*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
c5a57081 3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "gdb_string.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
a08702d6 41#include "python/python.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
0914bcdb 45
581e13c1 46/* Prototypes for exported functions. */
c906108c 47
a14ed312 48void _initialize_values (void);
c906108c 49
bc3b79fd
TJB
50/* Definition of a user function. */
51struct internal_function
52{
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63};
64
4e07d55f
PA
65/* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67struct range
68{
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74};
75
76typedef struct range range_s;
77
78DEF_VEC_O(range_s);
79
80/* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83static int
84ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86{
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92}
93
94/* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99static int
100range_lessthan (const range_s *r1, const range_s *r2)
101{
102 return r1->offset < r2->offset;
103}
104
105/* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108static int
109ranges_contain (VEC(range_s) *ranges, int offset, int length)
110{
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167}
168
bc3b79fd
TJB
169static struct cmd_list_element *functionlist;
170
87784a47
TT
171/* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
91294c83
AC
174struct value
175{
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
91294c83 209
e848a8a5
TT
210 /* If the value has been released. */
211 unsigned int released : 1;
212
91294c83
AC
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4
PA
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
3e3d7139
JG
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
828d3400 327
4e07d55f
PA
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
91294c83
AC
332};
333
4e07d55f
PA
334int
335value_bytes_available (const struct value *value, int offset, int length)
336{
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340}
341
ec0a52e1
PA
342int
343value_entirely_available (struct value *value)
344{
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353}
354
4e07d55f
PA
355void
356mark_value_bytes_unavailable (struct value *value, int offset, int length)
357{
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
6bfc80c7 450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518}
519
c8c1c22f
PA
520/* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525static int
526find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528{
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537}
538
539int
540value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543{
c8c1c22f 544 int idx1 = 0, idx2 = 0;
c8c1c22f
PA
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
c8c1c22f
PA
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
c8c1c22f
PA
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
cd24cfaa
PA
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
c8c1c22f
PA
602 return 0;
603
c8c1c22f
PA
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610}
611
581e13c1 612/* Prototypes for local functions. */
c906108c 613
a14ed312 614static void show_values (char *, int);
c906108c 615
a14ed312 616static void show_convenience (char *, int);
c906108c 617
c906108c
SS
618
619/* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625#define VALUE_HISTORY_CHUNK 60
626
627struct value_history_chunk
c5aa993b
JM
628 {
629 struct value_history_chunk *next;
f23631e4 630 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 631 };
c906108c
SS
632
633/* Chain of chunks now in use. */
634
635static struct value_history_chunk *value_history_chain;
636
581e13c1 637static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 638
c906108c
SS
639\f
640/* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
f23631e4 644static struct value *all_values;
c906108c 645
3e3d7139
JG
646/* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
c906108c 649
f23631e4 650struct value *
3e3d7139 651allocate_value_lazy (struct type *type)
c906108c 652{
f23631e4 653 struct value *val;
c54eabfa
JK
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
c906108c 662
3e3d7139
JG
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
df407dfe 665 val->next = all_values;
c906108c 666 all_values = val;
df407dfe 667 val->type = type;
4754a64e 668 val->enclosing_type = type;
c906108c 669 VALUE_LVAL (val) = not_lval;
42ae5230 670 val->location.address = 0;
1df6926e 671 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
9ee8fc9d 675 VALUE_REGNUM (val) = -1;
3e3d7139 676 val->lazy = 1;
feb13ab0 677 val->optimized_out = 0;
13c3b5f5 678 val->embedded_offset = 0;
b44d461b 679 val->pointed_to_offset = 0;
c906108c 680 val->modifiable = 1;
42be36b3 681 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
c906108c
SS
686 return val;
687}
688
3e3d7139
JG
689/* Allocate the contents of VAL if it has not been allocated yet. */
690
691void
692allocate_value_contents (struct value *val)
693{
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696}
697
698/* Allocate a value and its contents for type TYPE. */
699
700struct value *
701allocate_value (struct type *type)
702{
703 struct value *val = allocate_value_lazy (type);
a109c7c1 704
3e3d7139
JG
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708}
709
c906108c 710/* Allocate a value that has the correct length
938f5214 711 for COUNT repetitions of type TYPE. */
c906108c 712
f23631e4 713struct value *
fba45db2 714allocate_repeat_value (struct type *type, int count)
c906108c 715{
c5aa993b 716 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
e3506a9f
UW
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 721
e3506a9f 722 return allocate_value (array_type);
c906108c
SS
723}
724
5f5233d4
PA
725struct value *
726allocate_computed_value (struct type *type,
c8f2448a 727 const struct lval_funcs *funcs,
5f5233d4
PA
728 void *closure)
729{
41e8491f 730 struct value *v = allocate_value_lazy (type);
a109c7c1 731
5f5233d4
PA
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
5f5233d4
PA
735
736 return v;
737}
738
a7035dbb
JK
739/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741struct value *
742allocate_optimized_out_value (struct type *type)
743{
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749}
750
df407dfe
AC
751/* Accessor methods. */
752
17cf0ecd
AC
753struct value *
754value_next (struct value *value)
755{
756 return value->next;
757}
758
df407dfe 759struct type *
0e03807e 760value_type (const struct value *value)
df407dfe
AC
761{
762 return value->type;
763}
04624583
AC
764void
765deprecated_set_value_type (struct value *value, struct type *type)
766{
767 value->type = type;
768}
df407dfe
AC
769
770int
0e03807e 771value_offset (const struct value *value)
df407dfe
AC
772{
773 return value->offset;
774}
f5cf64a7
AC
775void
776set_value_offset (struct value *value, int offset)
777{
778 value->offset = offset;
779}
df407dfe
AC
780
781int
0e03807e 782value_bitpos (const struct value *value)
df407dfe
AC
783{
784 return value->bitpos;
785}
9bbda503
AC
786void
787set_value_bitpos (struct value *value, int bit)
788{
789 value->bitpos = bit;
790}
df407dfe
AC
791
792int
0e03807e 793value_bitsize (const struct value *value)
df407dfe
AC
794{
795 return value->bitsize;
796}
9bbda503
AC
797void
798set_value_bitsize (struct value *value, int bit)
799{
800 value->bitsize = bit;
801}
df407dfe 802
4ea48cc1
DJ
803struct value *
804value_parent (struct value *value)
805{
806 return value->parent;
807}
808
53ba8333
JB
809/* See value.h. */
810
811void
812set_value_parent (struct value *value, struct value *parent)
813{
814 value->parent = parent;
815}
816
fc1a4b47 817gdb_byte *
990a07ab
AC
818value_contents_raw (struct value *value)
819{
3e3d7139
JG
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
990a07ab
AC
822}
823
fc1a4b47 824gdb_byte *
990a07ab
AC
825value_contents_all_raw (struct value *value)
826{
3e3d7139
JG
827 allocate_value_contents (value);
828 return value->contents;
990a07ab
AC
829}
830
4754a64e
AC
831struct type *
832value_enclosing_type (struct value *value)
833{
834 return value->enclosing_type;
835}
836
8264ba82
AG
837/* Look at value.h for description. */
838
839struct type *
840value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842{
843 struct value_print_options opts;
8264ba82
AG
844 struct type *result;
845
846 get_user_print_options (&opts);
847
848 if (real_type_found)
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
852 {
853 if (TYPE_CODE (result) == TYPE_CODE_PTR
854 || TYPE_CODE (result) == TYPE_CODE_REF)
855 {
856 struct type *real_type;
857
858 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
859 if (real_type)
860 {
861 if (real_type_found)
862 *real_type_found = 1;
863 result = real_type;
864 }
865 }
866 else if (resolve_simple_types)
867 {
868 if (real_type_found)
869 *real_type_found = 1;
870 result = value_enclosing_type (value);
871 }
872 }
873
874 return result;
875}
876
0e03807e 877static void
4e07d55f 878require_not_optimized_out (const struct value *value)
0e03807e
TT
879{
880 if (value->optimized_out)
881 error (_("value has been optimized out"));
882}
883
4e07d55f
PA
884static void
885require_available (const struct value *value)
886{
887 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 888 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
889}
890
fc1a4b47 891const gdb_byte *
0e03807e 892value_contents_for_printing (struct value *value)
46615f07
AC
893{
894 if (value->lazy)
895 value_fetch_lazy (value);
3e3d7139 896 return value->contents;
46615f07
AC
897}
898
de4127a3
PA
899const gdb_byte *
900value_contents_for_printing_const (const struct value *value)
901{
902 gdb_assert (!value->lazy);
903 return value->contents;
904}
905
0e03807e
TT
906const gdb_byte *
907value_contents_all (struct value *value)
908{
909 const gdb_byte *result = value_contents_for_printing (value);
910 require_not_optimized_out (value);
4e07d55f 911 require_available (value);
0e03807e
TT
912 return result;
913}
914
29976f3f
PA
915/* Copy LENGTH bytes of SRC value's (all) contents
916 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
917 contents, starting at DST_OFFSET. If unavailable contents are
918 being copied from SRC, the corresponding DST contents are marked
919 unavailable accordingly. Neither DST nor SRC may be lazy
920 values.
921
922 It is assumed the contents of DST in the [DST_OFFSET,
923 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
924
925void
926value_contents_copy_raw (struct value *dst, int dst_offset,
927 struct value *src, int src_offset, int length)
928{
929 range_s *r;
930 int i;
931
932 /* A lazy DST would make that this copy operation useless, since as
933 soon as DST's contents were un-lazied (by a later value_contents
934 call, say), the contents would be overwritten. A lazy SRC would
935 mean we'd be copying garbage. */
936 gdb_assert (!dst->lazy && !src->lazy);
937
29976f3f
PA
938 /* The overwritten DST range gets unavailability ORed in, not
939 replaced. Make sure to remember to implement replacing if it
940 turns out actually necessary. */
941 gdb_assert (value_bytes_available (dst, dst_offset, length));
942
39d37385
PA
943 /* Copy the data. */
944 memcpy (value_contents_all_raw (dst) + dst_offset,
945 value_contents_all_raw (src) + src_offset,
946 length);
947
948 /* Copy the meta-data, adjusted. */
949 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
950 {
951 ULONGEST h, l;
952
953 l = max (r->offset, src_offset);
954 h = min (r->offset + r->length, src_offset + length);
955
956 if (l < h)
957 mark_value_bytes_unavailable (dst,
958 dst_offset + (l - src_offset),
959 h - l);
960 }
961}
962
29976f3f
PA
963/* Copy LENGTH bytes of SRC value's (all) contents
964 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
965 (all) contents, starting at DST_OFFSET. If unavailable contents
966 are being copied from SRC, the corresponding DST contents are
967 marked unavailable accordingly. DST must not be lazy. If SRC is
968 lazy, it will be fetched now. If SRC is not valid (is optimized
969 out), an error is thrown.
