Index: sh/ChangeLog
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
f23631e4 3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1bac305b
AC
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
c906108c
SS
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
d16aafd8 36#include "doublest.h"
5ae326fa 37#include "gdb_assert.h"
36160dc4 38#include "regcache.h"
fe898f56 39#include "block.h"
c906108c
SS
40
41/* Prototypes for exported functions. */
42
a14ed312 43void _initialize_values (void);
c906108c
SS
44
45/* Prototypes for local functions. */
46
a14ed312 47static void show_values (char *, int);
c906108c 48
a14ed312 49static void show_convenience (char *, int);
c906108c 50
c906108c
SS
51
52/* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58#define VALUE_HISTORY_CHUNK 60
59
60struct value_history_chunk
c5aa993b
JM
61 {
62 struct value_history_chunk *next;
f23631e4 63 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 64 };
c906108c
SS
65
66/* Chain of chunks now in use. */
67
68static struct value_history_chunk *value_history_chain;
69
70static int value_history_count; /* Abs number of last entry stored */
71\f
72/* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
f23631e4 76static struct value *all_values;
c906108c
SS
77
78/* Allocate a value that has the correct length for type TYPE. */
79
f23631e4 80struct value *
fba45db2 81allocate_value (struct type *type)
c906108c 82{
f23631e4 83 struct value *val;
c906108c
SS
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
df407dfe 87 val->next = all_values;
c906108c 88 all_values = val;
df407dfe 89 val->type = type;
c906108c
SS
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
1df6926e 93 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
9ee8fc9d 97 VALUE_REGNUM (val) = -1;
c906108c
SS
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
c906108c
SS
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104}
105
106/* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
f23631e4 109struct value *
fba45db2 110allocate_repeat_value (struct type *type, int count)
c906108c 111{
c5aa993b 112 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
c5aa993b
JM
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
c906108c
SS
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122}
123
df407dfe
AC
124/* Accessor methods. */
125
126struct type *
127value_type (struct value *value)
128{
129 return value->type;
130}
131
132int
133value_offset (struct value *value)
134{
135 return value->offset;
136}
137
138int
139value_bitpos (struct value *value)
140{
141 return value->bitpos;
142}
143
144int
145value_bitsize (struct value *value)
146{
147 return value->bitsize;
148}
149
c906108c
SS
150/* Return a mark in the value chain. All values allocated after the
151 mark is obtained (except for those released) are subject to being freed
152 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 153struct value *
fba45db2 154value_mark (void)
c906108c
SS
155{
156 return all_values;
157}
158
159/* Free all values allocated since MARK was obtained by value_mark
160 (except for those released). */
161void
f23631e4 162value_free_to_mark (struct value *mark)
c906108c 163{
f23631e4
AC
164 struct value *val;
165 struct value *next;
c906108c
SS
166
167 for (val = all_values; val && val != mark; val = next)
168 {
df407dfe 169 next = val->next;
c906108c
SS
170 value_free (val);
171 }
172 all_values = val;
173}
174
175/* Free all the values that have been allocated (except for those released).
176 Called after each command, successful or not. */
177
178void
fba45db2 179free_all_values (void)
c906108c 180{
f23631e4
AC
181 struct value *val;
182 struct value *next;
c906108c
SS
183
184 for (val = all_values; val; val = next)
185 {
df407dfe 186 next = val->next;
c906108c
SS
187 value_free (val);
188 }
189
190 all_values = 0;
191}
192
193/* Remove VAL from the chain all_values
194 so it will not be freed automatically. */
195
196void
f23631e4 197release_value (struct value *val)
c906108c 198{
f23631e4 199 struct value *v;
c906108c
SS
200
201 if (all_values == val)
202 {
203 all_values = val->next;
204 return;
205 }
206
207 for (v = all_values; v; v = v->next)
208 {
209 if (v->next == val)
210 {
211 v->next = val->next;
212 break;
213 }
214 }
215}
216
217/* Release all values up to mark */
f23631e4
AC
218struct value *
219value_release_to_mark (struct value *mark)
c906108c 220{
f23631e4
AC
221 struct value *val;
222 struct value *next;
c906108c 223
df407dfe
AC
224 for (val = next = all_values; next; next = next->next)
225 if (next->next == mark)
c906108c 226 {
df407dfe
AC
227 all_values = next->next;
228 next->next = NULL;
c906108c
SS
229 return val;
230 }
231 all_values = 0;
232 return val;
233}
234
235/* Return a copy of the value ARG.
236 It contains the same contents, for same memory address,
237 but it's a different block of storage. */
238
f23631e4
AC
239struct value *
240value_copy (struct value *arg)
c906108c 241{
52f0bd74 242 struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
f23631e4 243 struct value *val = allocate_value (encl_type);
df407dfe 244 val->type = arg->type;
c906108c
SS
245 VALUE_LVAL (val) = VALUE_LVAL (arg);
246 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
df407dfe
AC
247 val->offset = arg->offset;
248 val->bitpos = arg->bitpos;
249 val->bitsize = arg->bitsize;
1df6926e 250 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 251 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
c906108c
SS
252 VALUE_LAZY (val) = VALUE_LAZY (arg);
253 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
254 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
255 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
c906108c
SS
256 val->modifiable = arg->modifiable;
257 if (!VALUE_LAZY (val))
258 {
259 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
260 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
261
262 }
263 return val;
264}
265\f
266/* Access to the value history. */
267
268/* Record a new value in the value history.
