
2298 | ||
2299 | /* Clean up old contents. */ | |
2300 | clear_internalvar (var); | |
2301 | ||
2302 | /* Switch over. */ | |
78267919 | 2303 | var->kind = new_kind; |
4fa62494 | 2304 | var->u = new_data; |
c906108c SS |
2305 | /* End code which must not call error(). */ |
2306 | } | |
2307 | ||
4fa62494 UW |
2308 | void |
2309 | set_internalvar_integer (struct internalvar *var, LONGEST l) | |
2310 | { | |
2311 | /* Clean up old contents. */ | |
2312 | clear_internalvar (var); | |
2313 | ||
cab0c772 UW |
2314 | var->kind = INTERNALVAR_INTEGER; |
2315 | var->u.integer.type = NULL; | |
2316 | var->u.integer.val = l; | |
78267919 UW |
2317 | } |
2318 | ||
2319 | void | |
2320 | set_internalvar_string (struct internalvar *var, const char *string) | |
2321 | { | |
2322 | /* Clean up old contents. */ | |
2323 | clear_internalvar (var); | |
2324 | ||
2325 | var->kind = INTERNALVAR_STRING; | |
2326 | var->u.string = xstrdup (string); | |
4fa62494 UW |
2327 | } |
2328 | ||
2329 | static void | |
2330 | set_internalvar_function (struct internalvar *var, struct internal_function *f) | |
2331 | { | |
2332 | /* Clean up old contents. */ | |
2333 | clear_internalvar (var); | |
2334 | ||
78267919 UW |
2335 | var->kind = INTERNALVAR_FUNCTION; |
2336 | var->u.fn.function = f; | |
2337 | var->u.fn.canonical = 1; | |
2338 | /* Variables installed here are always the canonical version. */ | |
4fa62494 UW |
2339 | } |
2340 | ||
2341 | void | |
2342 | clear_internalvar (struct internalvar *var) | |
2343 | { | |
2344 | /* Clean up old contents. */ | |
78267919 | 2345 | switch (var->kind) |
4fa62494 | 2346 | { |
78267919 | 2347 | case INTERNALVAR_VALUE: |
22bc8444 | 2348 | value_decref (var->u.value); |
78267919 UW |
2349 | break; |
2350 | ||
2351 | case INTERNALVAR_STRING: | |
2352 | xfree (var->u.string); | |
4fa62494 UW |
2353 | break; |
2354 | ||
22d2b532 SDJ |
2355 | case INTERNALVAR_MAKE_VALUE: |
2356 | if (var->u.make_value.functions->destroy != NULL) | |
2357 | var->u.make_value.functions->destroy (var->u.make_value.data); | |
2358 | break; | |
2359 | ||
4fa62494 | 2360 | default: |
4fa62494 UW |
2361 | break; |
2362 | } | |
2363 | ||
78267919 UW |
2364 | /* Reset to void kind. */ |
2365 | var->kind = INTERNALVAR_VOID; | |
4fa62494 UW |
2366 | } |
2367 | ||
c906108c | 2368 | char * |
4bf7b526 | 2369 | internalvar_name (const struct internalvar *var) |
c906108c SS |
2370 | { |
2371 | return var->name; | |
2372 | } | |
2373 | ||
4fa62494 UW |
2374 | static struct internal_function * |
2375 | create_internal_function (const char *name, | |
2376 | internal_function_fn handler, void *cookie) | |
bc3b79fd | 2377 | { |
bc3b79fd | 2378 | struct internal_function *ifn = XNEW (struct internal_function); |
a109c7c1 | 2379 | |
bc3b79fd TJB |
2380 | ifn->name = xstrdup (name); |
2381 | ifn->handler = handler; | |
2382 | ifn->cookie = cookie; | |
4fa62494 | 2383 | return ifn; |
bc3b79fd TJB |
2384 | } |
2385 | ||
2386 | char * | |
2387 | value_internal_function_name (struct value *val) | |
2388 | { | |
4fa62494 UW |
2389 | struct internal_function *ifn; |
2390 | int result; | |
2391 | ||
2392 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
2393 | result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); | |
2394 | gdb_assert (result); | |
2395 | ||
bc3b79fd TJB |
2396 | return ifn->name; |
2397 | } | |
2398 | ||
2399 | struct value * | |
d452c4bc UW |
2400 | call_internal_function (struct gdbarch *gdbarch, |
2401 | const struct language_defn *language, | |
2402 | struct value *func, int argc, struct value **argv) | |
bc3b79fd | 2403 | { |
4fa62494 UW |
2404 | struct internal_function *ifn; |
2405 | int result; | |
2406 | ||
2407 | gdb_assert (VALUE_LVAL (func) == lval_internalvar); | |
2408 | result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); | |
2409 | gdb_assert (result); | |
2410 | ||
d452c4bc | 2411 | return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); |
bc3b79fd TJB |
2412 | } |
2413 | ||
2414 | /* The 'function' command. This does nothing -- it is just a | |
2415 | placeholder to let "help function NAME" work. This is also used as | |
2416 | the implementation of the sub-command that is created when | |
2417 | registering an internal function. */ | |
2418 | static void | |
981a3fb3 | 2419 | function_command (const char *command, int from_tty) |
bc3b79fd TJB |
2420 | { |
2421 | /* Do nothing. */ | |
2422 | } | |
2423 | ||
1a6d41c6 TT |
2424 | /* Helper function that does the work for add_internal_function. */ |
2425 | ||
2426 | static struct cmd_list_element * | |
2427 | do_add_internal_function (const char *name, const char *doc, | |
2428 | internal_function_fn handler, void *cookie) | |
bc3b79fd | 2429 | { |
4fa62494 | 2430 | struct internal_function *ifn; |
bc3b79fd | 2431 | struct internalvar *var = lookup_internalvar (name); |
4fa62494 UW |
2432 | |
2433 | ifn = create_internal_function (name, handler, cookie); | |
2434 | set_internalvar_function (var, ifn); | |
bc3b79fd | 2435 | |
3ea16160 | 2436 | return add_cmd (name, no_class, function_command, doc, &functionlist); |
1a6d41c6 TT |
2437 | } |
2438 | ||
2439 | /* See value.h. */ | |
2440 | ||
2441 | void | |
2442 | add_internal_function (const char *name, const char *doc, | |
2443 | internal_function_fn handler, void *cookie) | |
2444 | { | |
2445 | do_add_internal_function (name, doc, handler, cookie); | |
2446 | } | |
2447 | ||
2448 | /* See value.h. */ | |
2449 | ||
2450 | void | |
3ea16160 TT |
2451 | add_internal_function (gdb::unique_xmalloc_ptr<char> &&name, |
2452 | gdb::unique_xmalloc_ptr<char> &&doc, | |
1a6d41c6 TT |
2453 | internal_function_fn handler, void *cookie) |
2454 | { | |
2455 | struct cmd_list_element *cmd | |
3ea16160 | 2456 | = do_add_internal_function (name.get (), doc.get (), handler, cookie); |
1a6d41c6 TT |
2457 | doc.release (); |
2458 | cmd->doc_allocated = 1; | |
3ea16160 TT |
2459 | name.release (); |
2460 | cmd->name_allocated = 1; | |
bc3b79fd TJB |
2461 | } |
2462 | ||
ae5a43e0 DJ |
2463 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
2464 | prevent cycles / duplicates. */ | |
2465 | ||
4e7a5ef5 | 2466 | void |
ae5a43e0 DJ |
2467 | preserve_one_value (struct value *value, struct objfile *objfile, |
2468 | htab_t copied_types) | |
2469 | { | |
2470 | if (TYPE_OBJFILE (value->type) == objfile) | |
2471 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
2472 | ||
2473 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
2474 | value->enclosing_type = copy_type_recursive (objfile, | |
2475 | value->enclosing_type, | |
2476 | copied_types); | |
2477 | } | |
2478 | ||
78267919 UW |
2479 | /* Likewise for internal variable VAR. */ |
2480 | ||
2481 | static void | |
2482 | preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, | |
2483 | htab_t copied_types) | |
2484 | { | |
2485 | switch (var->kind) | |
2486 | { | |
cab0c772 UW |
2487 | case INTERNALVAR_INTEGER: |
2488 | if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) | |
2489 | var->u.integer.type | |
2490 | = copy_type_recursive (objfile, var->u.integer.type, copied_types); | |
2491 | break; | |
2492 | ||
78267919 UW |
2493 | case INTERNALVAR_VALUE: |
2494 | preserve_one_value (var->u.value, objfile, copied_types); | |
2495 | break; | |
2496 | } | |
2497 | } | |
2498 | ||
ae5a43e0 DJ |
2499 | /* Update the internal variables and value history when OBJFILE is |
2500 | discarded; we must copy the types out of the objfile. New global types | |
2501 | will be created for every convenience variable which currently points to | |
2502 | this objfile's types, and the convenience variables will be adjusted to | |
2503 | use the new global types. */ | |
c906108c SS |
2504 | |
2505 | void | |
ae5a43e0 | 2506 | preserve_values (struct objfile *objfile) |
c906108c | 2507 | { |
ae5a43e0 | 2508 | htab_t copied_types; |
52f0bd74 | 2509 | struct internalvar *var; |
c906108c | 2510 | |
ae5a43e0 DJ |
2511 | /* Create the hash table. We allocate on the objfile's obstack, since |
2512 | it is soon to be deleted. */ | |
2513 | copied_types = create_copied_types_hash (objfile); | |
2514 | ||
4d0266a0 TT |
2515 | for (const value_ref_ptr &item : value_history) |
2516 | preserve_one_value (item.get (), objfile, copied_types); | |
ae5a43e0 DJ |
2517 | |
2518 | for (var = internalvars; var; var = var->next) | |
78267919 | 2519 | preserve_one_internalvar (var, objfile, copied_types); |
ae5a43e0 | 2520 | |
6dddc817 | 2521 | preserve_ext_lang_values (objfile, copied_types); |
a08702d6 | 2522 | |
ae5a43e0 | 2523 | htab_delete (copied_types); |
c906108c SS |
2524 | } |
2525 | ||
2526 | static void | |
ad25e423 | 2527 | show_convenience (const char *ignore, int from_tty) |
c906108c | 2528 | { |
e17c207e | 2529 | struct gdbarch *gdbarch = get_current_arch (); |
52f0bd74 | 2530 | struct internalvar *var; |
c906108c | 2531 | int varseen = 0; |
79a45b7d | 2532 | struct value_print_options opts; |
c906108c | 2533 | |
79a45b7d | 2534 | get_user_print_options (&opts); |
c906108c SS |
2535 | for (var = internalvars; var; var = var->next) |
2536 | { | |
c709acd1 | 2537 | |
c906108c SS |
2538 | if (!varseen) |
2539 | { | |
2540 | varseen = 1; | |
2541 | } | |
a3f17187 | 2542 | printf_filtered (("$%s = "), var->name); |
c709acd1 | 2543 | |
a70b8144 | 2544 | try |
c709acd1 PA |
2545 | { |
2546 | struct value *val; | |
2547 | ||
2548 | val = value_of_internalvar (gdbarch, var); | |
2549 | value_print (val, gdb_stdout, &opts); | |
2550 | } | |
230d2906 | 2551 | catch (const gdb_exception_error &ex) |
492d29ea | 2552 | { |
7f6aba03 TT |
2553 | fprintf_styled (gdb_stdout, metadata_style.style (), |
2554 | _("<error: %s>"), ex.what ()); | |
492d29ea | 2555 | } |
492d29ea | 2556 | |
a3f17187 | 2557 | printf_filtered (("\n")); |
c906108c SS |
2558 | } |
2559 | if (!varseen) | |
f47f77df DE |
2560 | { |