970
971 It is assumed the contents of DST in the [DST_OFFSET,
972 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
973
974void
975value_contents_copy (struct value *dst, int dst_offset,
976 struct value *src, int src_offset, int length)
977{
978 require_not_optimized_out (src);
979
980 if (src->lazy)
981 value_fetch_lazy (src);
982
983 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
984}
985
d69fe07e
AC
986int
987value_lazy (struct value *value)
988{
989 return value->lazy;
990}
991
dfa52d88
AC
992void
993set_value_lazy (struct value *value, int val)
994{
995 value->lazy = val;
996}
997
4e5d721f
DE
998int
999value_stack (struct value *value)
1000{
1001 return value->stack;
1002}
1003
1004void
1005set_value_stack (struct value *value, int val)
1006{
1007 value->stack = val;
1008}
1009
fc1a4b47 1010const gdb_byte *
0fd88904
AC
1011value_contents (struct value *value)
1012{
0e03807e
TT
1013 const gdb_byte *result = value_contents_writeable (value);
1014 require_not_optimized_out (value);
4e07d55f 1015 require_available (value);
0e03807e 1016 return result;
0fd88904
AC
1017}
1018
fc1a4b47 1019gdb_byte *
0fd88904
AC
1020value_contents_writeable (struct value *value)
1021{
1022 if (value->lazy)
1023 value_fetch_lazy (value);
fc0c53a0 1024 return value_contents_raw (value);
0fd88904
AC
1025}
1026
a6c442d8
MK
1027/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1028 this function is different from value_equal; in C the operator ==
1029 can return 0 even if the two values being compared are equal. */
1030
1031int
1032value_contents_equal (struct value *val1, struct value *val2)
1033{
1034 struct type *type1;
1035 struct type *type2;
1036 int len;
1037
1038 type1 = check_typedef (value_type (val1));
1039 type2 = check_typedef (value_type (val2));
1040 len = TYPE_LENGTH (type1);
1041 if (len != TYPE_LENGTH (type2))
1042 return 0;
1043
1044 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
1045}
1046
feb13ab0
AC
1047int
1048value_optimized_out (struct value *value)
1049{
1050 return value->optimized_out;
1051}
1052
1053void
1054set_value_optimized_out (struct value *value, int val)
1055{
1056 value->optimized_out = val;
1057}
13c3b5f5 1058
0e03807e
TT
1059int
1060value_entirely_optimized_out (const struct value *value)
1061{
1062 if (!value->optimized_out)
1063 return 0;
1064 if (value->lval != lval_computed
ba19bb4d 1065 || !value->location.computed.funcs->check_any_valid)
0e03807e 1066 return 1;
b65c7efe 1067 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1068}
1069
1070int
1071value_bits_valid (const struct value *value, int offset, int length)
1072{
e7303042 1073 if (!value->optimized_out)
0e03807e
TT
1074 return 1;
1075 if (value->lval != lval_computed
1076 || !value->location.computed.funcs->check_validity)
1077 return 0;
1078 return value->location.computed.funcs->check_validity (value, offset,
1079 length);
1080}
1081
8cf6f0b1
TT
1082int
1083value_bits_synthetic_pointer (const struct value *value,
1084 int offset, int length)
1085{
e7303042 1086 if (value->lval != lval_computed
8cf6f0b1
TT
1087 || !value->location.computed.funcs->check_synthetic_pointer)
1088 return 0;
1089 return value->location.computed.funcs->check_synthetic_pointer (value,
1090 offset,
1091 length);
1092}
1093
13c3b5f5
AC
1094int
1095value_embedded_offset (struct value *value)
1096{
1097 return value->embedded_offset;
1098}
1099
1100void
1101set_value_embedded_offset (struct value *value, int val)
1102{
1103 value->embedded_offset = val;
1104}
b44d461b
AC
1105
1106int
1107value_pointed_to_offset (struct value *value)
1108{
1109 return value->pointed_to_offset;
1110}
1111
1112void
1113set_value_pointed_to_offset (struct value *value, int val)
1114{
1115 value->pointed_to_offset = val;
1116}
13bb5560 1117
c8f2448a 1118const struct lval_funcs *
a471c594 1119value_computed_funcs (const struct value *v)
5f5233d4 1120{
a471c594 1121 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1122
1123 return v->location.computed.funcs;
1124}
1125
1126void *
0e03807e 1127value_computed_closure (const struct value *v)
5f5233d4 1128{
0e03807e 1129 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1130
1131 return v->location.computed.closure;
1132}
1133
13bb5560
AC
1134enum lval_type *
1135deprecated_value_lval_hack (struct value *value)
1136{
1137 return &value->lval;
1138}
1139
a471c594
JK
1140enum lval_type
1141value_lval_const (const struct value *value)
1142{
1143 return value->lval;
1144}
1145
42ae5230 1146CORE_ADDR
de4127a3 1147value_address (const struct value *value)
42ae5230
TT
1148{
1149 if (value->lval == lval_internalvar
1150 || value->lval == lval_internalvar_component)
1151 return 0;
53ba8333
JB
1152 if (value->parent != NULL)
1153 return value_address (value->parent) + value->offset;
1154 else
1155 return value->location.address + value->offset;
42ae5230
TT
1156}
1157
1158CORE_ADDR
1159value_raw_address (struct value *value)
1160{
1161 if (value->lval == lval_internalvar
1162 || value->lval == lval_internalvar_component)
1163 return 0;
1164 return value->location.address;
1165}
1166
1167void
1168set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1169{
42ae5230
TT
1170 gdb_assert (value->lval != lval_internalvar
1171 && value->lval != lval_internalvar_component);
1172 value->location.address = addr;
13bb5560
AC
1173}
1174
1175struct internalvar **
1176deprecated_value_internalvar_hack (struct value *value)
1177{
1178 return &value->location.internalvar;
1179}
1180
1181struct frame_id *
1182deprecated_value_frame_id_hack (struct value *value)
1183{
1184 return &value->frame_id;
1185}
1186
1187short *
1188deprecated_value_regnum_hack (struct value *value)
1189{
1190 return &value->regnum;
1191}
88e3b34b
AC
1192
1193int
1194deprecated_value_modifiable (struct value *value)
1195{
1196 return value->modifiable;
1197}
1198void
1199deprecated_set_value_modifiable (struct value *value, int modifiable)
1200{
1201 value->modifiable = modifiable;
1202}
990a07ab 1203\f
c906108c
SS
1204/* Return a mark in the value chain. All values allocated after the
1205 mark is obtained (except for those released) are subject to being freed
1206 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1207struct value *
fba45db2 1208value_mark (void)
c906108c
SS
1209{
1210 return all_values;
1211}
1212
828d3400
DJ
1213/* Take a reference to VAL. VAL will not be deallocated until all
1214 references are released. */
1215
1216void
1217value_incref (struct value *val)
1218{
1219 val->reference_count++;
1220}
1221
1222/* Release a reference to VAL, which was acquired with value_incref.
1223 This function is also called to deallocate values from the value
1224 chain. */
1225
3e3d7139
JG
1226void
1227value_free (struct value *val)
1228{
1229 if (val)
5f5233d4 1230 {
828d3400
DJ
1231 gdb_assert (val->reference_count > 0);
1232 val->reference_count--;
1233 if (val->reference_count > 0)
1234 return;
1235
4ea48cc1
DJ
1236 /* If there's an associated parent value, drop our reference to
1237 it. */
1238 if (val->parent != NULL)
1239 value_free (val->parent);
1240
5f5233d4
PA
1241 if (VALUE_LVAL (val) == lval_computed)
1242 {
c8f2448a 1243 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1244
1245 if (funcs->free_closure)
1246 funcs->free_closure (val);
1247 }
1248
1249 xfree (val->contents);
4e07d55f 1250 VEC_free (range_s, val->unavailable);
5f5233d4 1251 }
3e3d7139
JG
1252 xfree (val);
1253}
1254
c906108c
SS
1255/* Free all values allocated since MARK was obtained by value_mark
1256 (except for those released). */
1257void
f23631e4 1258value_free_to_mark (struct value *mark)
c906108c 1259{
f23631e4
AC
1260 struct value *val;
1261 struct value *next;
c906108c
SS
1262
1263 for (val = all_values; val && val != mark; val = next)
1264 {
df407dfe 1265 next = val->next;
e848a8a5 1266 val->released = 1;
c906108c
SS
1267 value_free (val);
1268 }
1269 all_values = val;
1270}
1271
1272/* Free all the values that have been allocated (except for those released).
725e88af
DE
1273 Call after each command, successful or not.
1274 In practice this is called before each command, which is sufficient. */
c906108c
SS
1275
1276void
fba45db2 1277free_all_values (void)
c906108c 1278{
f23631e4
AC
1279 struct value *val;
1280 struct value *next;
c906108c
SS
1281
1282 for (val = all_values; val; val = next)
1283 {
df407dfe 1284 next = val->next;
e848a8a5 1285 val->released = 1;
c906108c
SS
1286 value_free (val);
1287 }
1288
1289 all_values = 0;
1290}
1291
0cf6dd15
TJB
1292/* Frees all the elements in a chain of values. */
1293
1294void
1295free_value_chain (struct value *v)
1296{
1297 struct value *next;
1298
1299 for (; v; v = next)
1300 {
1301 next = value_next (v);
1302 value_free (v);
1303 }
1304}
1305
c906108c
SS
1306/* Remove VAL from the chain all_values
1307 so it will not be freed automatically. */
1308
1309void
f23631e4 1310release_value (struct value *val)
c906108c 1311{
f23631e4 1312 struct value *v;
c906108c
SS
1313
1314 if (all_values == val)
1315 {
1316 all_values = val->next;
06a64a0b 1317 val->next = NULL;
e848a8a5 1318 val->released = 1;
c906108c
SS
1319 return;
1320 }
1321
1322 for (v = all_values; v; v = v->next)
1323 {
1324 if (v->next == val)
1325 {
1326 v->next = val->next;
06a64a0b 1327 val->next = NULL;
e848a8a5 1328 val->released = 1;
c906108c
SS
1329 break;
1330 }
1331 }
1332}
1333
e848a8a5
TT
1334/* If the value is not already released, release it.
1335 If the value is already released, increment its reference count.
1336 That is, this function ensures that the value is released from the
1337 value chain and that the caller owns a reference to it. */
1338
1339void
1340release_value_or_incref (struct value *val)
1341{
1342 if (val->released)
1343 value_incref (val);
1344 else
1345 release_value (val);
1346}
1347
c906108c 1348/* Release all values up to mark */
f23631e4
AC
1349struct value *
1350value_release_to_mark (struct value *mark)
c906108c 1351{
f23631e4
AC
1352 struct value *val;
1353 struct value *next;
c906108c 1354
df407dfe 1355 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1356 {
1357 if (next->next == mark)
1358 {
1359 all_values = next->next;
1360 next->next = NULL;
1361 return val;
1362 }
1363 next->released = 1;
1364 }
c906108c
SS
1365 all_values = 0;
1366 return val;
1367}
1368
1369/* Return a copy of the value ARG.