269 Returns the absolute history index of the entry.
270 Result of -1 indicates the value was not saved; otherwise it is the
271 value history index of this new item. */
272
273int
f23631e4 274record_latest_value (struct value *val)
c906108c
SS
275{
276 int i;
277
278 /* We don't want this value to have anything to do with the inferior anymore.
279 In particular, "set $1 = 50" should not affect the variable from which
280 the value was taken, and fast watchpoints should be able to assume that
281 a value on the value history never changes. */
282 if (VALUE_LAZY (val))
283 value_fetch_lazy (val);
284 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
285 from. This is a bit dubious, because then *&$1 does not just return $1
286 but the current contents of that location. c'est la vie... */
287 val->modifiable = 0;
288 release_value (val);
289
290 /* Here we treat value_history_count as origin-zero
291 and applying to the value being stored now. */
292
293 i = value_history_count % VALUE_HISTORY_CHUNK;
294 if (i == 0)
295 {
f23631e4 296 struct value_history_chunk *new
c5aa993b
JM
297 = (struct value_history_chunk *)
298 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
299 memset (new->values, 0, sizeof new->values);
300 new->next = value_history_chain;
301 value_history_chain = new;
302 }
303
304 value_history_chain->values[i] = val;
305
306 /* Now we regard value_history_count as origin-one
307 and applying to the value just stored. */
308
309 return ++value_history_count;
310}
311
312/* Return a copy of the value in the history with sequence number NUM. */
313
f23631e4 314struct value *
fba45db2 315access_value_history (int num)
c906108c 316{
f23631e4 317 struct value_history_chunk *chunk;
52f0bd74
AC
318 int i;
319 int absnum = num;
c906108c
SS
320
321 if (absnum <= 0)
322 absnum += value_history_count;
323
324 if (absnum <= 0)
325 {
326 if (num == 0)
327 error ("The history is empty.");
328 else if (num == 1)
329 error ("There is only one value in the history.");
330 else
331 error ("History does not go back to $$%d.", -num);
332 }
333 if (absnum > value_history_count)
334 error ("History has not yet reached $%d.", absnum);
335
336 absnum--;
337
338 /* Now absnum is always absolute and origin zero. */
339
340 chunk = value_history_chain;
341 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
342 i > 0; i--)
343 chunk = chunk->next;
344
345 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
346}
347
348/* Clear the value history entirely.
349 Must be done when new symbol tables are loaded,
350 because the type pointers become invalid. */
351
352void
fba45db2 353clear_value_history (void)
c906108c 354{
f23631e4 355 struct value_history_chunk *next;
52f0bd74 356 int i;
f23631e4 357 struct value *val;
c906108c
SS
358
359 while (value_history_chain)
360 {
361 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
362 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 363 xfree (val);
c906108c 364 next = value_history_chain->next;
b8c9b27d 365 xfree (value_history_chain);
c906108c
SS
366 value_history_chain = next;
367 }
368 value_history_count = 0;
369}
370
371static void
fba45db2 372show_values (char *num_exp, int from_tty)
c906108c 373{
52f0bd74 374 int i;
f23631e4 375 struct value *val;
c906108c
SS
376 static int num = 1;
377
378 if (num_exp)
379 {
c5aa993b
JM
380 /* "info history +" should print from the stored position.
381 "info history <exp>" should print around value number <exp>. */
c906108c 382 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 383 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
384 }
385 else
386 {
387 /* "info history" means print the last 10 values. */
388 num = value_history_count - 9;
389 }
390
391 if (num <= 0)
392 num = 1;
393
394 for (i = num; i < num + 10 && i <= value_history_count; i++)
395 {
396 val = access_value_history (i);
397 printf_filtered ("$%d = ", i);
398 value_print (val, gdb_stdout, 0, Val_pretty_default);
399 printf_filtered ("\n");
400 }
401
402 /* The next "info history +" should start after what we just printed. */
403 num += 10;
404
405 /* Hitting just return after this command should do the same thing as
406 "info history +". If num_exp is null, this is unnecessary, since
407 "info history +" is not useful after "info history". */
408 if (from_tty && num_exp)
409 {
410 num_exp[0] = '+';
411 num_exp[1] = '\0';
412 }
413}
414\f
415/* Internal variables. These are variables within the debugger
416 that hold values assigned by debugger commands.
417 The user refers to them with a '$' prefix
418 that does not appear in the variable names stored internally. */
419
420static struct internalvar *internalvars;
421
422/* Look up an internal variable with name NAME. NAME should not
423 normally include a dollar sign.