2561 | /* This text does not mention convenience functions on purpose. | |
2562 | The user can't create them except via Python, and if Python support | |
2563 | is installed this message will never be printed ($_streq will | |
2564 | exist). */ | |
2565 | printf_unfiltered (_("No debugger convenience variables now defined.\n" | |
2566 | "Convenience variables have " | |
2567 | "names starting with \"$\";\n" | |
2568 | "use \"set\" as in \"set " | |
2569 | "$foo = 5\" to define them.\n")); | |
2570 | } | |
c906108c SS |
2571 | } |
2572 | \f | |
ba18742c SM |
2573 | |
2574 | /* See value.h. */ | |
e81e7f5e SC |
2575 | |
2576 | struct value * | |
ba18742c | 2577 | value_from_xmethod (xmethod_worker_up &&worker) |
e81e7f5e | 2578 | { |
ba18742c | 2579 | struct value *v; |
e81e7f5e | 2580 | |
ba18742c SM |
2581 | v = allocate_value (builtin_type (target_gdbarch ())->xmethod); |
2582 | v->lval = lval_xcallable; | |
2583 | v->location.xm_worker = worker.release (); | |
2584 | v->modifiable = 0; | |
e81e7f5e | 2585 | |
ba18742c | 2586 | return v; |
e81e7f5e SC |
2587 | } |
2588 | ||
2ce1cdbf DE |
2589 | /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */ |
2590 | ||
2591 | struct type * | |
6b1747cd | 2592 | result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv) |
2ce1cdbf DE |
2593 | { |
2594 | gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD | |
6b1747cd | 2595 | && method->lval == lval_xcallable && !argv.empty ()); |
2ce1cdbf | 2596 | |
6b1747cd | 2597 | return method->location.xm_worker->get_result_type (argv[0], argv.slice (1)); |
2ce1cdbf DE |
2598 | } |
2599 | ||
e81e7f5e SC |
2600 | /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */ |
2601 | ||
2602 | struct value * | |
6b1747cd | 2603 | call_xmethod (struct value *method, gdb::array_view<value *> argv) |
e81e7f5e SC |
2604 | { |
2605 | gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD | |
6b1747cd | 2606 | && method->lval == lval_xcallable && !argv.empty ()); |
e81e7f5e | 2607 | |
6b1747cd | 2608 | return method->location.xm_worker->invoke (argv[0], argv.slice (1)); |
e81e7f5e SC |
2609 | } |
2610 | \f | |
c906108c SS |
2611 | /* Extract a value as a C number (either long or double). |
2612 | Knows how to convert fixed values to double, or | |
2613 | floating values to long. | |
2614 | Does not deallocate the value. */ | |
2615 | ||
2616 | LONGEST | |
f23631e4 | 2617 | value_as_long (struct value *val) |
c906108c SS |
2618 | { |
2619 | /* This coerces arrays and functions, which is necessary (e.g. | |
2620 | in disassemble_command). It also dereferences references, which | |
2621 | I suspect is the most logical thing to do. */ | |
994b9211 | 2622 | val = coerce_array (val); |
0fd88904 | 2623 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
2624 | } |
2625 | ||
581e13c1 | 2626 | /* Extract a value as a C pointer. Does not deallocate the value. |
4478b372 JB |
2627 | Note that val's type may not actually be a pointer; value_as_long |
2628 | handles all the cases. */ | |
c906108c | 2629 | CORE_ADDR |
f23631e4 | 2630 | value_as_address (struct value *val) |
c906108c | 2631 | { |
50810684 UW |
2632 | struct gdbarch *gdbarch = get_type_arch (value_type (val)); |
2633 | ||
c906108c SS |
2634 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
2635 | whether we want this to be true eventually. */ | |
2636 | #if 0 | |
bf6ae464 | 2637 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
2638 | non-address (e.g. argument to "signal", "info break", etc.), or |
2639 | for pointers to char, in which the low bits *are* significant. */ | |
50810684 | 2640 | return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); |
c906108c | 2641 | #else |
f312f057 JB |
2642 | |
2643 | /* There are several targets (IA-64, PowerPC, and others) which | |
2644 | don't represent pointers to functions as simply the address of | |
2645 | the function's entry point. For example, on the IA-64, a | |
2646 | function pointer points to a two-word descriptor, generated by | |
2647 | the linker, which contains the function's entry point, and the | |
2648 | value the IA-64 "global pointer" register should have --- to | |
2649 | support position-independent code. The linker generates | |
2650 | descriptors only for those functions whose addresses are taken. | |
2651 | ||
2652 | On such targets, it's difficult for GDB to convert an arbitrary | |
2653 | function address into a function pointer; it has to either find | |
2654 | an existing descriptor for that function, or call malloc and | |
2655 | build its own. On some targets, it is impossible for GDB to | |
2656 | build a descriptor at all: the descriptor must contain a jump | |
2657 | instruction; data memory cannot be executed; and code memory | |
2658 | cannot be modified. | |
2659 | ||
2660 | Upon entry to this function, if VAL is a value of type `function' | |
2661 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
42ae5230 | 2662 | value_address (val) is the address of the function. This is what |
f312f057 JB |
2663 | you'll get if you evaluate an expression like `main'. The call |
2664 | to COERCE_ARRAY below actually does all the usual unary | |
2665 | conversions, which includes converting values of type `function' | |
2666 | to `pointer to function'. This is the challenging conversion | |
2667 | discussed above. Then, `unpack_long' will convert that pointer | |
2668 | back into an address. | |
2669 | ||
2670 | So, suppose the user types `disassemble foo' on an architecture | |
2671 | with a strange function pointer representation, on which GDB | |
2672 | cannot build its own descriptors, and suppose further that `foo' | |
2673 | has no linker-built descriptor. The address->pointer conversion | |
2674 | will signal an error and prevent the command from running, even | |
2675 | though the next step would have been to convert the pointer | |
2676 | directly back into the same address. | |
2677 | ||
2678 | The following shortcut avoids this whole mess. If VAL is a | |
2679 | function, just return its address directly. */ | |
df407dfe AC |
2680 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
2681 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
42ae5230 | 2682 | return value_address (val); |
f312f057 | 2683 | |
994b9211 | 2684 | val = coerce_array (val); |
fc0c74b1 AC |
2685 | |
2686 | /* Some architectures (e.g. Harvard), map instruction and data | |
2687 | addresses onto a single large unified address space. For | |
2688 | instance: An architecture may consider a large integer in the | |
2689 | range 0x10000000 .. 0x1000ffff to already represent a data | |
2690 | addresses (hence not need a pointer to address conversion) while | |
2691 | a small integer would still need to be converted integer to | |
2692 | pointer to address. Just assume such architectures handle all | |
2693 | integer conversions in a single function. */ | |
2694 | ||
2695 | /* JimB writes: | |
2696 | ||
2697 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
2698 | must admonish GDB hackers to make sure its behavior matches the | |
2699 | compiler's, whenever possible. | |
2700 | ||
2701 | In general, I think GDB should evaluate expressions the same way | |
2702 | the compiler does. When the user copies an expression out of | |
2703 | their source code and hands it to a `print' command, they should | |
2704 | get the same value the compiler would have computed. Any | |
2705 | deviation from this rule can cause major confusion and annoyance, | |
2706 | and needs to be justified carefully. In other words, GDB doesn't | |
2707 | really have the freedom to do these conversions in clever and | |
2708 | useful ways. | |
2709 | ||
2710 | AndrewC pointed out that users aren't complaining about how GDB | |
2711 | casts integers to pointers; they are complaining that they can't | |
2712 | take an address from a disassembly listing and give it to `x/i'. | |
2713 | This is certainly important. | |
2714 | ||
79dd2d24 | 2715 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
2716 | makes it possible for GDB to "get it right" in all circumstances |
2717 | --- the target has complete control over how things get done, so | |
2718 | people can Do The Right Thing for their target without breaking | |
2719 | anyone else. The standard doesn't specify how integers get | |
2720 | converted to pointers; usually, the ABI doesn't either, but | |
2721 | ABI-specific code is a more reasonable place to handle it. */ | |
2722 | ||
df407dfe | 2723 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
aa006118 | 2724 | && !TYPE_IS_REFERENCE (value_type (val)) |
50810684 UW |
2725 | && gdbarch_integer_to_address_p (gdbarch)) |
2726 | return gdbarch_integer_to_address (gdbarch, value_type (val), | |
0fd88904 | 2727 | value_contents (val)); |
fc0c74b1 | 2728 | |
0fd88904 | 2729 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
2730 | #endif |
2731 | } | |
2732 | \f | |
2733 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
2734 | as a long, or as a double, assuming the raw data is described | |
2735 | by type TYPE. Knows how to convert different sizes of values | |
2736 | and can convert between fixed and floating point. We don't assume | |
2737 | any alignment for the raw data. Return value is in host byte order. | |
2738 | ||
2739 | If you want functions and arrays to be coerced to pointers, and | |
2740 | references to be dereferenced, call value_as_long() instead. | |
2741 | ||
2742 | C++: It is assumed that the front-end has taken care of | |
2743 | all matters concerning pointers to members. A pointer | |
2744 | to member which reaches here is considered to be equivalent | |
2745 | to an INT (or some size). After all, it is only an offset. */ | |
2746 | ||
2747 | LONGEST | |
fc1a4b47 | 2748 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 2749 | { |