1370 It contains the same contents, for same memory address,
1371 but it's a different block of storage. */
1372
f23631e4
AC
1373struct value *
1374value_copy (struct value *arg)
c906108c 1375{
4754a64e 1376 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1377 struct value *val;
1378
1379 if (value_lazy (arg))
1380 val = allocate_value_lazy (encl_type);
1381 else
1382 val = allocate_value (encl_type);
df407dfe 1383 val->type = arg->type;
c906108c 1384 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1385 val->location = arg->location;
df407dfe
AC
1386 val->offset = arg->offset;
1387 val->bitpos = arg->bitpos;
1388 val->bitsize = arg->bitsize;
1df6926e 1389 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1390 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1391 val->lazy = arg->lazy;
feb13ab0 1392 val->optimized_out = arg->optimized_out;
13c3b5f5 1393 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1394 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1395 val->modifiable = arg->modifiable;
d69fe07e 1396 if (!value_lazy (val))
c906108c 1397 {
990a07ab 1398 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1399 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1400
1401 }
4e07d55f 1402 val->unavailable = VEC_copy (range_s, arg->unavailable);
4ea48cc1
DJ
1403 val->parent = arg->parent;
1404 if (val->parent)
1405 value_incref (val->parent);
5f5233d4
PA
1406 if (VALUE_LVAL (val) == lval_computed)
1407 {
c8f2448a 1408 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1409
1410 if (funcs->copy_closure)
1411 val->location.computed.closure = funcs->copy_closure (val);
1412 }
c906108c
SS
1413 return val;
1414}
74bcbdf3 1415
c37f7098
KW
1416/* Return a version of ARG that is non-lvalue. */
1417
1418struct value *
1419value_non_lval (struct value *arg)
1420{
1421 if (VALUE_LVAL (arg) != not_lval)
1422 {
1423 struct type *enc_type = value_enclosing_type (arg);
1424 struct value *val = allocate_value (enc_type);
1425
1426 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1427 TYPE_LENGTH (enc_type));
1428 val->type = arg->type;
1429 set_value_embedded_offset (val, value_embedded_offset (arg));
1430 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1431 return val;
1432 }
1433 return arg;
1434}
1435
74bcbdf3 1436void
0e03807e
TT
1437set_value_component_location (struct value *component,
1438 const struct value *whole)
74bcbdf3 1439{
0e03807e 1440 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1441 VALUE_LVAL (component) = lval_internalvar_component;
1442 else
0e03807e 1443 VALUE_LVAL (component) = whole->lval;
5f5233d4 1444
74bcbdf3 1445 component->location = whole->location;
0e03807e 1446 if (whole->lval == lval_computed)
5f5233d4 1447 {
c8f2448a 1448 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1449
1450 if (funcs->copy_closure)
1451 component->location.computed.closure = funcs->copy_closure (whole);
1452 }
74bcbdf3
PA
1453}
1454
c906108c
SS
1455\f
1456/* Access to the value history. */
1457
1458/* Record a new value in the value history.
1459 Returns the absolute history index of the entry.
1460 Result of -1 indicates the value was not saved; otherwise it is the
1461 value history index of this new item. */
1462
1463int
f23631e4 1464record_latest_value (struct value *val)
c906108c
SS
1465{
1466 int i;
1467
1468 /* We don't want this value to have anything to do with the inferior anymore.
1469 In particular, "set $1 = 50" should not affect the variable from which
1470 the value was taken, and fast watchpoints should be able to assume that
1471 a value on the value history never changes. */
d69fe07e 1472 if (value_lazy (val))
c906108c
SS
1473 value_fetch_lazy (val);
1474 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1475 from. This is a bit dubious, because then *&$1 does not just return $1
1476 but the current contents of that location. c'est la vie... */
1477 val->modifiable = 0;
1478 release_value (val);
1479
1480 /* Here we treat value_history_count as origin-zero
1481 and applying to the value being stored now. */
1482
1483 i = value_history_count % VALUE_HISTORY_CHUNK;
1484 if (i == 0)
1485 {
f23631e4 1486 struct value_history_chunk *new
a109c7c1
MS
1487 = (struct value_history_chunk *)
1488
c5aa993b 1489 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1490 memset (new->values, 0, sizeof new->values);
1491 new->next = value_history_chain;
1492 value_history_chain = new;
1493 }
1494
1495 value_history_chain->values[i] = val;
1496
1497 /* Now we regard value_history_count as origin-one
1498 and applying to the value just stored. */
1499
1500 return ++value_history_count;
1501}
1502
1503/* Return a copy of the value in the history with sequence number NUM. */
1504
f23631e4 1505struct value *
fba45db2 1506access_value_history (int num)
c906108c 1507{
f23631e4 1508 struct value_history_chunk *chunk;
52f0bd74
AC
1509 int i;
1510 int absnum = num;
c906108c
SS
1511
1512 if (absnum <= 0)
1513 absnum += value_history_count;
1514
1515 if (absnum <= 0)
1516 {
1517 if (num == 0)
8a3fe4f8 1518 error (_("The history is empty."));
c906108c 1519 else if (num == 1)
8a3fe4f8 1520 error (_("There is only one value in the history."));
c906108c 1521 else
8a3fe4f8 1522 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1523 }
1524 if (absnum > value_history_count)
8a3fe4f8 1525 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1526
1527 absnum--;
1528
1529 /* Now absnum is always absolute and origin zero. */
1530
1531 chunk = value_history_chain;
3e43a32a
MS
1532 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1533 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1534 i > 0; i--)
1535 chunk = chunk->next;
1536
1537 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1538}
1539
c906108c 1540static void
fba45db2 1541show_values (char *num_exp, int from_tty)
c906108c 1542{
52f0bd74 1543 int i;
f23631e4 1544 struct value *val;
c906108c
SS
1545 static int num = 1;
1546
1547 if (num_exp)
1548 {
f132ba9d
TJB
1549 /* "show values +" should print from the stored position.
1550 "show values <exp>" should print around value number <exp>. */
c906108c 1551 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1552 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1553 }
1554 else
1555 {
f132ba9d 1556 /* "show values" means print the last 10 values. */
c906108c
SS
1557 num = value_history_count - 9;
1558 }
1559
1560 if (num <= 0)
1561 num = 1;
1562
1563 for (i = num; i < num + 10 && i <= value_history_count; i++)
1564 {
79a45b7d 1565 struct value_print_options opts;
a109c7c1 1566
c906108c 1567 val = access_value_history (i);
a3f17187 1568 printf_filtered (("$%d = "), i);
79a45b7d
TT
1569 get_user_print_options (&opts);
1570 value_print (val, gdb_stdout, &opts);
a3f17187 1571 printf_filtered (("\n"));
c906108c
SS
1572 }
1573
f132ba9d 1574 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1575 num += 10;
1576
1577 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1578 "show values +". If num_exp is null, this is unnecessary, since
1579 "show values +" is not useful after "show values". */
c906108c
SS
1580 if (from_tty && num_exp)
1581 {
1582 num_exp[0] = '+';
1583 num_exp[1] = '\0';
1584 }
1585}
1586\f
1587/* Internal variables. These are variables within the debugger
1588 that hold values assigned by debugger commands.
1589 The user refers to them with a '$' prefix
1590 that does not appear in the variable names stored internally. */
1591
4fa62494
UW
1592struct internalvar
1593{
1594 struct internalvar *next;
1595 char *name;
4fa62494 1596
78267919
UW
1597 /* We support various different kinds of content of an internal variable.
1598 enum internalvar_kind specifies the kind, and union internalvar_data
1599 provides the data associated with this particular kind. */
1600
1601 enum internalvar_kind
1602 {
1603 /* The internal variable is empty. */
1604 INTERNALVAR_VOID,
1605
1606 /* The value of the internal variable is provided directly as
1607 a GDB value object. */
1608 INTERNALVAR_VALUE,
1609
1610 /* A fresh value is computed via a call-back routine on every
1611 access to the internal variable. */
1612 INTERNALVAR_MAKE_VALUE,
4fa62494 1613
78267919
UW
1614 /* The internal variable holds a GDB internal convenience function. */
1615 INTERNALVAR_FUNCTION,
1616
cab0c772
UW
1617 /* The variable holds an integer value. */
1618 INTERNALVAR_INTEGER,
1619
78267919
UW
1620 /* The variable holds a GDB-provided string. */
1621 INTERNALVAR_STRING,
1622
1623 } kind;
4fa62494 1624
4fa62494
UW
1625 union internalvar_data
1626 {
78267919
UW
1627 /* A value object used with INTERNALVAR_VALUE. */
1628 struct value *value;
1629
1630 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1631 struct
1632 {
1633 /* The functions to call. */
1634 const struct internalvar_funcs *functions;
1635
1636 /* The function's user-data. */
1637 void *data;
1638 } make_value;
78267919
UW
1639
1640 /* The internal function used with INTERNALVAR_FUNCTION. */
1641 struct
1642 {
1643 struct internal_function *function;
1644 /* True if this is the canonical name for the function. */
1645 int canonical;
1646 } fn;
1647
cab0c772 1648 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1649 struct
1650 {
1651 /* If type is non-NULL, it will be used as the type to generate
1652 a value for this internal variable. If type is NULL, a default
1653 integer type for the architecture is used. */
1654 struct type *type;
cab0c772
UW
1655 LONGEST val;
1656 } integer;
1657
78267919
UW
1658 /* A string value used with INTERNALVAR_STRING. */
1659 char *string;
4fa62494
UW
1660 } u;
1661};
1662
c906108c
SS
1663static struct internalvar *internalvars;
1664
3e43a32a
MS
1665/* If the variable does not already exist create it and give it the
1666 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1667static void
1668init_if_undefined_command (char* args, int from_tty)
1669{
1670 struct internalvar* intvar;
1671
1672 /* Parse the expression - this is taken from set_command(). */
1673 struct expression *expr = parse_expression (args);
1674 register struct cleanup *old_chain =
1675 make_cleanup (free_current_contents, &expr);
1676
1677 /* Validate the expression.
1678 Was the expression an assignment?
1679 Or even an expression at all? */
1680 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1681 error (_("Init-if-undefined requires an assignment expression."));
1682
1683 /* Extract the variable from the parsed expression.
1684 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1685 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1686 error (_("The first parameter to init-if-undefined "
1687 "should be a GDB variable."));
53e5f3cf
AS
1688 intvar = expr->elts[2].internalvar;
1689
1690 /* Only evaluate the expression if the lvalue is void.