424
425 If the specified internal variable does not exist,
426 one is created, with a void value. */
427
428struct internalvar *
fba45db2 429lookup_internalvar (char *name)
c906108c 430{
52f0bd74 431 struct internalvar *var;
c906108c
SS
432
433 for (var = internalvars; var; var = var->next)
5cb316ef 434 if (strcmp (var->name, name) == 0)
c906108c
SS
435 return var;
436
437 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
438 var->name = concat (name, NULL);
439 var->value = allocate_value (builtin_type_void);
440 release_value (var->value);
441 var->next = internalvars;
442 internalvars = var;
443 return var;
444}
445
f23631e4 446struct value *
fba45db2 447value_of_internalvar (struct internalvar *var)
c906108c 448{
f23631e4 449 struct value *val;
c906108c 450
c906108c
SS
451 val = value_copy (var->value);
452 if (VALUE_LAZY (val))
453 value_fetch_lazy (val);
454 VALUE_LVAL (val) = lval_internalvar;
455 VALUE_INTERNALVAR (val) = var;
456 return val;
457}
458
459void
fba45db2 460set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 461 int bitsize, struct value *newval)
c906108c 462{
52f0bd74 463 char *addr = VALUE_CONTENTS (var->value) + offset;
c906108c 464
c906108c
SS
465 if (bitsize)
466 modify_field (addr, value_as_long (newval),
467 bitpos, bitsize);
468 else
df407dfe 469 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
470}
471
472void
f23631e4 473set_internalvar (struct internalvar *var, struct value *val)
c906108c 474{
f23631e4 475 struct value *newval;
c906108c 476
c906108c
SS
477 newval = value_copy (val);
478 newval->modifiable = 1;
479
480 /* Force the value to be fetched from the target now, to avoid problems
481 later when this internalvar is referenced and the target is gone or
482 has changed. */
483 if (VALUE_LAZY (newval))
484 value_fetch_lazy (newval);
485
486 /* Begin code which must not call error(). If var->value points to
487 something free'd, an error() obviously leaves a dangling pointer.
488 But we also get a danling pointer if var->value points to
489 something in the value chain (i.e., before release_value is
490 called), because after the error free_all_values will get called before
491 long. */
b8c9b27d 492 xfree (var->value);
c906108c
SS
493 var->value = newval;
494 release_value (newval);
495 /* End code which must not call error(). */
496}
497
498char *
fba45db2 499internalvar_name (struct internalvar *var)
c906108c
SS
500{
501 return var->name;
502}
503
504/* Free all internalvars. Done when new symtabs are loaded,
505 because that makes the values invalid. */
506
507void
fba45db2 508clear_internalvars (void)
c906108c 509{
52f0bd74 510 struct internalvar *var;
c906108c
SS
511
512 while (internalvars)
513 {
514 var = internalvars;
515 internalvars = var->next;
b8c9b27d
KB
516 xfree (var->name);
517 xfree (var->value);
518 xfree (var);
c906108c
SS
519 }
520}
521
522static void
fba45db2 523show_convenience (char *ignore, int from_tty)
c906108c 524{
52f0bd74 525 struct internalvar *var;
c906108c
SS
526 int varseen = 0;
527
528 for (var = internalvars; var; var = var->next)
529 {
c906108c
SS
530 if (!varseen)
531 {
532 varseen = 1;
533 }
534 printf_filtered ("$%s = ", var->name);
535 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
536 printf_filtered ("\n");
537 }
538 if (!varseen)
539 printf_unfiltered ("No debugger convenience variables now defined.\n\
540Convenience variables have names starting with \"$\";\n\
541use \"set\" as in \"set $foo = 5\" to define them.\n");
542}
543\f
544/* Extract a value as a C number (either long or double).
545 Knows how to convert fixed values to double, or
546 floating values to long.
547 Does not deallocate the value. */
548
549LONGEST
f23631e4 550value_as_long (struct value *val)
c906108c
SS
551{
552 /* This coerces arrays and functions, which is necessary (e.g.
553 in disassemble_command). It also dereferences references, which
554 I suspect is the most logical thing to do. */
994b9211 555 val = coerce_array (val);
df407dfe 556 return unpack_long (value_type (val), VALUE_CONTENTS (val));
c906108c
SS
557}
558
559DOUBLEST
f23631e4 560value_as_double (struct value *val)
c906108c
SS
561{
562 DOUBLEST foo;
563 int inv;
c5aa993b 564
df407dfe 565 foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv);
c906108c
SS
566 if (inv)
567 error ("Invalid floating value found in program.");
568 return foo;
569}
4478b372
JB
570/* Extract a value as a C pointer. Does not deallocate the value.