34877895 | 2750 | enum bfd_endian byte_order = type_byte_order (type); |
52f0bd74 AC |
2751 | enum type_code code = TYPE_CODE (type); |
2752 | int len = TYPE_LENGTH (type); | |
2753 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 2754 | |
c906108c SS |
2755 | switch (code) |
2756 | { | |
2757 | case TYPE_CODE_TYPEDEF: | |
2758 | return unpack_long (check_typedef (type), valaddr); | |
2759 | case TYPE_CODE_ENUM: | |
4f2aea11 | 2760 | case TYPE_CODE_FLAGS: |
c906108c SS |
2761 | case TYPE_CODE_BOOL: |
2762 | case TYPE_CODE_INT: | |
2763 | case TYPE_CODE_CHAR: | |
2764 | case TYPE_CODE_RANGE: | |
0d5de010 | 2765 | case TYPE_CODE_MEMBERPTR: |
4e962e74 TT |
2766 | { |
2767 | LONGEST result; | |
2768 | if (nosign) | |
2769 | result = extract_unsigned_integer (valaddr, len, byte_order); | |
2770 | else | |
2771 | result = extract_signed_integer (valaddr, len, byte_order); | |
2772 | if (code == TYPE_CODE_RANGE) | |
2773 | result += TYPE_RANGE_DATA (type)->bias; | |
2774 | return result; | |
2775 | } | |
c906108c SS |
2776 | |
2777 | case TYPE_CODE_FLT: | |
4ef30785 | 2778 | case TYPE_CODE_DECFLOAT: |
50637b26 | 2779 | return target_float_to_longest (valaddr, type); |
4ef30785 | 2780 | |
c906108c SS |
2781 | case TYPE_CODE_PTR: |
2782 | case TYPE_CODE_REF: | |
aa006118 | 2783 | case TYPE_CODE_RVALUE_REF: |
c906108c | 2784 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
c5aa993b | 2785 | whether we want this to be true eventually. */ |
4478b372 | 2786 | return extract_typed_address (valaddr, type); |
c906108c | 2787 | |
c906108c | 2788 | default: |
8a3fe4f8 | 2789 | error (_("Value can't be converted to integer.")); |
c906108c | 2790 | } |
c906108c SS |
2791 | } |
2792 | ||
c906108c SS |
2793 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR |
2794 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
2795 | We don't assume any alignment for the raw data. Return value is in | |
2796 | host byte order. | |
2797 | ||
2798 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 2799 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
2800 | |
2801 | C++: It is assumed that the front-end has taken care of | |
2802 | all matters concerning pointers to members. A pointer | |
2803 | to member which reaches here is considered to be equivalent | |
2804 | to an INT (or some size). After all, it is only an offset. */ | |
2805 | ||
2806 | CORE_ADDR | |
fc1a4b47 | 2807 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
2808 | { |
2809 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
2810 | whether we want this to be true eventually. */ | |
2811 | return unpack_long (type, valaddr); | |
2812 | } | |
4478b372 | 2813 | |
70100014 UW |
2814 | bool |
2815 | is_floating_value (struct value *val) | |
2816 | { | |
2817 | struct type *type = check_typedef (value_type (val)); | |
2818 | ||
2819 | if (is_floating_type (type)) | |
2820 | { | |
2821 | if (!target_float_is_valid (value_contents (val), type)) | |
2822 | error (_("Invalid floating value found in program.")); | |
2823 | return true; | |
2824 | } | |
2825 | ||
2826 | return false; | |
2827 | } | |
2828 | ||
c906108c | 2829 | \f |
1596cb5d | 2830 | /* Get the value of the FIELDNO'th field (which must be static) of |
686d4def | 2831 | TYPE. */ |
c906108c | 2832 | |
f23631e4 | 2833 | struct value * |
fba45db2 | 2834 | value_static_field (struct type *type, int fieldno) |
c906108c | 2835 | { |
948e66d9 DJ |
2836 | struct value *retval; |
2837 | ||
1596cb5d | 2838 | switch (TYPE_FIELD_LOC_KIND (type, fieldno)) |
c906108c | 2839 | { |
1596cb5d | 2840 | case FIELD_LOC_KIND_PHYSADDR: |
52e9fde8 SS |
2841 | retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), |
2842 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); | |
1596cb5d DE |
2843 | break; |
2844 | case FIELD_LOC_KIND_PHYSNAME: | |
c906108c | 2845 | { |
ff355380 | 2846 | const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); |
581e13c1 | 2847 | /* TYPE_FIELD_NAME (type, fieldno); */ |
d12307c1 | 2848 | struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
94af9270 | 2849 | |
d12307c1 | 2850 | if (sym.symbol == NULL) |
c906108c | 2851 | { |
a109c7c1 | 2852 | /* With some compilers, e.g. HP aCC, static data members are |
581e13c1 | 2853 | reported as non-debuggable symbols. */ |
3b7344d5 TT |
2854 | struct bound_minimal_symbol msym |
2855 | = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c2e0e465 | 2856 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); |
a109c7c1 | 2857 | |
3b7344d5 | 2858 | if (!msym.minsym) |
c2e0e465 | 2859 | retval = allocate_optimized_out_value (field_type); |
c906108c | 2860 | else |
c2e0e465 | 2861 | retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
2862 | } |
2863 | else | |
d12307c1 | 2864 | retval = value_of_variable (sym.symbol, sym.block); |
1596cb5d | 2865 | break; |
c906108c | 2866 | } |
1596cb5d | 2867 | default: |
f3574227 | 2868 | gdb_assert_not_reached ("unexpected field location kind"); |
1596cb5d DE |
2869 | } |
2870 | ||
948e66d9 | 2871 | return retval; |
c906108c SS |
2872 | } |
2873 | ||
4dfea560 DE |
2874 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
2875 | You have to be careful here, since the size of the data area for the value | |
2876 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
2877 | than the old enclosing type, you have to allocate more space for the | |
2878 | data. */ | |
2b127877 | 2879 | |
4dfea560 DE |
2880 | void |
2881 | set_value_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 2882 | { |
5fdf6324 AB |
2883 | if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) |
2884 | { | |
2885 | check_type_length_before_alloc (new_encl_type); | |
2886 | val->contents | |
14c88955 TT |
2887 | .reset ((gdb_byte *) xrealloc (val->contents.release (), |
2888 | TYPE_LENGTH (new_encl_type))); | |
5fdf6324 | 2889 | } |
3e3d7139 JG |
2890 | |
2891 | val->enclosing_type = new_encl_type; | |
2b127877 DB |
2892 | } |
2893 | ||
c906108c SS |
2894 | /* Given a value ARG1 (offset by OFFSET bytes) |
2895 | of a struct or union type ARG_TYPE, | |
2896 | extract and return the value of one of its (non-static) fields. | |
581e13c1 | 2897 | FIELDNO says which field. */ |
c906108c | 2898 | |
f23631e4 | 2899 | struct value * |
6b850546 | 2900 | value_primitive_field (struct value *arg1, LONGEST offset, |
aa1ee363 | 2901 | int fieldno, struct type *arg_type) |
c906108c | 2902 | { |
f23631e4 | 2903 | struct value *v; |
52f0bd74 | 2904 | struct type *type; |
3ae385af SM |
2905 | struct gdbarch *arch = get_value_arch (arg1); |
2906 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
c906108c | 2907 | |
f168693b | 2908 | arg_type = check_typedef (arg_type); |
c906108c | 2909 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
c54eabfa JK |
2910 | |
2911 | /* Call check_typedef on our type to make sure that, if TYPE | |
2912 | is a TYPE_CODE_TYPEDEF, its length is set to the length | |
2913 | of the target type instead of zero. However, we do not | |
2914 | replace the typedef type by the target type, because we want | |
2915 | to keep the typedef in order to be able to print the type | |
2916 | description correctly. */ | |
2917 | check_typedef (type); | |
c906108c | 2918 | |
691a26f5 | 2919 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) |
c906108c | 2920 | { |
22c05d8a JK |
2921 | /* Handle packed fields. |
2922 | ||
2923 | Create a new value for the bitfield, with bitpos and bitsize | |
4ea48cc1 DJ |
2924 | set. If possible, arrange offset and bitpos so that we can |
2925 | do a single aligned read of the size of the containing type. | |
2926 | Otherwise, adjust offset to the byte containing the first | |
2927 | bit. Assume that the address, offset, and embedded offset | |
2928 | are sufficiently aligned. */ | |
22c05d8a | 2929 | |
6b850546 DT |
2930 | LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); |
2931 | LONGEST container_bitsize = TYPE_LENGTH (type) * 8; | |
4ea48cc1 | 2932 | |
9a0dc9e3 PA |
2933 | v = allocate_value_lazy (type); |
2934 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
2935 | if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize | |
2936 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) | |
2937 | v->bitpos = bitpos % container_bitsize; | |
4ea48cc1 | 2938 | else |
9a0dc9e3 PA |
2939 | v->bitpos = bitpos % 8; |
2940 | v->offset = (value_embedded_offset (arg1) | |
2941 | + offset | |
2942 | + (bitpos - v->bitpos) / 8); | |
2943 | set_value_parent (v, arg1); | |
2944 | if (!value_lazy (arg1)) | |
2945 | value_fetch_lazy (v); | |
c906108c SS |
2946 | } |
2947 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
2948 | { | |
2949 | /* This field is actually a base subobject, so preserve the | |
39d37385 PA |
2950 | entire object's contents for later references to virtual |
2951 | bases, etc. */ | |
6b850546 | 2952 | LONGEST boffset; |
a4e2ee12 DJ |
2953 | |
2954 | /* Lazy register values with offsets are not supported. */ | |
2955 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
2956 | value_fetch_lazy (arg1); | |
2957 | ||
9a0dc9e3 PA |
2958 | /* We special case virtual inheritance here because this |
2959 | requires access to the contents, which we would rather avoid | |
2960 | for references to ordinary fields of unavailable values. */ | |
2961 | if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno)) | |
2962 | boffset = baseclass_offset (arg_type, fieldno, | |
2963 | value_contents (arg1), | |
2964 | value_embedded_offset (arg1), | |
2965 | value_address (arg1), | |
2966 | arg1); | |
c906108c | 2967 | else |
9a0dc9e3 | 2968 | boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
691a26f5 | 2969 | |
9a0dc9e3 PA |
2970 | if (value_lazy (arg1)) |
2971 | v = allocate_value_lazy (value_enclosing_type (arg1)); | |
2972 | else | |
2973 | { | |
2974 | v = allocate_value (value_enclosing_type (arg1)); | |