1691 This may still fail if the expresssion is invalid. */
78267919 1692 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1693 evaluate_expression (expr);
1694
1695 do_cleanups (old_chain);
1696}
1697
1698
c906108c
SS
1699/* Look up an internal variable with name NAME. NAME should not
1700 normally include a dollar sign.
1701
1702 If the specified internal variable does not exist,
c4a3d09a 1703 the return value is NULL. */
c906108c
SS
1704
1705struct internalvar *
bc3b79fd 1706lookup_only_internalvar (const char *name)
c906108c 1707{
52f0bd74 1708 struct internalvar *var;
c906108c
SS
1709
1710 for (var = internalvars; var; var = var->next)
5cb316ef 1711 if (strcmp (var->name, name) == 0)
c906108c
SS
1712 return var;
1713
c4a3d09a
MF
1714 return NULL;
1715}
1716
d55637df
TT
1717/* Complete NAME by comparing it to the names of internal variables.
1718 Returns a vector of newly allocated strings, or NULL if no matches
1719 were found. */
1720
1721VEC (char_ptr) *
1722complete_internalvar (const char *name)
1723{
1724 VEC (char_ptr) *result = NULL;
1725 struct internalvar *var;
1726 int len;
1727
1728 len = strlen (name);
1729
1730 for (var = internalvars; var; var = var->next)
1731 if (strncmp (var->name, name, len) == 0)
1732 {
1733 char *r = xstrdup (var->name);
1734
1735 VEC_safe_push (char_ptr, result, r);
1736 }
1737
1738 return result;
1739}
c4a3d09a
MF
1740
1741/* Create an internal variable with name NAME and with a void value.
1742 NAME should not normally include a dollar sign. */
1743
1744struct internalvar *
bc3b79fd 1745create_internalvar (const char *name)
c4a3d09a
MF
1746{
1747 struct internalvar *var;
a109c7c1 1748
c906108c 1749 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1750 var->name = concat (name, (char *)NULL);
78267919 1751 var->kind = INTERNALVAR_VOID;
c906108c
SS
1752 var->next = internalvars;
1753 internalvars = var;
1754 return var;
1755}
1756
4aa995e1
PA
1757/* Create an internal variable with name NAME and register FUN as the
1758 function that value_of_internalvar uses to create a value whenever
1759 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1760 dollar sign. DATA is passed uninterpreted to FUN when it is
1761 called. CLEANUP, if not NULL, is called when the internal variable
1762 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1763
1764struct internalvar *
22d2b532
SDJ
1765create_internalvar_type_lazy (const char *name,
1766 const struct internalvar_funcs *funcs,
1767 void *data)
4aa995e1 1768{
4fa62494 1769 struct internalvar *var = create_internalvar (name);
a109c7c1 1770
78267919 1771 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1772 var->u.make_value.functions = funcs;
1773 var->u.make_value.data = data;
4aa995e1
PA
1774 return var;
1775}
c4a3d09a 1776
22d2b532
SDJ
1777/* See documentation in value.h. */
1778
1779int
1780compile_internalvar_to_ax (struct internalvar *var,
1781 struct agent_expr *expr,
1782 struct axs_value *value)
1783{
1784 if (var->kind != INTERNALVAR_MAKE_VALUE
1785 || var->u.make_value.functions->compile_to_ax == NULL)
1786 return 0;
1787
1788 var->u.make_value.functions->compile_to_ax (var, expr, value,
1789 var->u.make_value.data);
1790 return 1;
1791}
1792
c4a3d09a
MF
1793/* Look up an internal variable with name NAME. NAME should not
1794 normally include a dollar sign.
1795
1796 If the specified internal variable does not exist,
1797 one is created, with a void value. */
1798
1799struct internalvar *
bc3b79fd 1800lookup_internalvar (const char *name)
c4a3d09a
MF
1801{
1802 struct internalvar *var;
1803
1804 var = lookup_only_internalvar (name);
1805 if (var)
1806 return var;
1807
1808 return create_internalvar (name);
1809}
1810
78267919
UW
1811/* Return current value of internal variable VAR. For variables that
1812 are not inherently typed, use a value type appropriate for GDBARCH. */
1813
f23631e4 1814struct value *
78267919 1815value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1816{
f23631e4 1817 struct value *val;
0914bcdb
SS
1818 struct trace_state_variable *tsv;
1819
1820 /* If there is a trace state variable of the same name, assume that
1821 is what we really want to see. */
1822 tsv = find_trace_state_variable (var->name);
1823 if (tsv)
1824 {
1825 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1826 &(tsv->value));
1827 if (tsv->value_known)
1828 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1829 tsv->value);
1830 else
1831 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1832 return val;
1833 }
c906108c 1834
78267919 1835 switch (var->kind)
5f5233d4 1836 {
78267919
UW
1837 case INTERNALVAR_VOID:
1838 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1839 break;
4fa62494 1840
78267919
UW
1841 case INTERNALVAR_FUNCTION:
1842 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1843 break;
4fa62494 1844
cab0c772
UW
1845 case INTERNALVAR_INTEGER:
1846 if (!var->u.integer.type)
78267919 1847 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1848 var->u.integer.val);
78267919 1849 else
cab0c772
UW
1850 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1851 break;
1852
78267919
UW
1853 case INTERNALVAR_STRING:
1854 val = value_cstring (var->u.string, strlen (var->u.string),
1855 builtin_type (gdbarch)->builtin_char);
1856 break;
4fa62494 1857
78267919
UW
1858 case INTERNALVAR_VALUE:
1859 val = value_copy (var->u.value);
4aa995e1
PA
1860 if (value_lazy (val))
1861 value_fetch_lazy (val);
78267919 1862 break;
4aa995e1 1863
78267919 1864 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
1865 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1866 var->u.make_value.data);
78267919
UW
1867 break;
1868
1869 default:
9b20d036 1870 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1871 }
1872
1873 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1874 on this value go back to affect the original internal variable.
1875
1876 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1877 no underlying modifyable state in the internal variable.
1878
1879 Likewise, if the variable's value is a computed lvalue, we want
1880 references to it to produce another computed lvalue, where
1881 references and assignments actually operate through the
1882 computed value's functions.
1883
1884 This means that internal variables with computed values
1885 behave a little differently from other internal variables:
1886 assignments to them don't just replace the previous value
1887 altogether. At the moment, this seems like the behavior we
1888 want. */
1889
1890 if (var->kind != INTERNALVAR_MAKE_VALUE
1891 && val->lval != lval_computed)
1892 {
1893 VALUE_LVAL (val) = lval_internalvar;
1894 VALUE_INTERNALVAR (val) = var;
5f5233d4 1895 }
d3c139e9 1896
4fa62494
UW
1897 return val;
1898}
d3c139e9 1899
4fa62494
UW
1900int
1901get_internalvar_integer (struct internalvar *var, LONGEST *result)
1902{
3158c6ed 1903 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1904 {
cab0c772
UW
1905 *result = var->u.integer.val;
1906 return 1;
3158c6ed 1907 }
d3c139e9 1908
3158c6ed
PA
1909 if (var->kind == INTERNALVAR_VALUE)
1910 {
1911 struct type *type = check_typedef (value_type (var->u.value));
1912
1913 if (TYPE_CODE (type) == TYPE_CODE_INT)
1914 {
1915 *result = value_as_long (var->u.value);
1916 return 1;
1917 }
4fa62494 1918 }
3158c6ed
PA
1919
1920 return 0;
4fa62494 1921}
d3c139e9 1922
4fa62494
UW
1923static int
1924get_internalvar_function (struct internalvar *var,
1925 struct internal_function **result)
1926{
78267919 1927 switch (var->kind)
d3c139e9 1928 {
78267919
UW
1929 case INTERNALVAR_FUNCTION:
1930 *result = var->u.fn.function;
4fa62494 1931 return 1;
d3c139e9 1932
4fa62494
UW
1933 default:
1934 return 0;
1935 }
c906108c
SS
1936}
1937
1938void
fba45db2 1939set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1940 int bitsize, struct value *newval)
c906108c 1941{
4fa62494 1942 gdb_byte *addr;
c906108c 1943
78267919 1944 switch (var->kind)
4fa62494 1945 {
78267919
UW
1946 case INTERNALVAR_VALUE:
1947 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1948
1949 if (bitsize)
50810684 1950 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1951 value_as_long (newval), bitpos, bitsize);
1952 else
1953 memcpy (addr + offset, value_contents (newval),
1954 TYPE_LENGTH (value_type (newval)));
1955 break;
78267919
UW
1956
1957 default:
1958 /* We can never get a component of any other kind. */
9b20d036 1959 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1960 }
c906108c
SS
1961}
1962
1963void
f23631e4 1964set_internalvar (struct internalvar *var, struct value *val)
c906108c 1965{
78267919 1966 enum internalvar_kind new_kind;
4fa62494 1967 union internalvar_data new_data = { 0 };
c906108c 1968
78267919 1969 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1970 error (_("Cannot overwrite convenience function %s"), var->name);
1971
4fa62494 1972 /* Prepare new contents. */
78267919 1973 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1974 {
1975 case TYPE_CODE_VOID:
78267919 1976 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1977 break;
1978
1979 case TYPE_CODE_INTERNAL_FUNCTION:
1980 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1981 new_kind = INTERNALVAR_FUNCTION;
1982 get_internalvar_function (VALUE_INTERNALVAR (val),
1983 &new_data.fn.function);
1984 /* Copies created here are never canonical. */
4fa62494
UW
1985 break;
1986
4fa62494 1987 default:
78267919
UW
1988 new_kind = INTERNALVAR_VALUE;
1989 new_data.value = value_copy (val);
1990 new_data.value->modifiable = 1;
4fa62494
UW
1991
1992 /* Force the value to be fetched from the target now, to avoid problems
1993 later when this internalvar is referenced and the target is gone or
1994 has changed. */
78267919
UW
1995 if (value_lazy (new_data.value))
1996 value_fetch_lazy (new_data.value);
4fa62494
UW
1997
1998 /* Release the value from the value chain to prevent it from being
1999 deleted by free_all_values. From here on this function should not
2000 call error () until new_data is installed into the var->u to avoid
2001 leaking memory. */
78267919 2002 release_value (new_data.value);
4fa62494
UW
2003 break;
2004 }
2005
2006 /* Clean up old contents. */
2007 clear_internalvar (var);
2008
2009 /* Switch over. */
78267919 2010 var->kind = new_kind;
4fa62494 2011 var->u = new_data;
c906108c
SS
2012 /* End code which must not call error(). */
2013}
2014
4fa62494
UW
2015void
2016set_internalvar_integer (struct internalvar *var, LONGEST l)
2017{
2018 /* Clean up old contents. */
2019 clear_internalvar (var);
2020
cab0c772
UW
2021 var->kind = INTERNALVAR_INTEGER;
2022 var->u.integer.type = NULL;
2023 var->u.integer.val = l;
78267919
UW
2024}
2025
2026void
2027set_internalvar_string (struct internalvar *var, const char *string)
2028{
2029 /* Clean up old contents. */
2030 clear_internalvar (var);
2031
2032 var->kind = INTERNALVAR_STRING;
2033 var->u.string = xstrdup (string);
4fa62494
UW
2034}
2035
2036static void