571 Note that val's type may not actually be a pointer; value_as_long
572 handles all the cases. */
c906108c 573CORE_ADDR
f23631e4 574value_as_address (struct value *val)
c906108c
SS
575{
576 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
577 whether we want this to be true eventually. */
578#if 0
579 /* ADDR_BITS_REMOVE is wrong if we are being called for a
580 non-address (e.g. argument to "signal", "info break", etc.), or
581 for pointers to char, in which the low bits *are* significant. */
c5aa993b 582 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 583#else
f312f057
JB
584
585 /* There are several targets (IA-64, PowerPC, and others) which
586 don't represent pointers to functions as simply the address of
587 the function's entry point. For example, on the IA-64, a
588 function pointer points to a two-word descriptor, generated by
589 the linker, which contains the function's entry point, and the
590 value the IA-64 "global pointer" register should have --- to
591 support position-independent code. The linker generates
592 descriptors only for those functions whose addresses are taken.
593
594 On such targets, it's difficult for GDB to convert an arbitrary
595 function address into a function pointer; it has to either find
596 an existing descriptor for that function, or call malloc and
597 build its own. On some targets, it is impossible for GDB to
598 build a descriptor at all: the descriptor must contain a jump
599 instruction; data memory cannot be executed; and code memory
600 cannot be modified.
601
602 Upon entry to this function, if VAL is a value of type `function'
603 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
604 VALUE_ADDRESS (val) is the address of the function. This is what
605 you'll get if you evaluate an expression like `main'. The call
606 to COERCE_ARRAY below actually does all the usual unary
607 conversions, which includes converting values of type `function'
608 to `pointer to function'. This is the challenging conversion
609 discussed above. Then, `unpack_long' will convert that pointer
610 back into an address.
611
612 So, suppose the user types `disassemble foo' on an architecture
613 with a strange function pointer representation, on which GDB
614 cannot build its own descriptors, and suppose further that `foo'
615 has no linker-built descriptor. The address->pointer conversion
616 will signal an error and prevent the command from running, even
617 though the next step would have been to convert the pointer
618 directly back into the same address.
619
620 The following shortcut avoids this whole mess. If VAL is a
621 function, just return its address directly. */
df407dfe
AC
622 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
623 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
624 return VALUE_ADDRESS (val);
625
994b9211 626 val = coerce_array (val);
fc0c74b1
AC
627
628 /* Some architectures (e.g. Harvard), map instruction and data
629 addresses onto a single large unified address space. For
630 instance: An architecture may consider a large integer in the
631 range 0x10000000 .. 0x1000ffff to already represent a data
632 addresses (hence not need a pointer to address conversion) while
633 a small integer would still need to be converted integer to
634 pointer to address. Just assume such architectures handle all
635 integer conversions in a single function. */
636
637 /* JimB writes:
638
639 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
640 must admonish GDB hackers to make sure its behavior matches the
641 compiler's, whenever possible.
642
643 In general, I think GDB should evaluate expressions the same way
644 the compiler does. When the user copies an expression out of
645 their source code and hands it to a `print' command, they should
646 get the same value the compiler would have computed. Any
647 deviation from this rule can cause major confusion and annoyance,
648 and needs to be justified carefully. In other words, GDB doesn't
649 really have the freedom to do these conversions in clever and
650 useful ways.
651
652 AndrewC pointed out that users aren't complaining about how GDB
653 casts integers to pointers; they are complaining that they can't
654 take an address from a disassembly listing and give it to `x/i'.
655 This is certainly important.
656
657 Adding an architecture method like INTEGER_TO_ADDRESS certainly
658 makes it possible for GDB to "get it right" in all circumstances
659 --- the target has complete control over how things get done, so
660 people can Do The Right Thing for their target without breaking
661 anyone else. The standard doesn't specify how integers get
662 converted to pointers; usually, the ABI doesn't either, but
663 ABI-specific code is a more reasonable place to handle it. */
664
df407dfe
AC
665 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
666 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
fc0c74b1 667 && INTEGER_TO_ADDRESS_P ())
df407dfe 668 return INTEGER_TO_ADDRESS (value_type (val), VALUE_CONTENTS (val));
fc0c74b1 669
df407dfe 670 return unpack_long (value_type (val), VALUE_CONTENTS (val));
c906108c
SS
671#endif
672}
673\f
674/* Unpack raw data (copied from debugee, target byte order) at VALADDR
675 as a long, or as a double, assuming the raw data is described
676 by type TYPE. Knows how to convert different sizes of values
677 and can convert between fixed and floating point. We don't assume
678 any alignment for the raw data. Return value is in host byte order.
679
680 If you want functions and arrays to be coerced to pointers, and
681 references to be dereferenced, call value_as_long() instead.