2975 | value_contents_copy_raw (v, 0, arg1, 0, | |
2976 | TYPE_LENGTH (value_enclosing_type (arg1))); | |
3e3d7139 | 2977 | } |
9a0dc9e3 PA |
2978 | v->type = type; |
2979 | v->offset = value_offset (arg1); | |
2980 | v->embedded_offset = offset + value_embedded_offset (arg1) + boffset; | |
c906108c | 2981 | } |
9920b434 BH |
2982 | else if (NULL != TYPE_DATA_LOCATION (type)) |
2983 | { | |
2984 | /* Field is a dynamic data member. */ | |
2985 | ||
2986 | gdb_assert (0 == offset); | |
2987 | /* We expect an already resolved data location. */ | |
2988 | gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type)); | |
2989 | /* For dynamic data types defer memory allocation | |
2990 | until we actual access the value. */ | |
2991 | v = allocate_value_lazy (type); | |
2992 | } | |
c906108c SS |
2993 | else |
2994 | { | |
2995 | /* Plain old data member */ | |
3ae385af SM |
2996 | offset += (TYPE_FIELD_BITPOS (arg_type, fieldno) |
2997 | / (HOST_CHAR_BIT * unit_size)); | |
a4e2ee12 DJ |
2998 | |
2999 | /* Lazy register values with offsets are not supported. */ | |
3000 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
3001 | value_fetch_lazy (arg1); | |
3002 | ||
9a0dc9e3 | 3003 | if (value_lazy (arg1)) |
3e3d7139 | 3004 | v = allocate_value_lazy (type); |
c906108c | 3005 | else |
3e3d7139 JG |
3006 | { |
3007 | v = allocate_value (type); | |
39d37385 PA |
3008 | value_contents_copy_raw (v, value_embedded_offset (v), |
3009 | arg1, value_embedded_offset (arg1) + offset, | |
3ae385af | 3010 | type_length_units (type)); |
3e3d7139 | 3011 | } |
df407dfe | 3012 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 3013 | + value_embedded_offset (arg1)); |
c906108c | 3014 | } |
74bcbdf3 | 3015 | set_value_component_location (v, arg1); |
c906108c SS |
3016 | return v; |
3017 | } | |
3018 | ||
3019 | /* Given a value ARG1 of a struct or union type, | |
3020 | extract and return the value of one of its (non-static) fields. | |
581e13c1 | 3021 | FIELDNO says which field. */ |
c906108c | 3022 | |
f23631e4 | 3023 | struct value * |
aa1ee363 | 3024 | value_field (struct value *arg1, int fieldno) |
c906108c | 3025 | { |
df407dfe | 3026 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
3027 | } |
3028 | ||
3029 | /* Return a non-virtual function as a value. | |
3030 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
3031 | J is an index into F which provides the desired method. |
3032 | ||
3033 | We only use the symbol for its address, so be happy with either a | |
581e13c1 | 3034 | full symbol or a minimal symbol. */ |
c906108c | 3035 | |
f23631e4 | 3036 | struct value * |
3e43a32a MS |
3037 | value_fn_field (struct value **arg1p, struct fn_field *f, |
3038 | int j, struct type *type, | |
6b850546 | 3039 | LONGEST offset) |
c906108c | 3040 | { |
f23631e4 | 3041 | struct value *v; |
52f0bd74 | 3042 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
1d06ead6 | 3043 | const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 3044 | struct symbol *sym; |
7c7b6655 | 3045 | struct bound_minimal_symbol msym; |
c906108c | 3046 | |
d12307c1 | 3047 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol; |
5ae326fa | 3048 | if (sym != NULL) |
0478d61c | 3049 | { |
7c7b6655 | 3050 | memset (&msym, 0, sizeof (msym)); |
5ae326fa AC |
3051 | } |
3052 | else | |
3053 | { | |
3054 | gdb_assert (sym == NULL); | |
7c7b6655 TT |
3055 | msym = lookup_bound_minimal_symbol (physname); |
3056 | if (msym.minsym == NULL) | |
5ae326fa | 3057 | return NULL; |
0478d61c FF |
3058 | } |
3059 | ||
c906108c | 3060 | v = allocate_value (ftype); |
1a088441 | 3061 | VALUE_LVAL (v) = lval_memory; |
0478d61c FF |
3062 | if (sym) |
3063 | { | |
2b1ffcfd | 3064 | set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym))); |
0478d61c FF |
3065 | } |
3066 | else | |
3067 | { | |
bccdca4a UW |
3068 | /* The minimal symbol might point to a function descriptor; |
3069 | resolve it to the actual code address instead. */ | |
7c7b6655 | 3070 | struct objfile *objfile = msym.objfile; |
bccdca4a UW |
3071 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
3072 | ||
42ae5230 TT |
3073 | set_value_address (v, |
3074 | gdbarch_convert_from_func_ptr_addr | |
8b88a78e | 3075 | (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ())); |
0478d61c | 3076 | } |
c906108c SS |
3077 | |
3078 | if (arg1p) | |
c5aa993b | 3079 | { |
df407dfe | 3080 | if (type != value_type (*arg1p)) |
c5aa993b JM |
3081 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
3082 | value_addr (*arg1p))); | |
3083 | ||
070ad9f0 | 3084 | /* Move the `this' pointer according to the offset. |
581e13c1 | 3085 | VALUE_OFFSET (*arg1p) += offset; */ |
c906108c SS |
3086 | } |
3087 | ||
3088 | return v; | |
3089 | } | |
3090 | ||
c906108c | 3091 | \f |
c906108c | 3092 | |
4875ffdb PA |
3093 | /* Unpack a bitfield of the specified FIELD_TYPE, from the object at |
3094 | VALADDR, and store the result in *RESULT. | |
15ce8941 TT |
3095 | The bitfield starts at BITPOS bits and contains BITSIZE bits; if |
3096 | BITSIZE is zero, then the length is taken from FIELD_TYPE. | |
c906108c | 3097 | |
4875ffdb PA |
3098 | Extracting bits depends on endianness of the machine. Compute the |
3099 | number of least significant bits to discard. For big endian machines, | |
3100 | we compute the total number of bits in the anonymous object, subtract | |
3101 | off the bit count from the MSB of the object to the MSB of the | |
3102 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
3103 | count. For little endian machines, the discard count is simply the | |
3104 | number of bits from the LSB of the anonymous object to the LSB of the | |
3105 | bitfield. | |
3106 | ||
3107 | If the field is signed, we also do sign extension. */ | |
3108 | ||
3109 | static LONGEST | |
3110 | unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, | |
6b850546 | 3111 | LONGEST bitpos, LONGEST bitsize) |
c906108c | 3112 | { |
34877895 | 3113 | enum bfd_endian byte_order = type_byte_order (field_type); |
c906108c SS |
3114 | ULONGEST val; |
3115 | ULONGEST valmask; | |
c906108c | 3116 | int lsbcount; |
6b850546 DT |
3117 | LONGEST bytes_read; |
3118 | LONGEST read_offset; | |
c906108c | 3119 | |
4a76eae5 DJ |
3120 | /* Read the minimum number of bytes required; there may not be |
3121 | enough bytes to read an entire ULONGEST. */ | |
f168693b | 3122 | field_type = check_typedef (field_type); |
4a76eae5 DJ |
3123 | if (bitsize) |
3124 | bytes_read = ((bitpos % 8) + bitsize + 7) / 8; | |
3125 | else | |
15ce8941 TT |
3126 | { |
3127 | bytes_read = TYPE_LENGTH (field_type); | |
3128 | bitsize = 8 * bytes_read; | |
3129 | } | |
4a76eae5 | 3130 | |
5467c6c8 PA |
3131 | read_offset = bitpos / 8; |
3132 | ||
4875ffdb | 3133 | val = extract_unsigned_integer (valaddr + read_offset, |
4a76eae5 | 3134 | bytes_read, byte_order); |
c906108c | 3135 | |
581e13c1 | 3136 | /* Extract bits. See comment above. */ |
c906108c | 3137 | |
d5a22e77 | 3138 | if (byte_order == BFD_ENDIAN_BIG) |
4a76eae5 | 3139 | lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); |
c906108c SS |
3140 | else |
3141 | lsbcount = (bitpos % 8); | |
3142 | val >>= lsbcount; | |
3143 | ||
3144 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
581e13c1 | 3145 | If the field is signed, and is negative, then sign extend. */ |
c906108c | 3146 | |
15ce8941 | 3147 | if (bitsize < 8 * (int) sizeof (val)) |
c906108c SS |
3148 | { |
3149 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
3150 | val &= valmask; | |
3151 | if (!TYPE_UNSIGNED (field_type)) | |
3152 | { | |
3153 | if (val & (valmask ^ (valmask >> 1))) | |
3154 | { | |
3155 | val |= ~valmask; | |
3156 | } | |
3157 | } | |
3158 | } | |
5467c6c8 | 3159 | |
4875ffdb | 3160 | return val; |
5467c6c8 PA |
3161 | } |
3162 | ||
3163 | /* Unpack a field FIELDNO of the specified TYPE, from the object at | |
3164 | VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of | |
3165 | ORIGINAL_VALUE, which must not be NULL. See | |
3166 | unpack_value_bits_as_long for more details. */ | |
3167 | ||
3168 | int | |
3169 | unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, | |
6b850546 | 3170 | LONGEST embedded_offset, int fieldno, |
5467c6c8 PA |
3171 | const struct value *val, LONGEST *result) |
3172 | { | |
4875ffdb PA |
3173 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
3174 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
3175 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
3176 | int bit_offset; | |
3177 | ||
5467c6c8 PA |
3178 | gdb_assert (val != NULL); |
3179 | ||
4875ffdb PA |
3180 | bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; |
3181 | if (value_bits_any_optimized_out (val, bit_offset, bitsize) | |
3182 | || !value_bits_available (val, bit_offset, bitsize)) | |
3183 | return 0; | |
3184 | ||
3185 | *result = unpack_bits_as_long (field_type, valaddr + embedded_offset, | |
3186 | bitpos, bitsize); | |
3187 | return 1; | |
5467c6c8 PA |
3188 | } |
3189 | ||
3190 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous | |
4875ffdb | 3191 | object at VALADDR. See unpack_bits_as_long for more details. */ |
5467c6c8 PA |
3192 | |
3193 | LONGEST | |
3194 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) | |
3195 | { | |
4875ffdb PA |
3196 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
3197 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
3198 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
5467c6c8 | 3199 | |
4875ffdb PA |
3200 | return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); |
3201 | } | |
3202 | ||
3203 | /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at | |
3204 | VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store | |
3205 | the contents in DEST_VAL, zero or sign extending if the type of | |
3206 | DEST_VAL is wider than BITSIZE. VALADDR points to the contents of | |