2037set_internalvar_function (struct internalvar *var, struct internal_function *f)
2038{
2039 /* Clean up old contents. */
2040 clear_internalvar (var);
2041
78267919
UW
2042 var->kind = INTERNALVAR_FUNCTION;
2043 var->u.fn.function = f;
2044 var->u.fn.canonical = 1;
2045 /* Variables installed here are always the canonical version. */
4fa62494
UW
2046}
2047
2048void
2049clear_internalvar (struct internalvar *var)
2050{
2051 /* Clean up old contents. */
78267919 2052 switch (var->kind)
4fa62494 2053 {
78267919
UW
2054 case INTERNALVAR_VALUE:
2055 value_free (var->u.value);
2056 break;
2057
2058 case INTERNALVAR_STRING:
2059 xfree (var->u.string);
4fa62494
UW
2060 break;
2061
22d2b532
SDJ
2062 case INTERNALVAR_MAKE_VALUE:
2063 if (var->u.make_value.functions->destroy != NULL)
2064 var->u.make_value.functions->destroy (var->u.make_value.data);
2065 break;
2066
4fa62494 2067 default:
4fa62494
UW
2068 break;
2069 }
2070
78267919
UW
2071 /* Reset to void kind. */
2072 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2073}
2074
c906108c 2075char *
fba45db2 2076internalvar_name (struct internalvar *var)
c906108c
SS
2077{
2078 return var->name;
2079}
2080
4fa62494
UW
2081static struct internal_function *
2082create_internal_function (const char *name,
2083 internal_function_fn handler, void *cookie)
bc3b79fd 2084{
bc3b79fd 2085 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2086
bc3b79fd
TJB
2087 ifn->name = xstrdup (name);
2088 ifn->handler = handler;
2089 ifn->cookie = cookie;
4fa62494 2090 return ifn;
bc3b79fd
TJB
2091}
2092
2093char *
2094value_internal_function_name (struct value *val)
2095{
4fa62494
UW
2096 struct internal_function *ifn;
2097 int result;
2098
2099 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2100 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2101 gdb_assert (result);
2102
bc3b79fd
TJB
2103 return ifn->name;
2104}
2105
2106struct value *
d452c4bc
UW
2107call_internal_function (struct gdbarch *gdbarch,
2108 const struct language_defn *language,
2109 struct value *func, int argc, struct value **argv)
bc3b79fd 2110{
4fa62494
UW
2111 struct internal_function *ifn;
2112 int result;
2113
2114 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2115 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2116 gdb_assert (result);
2117
d452c4bc 2118 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2119}
2120
2121/* The 'function' command. This does nothing -- it is just a
2122 placeholder to let "help function NAME" work. This is also used as
2123 the implementation of the sub-command that is created when
2124 registering an internal function. */
2125static void
2126function_command (char *command, int from_tty)
2127{
2128 /* Do nothing. */
2129}
2130
2131/* Clean up if an internal function's command is destroyed. */
2132static void
2133function_destroyer (struct cmd_list_element *self, void *ignore)
2134{
2135 xfree (self->name);
2136 xfree (self->doc);
2137}
2138
2139/* Add a new internal function. NAME is the name of the function; DOC
2140 is a documentation string describing the function. HANDLER is
2141 called when the function is invoked. COOKIE is an arbitrary
2142 pointer which is passed to HANDLER and is intended for "user
2143 data". */
2144void
2145add_internal_function (const char *name, const char *doc,
2146 internal_function_fn handler, void *cookie)
2147{
2148 struct cmd_list_element *cmd;
4fa62494 2149 struct internal_function *ifn;
bc3b79fd 2150 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2151
2152 ifn = create_internal_function (name, handler, cookie);
2153 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2154
2155 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2156 &functionlist);
2157 cmd->destroyer = function_destroyer;
2158}
2159
ae5a43e0
DJ
2160/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2161 prevent cycles / duplicates. */
2162
4e7a5ef5 2163void
ae5a43e0
DJ
2164preserve_one_value (struct value *value, struct objfile *objfile,
2165 htab_t copied_types)
2166{
2167 if (TYPE_OBJFILE (value->type) == objfile)
2168 value->type = copy_type_recursive (objfile, value->type, copied_types);
2169
2170 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2171 value->enclosing_type = copy_type_recursive (objfile,
2172 value->enclosing_type,
2173 copied_types);
2174}
2175
78267919
UW
2176/* Likewise for internal variable VAR. */
2177
2178static void
2179preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2180 htab_t copied_types)
2181{
2182 switch (var->kind)
2183 {
cab0c772
UW
2184 case INTERNALVAR_INTEGER:
2185 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2186 var->u.integer.type
2187 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2188 break;
2189
78267919
UW
2190 case INTERNALVAR_VALUE:
2191 preserve_one_value (var->u.value, objfile, copied_types);
2192 break;
2193 }
2194}
2195
ae5a43e0
DJ
2196/* Update the internal variables and value history when OBJFILE is
2197 discarded; we must copy the types out of the objfile. New global types
2198 will be created for every convenience variable which currently points to
2199 this objfile's types, and the convenience variables will be adjusted to
2200 use the new global types. */
c906108c
SS
2201
2202void
ae5a43e0 2203preserve_values (struct objfile *objfile)
c906108c 2204{
ae5a43e0
DJ
2205 htab_t copied_types;
2206 struct value_history_chunk *cur;
52f0bd74 2207 struct internalvar *var;
ae5a43e0 2208 int i;
c906108c 2209
ae5a43e0
DJ
2210 /* Create the hash table. We allocate on the objfile's obstack, since
2211 it is soon to be deleted. */
2212 copied_types = create_copied_types_hash (objfile);
2213
2214 for (cur = value_history_chain; cur; cur = cur->next)
2215 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2216 if (cur->values[i])
2217 preserve_one_value (cur->values[i], objfile, copied_types);
2218
2219 for (var = internalvars; var; var = var->next)
78267919 2220 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2221
4e7a5ef5 2222 preserve_python_values (objfile, copied_types);
a08702d6 2223
ae5a43e0 2224 htab_delete (copied_types);
c906108c
SS
2225}
2226
2227static void
fba45db2 2228show_convenience (char *ignore, int from_tty)
c906108c 2229{
e17c207e 2230 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2231 struct internalvar *var;
c906108c 2232 int varseen = 0;
79a45b7d 2233 struct value_print_options opts;
c906108c 2234
79a45b7d 2235 get_user_print_options (&opts);
c906108c
SS
2236 for (var = internalvars; var; var = var->next)
2237 {
c709acd1
PA
2238 volatile struct gdb_exception ex;
2239
c906108c
SS
2240 if (!varseen)
2241 {
2242 varseen = 1;
2243 }
a3f17187 2244 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2245
2246 TRY_CATCH (ex, RETURN_MASK_ERROR)
2247 {
2248 struct value *val;
2249
2250 val = value_of_internalvar (gdbarch, var);
2251 value_print (val, gdb_stdout, &opts);
2252 }
2253 if (ex.reason < 0)
2254 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2255 printf_filtered (("\n"));
c906108c
SS
2256 }
2257 if (!varseen)
3e43a32a
MS
2258 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2259 "Convenience variables have "
2260 "names starting with \"$\";\n"
2261 "use \"set\" as in \"set "
2262 "$foo = 5\" to define them.\n"));
c906108c
SS
2263}
2264\f
2265/* Extract a value as a C number (either long or double).
2266 Knows how to convert fixed values to double, or
2267 floating values to long.
2268 Does not deallocate the value. */
2269
2270LONGEST
f23631e4 2271value_as_long (struct value *val)
c906108c
SS
2272{
2273 /* This coerces arrays and functions, which is necessary (e.g.
2274 in disassemble_command). It also dereferences references, which
2275 I suspect is the most logical thing to do. */
994b9211 2276 val = coerce_array (val);
0fd88904 2277 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2278}
2279
2280DOUBLEST
f23631e4 2281value_as_double (struct value *val)
c906108c
SS
2282{
2283 DOUBLEST foo;
2284 int inv;
c5aa993b 2285
0fd88904 2286 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2287 if (inv)
8a3fe4f8 2288 error (_("Invalid floating value found in program."));
c906108c
SS
2289 return foo;
2290}
4ef30785 2291
581e13c1 2292/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2293 Note that val's type may not actually be a pointer; value_as_long
2294 handles all the cases. */
c906108c 2295CORE_ADDR
f23631e4 2296value_as_address (struct value *val)
c906108c 2297{
50810684
UW
2298 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2299
c906108c
SS
2300 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2301 whether we want this to be true eventually. */
2302#if 0
bf6ae464 2303 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2304 non-address (e.g. argument to "signal", "info break", etc.), or
2305 for pointers to char, in which the low bits *are* significant. */
50810684 2306 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2307#else
f312f057
JB
2308
2309 /* There are several targets (IA-64, PowerPC, and others) which
2310 don't represent pointers to functions as simply the address of
2311 the function's entry point. For example, on the IA-64, a
2312 function pointer points to a two-word descriptor, generated by
2313 the linker, which contains the function's entry point, and the
2314 value the IA-64 "global pointer" register should have --- to
2315 support position-independent code. The linker generates
2316 descriptors only for those functions whose addresses are taken.
2317
2318 On such targets, it's difficult for GDB to convert an arbitrary
2319 function address into a function pointer; it has to either find
2320 an existing descriptor for that function, or call malloc and
2321 build its own. On some targets, it is impossible for GDB to
2322 build a descriptor at all: the descriptor must contain a jump
2323 instruction; data memory cannot be executed; and code memory
2324 cannot be modified.
2325
2326 Upon entry to this function, if VAL is a value of type `function'
2327 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2328 value_address (val) is the address of the function. This is what
f312f057
JB
2329 you'll get if you evaluate an expression like `main'. The call
2330 to COERCE_ARRAY below actually does all the usual unary
2331 conversions, which includes converting values of type `function'
2332 to `pointer to function'. This is the challenging conversion
2333 discussed above. Then, `unpack_long' will convert that pointer
2334 back into an address.
2335
2336 So, suppose the user types `disassemble foo' on an architecture
2337 with a strange function pointer representation, on which GDB
2338 cannot build its own descriptors, and suppose further that `foo'
2339 has no linker-built descriptor. The address->pointer conversion
2340 will signal an error and prevent the command from running, even
2341 though the next step would have been to convert the pointer
2342 directly back into the same address.