682
683 C++: It is assumed that the front-end has taken care of
684 all matters concerning pointers to members. A pointer
685 to member which reaches here is considered to be equivalent
686 to an INT (or some size). After all, it is only an offset. */
687
688LONGEST
66140c26 689unpack_long (struct type *type, const char *valaddr)
c906108c 690{
52f0bd74
AC
691 enum type_code code = TYPE_CODE (type);
692 int len = TYPE_LENGTH (type);
693 int nosign = TYPE_UNSIGNED (type);
c906108c
SS
694
695 if (current_language->la_language == language_scm
696 && is_scmvalue_type (type))
697 return scm_unpack (type, valaddr, TYPE_CODE_INT);
698
699 switch (code)
700 {
701 case TYPE_CODE_TYPEDEF:
702 return unpack_long (check_typedef (type), valaddr);
703 case TYPE_CODE_ENUM:
704 case TYPE_CODE_BOOL:
705 case TYPE_CODE_INT:
706 case TYPE_CODE_CHAR:
707 case TYPE_CODE_RANGE:
708 if (nosign)
709 return extract_unsigned_integer (valaddr, len);
710 else
711 return extract_signed_integer (valaddr, len);
712
713 case TYPE_CODE_FLT:
96d2f608 714 return extract_typed_floating (valaddr, type);
c906108c
SS
715
716 case TYPE_CODE_PTR:
717 case TYPE_CODE_REF:
718 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 719 whether we want this to be true eventually. */
4478b372 720 return extract_typed_address (valaddr, type);
c906108c
SS
721
722 case TYPE_CODE_MEMBER:
723 error ("not implemented: member types in unpack_long");
724
725 default:
726 error ("Value can't be converted to integer.");
727 }
c5aa993b 728 return 0; /* Placate lint. */
c906108c
SS
729}
730
731/* Return a double value from the specified type and address.
732 INVP points to an int which is set to 0 for valid value,
733 1 for invalid value (bad float format). In either case,
734 the returned double is OK to use. Argument is in target
735 format, result is in host format. */
736
737DOUBLEST
66140c26 738unpack_double (struct type *type, const char *valaddr, int *invp)
c906108c
SS
739{
740 enum type_code code;
741 int len;
742 int nosign;
743
744 *invp = 0; /* Assume valid. */
745 CHECK_TYPEDEF (type);
746 code = TYPE_CODE (type);
747 len = TYPE_LENGTH (type);
748 nosign = TYPE_UNSIGNED (type);
749 if (code == TYPE_CODE_FLT)
750 {
75bc7ddf
AC
751 /* NOTE: cagney/2002-02-19: There was a test here to see if the
752 floating-point value was valid (using the macro
753 INVALID_FLOAT). That test/macro have been removed.
754
755 It turns out that only the VAX defined this macro and then
756 only in a non-portable way. Fixing the portability problem
757 wouldn't help since the VAX floating-point code is also badly
758 bit-rotten. The target needs to add definitions for the
759 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
760 exactly describe the target floating-point format. The
761 problem here is that the corresponding floatformat_vax_f and
762 floatformat_vax_d values these methods should be set to are
763 also not defined either. Oops!
764
765 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
766 definitions and the new cases for floatformat_is_valid (). */
767
768 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
769 {
770 *invp = 1;
771 return 0.0;
772 }
773
96d2f608 774 return extract_typed_floating (valaddr, type);
c906108c
SS
775 }
776 else if (nosign)
777 {
778 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 779 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
780 }
781 else
782 {
783 /* Signed -- we are OK with unpack_long. */
784 return unpack_long (type, valaddr);
785 }
786}
787
788/* Unpack raw data (copied from debugee, target byte order) at VALADDR
789 as a CORE_ADDR, assuming the raw data is described by type TYPE.
790 We don't assume any alignment for the raw data. Return value is in
791 host byte order.
792
793 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 794 references to be dereferenced, call value_as_address() instead.
c906108c
SS
795
796 C++: It is assumed that the front-end has taken care of
797 all matters concerning pointers to members. A pointer
798 to member which reaches here is considered to be equivalent
799 to an INT (or some size). After all, it is only an offset. */
800
801CORE_ADDR
66140c26 802unpack_pointer (struct type *type, const char *valaddr)
c906108c
SS
803{
804 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
805 whether we want this to be true eventually. */
806 return unpack_long (type, valaddr);
807}
4478b372 808
c906108c 809\f
2c2738a0
DC
810/* Get the value of the FIELDN'th field (which must be static) of
811 TYPE. Return NULL if the field doesn't exist or has been
812 optimized out. */
c906108c 813
f23631e4 814struct value *
fba45db2 815value_static_field (struct type *type, int fieldno)
c906108c 816{
948e66d9
DJ
817 struct value *retval;
818
c906108c
SS
819 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
820 {
948e66d9 821 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 822 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
823 }
824 else
825 {
826 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
176620f1 827 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
948e66d9 828 if (sym == NULL)
c906108c
SS
829 {
830 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
831 as non-debuggable symbols */
832 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
833 if (!msym)
834 return NULL;
835 else
c5aa993b 836 {
948e66d9 837 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 838 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
839 }
840 }
841 else
842 {
948e66d9
DJ
843 /* SYM should never have a SYMBOL_CLASS which will require
844 read_var_value to use the FRAME parameter. */
845 if (symbol_read_needs_frame (sym))
846 warning ("static field's value depends on the current "
847 "frame - bad debug info?");
848 retval = read_var_value (sym, NULL);
2b127877 849 }
948e66d9
DJ
850 if (retval && VALUE_LVAL (retval) == lval_memory)
851 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
852 VALUE_ADDRESS (retval));
c906108c 853 }
948e66d9 854 return retval;
c906108c
SS
855}
856
2b127877
DB
857/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
858 You have to be careful here, since the size of the data area for the value
859 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
860 than the old enclosing type, you have to allocate more space for the data.