3207 | VAL. If the VAL's contents required to extract the bitfield from | |
3208 | are unavailable/optimized out, DEST_VAL is correspondingly | |
3209 | marked unavailable/optimized out. */ | |
3210 | ||
bb9d5f81 | 3211 | void |
4875ffdb | 3212 | unpack_value_bitfield (struct value *dest_val, |
6b850546 DT |
3213 | LONGEST bitpos, LONGEST bitsize, |
3214 | const gdb_byte *valaddr, LONGEST embedded_offset, | |
4875ffdb PA |
3215 | const struct value *val) |
3216 | { | |
3217 | enum bfd_endian byte_order; | |
3218 | int src_bit_offset; | |
3219 | int dst_bit_offset; | |
4875ffdb PA |
3220 | struct type *field_type = value_type (dest_val); |
3221 | ||
34877895 | 3222 | byte_order = type_byte_order (field_type); |
e5ca03b4 PA |
3223 | |
3224 | /* First, unpack and sign extend the bitfield as if it was wholly | |
3225 | valid. Optimized out/unavailable bits are read as zero, but | |
3226 | that's OK, as they'll end up marked below. If the VAL is | |
3227 | wholly-invalid we may have skipped allocating its contents, | |
3228 | though. See allocate_optimized_out_value. */ | |
3229 | if (valaddr != NULL) | |
3230 | { | |
3231 | LONGEST num; | |
3232 | ||
3233 | num = unpack_bits_as_long (field_type, valaddr + embedded_offset, | |
3234 | bitpos, bitsize); | |
3235 | store_signed_integer (value_contents_raw (dest_val), | |
3236 | TYPE_LENGTH (field_type), byte_order, num); | |
3237 | } | |
4875ffdb PA |
3238 | |
3239 | /* Now copy the optimized out / unavailability ranges to the right | |
3240 | bits. */ | |
3241 | src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; | |
3242 | if (byte_order == BFD_ENDIAN_BIG) | |
3243 | dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize; | |
3244 | else | |
3245 | dst_bit_offset = 0; | |
3246 | value_ranges_copy_adjusted (dest_val, dst_bit_offset, | |
3247 | val, src_bit_offset, bitsize); | |
5467c6c8 PA |
3248 | } |
3249 | ||
3250 | /* Return a new value with type TYPE, which is FIELDNO field of the | |
3251 | object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents | |
3252 | of VAL. If the VAL's contents required to extract the bitfield | |
4875ffdb PA |
3253 | from are unavailable/optimized out, the new value is |
3254 | correspondingly marked unavailable/optimized out. */ | |
5467c6c8 PA |
3255 | |
3256 | struct value * | |
3257 | value_field_bitfield (struct type *type, int fieldno, | |
3258 | const gdb_byte *valaddr, | |
6b850546 | 3259 | LONGEST embedded_offset, const struct value *val) |
5467c6c8 | 3260 | { |
4875ffdb PA |
3261 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
3262 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
3263 | struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno)); | |
5467c6c8 | 3264 | |
4875ffdb PA |
3265 | unpack_value_bitfield (res_val, bitpos, bitsize, |
3266 | valaddr, embedded_offset, val); | |
3267 | ||
3268 | return res_val; | |
4ea48cc1 DJ |
3269 | } |
3270 | ||
c906108c SS |
3271 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
3272 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
3273 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
581e13c1 | 3274 | indicate which bits (in target bit order) comprise the bitfield. |
19f220c3 | 3275 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and |
f4e88c8e | 3276 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ |
c906108c SS |
3277 | |
3278 | void | |
50810684 | 3279 | modify_field (struct type *type, gdb_byte *addr, |
6b850546 | 3280 | LONGEST fieldval, LONGEST bitpos, LONGEST bitsize) |
c906108c | 3281 | { |
34877895 | 3282 | enum bfd_endian byte_order = type_byte_order (type); |
f4e88c8e PH |
3283 | ULONGEST oword; |
3284 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
6b850546 | 3285 | LONGEST bytesize; |
19f220c3 JK |
3286 | |
3287 | /* Normalize BITPOS. */ | |
3288 | addr += bitpos / 8; | |
3289 | bitpos %= 8; | |
c906108c SS |
3290 | |
3291 | /* If a negative fieldval fits in the field in question, chop | |
3292 | off the sign extension bits. */ | |
f4e88c8e PH |
3293 | if ((~fieldval & ~(mask >> 1)) == 0) |
3294 | fieldval &= mask; | |
c906108c SS |
3295 | |
3296 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 3297 | if (0 != (fieldval & ~mask)) |
c906108c SS |
3298 | { |
3299 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 3300 | we don't have a sprintf_longest. */ |
6b850546 | 3301 | warning (_("Value does not fit in %s bits."), plongest (bitsize)); |
c906108c SS |
3302 | |
3303 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 3304 | fieldval &= mask; |
c906108c SS |
3305 | } |
3306 | ||
19f220c3 JK |
3307 | /* Ensure no bytes outside of the modified ones get accessed as it may cause |
3308 | false valgrind reports. */ | |
3309 | ||
3310 | bytesize = (bitpos + bitsize + 7) / 8; | |
3311 | oword = extract_unsigned_integer (addr, bytesize, byte_order); | |
c906108c SS |
3312 | |
3313 | /* Shifting for bit field depends on endianness of the target machine. */ | |
d5a22e77 | 3314 | if (byte_order == BFD_ENDIAN_BIG) |
19f220c3 | 3315 | bitpos = bytesize * 8 - bitpos - bitsize; |
c906108c | 3316 | |
f4e88c8e | 3317 | oword &= ~(mask << bitpos); |
c906108c SS |
3318 | oword |= fieldval << bitpos; |
3319 | ||
19f220c3 | 3320 | store_unsigned_integer (addr, bytesize, byte_order, oword); |
c906108c SS |
3321 | } |
3322 | \f | |
14d06750 | 3323 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 3324 | |
14d06750 DJ |
3325 | void |
3326 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 3327 | { |
34877895 | 3328 | enum bfd_endian byte_order = type_byte_order (type); |
6b850546 | 3329 | LONGEST len; |
14d06750 DJ |
3330 | |
3331 | type = check_typedef (type); | |
c906108c SS |
3332 | len = TYPE_LENGTH (type); |
3333 | ||
14d06750 | 3334 | switch (TYPE_CODE (type)) |
c906108c | 3335 | { |
4e962e74 TT |
3336 | case TYPE_CODE_RANGE: |
3337 | num -= TYPE_RANGE_DATA (type)->bias; | |
3338 | /* Fall through. */ | |
c906108c SS |
3339 | case TYPE_CODE_INT: |
3340 | case TYPE_CODE_CHAR: | |
3341 | case TYPE_CODE_ENUM: | |
4f2aea11 | 3342 | case TYPE_CODE_FLAGS: |
c906108c | 3343 | case TYPE_CODE_BOOL: |
0d5de010 | 3344 | case TYPE_CODE_MEMBERPTR: |
e17a4113 | 3345 | store_signed_integer (buf, len, byte_order, num); |
c906108c | 3346 | break; |
c5aa993b | 3347 | |
c906108c | 3348 | case TYPE_CODE_REF: |
aa006118 | 3349 | case TYPE_CODE_RVALUE_REF: |
c906108c | 3350 | case TYPE_CODE_PTR: |
14d06750 | 3351 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 3352 | break; |
c5aa993b | 3353 | |
50637b26 UW |
3354 | case TYPE_CODE_FLT: |
3355 | case TYPE_CODE_DECFLOAT: | |
3356 | target_float_from_longest (buf, type, num); | |
3357 | break; | |
3358 | ||
c906108c | 3359 | default: |
14d06750 DJ |
3360 | error (_("Unexpected type (%d) encountered for integer constant."), |
3361 | TYPE_CODE (type)); | |
c906108c | 3362 | } |
14d06750 DJ |
3363 | } |
3364 | ||
3365 | ||
595939de PM |
3366 | /* Pack NUM into BUF using a target format of TYPE. */ |
3367 | ||
70221824 | 3368 | static void |
595939de PM |
3369 | pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) |
3370 | { | |
6b850546 | 3371 | LONGEST len; |
595939de PM |
3372 | enum bfd_endian byte_order; |
3373 | ||
3374 | type = check_typedef (type); | |
3375 | len = TYPE_LENGTH (type); | |
34877895 | 3376 | byte_order = type_byte_order (type); |
595939de PM |
3377 | |
3378 | switch (TYPE_CODE (type)) | |
3379 | { | |
3380 | case TYPE_CODE_INT: | |
3381 | case TYPE_CODE_CHAR: | |
3382 | case TYPE_CODE_ENUM: | |
3383 | case TYPE_CODE_FLAGS: | |
3384 | case TYPE_CODE_BOOL: | |
3385 | case TYPE_CODE_RANGE: | |
3386 | case TYPE_CODE_MEMBERPTR: | |
3387 | store_unsigned_integer (buf, len, byte_order, num); | |
3388 | break; | |
3389 | ||
3390 | case TYPE_CODE_REF: | |
aa006118 | 3391 | case TYPE_CODE_RVALUE_REF: |
595939de PM |
3392 | case TYPE_CODE_PTR: |
3393 | store_typed_address (buf, type, (CORE_ADDR) num); | |
3394 | break; | |
3395 | ||
50637b26 UW |
3396 | case TYPE_CODE_FLT: |
3397 | case TYPE_CODE_DECFLOAT: | |
3398 | target_float_from_ulongest (buf, type, num); | |
3399 | break; | |
3400 | ||
595939de | 3401 | default: |
3e43a32a MS |
3402 | error (_("Unexpected type (%d) encountered " |
3403 | "for unsigned integer constant."), | |
595939de PM |
3404 | TYPE_CODE (type)); |
3405 | } | |
3406 | } | |
3407 | ||
3408 | ||
14d06750 DJ |
3409 | /* Convert C numbers into newly allocated values. */ |
3410 | ||
3411 | struct value * | |
3412 | value_from_longest (struct type *type, LONGEST num) | |
3413 | { | |
3414 | struct value *val = allocate_value (type); | |
3415 | ||
3416 | pack_long (value_contents_raw (val), type, num); | |
c906108c SS |
3417 | return val; |
3418 | } | |
3419 | ||
4478b372 | 3420 | |
595939de PM |
3421 | /* Convert C unsigned numbers into newly allocated values. */ |
3422 | ||
3423 | struct value * | |
3424 | value_from_ulongest (struct type *type, ULONGEST num) | |
3425 | { | |
3426 | struct value *val = allocate_value (type); | |
3427 | ||
3428 | pack_unsigned_long (value_contents_raw (val), type, num); | |
3429 | ||
3430 | return val; | |
3431 | } | |
3432 | ||
3433 | ||
4478b372 | 3434 | /* Create a value representing a pointer of type TYPE to the address |
cb417230 | 3435 | ADDR. */ |
80180f79 | 3436 | |
f23631e4 | 3437 | struct value * |
4478b372 JB |
3438 | value_from_pointer (struct type *type, CORE_ADDR addr) |
3439 | { | |
cb417230 | 3440 | struct value *val = allocate_value (type); |
a109c7c1 | 3441 | |
80180f79 | 3442 | store_typed_address (value_contents_raw (val), |
cb417230 | 3443 | check_typedef (type), addr); |
4478b372 JB |
3444 | return val; |
3445 | } | |
3446 | ||
7584bb30 AB |
3447 | /* Create and return a value object of TYPE containing the value D. The |
3448 | TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once | |