2343
2344 The following shortcut avoids this whole mess. If VAL is a
2345 function, just return its address directly. */
df407dfe
AC
2346 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2347 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2348 return value_address (val);
f312f057 2349
994b9211 2350 val = coerce_array (val);
fc0c74b1
AC
2351
2352 /* Some architectures (e.g. Harvard), map instruction and data
2353 addresses onto a single large unified address space. For
2354 instance: An architecture may consider a large integer in the
2355 range 0x10000000 .. 0x1000ffff to already represent a data
2356 addresses (hence not need a pointer to address conversion) while
2357 a small integer would still need to be converted integer to
2358 pointer to address. Just assume such architectures handle all
2359 integer conversions in a single function. */
2360
2361 /* JimB writes:
2362
2363 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2364 must admonish GDB hackers to make sure its behavior matches the
2365 compiler's, whenever possible.
2366
2367 In general, I think GDB should evaluate expressions the same way
2368 the compiler does. When the user copies an expression out of
2369 their source code and hands it to a `print' command, they should
2370 get the same value the compiler would have computed. Any
2371 deviation from this rule can cause major confusion and annoyance,
2372 and needs to be justified carefully. In other words, GDB doesn't
2373 really have the freedom to do these conversions in clever and
2374 useful ways.
2375
2376 AndrewC pointed out that users aren't complaining about how GDB
2377 casts integers to pointers; they are complaining that they can't
2378 take an address from a disassembly listing and give it to `x/i'.
2379 This is certainly important.
2380
79dd2d24 2381 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2382 makes it possible for GDB to "get it right" in all circumstances
2383 --- the target has complete control over how things get done, so
2384 people can Do The Right Thing for their target without breaking
2385 anyone else. The standard doesn't specify how integers get
2386 converted to pointers; usually, the ABI doesn't either, but
2387 ABI-specific code is a more reasonable place to handle it. */
2388
df407dfe
AC
2389 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2390 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2391 && gdbarch_integer_to_address_p (gdbarch))
2392 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2393 value_contents (val));
fc0c74b1 2394
0fd88904 2395 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2396#endif
2397}
2398\f
2399/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2400 as a long, or as a double, assuming the raw data is described
2401 by type TYPE. Knows how to convert different sizes of values
2402 and can convert between fixed and floating point. We don't assume
2403 any alignment for the raw data. Return value is in host byte order.
2404
2405 If you want functions and arrays to be coerced to pointers, and
2406 references to be dereferenced, call value_as_long() instead.
2407
2408 C++: It is assumed that the front-end has taken care of
2409 all matters concerning pointers to members. A pointer
2410 to member which reaches here is considered to be equivalent
2411 to an INT (or some size). After all, it is only an offset. */
2412
2413LONGEST
fc1a4b47 2414unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2415{
e17a4113 2416 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2417 enum type_code code = TYPE_CODE (type);
2418 int len = TYPE_LENGTH (type);
2419 int nosign = TYPE_UNSIGNED (type);
c906108c 2420
c906108c
SS
2421 switch (code)
2422 {
2423 case TYPE_CODE_TYPEDEF:
2424 return unpack_long (check_typedef (type), valaddr);
2425 case TYPE_CODE_ENUM:
4f2aea11 2426 case TYPE_CODE_FLAGS:
c906108c
SS
2427 case TYPE_CODE_BOOL:
2428 case TYPE_CODE_INT:
2429 case TYPE_CODE_CHAR:
2430 case TYPE_CODE_RANGE:
0d5de010 2431 case TYPE_CODE_MEMBERPTR:
c906108c 2432 if (nosign)
e17a4113 2433 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2434 else
e17a4113 2435 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2436
2437 case TYPE_CODE_FLT:
96d2f608 2438 return extract_typed_floating (valaddr, type);
c906108c 2439
4ef30785
TJB
2440 case TYPE_CODE_DECFLOAT:
2441 /* libdecnumber has a function to convert from decimal to integer, but
2442 it doesn't work when the decimal number has a fractional part. */
e17a4113 2443 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2444
c906108c
SS
2445 case TYPE_CODE_PTR:
2446 case TYPE_CODE_REF:
2447 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2448 whether we want this to be true eventually. */
4478b372 2449 return extract_typed_address (valaddr, type);
c906108c 2450
c906108c 2451 default:
8a3fe4f8 2452 error (_("Value can't be converted to integer."));
c906108c 2453 }
c5aa993b 2454 return 0; /* Placate lint. */
c906108c
SS
2455}
2456
2457/* Return a double value from the specified type and address.
2458 INVP points to an int which is set to 0 for valid value,
2459 1 for invalid value (bad float format). In either case,
2460 the returned double is OK to use. Argument is in target
2461 format, result is in host format. */
2462
2463DOUBLEST
fc1a4b47 2464unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2465{
e17a4113 2466 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2467 enum type_code code;
2468 int len;
2469 int nosign;
2470
581e13c1 2471 *invp = 0; /* Assume valid. */
c906108c
SS
2472 CHECK_TYPEDEF (type);
2473 code = TYPE_CODE (type);
2474 len = TYPE_LENGTH (type);
2475 nosign = TYPE_UNSIGNED (type);
2476 if (code == TYPE_CODE_FLT)
2477 {
75bc7ddf
AC
2478 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2479 floating-point value was valid (using the macro
2480 INVALID_FLOAT). That test/macro have been removed.
2481
2482 It turns out that only the VAX defined this macro and then
2483 only in a non-portable way. Fixing the portability problem
2484 wouldn't help since the VAX floating-point code is also badly
2485 bit-rotten. The target needs to add definitions for the
ea06eb3d 2486 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2487 exactly describe the target floating-point format. The
2488 problem here is that the corresponding floatformat_vax_f and
2489 floatformat_vax_d values these methods should be set to are
2490 also not defined either. Oops!
2491
2492 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2493 definitions and the new cases for floatformat_is_valid (). */
2494
2495 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2496 {
2497 *invp = 1;
2498 return 0.0;
2499 }
2500
96d2f608 2501 return extract_typed_floating (valaddr, type);
c906108c 2502 }
4ef30785 2503 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2504 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2505 else if (nosign)
2506 {
2507 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2508 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2509 }
2510 else
2511 {
2512 /* Signed -- we are OK with unpack_long. */
2513 return unpack_long (type, valaddr);
2514 }
2515}
2516
2517/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2518 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2519 We don't assume any alignment for the raw data. Return value is in
2520 host byte order.
2521
2522 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2523 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2524
2525 C++: It is assumed that the front-end has taken care of
2526 all matters concerning pointers to members. A pointer
2527 to member which reaches here is considered to be equivalent
2528 to an INT (or some size). After all, it is only an offset. */
2529
2530CORE_ADDR
fc1a4b47 2531unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2532{
2533 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2534 whether we want this to be true eventually. */
2535 return unpack_long (type, valaddr);
2536}
4478b372 2537
c906108c 2538\f
1596cb5d 2539/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2540 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2541 optimized out. */
c906108c 2542
f23631e4 2543struct value *
fba45db2 2544value_static_field (struct type *type, int fieldno)
c906108c 2545{
948e66d9
DJ
2546 struct value *retval;
2547
1596cb5d 2548 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2549 {
1596cb5d 2550 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2551 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2552 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2553 break;
2554 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2555 {
ff355380 2556 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2557 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2558 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2559
948e66d9 2560 if (sym == NULL)
c906108c 2561 {
a109c7c1 2562 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2563 reported as non-debuggable symbols. */
a109c7c1
MS
2564 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2565 NULL, NULL);
2566
c906108c
SS
2567 if (!msym)
2568 return NULL;
2569 else
c5aa993b 2570 {
52e9fde8
SS
2571 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2572 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2573 }
2574 }
2575 else
515ed532 2576 retval = value_of_variable (sym, NULL);
1596cb5d 2577 break;
c906108c 2578 }
1596cb5d 2579 default:
f3574227 2580 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2581 }
2582
948e66d9 2583 return retval;
c906108c
SS
2584}
2585
4dfea560
DE
2586/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2587 You have to be careful here, since the size of the data area for the value
2588 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2589 than the old enclosing type, you have to allocate more space for the
2590 data. */
2b127877 2591
4dfea560
DE
2592void
2593set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2594{
3e3d7139
JG
2595 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2596 val->contents =
2597 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2598
2599 val->enclosing_type = new_encl_type;
2b127877
DB
2600}
2601
c906108c
SS
2602/* Given a value ARG1 (offset by OFFSET bytes)
2603 of a struct or union type ARG_TYPE,
2604 extract and return the value of one of its (non-static) fields.
581e13c1 2605 FIELDNO says which field. */
c906108c 2606
f23631e4
AC
2607struct value *
2608value_primitive_field (struct value *arg1, int offset,
aa1ee363 2609 int fieldno, struct type *arg_type)
c906108c 2610{
f23631e4 2611 struct value *v;
52f0bd74 2612 struct type *type;
c906108c
SS
2613
2614 CHECK_TYPEDEF (arg_type);
2615 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2616
2617 /* Call check_typedef on our type to make sure that, if TYPE
2618 is a TYPE_CODE_TYPEDEF, its length is set to the length
2619 of the target type instead of zero. However, we do not
2620 replace the typedef type by the target type, because we want
2621 to keep the typedef in order to be able to print the type
2622 description correctly. */
2623 check_typedef (type);
c906108c 2624
22c05d8a
JK
2625 if (value_optimized_out (arg1))
2626 v = allocate_optimized_out_value (type);
2627 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2628 {
22c05d8a
JK
2629 /* Handle packed fields.
2630
2631 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2632 set. If possible, arrange offset and bitpos so that we can
2633 do a single aligned read of the size of the containing type.