861 The return value is a pointer to the new version of this value structure. */
862
f23631e4
AC
863struct value *
864value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877
DB
865{
866 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
867 {
868 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
869 return val;
870 }
871 else
872 {
f23631e4
AC
873 struct value *new_val;
874 struct value *prev;
2b127877 875
f23631e4 876 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028
PM
877
878 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
879
2b127877
DB
880 /* We have to make sure this ends up in the same place in the value
881 chain as the original copy, so it's clean-up behavior is the same.
882 If the value has been released, this is a waste of time, but there
883 is no way to tell that in advance, so... */
884
885 if (val != all_values)
886 {
887 for (prev = all_values; prev != NULL; prev = prev->next)
888 {
889 if (prev->next == val)
890 {
891 prev->next = new_val;
892 break;
893 }
894 }
895 }
896
897 return new_val;
898 }
899}
900
c906108c
SS
901/* Given a value ARG1 (offset by OFFSET bytes)
902 of a struct or union type ARG_TYPE,
903 extract and return the value of one of its (non-static) fields.
904 FIELDNO says which field. */
905
f23631e4
AC
906struct value *
907value_primitive_field (struct value *arg1, int offset,
aa1ee363 908 int fieldno, struct type *arg_type)
c906108c 909{
f23631e4 910 struct value *v;
52f0bd74 911 struct type *type;
c906108c
SS
912
913 CHECK_TYPEDEF (arg_type);
914 type = TYPE_FIELD_TYPE (arg_type, fieldno);
915
916 /* Handle packed fields */
917
918 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
919 {
920 v = value_from_longest (type,
921 unpack_field_as_long (arg_type,
922 VALUE_CONTENTS (arg1)
c5aa993b 923 + offset,
c906108c 924 fieldno));
df407dfe
AC
925 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
926 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
927 v->offset = value_offset (arg1) + offset
2e70b7b9 928 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
929 }
930 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
931 {
932 /* This field is actually a base subobject, so preserve the
933 entire object's contents for later references to virtual
934 bases, etc. */
935 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
df407dfe 936 v->type = type;
c906108c
SS
937 if (VALUE_LAZY (arg1))
938 VALUE_LAZY (v) = 1;
939 else
940 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
941 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
df407dfe 942 v->offset = value_offset (arg1);
c906108c 943 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
944 = offset +
945 VALUE_EMBEDDED_OFFSET (arg1) +
946 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
947 }
948 else
949 {
950 /* Plain old data member */
951 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
952 v = allocate_value (type);
953 if (VALUE_LAZY (arg1))
954 VALUE_LAZY (v) = 1;
955 else
956 memcpy (VALUE_CONTENTS_RAW (v),
957 VALUE_CONTENTS_RAW (arg1) + offset,
958 TYPE_LENGTH (type));
df407dfe
AC
959 v->offset = (value_offset (arg1) + offset
960 + VALUE_EMBEDDED_OFFSET (arg1));
c906108c
SS
961 }
962 VALUE_LVAL (v) = VALUE_LVAL (arg1);
963 if (VALUE_LVAL (arg1) == lval_internalvar)
964 VALUE_LVAL (v) = lval_internalvar_component;
965 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
9ee8fc9d 966 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 967 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c 968/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 969 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
970 return v;
971}
972
973/* Given a value ARG1 of a struct or union type,
974 extract and return the value of one of its (non-static) fields.
975 FIELDNO says which field. */
976
f23631e4 977struct value *
aa1ee363 978value_field (struct value *arg1, int fieldno)
c906108c 979{
df407dfe 980 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
981}
982
983/* Return a non-virtual function as a value.
984 F is the list of member functions which contains the desired method.
0478d61c
FF
985 J is an index into F which provides the desired method.
986
987 We only use the symbol for its address, so be happy with either a
988 full symbol or a minimal symbol.
989 */
c906108c 990
f23631e4
AC
991struct value *
992value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 993 int offset)
c906108c 994{
f23631e4 995 struct value *v;
52f0bd74 996 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 997 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 998 struct symbol *sym;
0478d61c 999 struct minimal_symbol *msym;
c906108c 1000
176620f1 1001 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
5ae326fa 1002 if (sym != NULL)
0478d61c 1003 {
5ae326fa
AC
1004 msym = NULL;
1005 }
1006 else
1007 {
1008 gdb_assert (sym == NULL);
0478d61c 1009 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1010 if (msym == NULL)
1011 return NULL;
0478d61c
FF
1012 }
1013
c906108c 1014 v = allocate_value (ftype);
0478d61c
FF
1015 if (sym)
1016 {
1017 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1018 }
1019 else
1020 {
1021 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1022 }
c906108c
SS
1023
1024 if (arg1p)
c5aa993b 1025 {
df407dfe 1026 if (type != value_type (*arg1p))
c5aa993b
JM
1027 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1028 value_addr (*arg1p)));
1029
070ad9f0 1030 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1031 VALUE_OFFSET (*arg1p) += offset;
1032 */
c906108c
SS
1033 }
1034
1035 return v;
1036}
1037
c906108c
SS
1038\f
1039/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1040 VALADDR.