3449 | it is converted to target format. */ | |
3450 | ||
3451 | struct value * | |
3452 | value_from_host_double (struct type *type, double d) | |
3453 | { | |
3454 | struct value *value = allocate_value (type); | |
3455 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
3456 | target_float_from_host_double (value_contents_raw (value), | |
3457 | value_type (value), d); | |
3458 | return value; | |
3459 | } | |
4478b372 | 3460 | |
012370f6 TT |
3461 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
3462 | is non-null, and whose memory address (in the inferior) is | |
3463 | ADDRESS. The type of the created value may differ from the passed | |
3464 | type TYPE. Make sure to retrieve values new type after this call. | |
3465 | Note that TYPE is not passed through resolve_dynamic_type; this is | |
3466 | a special API intended for use only by Ada. */ | |
3467 | ||
3468 | struct value * | |
3469 | value_from_contents_and_address_unresolved (struct type *type, | |
3470 | const gdb_byte *valaddr, | |
3471 | CORE_ADDR address) | |
3472 | { | |
3473 | struct value *v; | |
3474 | ||
3475 | if (valaddr == NULL) | |
3476 | v = allocate_value_lazy (type); | |
3477 | else | |
3478 | v = value_from_contents (type, valaddr); | |
012370f6 | 3479 | VALUE_LVAL (v) = lval_memory; |
1a088441 | 3480 | set_value_address (v, address); |
012370f6 TT |
3481 | return v; |
3482 | } | |
3483 | ||
8acb6b92 TT |
3484 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
3485 | is non-null, and whose memory address (in the inferior) is | |
80180f79 SA |
3486 | ADDRESS. The type of the created value may differ from the passed |
3487 | type TYPE. Make sure to retrieve values new type after this call. */ | |
8acb6b92 TT |
3488 | |
3489 | struct value * | |
3490 | value_from_contents_and_address (struct type *type, | |
3491 | const gdb_byte *valaddr, | |
3492 | CORE_ADDR address) | |
3493 | { | |
c3345124 | 3494 | struct type *resolved_type = resolve_dynamic_type (type, valaddr, address); |
d36430db | 3495 | struct type *resolved_type_no_typedef = check_typedef (resolved_type); |
41e8491f | 3496 | struct value *v; |
a109c7c1 | 3497 | |
8acb6b92 | 3498 | if (valaddr == NULL) |
80180f79 | 3499 | v = allocate_value_lazy (resolved_type); |
8acb6b92 | 3500 | else |
80180f79 | 3501 | v = value_from_contents (resolved_type, valaddr); |
d36430db JB |
3502 | if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL |
3503 | && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST) | |
3504 | address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef); | |
33d502b4 | 3505 | VALUE_LVAL (v) = lval_memory; |
1a088441 | 3506 | set_value_address (v, address); |
8acb6b92 TT |
3507 | return v; |
3508 | } | |
3509 | ||
8a9b8146 TT |
3510 | /* Create a value of type TYPE holding the contents CONTENTS. |
3511 | The new value is `not_lval'. */ | |
3512 | ||
3513 | struct value * | |
3514 | value_from_contents (struct type *type, const gdb_byte *contents) | |
3515 | { | |
3516 | struct value *result; | |
3517 | ||
3518 | result = allocate_value (type); | |
3519 | memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type)); | |
3520 | return result; | |
3521 | } | |
3522 | ||
3bd0f5ef MS |
3523 | /* Extract a value from the history file. Input will be of the form |
3524 | $digits or $$digits. See block comment above 'write_dollar_variable' | |
3525 | for details. */ | |
3526 | ||
3527 | struct value * | |
e799154c | 3528 | value_from_history_ref (const char *h, const char **endp) |
3bd0f5ef MS |
3529 | { |
3530 | int index, len; | |
3531 | ||
3532 | if (h[0] == '$') | |
3533 | len = 1; | |
3534 | else | |
3535 | return NULL; | |
3536 | ||
3537 | if (h[1] == '$') | |
3538 | len = 2; | |
3539 | ||
3540 | /* Find length of numeral string. */ | |
3541 | for (; isdigit (h[len]); len++) | |
3542 | ; | |
3543 | ||
3544 | /* Make sure numeral string is not part of an identifier. */ | |
3545 | if (h[len] == '_' || isalpha (h[len])) | |
3546 | return NULL; | |
3547 | ||
3548 | /* Now collect the index value. */ | |
3549 | if (h[1] == '$') | |
3550 | { | |
3551 | if (len == 2) | |
3552 | { | |
3553 | /* For some bizarre reason, "$$" is equivalent to "$$1", | |
3554 | rather than to "$$0" as it ought to be! */ | |
3555 | index = -1; | |
3556 | *endp += len; | |
3557 | } | |
3558 | else | |
e799154c TT |
3559 | { |
3560 | char *local_end; | |
3561 | ||
3562 | index = -strtol (&h[2], &local_end, 10); | |
3563 | *endp = local_end; | |
3564 | } | |
3bd0f5ef MS |
3565 | } |
3566 | else | |
3567 | { | |
3568 | if (len == 1) | |
3569 | { | |
3570 | /* "$" is equivalent to "$0". */ | |
3571 | index = 0; | |
3572 | *endp += len; | |
3573 | } | |
3574 | else | |
e799154c TT |
3575 | { |
3576 | char *local_end; | |
3577 | ||
3578 | index = strtol (&h[1], &local_end, 10); | |
3579 | *endp = local_end; | |
3580 | } | |
3bd0f5ef MS |
3581 | } |
3582 | ||
3583 | return access_value_history (index); | |
3584 | } | |
3585 | ||
3fff9862 YQ |
3586 | /* Get the component value (offset by OFFSET bytes) of a struct or |
3587 | union WHOLE. Component's type is TYPE. */ | |
3588 | ||
3589 | struct value * | |
3590 | value_from_component (struct value *whole, struct type *type, LONGEST offset) | |
3591 | { | |
3592 | struct value *v; | |
3593 | ||
3594 | if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole)) | |
3595 | v = allocate_value_lazy (type); | |
3596 | else | |
3597 | { | |
3598 | v = allocate_value (type); | |
3599 | value_contents_copy (v, value_embedded_offset (v), | |
3600 | whole, value_embedded_offset (whole) + offset, | |
3601 | type_length_units (type)); | |
3602 | } | |
3603 | v->offset = value_offset (whole) + offset + value_embedded_offset (whole); | |
3604 | set_value_component_location (v, whole); | |
3fff9862 YQ |
3605 | |
3606 | return v; | |
3607 | } | |
3608 | ||
a471c594 JK |
3609 | struct value * |
3610 | coerce_ref_if_computed (const struct value *arg) | |
3611 | { | |
3612 | const struct lval_funcs *funcs; | |
3613 | ||
aa006118 | 3614 | if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg)))) |
a471c594 JK |
3615 | return NULL; |
3616 | ||
3617 | if (value_lval_const (arg) != lval_computed) | |
3618 | return NULL; | |
3619 | ||
3620 | funcs = value_computed_funcs (arg); | |
3621 | if (funcs->coerce_ref == NULL) | |
3622 | return NULL; | |
3623 | ||
3624 | return funcs->coerce_ref (arg); | |
3625 | } | |
3626 | ||
dfcee124 AG |
3627 | /* Look at value.h for description. */ |
3628 | ||
3629 | struct value * | |
3630 | readjust_indirect_value_type (struct value *value, struct type *enc_type, | |
4bf7b526 MG |
3631 | const struct type *original_type, |
3632 | const struct value *original_value) | |
dfcee124 AG |
3633 | { |
3634 | /* Re-adjust type. */ | |
3635 | deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type)); | |
3636 | ||
3637 | /* Add embedding info. */ | |
3638 | set_value_enclosing_type (value, enc_type); | |
3639 | set_value_embedded_offset (value, value_pointed_to_offset (original_value)); | |
3640 | ||
3641 | /* We may be pointing to an object of some derived type. */ | |
3642 | return value_full_object (value, NULL, 0, 0, 0); | |
3643 | } | |
3644 | ||
994b9211 AC |
3645 | struct value * |
3646 | coerce_ref (struct value *arg) | |
3647 | { | |
df407dfe | 3648 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
a471c594 | 3649 | struct value *retval; |
dfcee124 | 3650 | struct type *enc_type; |
a109c7c1 | 3651 | |
a471c594 JK |
3652 | retval = coerce_ref_if_computed (arg); |
3653 | if (retval) | |
3654 | return retval; | |
3655 | ||
aa006118 | 3656 | if (!TYPE_IS_REFERENCE (value_type_arg_tmp)) |
a471c594 JK |
3657 | return arg; |
3658 | ||
dfcee124 AG |
3659 | enc_type = check_typedef (value_enclosing_type (arg)); |
3660 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
3661 | ||
3662 | retval = value_at_lazy (enc_type, | |
3663 | unpack_pointer (value_type (arg), | |
3664 | value_contents (arg))); | |
9f1f738a | 3665 | enc_type = value_type (retval); |
dfcee124 AG |
3666 | return readjust_indirect_value_type (retval, enc_type, |
3667 | value_type_arg_tmp, arg); | |
994b9211 AC |
3668 | } |
3669 | ||
3670 | struct value * | |
3671 | coerce_array (struct value *arg) | |
3672 | { | |
f3134b88 TT |
3673 | struct type *type; |
3674 | ||
994b9211 | 3675 | arg = coerce_ref (arg); |
f3134b88 TT |
3676 | type = check_typedef (value_type (arg)); |
3677 | ||
3678 | switch (TYPE_CODE (type)) | |
3679 | { | |
3680 | case TYPE_CODE_ARRAY: | |
7346b668 | 3681 | if (!TYPE_VECTOR (type) && current_language->c_style_arrays) |
f3134b88 TT |
3682 | arg = value_coerce_array (arg); |
3683 | break; | |
3684 | case TYPE_CODE_FUNC: | |
3685 | arg = value_coerce_function (arg); | |
3686 | break; | |
3687 | } | |
994b9211 AC |
3688 | return arg; |
3689 | } | |
c906108c | 3690 | \f |
c906108c | 3691 | |
bbfdfe1c DM |
3692 | /* Return the return value convention that will be used for the |
3693 | specified type. */ | |
3694 | ||
3695 | enum return_value_convention | |
3696 | struct_return_convention (struct gdbarch *gdbarch, | |
3697 | struct value *function, struct type *value_type) | |
3698 | { | |
3699 | enum type_code code = TYPE_CODE (value_type); | |
3700 | ||
3701 | if (code == TYPE_CODE_ERROR) | |
3702 | error (_("Function return type unknown.")); | |
3703 | ||
3704 | /* Probe the architecture for the return-value convention. */ | |
3705 | return gdbarch_return_value (gdbarch, function, value_type, | |
3706 | NULL, NULL, NULL); | |
3707 | } | |
3708 | ||
48436ce6 AC |
3709 | /* Return true if the function returning the specified type is using |
3710 | the convention of returning structures in memory (passing in the | |
82585c72 | 3711 | address as a hidden first parameter). */ |
c906108c SS |
3712 | |
3713 | int | |
d80b854b | 3714 | using_struct_return (struct gdbarch *gdbarch, |