2634 Otherwise, adjust offset to the byte containing the first
2635 bit. Assume that the address, offset, and embedded offset
2636 are sufficiently aligned. */
22c05d8a 2637
4ea48cc1
DJ
2638 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2639 int container_bitsize = TYPE_LENGTH (type) * 8;
2640
2641 v = allocate_value_lazy (type);
df407dfe 2642 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2643 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2644 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2645 v->bitpos = bitpos % container_bitsize;
2646 else
2647 v->bitpos = bitpos % 8;
38f12cfc
TT
2648 v->offset = (value_embedded_offset (arg1)
2649 + offset
2650 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2651 v->parent = arg1;
2652 value_incref (v->parent);
2653 if (!value_lazy (arg1))
2654 value_fetch_lazy (v);
c906108c
SS
2655 }
2656 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2657 {
2658 /* This field is actually a base subobject, so preserve the
39d37385
PA
2659 entire object's contents for later references to virtual
2660 bases, etc. */
be335936 2661 int boffset;
a4e2ee12
DJ
2662
2663 /* Lazy register values with offsets are not supported. */
2664 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2665 value_fetch_lazy (arg1);
2666
9f9f1f31
TT
2667 /* We special case virtual inheritance here because this
2668 requires access to the contents, which we would rather avoid
2669 for references to ordinary fields of unavailable values. */
2670 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2671 boffset = baseclass_offset (arg_type, fieldno,
2672 value_contents (arg1),
2673 value_embedded_offset (arg1),
2674 value_address (arg1),
2675 arg1);
2676 else
2677 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
be335936 2678
a4e2ee12 2679 if (value_lazy (arg1))
3e3d7139 2680 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2681 else
3e3d7139
JG
2682 {
2683 v = allocate_value (value_enclosing_type (arg1));
39d37385
PA
2684 value_contents_copy_raw (v, 0, arg1, 0,
2685 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139
JG
2686 }
2687 v->type = type;
df407dfe 2688 v->offset = value_offset (arg1);
be335936 2689 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
2690 }
2691 else
2692 {
2693 /* Plain old data member */
2694 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2695
2696 /* Lazy register values with offsets are not supported. */
2697 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2698 value_fetch_lazy (arg1);
2699
2700 if (value_lazy (arg1))
3e3d7139 2701 v = allocate_value_lazy (type);
c906108c 2702 else
3e3d7139
JG
2703 {
2704 v = allocate_value (type);
39d37385
PA
2705 value_contents_copy_raw (v, value_embedded_offset (v),
2706 arg1, value_embedded_offset (arg1) + offset,
2707 TYPE_LENGTH (type));
3e3d7139 2708 }
df407dfe 2709 v->offset = (value_offset (arg1) + offset
13c3b5f5 2710 + value_embedded_offset (arg1));
c906108c 2711 }
74bcbdf3 2712 set_value_component_location (v, arg1);
9ee8fc9d 2713 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2714 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2715 return v;
2716}
2717
2718/* Given a value ARG1 of a struct or union type,
2719 extract and return the value of one of its (non-static) fields.
581e13c1 2720 FIELDNO says which field. */
c906108c 2721
f23631e4 2722struct value *
aa1ee363 2723value_field (struct value *arg1, int fieldno)
c906108c 2724{
df407dfe 2725 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2726}
2727
2728/* Return a non-virtual function as a value.
2729 F is the list of member functions which contains the desired method.
0478d61c
FF
2730 J is an index into F which provides the desired method.
2731
2732 We only use the symbol for its address, so be happy with either a
581e13c1 2733 full symbol or a minimal symbol. */
c906108c 2734
f23631e4 2735struct value *
3e43a32a
MS
2736value_fn_field (struct value **arg1p, struct fn_field *f,
2737 int j, struct type *type,
fba45db2 2738 int offset)
c906108c 2739{
f23631e4 2740 struct value *v;
52f0bd74 2741 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2742 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2743 struct symbol *sym;
0478d61c 2744 struct minimal_symbol *msym;
c906108c 2745
2570f2b7 2746 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2747 if (sym != NULL)
0478d61c 2748 {
5ae326fa
AC
2749 msym = NULL;
2750 }
2751 else
2752 {
2753 gdb_assert (sym == NULL);
0478d61c 2754 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2755 if (msym == NULL)
2756 return NULL;
0478d61c
FF
2757 }
2758
c906108c 2759 v = allocate_value (ftype);
0478d61c
FF
2760 if (sym)
2761 {
42ae5230 2762 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2763 }
2764 else
2765 {
bccdca4a
UW
2766 /* The minimal symbol might point to a function descriptor;
2767 resolve it to the actual code address instead. */
2768 struct objfile *objfile = msymbol_objfile (msym);
2769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2770
42ae5230
TT
2771 set_value_address (v,
2772 gdbarch_convert_from_func_ptr_addr
2773 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2774 }
c906108c
SS
2775
2776 if (arg1p)
c5aa993b 2777 {
df407dfe 2778 if (type != value_type (*arg1p))
c5aa993b
JM
2779 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2780 value_addr (*arg1p)));
2781
070ad9f0 2782 /* Move the `this' pointer according to the offset.
581e13c1 2783 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2784 }
2785
2786 return v;
2787}
2788
c906108c 2789\f
c906108c 2790
5467c6c8
PA
2791/* Helper function for both unpack_value_bits_as_long and
2792 unpack_bits_as_long. See those functions for more details on the
2793 interface; the only difference is that this function accepts either
2794 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2795
5467c6c8
PA
2796static int
2797unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2798 int embedded_offset, int bitpos, int bitsize,
2799 const struct value *original_value,
2800 LONGEST *result)
c906108c 2801{
4ea48cc1 2802 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2803 ULONGEST val;
2804 ULONGEST valmask;
c906108c 2805 int lsbcount;
4a76eae5 2806 int bytes_read;
5467c6c8 2807 int read_offset;
c906108c 2808
4a76eae5
DJ
2809 /* Read the minimum number of bytes required; there may not be
2810 enough bytes to read an entire ULONGEST. */
c906108c 2811 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2812 if (bitsize)
2813 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2814 else
2815 bytes_read = TYPE_LENGTH (field_type);
2816
5467c6c8
PA
2817 read_offset = bitpos / 8;
2818
2819 if (original_value != NULL
2820 && !value_bytes_available (original_value, embedded_offset + read_offset,
2821 bytes_read))
2822 return 0;
2823
2824 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2825 bytes_read, byte_order);
c906108c 2826
581e13c1 2827 /* Extract bits. See comment above. */
c906108c 2828
4ea48cc1 2829 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2830 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2831 else
2832 lsbcount = (bitpos % 8);
2833 val >>= lsbcount;
2834
2835 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2836 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2837
2838 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2839 {
2840 valmask = (((ULONGEST) 1) << bitsize) - 1;
2841 val &= valmask;
2842 if (!TYPE_UNSIGNED (field_type))
2843 {
2844 if (val & (valmask ^ (valmask >> 1)))
2845 {
2846 val |= ~valmask;
2847 }
2848 }
2849 }
5467c6c8
PA
2850
2851 *result = val;
2852 return 1;
c906108c
SS
2853}
2854
5467c6c8
PA
2855/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2856 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2857 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2858 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2859 bits.
4ea48cc1 2860
5467c6c8
PA
2861 Returns false if the value contents are unavailable, otherwise
2862 returns true, indicating a valid value has been stored in *RESULT.
2863
2864 Extracting bits depends on endianness of the machine. Compute the
2865 number of least significant bits to discard. For big endian machines,
2866 we compute the total number of bits in the anonymous object, subtract
2867 off the bit count from the MSB of the object to the MSB of the
2868 bitfield, then the size of the bitfield, which leaves the LSB discard
2869 count. For little endian machines, the discard count is simply the
2870 number of bits from the LSB of the anonymous object to the LSB of the
2871 bitfield.
2872
2873 If the field is signed, we also do sign extension. */
2874
2875int
2876unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2877 int embedded_offset, int bitpos, int bitsize,
2878 const struct value *original_value,
2879 LONGEST *result)
2880{
2881 gdb_assert (original_value != NULL);
2882
2883 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2884 bitpos, bitsize, original_value, result);
2885
2886}
2887
2888/* Unpack a field FIELDNO of the specified TYPE, from the object at
2889 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2890 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2891 details. */
2892
2893static int
2894unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2895 int embedded_offset, int fieldno,
2896 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2897{
2898 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2899 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2900 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2901
5467c6c8
PA
2902 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2903 bitpos, bitsize, val,
2904 result);
2905}
2906
2907/* Unpack a field FIELDNO of the specified TYPE, from the object at
2908 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2909 ORIGINAL_VALUE, which must not be NULL. See
2910 unpack_value_bits_as_long for more details. */
2911
2912int
2913unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2914 int embedded_offset, int fieldno,
2915 const struct value *val, LONGEST *result)
2916{
2917 gdb_assert (val != NULL);
2918
2919 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2920 fieldno, val, result);
2921}
2922
2923/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2924 object at VALADDR. See unpack_value_bits_as_long for more details.