1041
1042 Extracting bits depends on endianness of the machine. Compute the
1043 number of least significant bits to discard. For big endian machines,
1044 we compute the total number of bits in the anonymous object, subtract
1045 off the bit count from the MSB of the object to the MSB of the
1046 bitfield, then the size of the bitfield, which leaves the LSB discard
1047 count. For little endian machines, the discard count is simply the
1048 number of bits from the LSB of the anonymous object to the LSB of the
1049 bitfield.
1050
1051 If the field is signed, we also do sign extension. */
1052
1053LONGEST
66140c26 1054unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
c906108c
SS
1055{
1056 ULONGEST val;
1057 ULONGEST valmask;
1058 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1059 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1060 int lsbcount;
1061 struct type *field_type;
1062
1063 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1064 field_type = TYPE_FIELD_TYPE (type, fieldno);
1065 CHECK_TYPEDEF (field_type);
1066
1067 /* Extract bits. See comment above. */
1068
1069 if (BITS_BIG_ENDIAN)
1070 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1071 else
1072 lsbcount = (bitpos % 8);
1073 val >>= lsbcount;
1074
1075 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1076 If the field is signed, and is negative, then sign extend. */
1077
1078 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1079 {
1080 valmask = (((ULONGEST) 1) << bitsize) - 1;
1081 val &= valmask;
1082 if (!TYPE_UNSIGNED (field_type))
1083 {
1084 if (val & (valmask ^ (valmask >> 1)))
1085 {
1086 val |= ~valmask;
1087 }
1088 }
1089 }
1090 return (val);
1091}
1092
1093/* Modify the value of a bitfield. ADDR points to a block of memory in
1094 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1095 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1096 indicate which bits (in target bit order) comprise the bitfield.
1097 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1098 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1099
1100void
fba45db2 1101modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1102{
f4e88c8e
PH
1103 ULONGEST oword;
1104 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1105
1106 /* If a negative fieldval fits in the field in question, chop
1107 off the sign extension bits. */
f4e88c8e
PH
1108 if ((~fieldval & ~(mask >> 1)) == 0)
1109 fieldval &= mask;
c906108c
SS
1110
1111 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1112 if (0 != (fieldval & ~mask))
c906108c
SS
1113 {
1114 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1115 we don't have a sprintf_longest. */
c906108c
SS
1116 warning ("Value does not fit in %d bits.", bitsize);
1117
1118 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1119 fieldval &= mask;
c906108c
SS
1120 }
1121
f4e88c8e 1122 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1123
1124 /* Shifting for bit field depends on endianness of the target machine. */
1125 if (BITS_BIG_ENDIAN)
1126 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1127
f4e88c8e 1128 oword &= ~(mask << bitpos);
c906108c
SS
1129 oword |= fieldval << bitpos;
1130
f4e88c8e 1131 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1132}
1133\f
1134/* Convert C numbers into newly allocated values */
1135
f23631e4 1136struct value *
aa1ee363 1137value_from_longest (struct type *type, LONGEST num)
c906108c 1138{
f23631e4 1139 struct value *val = allocate_value (type);
52f0bd74
AC
1140 enum type_code code;
1141 int len;
c5aa993b 1142retry:
c906108c
SS
1143 code = TYPE_CODE (type);
1144 len = TYPE_LENGTH (type);
1145
1146 switch (code)
1147 {
1148 case TYPE_CODE_TYPEDEF:
1149 type = check_typedef (type);
1150 goto retry;
1151 case TYPE_CODE_INT:
1152 case TYPE_CODE_CHAR:
1153 case TYPE_CODE_ENUM:
1154 case TYPE_CODE_BOOL:
1155 case TYPE_CODE_RANGE:
1156 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1157 break;
c5aa993b 1158
c906108c
SS
1159 case TYPE_CODE_REF:
1160 case TYPE_CODE_PTR:
4478b372 1161 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1162 break;
c5aa993b 1163
c906108c
SS
1164 default:
1165 error ("Unexpected type (%d) encountered for integer constant.", code);
1166 }
1167 return val;
1168}
1169
4478b372
JB
1170
1171/* Create a value representing a pointer of type TYPE to the address
1172 ADDR. */
f23631e4 1173struct value *
4478b372
JB
1174value_from_pointer (struct type *type, CORE_ADDR addr)
1175{
f23631e4 1176 struct value *val = allocate_value (type);
4478b372
JB
1177 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1178 return val;
1179}
1180
1181
0f71a2f6 1182/* Create a value for a string constant to be stored locally
070ad9f0 1183 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1184 This is analogous to value_from_longest, which also does not
1185 use inferior memory. String shall NOT contain embedded nulls. */
1186
f23631e4 1187struct value *
fba45db2 1188value_from_string (char *ptr)
0f71a2f6 1189{
f23631e4 1190 struct value *val;
c5aa993b 1191 int len = strlen (ptr);
0f71a2f6 1192 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1193 struct type *string_char_type;