6a3a010b | 3715 | struct value *function, struct type *value_type) |
c906108c | 3716 | { |
bbfdfe1c | 3717 | if (TYPE_CODE (value_type) == TYPE_CODE_VOID) |
667e784f | 3718 | /* A void return value is never in memory. See also corresponding |
44e5158b | 3719 | code in "print_return_value". */ |
667e784f AC |
3720 | return 0; |
3721 | ||
bbfdfe1c | 3722 | return (struct_return_convention (gdbarch, function, value_type) |
31db7b6c | 3723 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
3724 | } |
3725 | ||
42be36b3 CT |
3726 | /* Set the initialized field in a value struct. */ |
3727 | ||
3728 | void | |
3729 | set_value_initialized (struct value *val, int status) | |
3730 | { | |
3731 | val->initialized = status; | |
3732 | } | |
3733 | ||
3734 | /* Return the initialized field in a value struct. */ | |
3735 | ||
3736 | int | |
4bf7b526 | 3737 | value_initialized (const struct value *val) |
42be36b3 CT |
3738 | { |
3739 | return val->initialized; | |
3740 | } | |
3741 | ||
41c60b4b SM |
3742 | /* Helper for value_fetch_lazy when the value is a bitfield. */ |
3743 | ||
3744 | static void | |
3745 | value_fetch_lazy_bitfield (struct value *val) | |
3746 | { | |
3747 | gdb_assert (value_bitsize (val) != 0); | |
3748 | ||
3749 | /* To read a lazy bitfield, read the entire enclosing value. This | |
3750 | prevents reading the same block of (possibly volatile) memory once | |
3751 | per bitfield. It would be even better to read only the containing | |
3752 | word, but we have no way to record that just specific bits of a | |
3753 | value have been fetched. */ | |
41c60b4b SM |
3754 | struct value *parent = value_parent (val); |
3755 | ||
3756 | if (value_lazy (parent)) | |
3757 | value_fetch_lazy (parent); | |
3758 | ||
3759 | unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val), | |
3760 | value_contents_for_printing (parent), | |
3761 | value_offset (val), parent); | |
3762 | } | |
3763 | ||
3764 | /* Helper for value_fetch_lazy when the value is in memory. */ | |
3765 | ||
3766 | static void | |
3767 | value_fetch_lazy_memory (struct value *val) | |
3768 | { | |
3769 | gdb_assert (VALUE_LVAL (val) == lval_memory); | |
3770 | ||
3771 | CORE_ADDR addr = value_address (val); | |
3772 | struct type *type = check_typedef (value_enclosing_type (val)); | |
3773 | ||
3774 | if (TYPE_LENGTH (type)) | |
3775 | read_value_memory (val, 0, value_stack (val), | |
3776 | addr, value_contents_all_raw (val), | |
3777 | type_length_units (type)); | |
3778 | } | |
3779 | ||
3780 | /* Helper for value_fetch_lazy when the value is in a register. */ | |
3781 | ||
3782 | static void | |
3783 | value_fetch_lazy_register (struct value *val) | |
3784 | { | |
3785 | struct frame_info *next_frame; | |
3786 | int regnum; | |
3787 | struct type *type = check_typedef (value_type (val)); | |
3788 | struct value *new_val = val, *mark = value_mark (); | |
3789 | ||
3790 | /* Offsets are not supported here; lazy register values must | |
3791 | refer to the entire register. */ | |
3792 | gdb_assert (value_offset (val) == 0); | |
3793 | ||
3794 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) | |
3795 | { | |
3796 | struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val); | |
3797 | ||
3798 | next_frame = frame_find_by_id (next_frame_id); | |
3799 | regnum = VALUE_REGNUM (new_val); | |
3800 | ||
3801 | gdb_assert (next_frame != NULL); | |
3802 | ||
3803 | /* Convertible register routines are used for multi-register | |
3804 | values and for interpretation in different types | |
3805 | (e.g. float or int from a double register). Lazy | |
3806 | register values should have the register's natural type, | |
3807 | so they do not apply. */ | |
3808 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame), | |
3809 | regnum, type)); | |
3810 | ||
3811 | /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID. | |
3812 | Since a "->next" operation was performed when setting | |
3813 | this field, we do not need to perform a "next" operation | |
3814 | again when unwinding the register. That's why | |
3815 | frame_unwind_register_value() is called here instead of | |
3816 | get_frame_register_value(). */ | |
3817 | new_val = frame_unwind_register_value (next_frame, regnum); | |
3818 | ||
3819 | /* If we get another lazy lval_register value, it means the | |
3820 | register is found by reading it from NEXT_FRAME's next frame. | |
3821 | frame_unwind_register_value should never return a value with | |
3822 | the frame id pointing to NEXT_FRAME. If it does, it means we | |
3823 | either have two consecutive frames with the same frame id | |
3824 | in the frame chain, or some code is trying to unwind | |
3825 | behind get_prev_frame's back (e.g., a frame unwind | |
3826 | sniffer trying to unwind), bypassing its validations. In | |
3827 | any case, it should always be an internal error to end up | |
3828 | in this situation. */ | |
3829 | if (VALUE_LVAL (new_val) == lval_register | |
3830 | && value_lazy (new_val) | |
3831 | && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id)) | |
3832 | internal_error (__FILE__, __LINE__, | |
3833 | _("infinite loop while fetching a register")); | |
3834 | } | |
3835 | ||
3836 | /* If it's still lazy (for instance, a saved register on the | |
3837 | stack), fetch it. */ | |
3838 | if (value_lazy (new_val)) | |
3839 | value_fetch_lazy (new_val); | |
3840 | ||
3841 | /* Copy the contents and the unavailability/optimized-out | |
3842 | meta-data from NEW_VAL to VAL. */ | |
3843 | set_value_lazy (val, 0); | |
3844 | value_contents_copy (val, value_embedded_offset (val), | |
3845 | new_val, value_embedded_offset (new_val), | |
3846 | type_length_units (type)); | |
3847 | ||
3848 | if (frame_debug) | |
3849 | { | |
3850 | struct gdbarch *gdbarch; | |
3851 | struct frame_info *frame; | |
3852 | /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID, | |
3853 | so that the frame level will be shown correctly. */ | |
3854 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); | |
3855 | regnum = VALUE_REGNUM (val); | |
3856 | gdbarch = get_frame_arch (frame); | |
3857 | ||
3858 | fprintf_unfiltered (gdb_stdlog, | |
3859 | "{ value_fetch_lazy " | |
3860 | "(frame=%d,regnum=%d(%s),...) ", | |
3861 | frame_relative_level (frame), regnum, | |
3862 | user_reg_map_regnum_to_name (gdbarch, regnum)); | |
3863 | ||
3864 | fprintf_unfiltered (gdb_stdlog, "->"); | |
3865 | if (value_optimized_out (new_val)) | |
3866 | { | |
3867 | fprintf_unfiltered (gdb_stdlog, " "); | |
3868 | val_print_optimized_out (new_val, gdb_stdlog); | |
3869 | } | |
3870 | else | |
3871 | { | |
3872 | int i; | |
3873 | const gdb_byte *buf = value_contents (new_val); | |
3874 | ||
3875 | if (VALUE_LVAL (new_val) == lval_register) | |
3876 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
3877 | VALUE_REGNUM (new_val)); | |
3878 | else if (VALUE_LVAL (new_val) == lval_memory) | |
3879 | fprintf_unfiltered (gdb_stdlog, " address=%s", | |
3880 | paddress (gdbarch, | |
3881 | value_address (new_val))); | |
3882 | else | |
3883 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
3884 | ||
3885 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
3886 | fprintf_unfiltered (gdb_stdlog, "["); | |
3887 | for (i = 0; i < register_size (gdbarch, regnum); i++) | |
3888 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); | |
3889 | fprintf_unfiltered (gdb_stdlog, "]"); | |
3890 | } | |
3891 | ||
3892 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
3893 | } | |
3894 | ||
3895 | /* Dispose of the intermediate values. This prevents | |
3896 | watchpoints from trying to watch the saved frame pointer. */ | |
3897 | value_free_to_mark (mark); | |
3898 | } | |
3899 | ||
a844296a SM |
3900 | /* Load the actual content of a lazy value. Fetch the data from the |
3901 | user's process and clear the lazy flag to indicate that the data in | |
3902 | the buffer is valid. | |
a58e2656 AB |
3903 | |
3904 | If the value is zero-length, we avoid calling read_memory, which | |
3905 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
a844296a | 3906 | it. */ |
a58e2656 | 3907 | |
a844296a | 3908 | void |
a58e2656 AB |
3909 | value_fetch_lazy (struct value *val) |
3910 | { | |
3911 | gdb_assert (value_lazy (val)); | |
3912 | allocate_value_contents (val); | |
9a0dc9e3 PA |
3913 | /* A value is either lazy, or fully fetched. The |
3914 | availability/validity is only established as we try to fetch a | |
3915 | value. */ | |
0c7e6dd8 TT |
3916 | gdb_assert (val->optimized_out.empty ()); |
3917 | gdb_assert (val->unavailable.empty ()); | |
a58e2656 | 3918 | if (value_bitsize (val)) |
41c60b4b | 3919 | value_fetch_lazy_bitfield (val); |
a58e2656 | 3920 | else if (VALUE_LVAL (val) == lval_memory) |
41c60b4b | 3921 | value_fetch_lazy_memory (val); |
a58e2656 | 3922 | else if (VALUE_LVAL (val) == lval_register) |
41c60b4b | 3923 | value_fetch_lazy_register (val); |
a58e2656 AB |
3924 | else if (VALUE_LVAL (val) == lval_computed |
3925 | && value_computed_funcs (val)->read != NULL) | |
3926 | value_computed_funcs (val)->read (val); | |
a58e2656 AB |
3927 | else |
3928 | internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); | |
3929 | ||
3930 | set_value_lazy (val, 0); | |
a58e2656 AB |
3931 | } |
3932 | ||
a280dbd1 SDJ |
3933 | /* Implementation of the convenience function $_isvoid. */ |
3934 | ||
3935 | static struct value * | |
3936 | isvoid_internal_fn (struct gdbarch *gdbarch, | |
3937 | const struct language_defn *language, | |
3938 | void *cookie, int argc, struct value **argv) | |
3939 | { | |
3940 | int ret; | |
3941 | ||
3942 | if (argc != 1) | |
6bc305f5 | 3943 | error (_("You must provide one argument for $_isvoid.")); |
a280dbd1 SDJ |
3944 | |
3945 | ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID; | |
3946 | ||