2925 This function differs from unpack_value_field_as_long in that it
2926 operates without a struct value object. */
2927
2928LONGEST
2929unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2930{
2931 LONGEST result;
2932
2933 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2934 return result;
2935}
2936
2937/* Return a new value with type TYPE, which is FIELDNO field of the
2938 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2939 of VAL. If the VAL's contents required to extract the bitfield
2940 from are unavailable, the new value is correspondingly marked as
2941 unavailable. */
2942
2943struct value *
2944value_field_bitfield (struct type *type, int fieldno,
2945 const gdb_byte *valaddr,
2946 int embedded_offset, const struct value *val)
2947{
2948 LONGEST l;
2949
2950 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2951 val, &l))
2952 {
2953 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2954 struct value *retval = allocate_value (field_type);
2955 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2956 return retval;
2957 }
2958 else
2959 {
2960 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2961 }
4ea48cc1
DJ
2962}
2963
c906108c
SS
2964/* Modify the value of a bitfield. ADDR points to a block of memory in
2965 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2966 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2967 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2968 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2969 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2970
2971void
50810684
UW
2972modify_field (struct type *type, gdb_byte *addr,
2973 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2974{
e17a4113 2975 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2976 ULONGEST oword;
2977 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2978 int bytesize;
2979
2980 /* Normalize BITPOS. */
2981 addr += bitpos / 8;
2982 bitpos %= 8;
c906108c
SS
2983
2984 /* If a negative fieldval fits in the field in question, chop
2985 off the sign extension bits. */
f4e88c8e
PH
2986 if ((~fieldval & ~(mask >> 1)) == 0)
2987 fieldval &= mask;
c906108c
SS
2988
2989 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2990 if (0 != (fieldval & ~mask))
c906108c
SS
2991 {
2992 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2993 we don't have a sprintf_longest. */
8a3fe4f8 2994 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2995
2996 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2997 fieldval &= mask;
c906108c
SS
2998 }
2999
19f220c3
JK
3000 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3001 false valgrind reports. */
3002
3003 bytesize = (bitpos + bitsize + 7) / 8;
3004 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3005
3006 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3007 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3008 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3009
f4e88c8e 3010 oword &= ~(mask << bitpos);
c906108c
SS
3011 oword |= fieldval << bitpos;
3012
19f220c3 3013 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3014}
3015\f
14d06750 3016/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3017
14d06750
DJ
3018void
3019pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3020{
e17a4113 3021 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3022 int len;
14d06750
DJ
3023
3024 type = check_typedef (type);
c906108c
SS
3025 len = TYPE_LENGTH (type);
3026
14d06750 3027 switch (TYPE_CODE (type))
c906108c 3028 {
c906108c
SS
3029 case TYPE_CODE_INT:
3030 case TYPE_CODE_CHAR:
3031 case TYPE_CODE_ENUM:
4f2aea11 3032 case TYPE_CODE_FLAGS:
c906108c
SS
3033 case TYPE_CODE_BOOL:
3034 case TYPE_CODE_RANGE:
0d5de010 3035 case TYPE_CODE_MEMBERPTR:
e17a4113 3036 store_signed_integer (buf, len, byte_order, num);
c906108c 3037 break;
c5aa993b 3038
c906108c
SS
3039 case TYPE_CODE_REF:
3040 case TYPE_CODE_PTR:
14d06750 3041 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3042 break;
c5aa993b 3043
c906108c 3044 default:
14d06750
DJ
3045 error (_("Unexpected type (%d) encountered for integer constant."),
3046 TYPE_CODE (type));
c906108c 3047 }
14d06750
DJ
3048}
3049
3050
595939de
PM
3051/* Pack NUM into BUF using a target format of TYPE. */
3052
70221824 3053static void
595939de
PM
3054pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3055{
3056 int len;
3057 enum bfd_endian byte_order;
3058
3059 type = check_typedef (type);
3060 len = TYPE_LENGTH (type);
3061 byte_order = gdbarch_byte_order (get_type_arch (type));
3062
3063 switch (TYPE_CODE (type))
3064 {
3065 case TYPE_CODE_INT:
3066 case TYPE_CODE_CHAR:
3067 case TYPE_CODE_ENUM:
3068 case TYPE_CODE_FLAGS:
3069 case TYPE_CODE_BOOL:
3070 case TYPE_CODE_RANGE:
3071 case TYPE_CODE_MEMBERPTR:
3072 store_unsigned_integer (buf, len, byte_order, num);
3073 break;
3074
3075 case TYPE_CODE_REF:
3076 case TYPE_CODE_PTR:
3077 store_typed_address (buf, type, (CORE_ADDR) num);
3078 break;
3079
3080 default:
3e43a32a
MS
3081 error (_("Unexpected type (%d) encountered "
3082 "for unsigned integer constant."),
595939de
PM
3083 TYPE_CODE (type));
3084 }
3085}
3086
3087
14d06750
DJ
3088/* Convert C numbers into newly allocated values. */
3089
3090struct value *
3091value_from_longest (struct type *type, LONGEST num)
3092{
3093 struct value *val = allocate_value (type);
3094
3095 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3096 return val;
3097}
3098
4478b372 3099
595939de
PM
3100/* Convert C unsigned numbers into newly allocated values. */
3101
3102struct value *
3103value_from_ulongest (struct type *type, ULONGEST num)
3104{
3105 struct value *val = allocate_value (type);
3106
3107 pack_unsigned_long (value_contents_raw (val), type, num);
3108
3109 return val;
3110}
3111
3112
4478b372
JB
3113/* Create a value representing a pointer of type TYPE to the address
3114 ADDR. */
f23631e4 3115struct value *
4478b372
JB
3116value_from_pointer (struct type *type, CORE_ADDR addr)
3117{
f23631e4 3118 struct value *val = allocate_value (type);
a109c7c1 3119
cab0c772 3120 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
3121 return val;
3122}
3123
3124
8acb6b92
TT
3125/* Create a value of type TYPE whose contents come from VALADDR, if it
3126 is non-null, and whose memory address (in the inferior) is
3127 ADDRESS. */
3128
3129struct value *
3130value_from_contents_and_address (struct type *type,
3131 const gdb_byte *valaddr,
3132 CORE_ADDR address)
3133{
41e8491f 3134 struct value *v;
a109c7c1 3135
8acb6b92 3136 if (valaddr == NULL)
41e8491f 3137 v = allocate_value_lazy (type);
8acb6b92 3138 else
41e8491f
JK
3139 {
3140 v = allocate_value (type);
3141 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3142 }
42ae5230 3143 set_value_address (v, address);
33d502b4 3144 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3145 return v;
3146}
3147
8a9b8146
TT
3148/* Create a value of type TYPE holding the contents CONTENTS.
3149 The new value is `not_lval'. */
3150
3151struct value *
3152value_from_contents (struct type *type, const gdb_byte *contents)
3153{
3154 struct value *result;
3155
3156 result = allocate_value (type);
3157 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3158 return result;
3159}
3160
f23631e4 3161struct value *
fba45db2 3162value_from_double (struct type *type, DOUBLEST num)
c906108c 3163{
f23631e4 3164 struct value *val = allocate_value (type);
c906108c 3165 struct type *base_type = check_typedef (type);
52f0bd74 3166 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3167
3168 if (code == TYPE_CODE_FLT)
3169 {
990a07ab 3170 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3171 }
3172 else
8a3fe4f8 3173 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3174
3175 return val;
3176}
994b9211 3177
27bc4d80 3178struct value *
4ef30785 3179value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3180{
3181 struct value *val = allocate_value (type);
27bc4d80 3182
4ef30785 3183 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3184 return val;
3185}
3186
3bd0f5ef
MS
3187/* Extract a value from the history file. Input will be of the form
3188 $digits or $$digits. See block comment above 'write_dollar_variable'
3189 for details. */
3190
3191struct value *
3192value_from_history_ref (char *h, char **endp)
3193{
3194 int index, len;
3195
3196 if (h[0] == '$')
3197 len = 1;
3198 else
3199 return NULL;
3200
3201 if (h[1] == '$')
3202 len = 2;
3203
3204 /* Find length of numeral string. */
3205 for (; isdigit (h[len]); len++)
3206 ;
3207
3208 /* Make sure numeral string is not part of an identifier. */
3209 if (h[len] == '_' || isalpha (h[len]))
3210 return NULL;
3211
3212 /* Now collect the index value. */
3213 if (h[1] == '$')
3214 {
3215 if (len == 2)
3216 {
3217 /* For some bizarre reason, "$$" is equivalent to "$$1",
3218 rather than to "$$0" as it ought to be! */
3219 index = -1;
3220 *endp += len;
3221 }
3222 else
3223 index = -strtol (&h[2], endp, 10);
3224 }
3225 else
3226 {
3227 if (len == 1)
3228 {
3229 /* "$" is equivalent to "$0". */
3230 index = 0;
3231 *endp += len;
3232 }
3233 else
3234 index = strtol (&h[1], endp, 10);
3235 }
3236
3237 return access_value_history (index);
3238}
3239
a471c594
JK
3240struct value *
3241coerce_ref_if_computed (const struct value *arg)
3242{
3243 const struct lval_funcs *funcs;
3244
3245 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3246 return NULL;
3247
3248 if (value_lval_const (arg) != lval_computed)
3249 return NULL;
3250
3251 funcs = value_computed_funcs (arg);
3252 if (funcs->coerce_ref == NULL)
3253 return NULL;
3254
3255 return funcs->coerce_ref (arg);
3256}
3257
dfcee124
AG
3258/* Look at value.h for description. */
3259
3260struct value *
3261readjust_indirect_value_type (struct value *value, struct type *enc_type,
3262 struct type *original_type,
3263 struct value *original_value)
3264{
3265 /* Re-adjust type. */
3266 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3267
3268 /* Add embedding info. */
3269 set_value_enclosing_type (value, enc_type);
3270 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3271
3272 /* We may be pointing to an object of some derived type. */
3273 return value_full_object (value, NULL, 0, 0, 0);
3274}
3275
994b9211
AC
3276struct value *
3277coerce_ref (struct value *arg)
3278{
df407dfe 3279 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3280 struct value *retval;
dfcee124 3281 struct type *enc_type;
a109c7c1 3282
a471c594
JK
3283 retval = coerce_ref_if_computed (arg);
3284 if (retval)
3285 return retval;
3286
3287 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3288 return arg;
3289
dfcee124
AG
3290 enc_type = check_typedef (value_enclosing_type (arg));
3291 enc_type = TYPE_TARGET_TYPE (enc_type);
3292
3293 retval = value_at_lazy (enc_type,
3294 unpack_pointer (value_type (arg),
3295 value_contents (arg)));
3296 return readjust_indirect_value_type (retval, enc_type,
3297 value_type_arg_tmp, arg);
994b9211
AC
3298}
3299
3300struct value *
3301coerce_array (struct value *arg)
3302{
f3134b88
TT
3303 struct type *type;
3304
994b9211 3305 arg = coerce_ref (arg);
f3134b88
TT
3306 type = check_typedef (value_type (arg));
3307
3308 switch (TYPE_CODE (type))
3309 {
3310 case TYPE_CODE_ARRAY:
7346b668 3311 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3312 arg = value_coerce_array (arg);
3313 break;
3314 case TYPE_CODE_FUNC:
3315 arg = value_coerce_function (arg);
3316 break;
3317 }
994b9211
AC
3318 return arg;
3319}
c906108c 3320\f
c906108c 3321
48436ce6
AC
3322/* Return true if the function returning the specified type is using
3323 the convention of returning structures in memory (passing in the
82585c72 3324 address as a hidden first parameter). */
c906108c
SS
3325
3326int
d80b854b 3327using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3328 struct value *function, struct type *value_type)
c906108c 3329{
52f0bd74 3330 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
3331
3332 if (code == TYPE_CODE_ERROR)
8a3fe4f8 3333 error (_("Function return type unknown."));
c906108c 3334
667e784f
AC
3335 if (code == TYPE_CODE_VOID)
3336 /* A void return value is never in memory. See also corresponding
44e5158b 3337 code in "print_return_value". */
667e784f
AC
3338 return 0;
3339
92ad9cd9 3340 /* Probe the architecture for the return-value convention. */
6a3a010b 3341 return (gdbarch_return_value (gdbarch, function, value_type,
92ad9cd9 3342 NULL, NULL, NULL)
31db7b6c 3343 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3344}
3345
42be36b3
CT
3346/* Set the initialized field in a value struct. */
3347
3348void
3349set_value_initialized (struct value *val, int status)
3350{
3351 val->initialized = status;
3352}
3353
3354/* Return the initialized field in a value struct. */
3355
3356int
3357value_initialized (struct value *val)
3358{
3359 return val->initialized;
3360}
3361
c906108c 3362void
fba45db2 3363_initialize_values (void)
c906108c 3364{
1a966eab
AC
3365 add_cmd ("convenience", no_class, show_convenience, _("\
3366Debugger convenience (\"$foo\") variables.\n\
c906108c 3367These variables are created when you assign them values;\n\
1a966eab
AC
3368thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3369\n\
c906108c
SS
3370A few convenience variables are given values automatically:\n\
3371\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 3372\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
3373 &showlist);
3374
db5f229b 3375 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3376Elements of value history around item number IDX (or last ten)."),
c906108c 3377 &showlist);
53e5f3cf
AS
3378
3379 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3380Initialize a convenience variable if necessary.\n\
3381init-if-undefined VARIABLE = EXPRESSION\n\
3382Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3383exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3384VARIABLE is already initialized."));
bc3b79fd
TJB
3385
3386 add_prefix_cmd ("function", no_class, function_command, _("\
3387Placeholder command for showing help on convenience functions."),
3388 &functionlist, "function ", 0, &cmdlist);
c906108c 3389}
This page took 1.396321 seconds and 4 git commands to generate.