1194 struct type *rangetype;
1195 struct type *stringtype;
1196
1197 rangetype = create_range_type ((struct type *) NULL,
1198 builtin_type_int,
1199 lowbound, len + lowbound - 1);
1200 string_char_type = language_string_char_type (current_language,
1201 current_gdbarch);
1202 stringtype = create_array_type ((struct type *) NULL,
1203 string_char_type,
1204 rangetype);
0f71a2f6
JM
1205 val = allocate_value (stringtype);
1206 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1207 return val;
1208}
1209
f23631e4 1210struct value *
fba45db2 1211value_from_double (struct type *type, DOUBLEST num)
c906108c 1212{
f23631e4 1213 struct value *val = allocate_value (type);
c906108c 1214 struct type *base_type = check_typedef (type);
52f0bd74
AC
1215 enum type_code code = TYPE_CODE (base_type);
1216 int len = TYPE_LENGTH (base_type);
c906108c
SS
1217
1218 if (code == TYPE_CODE_FLT)
1219 {
96d2f608 1220 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
c906108c
SS
1221 }
1222 else
1223 error ("Unexpected type encountered for floating constant.");
1224
1225 return val;
1226}
994b9211
AC
1227
1228struct value *
1229coerce_ref (struct value *arg)
1230{
df407dfe 1231 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1232 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1233 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1234 unpack_pointer (value_type (arg),
994b9211
AC
1235 VALUE_CONTENTS (arg)));
1236 return arg;
1237}
1238
1239struct value *
1240coerce_array (struct value *arg)
1241{
1242 arg = coerce_ref (arg);
1243 if (current_language->c_style_arrays
df407dfe 1244 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
994b9211 1245 arg = value_coerce_array (arg);
df407dfe 1246 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
994b9211
AC
1247 arg = value_coerce_function (arg);
1248 return arg;
1249}
1250
1251struct value *
1252coerce_number (struct value *arg)
1253{
1254 arg = coerce_array (arg);
1255 arg = coerce_enum (arg);
1256 return arg;
1257}
1258
1259struct value *
1260coerce_enum (struct value *arg)
1261{
df407dfe 1262 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
994b9211
AC
1263 arg = value_cast (builtin_type_unsigned_int, arg);
1264 return arg;
1265}
c906108c 1266\f
c906108c 1267
74055713
AC
1268/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1269 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1270 is the type (which is known to be struct, union or array).
c906108c
SS
1271
1272 On most machines, the struct convention is used unless we are
1273 using gcc and the type is of a special size. */
1274/* As of about 31 Mar 93, GCC was changed to be compatible with the
1275 native compiler. GCC 2.3.3 was the last release that did it the
1276 old way. Since gcc2_compiled was not changed, we have no
1277 way to correctly win in all cases, so we just do the right thing
1278 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1279 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1280 would cause more chaos than dealing with some struct returns being
1281 handled wrong. */
bc87dfa0
AC
1282/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1283 dead. */
c906108c
SS
1284
1285int
fba45db2 1286generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1287{
bc87dfa0
AC
1288 return !(TYPE_LENGTH (value_type) == 1
1289 || TYPE_LENGTH (value_type) == 2
1290 || TYPE_LENGTH (value_type) == 4
1291 || TYPE_LENGTH (value_type) == 8);
c906108c
SS
1292}
1293
48436ce6
AC
1294/* Return true if the function returning the specified type is using
1295 the convention of returning structures in memory (passing in the
1296 address as a hidden first parameter). GCC_P is nonzero if compiled
c906108c
SS
1297 with GCC. */
1298
1299int
48436ce6 1300using_struct_return (struct type *value_type, int gcc_p)
c906108c 1301{
52f0bd74 1302 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1303
1304 if (code == TYPE_CODE_ERROR)
1305 error ("Function return type unknown.");
1306
667e784f
AC
1307 if (code == TYPE_CODE_VOID)
1308 /* A void return value is never in memory. See also corresponding
44e5158b 1309 code in "print_return_value". */
667e784f
AC
1310 return 0;
1311
92ad9cd9
AC
1312 /* Probe the architecture for the return-value convention. */
1313 return (gdbarch_return_value (current_gdbarch, value_type,
1314 NULL, NULL, NULL)
31db7b6c 1315 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1316}
1317
c906108c 1318void
fba45db2 1319_initialize_values (void)
c906108c
SS
1320{
1321 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1322 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1323These variables are created when you assign them values;\n\
1324thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1325A few convenience variables are given values automatically:\n\
1326\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1327\"$__\" holds the contents of the last address examined with \"x\".",
1328 &showlist);
1329
1330 add_cmd ("values", no_class, show_values,
1331 "Elements of value history around item number IDX (or last ten).",
1332 &showlist);
1333}
This page took 0.561889 seconds and 4 git commands to generate.