3947 | return value_from_longest (builtin_type (gdbarch)->builtin_int, ret); | |
3948 | } | |
3949 | ||
53a008a6 | 3950 | /* Implementation of the convenience function $_creal. Extracts the |
8bdc1658 AB |
3951 | real part from a complex number. */ |
3952 | ||
3953 | static struct value * | |
3954 | creal_internal_fn (struct gdbarch *gdbarch, | |
3955 | const struct language_defn *language, | |
3956 | void *cookie, int argc, struct value **argv) | |
3957 | { | |
3958 | if (argc != 1) | |
3959 | error (_("You must provide one argument for $_creal.")); | |
3960 | ||
3961 | value *cval = argv[0]; | |
3962 | type *ctype = check_typedef (value_type (cval)); | |
3963 | if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX) | |
3964 | error (_("expected a complex number")); | |
3965 | return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0); | |
3966 | } | |
3967 | ||
3968 | /* Implementation of the convenience function $_cimag. Extracts the | |
3969 | imaginary part from a complex number. */ | |
3970 | ||
3971 | static struct value * | |
3972 | cimag_internal_fn (struct gdbarch *gdbarch, | |
3973 | const struct language_defn *language, | |
3974 | void *cookie, int argc, | |
3975 | struct value **argv) | |
3976 | { | |
3977 | if (argc != 1) | |
3978 | error (_("You must provide one argument for $_cimag.")); | |
3979 | ||
3980 | value *cval = argv[0]; | |
3981 | type *ctype = check_typedef (value_type (cval)); | |
3982 | if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX) | |
3983 | error (_("expected a complex number")); | |
3984 | return value_from_component (cval, TYPE_TARGET_TYPE (ctype), | |
3985 | TYPE_LENGTH (TYPE_TARGET_TYPE (ctype))); | |
3986 | } | |
3987 | ||
d5f4488f SM |
3988 | #if GDB_SELF_TEST |
3989 | namespace selftests | |
3990 | { | |
3991 | ||
3992 | /* Test the ranges_contain function. */ | |
3993 | ||
3994 | static void | |
3995 | test_ranges_contain () | |
3996 | { | |
3997 | std::vector<range> ranges; | |
3998 | range r; | |
3999 | ||
4000 | /* [10, 14] */ | |
4001 | r.offset = 10; | |
4002 | r.length = 5; | |
4003 | ranges.push_back (r); | |
4004 | ||
4005 | /* [20, 24] */ | |
4006 | r.offset = 20; | |
4007 | r.length = 5; | |
4008 | ranges.push_back (r); | |
4009 | ||
4010 | /* [2, 6] */ | |
4011 | SELF_CHECK (!ranges_contain (ranges, 2, 5)); | |
4012 | /* [9, 13] */ | |
4013 | SELF_CHECK (ranges_contain (ranges, 9, 5)); | |
4014 | /* [10, 11] */ | |
4015 | SELF_CHECK (ranges_contain (ranges, 10, 2)); | |
4016 | /* [10, 14] */ | |
4017 | SELF_CHECK (ranges_contain (ranges, 10, 5)); | |
4018 | /* [13, 18] */ | |
4019 | SELF_CHECK (ranges_contain (ranges, 13, 6)); | |
4020 | /* [14, 18] */ | |
4021 | SELF_CHECK (ranges_contain (ranges, 14, 5)); | |
4022 | /* [15, 18] */ | |
4023 | SELF_CHECK (!ranges_contain (ranges, 15, 4)); | |
4024 | /* [16, 19] */ | |
4025 | SELF_CHECK (!ranges_contain (ranges, 16, 4)); | |
4026 | /* [16, 21] */ | |
4027 | SELF_CHECK (ranges_contain (ranges, 16, 6)); | |
4028 | /* [21, 21] */ | |
4029 | SELF_CHECK (ranges_contain (ranges, 21, 1)); | |
4030 | /* [21, 25] */ | |
4031 | SELF_CHECK (ranges_contain (ranges, 21, 5)); | |
4032 | /* [26, 28] */ | |
4033 | SELF_CHECK (!ranges_contain (ranges, 26, 3)); | |
4034 | } | |
4035 | ||
4036 | /* Check that RANGES contains the same ranges as EXPECTED. */ | |
4037 | ||
4038 | static bool | |
4039 | check_ranges_vector (gdb::array_view<const range> ranges, | |
4040 | gdb::array_view<const range> expected) | |
4041 | { | |
4042 | return ranges == expected; | |
4043 | } | |
4044 | ||
4045 | /* Test the insert_into_bit_range_vector function. */ | |
4046 | ||
4047 | static void | |
4048 | test_insert_into_bit_range_vector () | |
4049 | { | |
4050 | std::vector<range> ranges; | |
4051 | ||
4052 | /* [10, 14] */ | |
4053 | { | |
4054 | insert_into_bit_range_vector (&ranges, 10, 5); | |
4055 | static const range expected[] = { | |
4056 | {10, 5} | |
4057 | }; | |
4058 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4059 | } | |
4060 | ||
4061 | /* [10, 14] */ | |
4062 | { | |
4063 | insert_into_bit_range_vector (&ranges, 11, 4); | |
4064 | static const range expected = {10, 5}; | |
4065 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4066 | } | |
4067 | ||
4068 | /* [10, 14] [20, 24] */ | |
4069 | { | |
4070 | insert_into_bit_range_vector (&ranges, 20, 5); | |
4071 | static const range expected[] = { | |
4072 | {10, 5}, | |
4073 | {20, 5}, | |
4074 | }; | |
4075 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4076 | } | |
4077 | ||
4078 | /* [10, 14] [17, 24] */ | |
4079 | { | |
4080 | insert_into_bit_range_vector (&ranges, 17, 5); | |
4081 | static const range expected[] = { | |
4082 | {10, 5}, | |
4083 | {17, 8}, | |
4084 | }; | |
4085 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4086 | } | |
4087 | ||
4088 | /* [2, 8] [10, 14] [17, 24] */ | |
4089 | { | |
4090 | insert_into_bit_range_vector (&ranges, 2, 7); | |
4091 | static const range expected[] = { | |
4092 | {2, 7}, | |
4093 | {10, 5}, | |
4094 | {17, 8}, | |
4095 | }; | |
4096 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4097 | } | |
4098 | ||
4099 | /* [2, 14] [17, 24] */ | |
4100 | { | |
4101 | insert_into_bit_range_vector (&ranges, 9, 1); | |
4102 | static const range expected[] = { | |
4103 | {2, 13}, | |
4104 | {17, 8}, | |
4105 | }; | |
4106 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4107 | } | |
4108 | ||
4109 | /* [2, 14] [17, 24] */ | |
4110 | { | |
4111 | insert_into_bit_range_vector (&ranges, 9, 1); | |
4112 | static const range expected[] = { | |
4113 | {2, 13}, | |
4114 | {17, 8}, | |
4115 | }; | |
4116 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4117 | } | |
4118 | ||
4119 | /* [2, 33] */ | |
4120 | { | |
4121 | insert_into_bit_range_vector (&ranges, 4, 30); | |
4122 | static const range expected = {2, 32}; | |
4123 | SELF_CHECK (check_ranges_vector (ranges, expected)); | |
4124 | } | |
4125 | } | |
4126 | ||
4127 | } /* namespace selftests */ | |
4128 | #endif /* GDB_SELF_TEST */ | |
4129 | ||
c906108c | 4130 | void |
fba45db2 | 4131 | _initialize_values (void) |
c906108c | 4132 | { |
1a966eab | 4133 | add_cmd ("convenience", no_class, show_convenience, _("\ |
f47f77df DE |
4134 | Debugger convenience (\"$foo\") variables and functions.\n\ |
4135 | Convenience variables are created when you assign them values;\n\ | |
4136 | thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ | |
1a966eab | 4137 | \n\ |
c906108c SS |
4138 | A few convenience variables are given values automatically:\n\ |
4139 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f47f77df DE |
4140 | \"$__\" holds the contents of the last address examined with \"x\"." |
4141 | #ifdef HAVE_PYTHON | |
4142 | "\n\n\ | |
4143 | Convenience functions are defined via the Python API." | |
4144 | #endif | |
4145 | ), &showlist); | |
7e20dfcd | 4146 | add_alias_cmd ("conv", "convenience", no_class, 1, &showlist); |
c906108c | 4147 | |
db5f229b | 4148 | add_cmd ("values", no_set_class, show_values, _("\ |
3e43a32a | 4149 | Elements of value history around item number IDX (or last ten)."), |
c906108c | 4150 | &showlist); |
53e5f3cf AS |
4151 | |
4152 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
4153 | Initialize a convenience variable if necessary.\n\ | |
4154 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
4155 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
4156 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
4157 | VARIABLE is already initialized.")); | |
bc3b79fd TJB |
4158 | |
4159 | add_prefix_cmd ("function", no_class, function_command, _("\ | |
4160 | Placeholder command for showing help on convenience functions."), | |
4161 | &functionlist, "function ", 0, &cmdlist); | |
a280dbd1 SDJ |
4162 | |
4163 | add_internal_function ("_isvoid", _("\ | |
4164 | Check whether an expression is void.\n\ | |
4165 | Usage: $_isvoid (expression)\n\ | |
4166 | Return 1 if the expression is void, zero otherwise."), | |
4167 | isvoid_internal_fn, NULL); | |
5fdf6324 | 4168 | |
8bdc1658 AB |
4169 | add_internal_function ("_creal", _("\ |
4170 | Extract the real part of a complex number.\n\ | |
4171 | Usage: $_creal (expression)\n\ | |
4172 | Return the real part of a complex number, the type depends on the\n\ | |
4173 | type of a complex number."), | |
4174 | creal_internal_fn, NULL); | |
4175 | ||
4176 | add_internal_function ("_cimag", _("\ | |
4177 | Extract the imaginary part of a complex number.\n\ | |
4178 | Usage: $_cimag (expression)\n\ | |
4179 | Return the imaginary part of a complex number, the type depends on the\n\ | |
4180 | type of a complex number."), | |
4181 | cimag_internal_fn, NULL); | |
4182 | ||
5fdf6324 AB |
4183 | add_setshow_zuinteger_unlimited_cmd ("max-value-size", |
4184 | class_support, &max_value_size, _("\ | |
4185 | Set maximum sized value gdb will load from the inferior."), _("\ | |
4186 | Show maximum sized value gdb will load from the inferior."), _("\ | |
4187 | Use this to control the maximum size, in bytes, of a value that gdb\n\ | |
4188 | will load from the inferior. Setting this value to 'unlimited'\n\ | |
4189 | disables checking.\n\ | |
4190 | Setting this does not invalidate already allocated values, it only\n\ | |
4191 | prevents future values, larger than this size, from being allocated."), | |
4192 | set_max_value_size, | |
4193 | show_max_value_size, | |
4194 | &setlist, &showlist); | |
d5f4488f SM |
4195 | #if GDB_SELF_TEST |
4196 | selftests::register_test ("ranges_contain", selftests::test_ranges_contain); | |
4197 | selftests::register_test ("insert_into_bit_range_vector", | |
4198 | selftests::test_insert_into_bit_range_vector); | |
4199 | #endif | |
c906108c | 4200 | } |
9d1447e0 SDJ |
4201 | |
4202 | /* See value.h. */ | |
4203 | ||
4204 | void | |
4205 | finalize_values () | |
4206 | { | |
4207 | all_values.clear (); | |
4208 | } |