* dwarf2read.c: Whitespace cleanup, plus comment additions.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c54eabfa
JK
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
c906108c 265
3e3d7139
JG
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
df407dfe 268 val->next = all_values;
c906108c 269 all_values = val;
df407dfe 270 val->type = type;
4754a64e 271 val->enclosing_type = type;
c906108c 272 VALUE_LVAL (val) = not_lval;
42ae5230 273 val->location.address = 0;
1df6926e 274 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
9ee8fc9d 278 VALUE_REGNUM (val) = -1;
3e3d7139 279 val->lazy = 1;
feb13ab0 280 val->optimized_out = 0;
13c3b5f5 281 val->embedded_offset = 0;
b44d461b 282 val->pointed_to_offset = 0;
c906108c 283 val->modifiable = 1;
42be36b3 284 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
c906108c
SS
289 return val;
290}
291
3e3d7139
JG
292/* Allocate the contents of VAL if it has not been allocated yet. */
293
294void
295allocate_value_contents (struct value *val)
296{
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299}
300
301/* Allocate a value and its contents for type TYPE. */
302
303struct value *
304allocate_value (struct type *type)
305{
306 struct value *val = allocate_value_lazy (type);
a109c7c1 307
3e3d7139
JG
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311}
312
c906108c 313/* Allocate a value that has the correct length
938f5214 314 for COUNT repetitions of type TYPE. */
c906108c 315
f23631e4 316struct value *
fba45db2 317allocate_repeat_value (struct type *type, int count)
c906108c 318{
c5aa993b 319 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
e3506a9f
UW
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 324
e3506a9f 325 return allocate_value (array_type);
c906108c
SS
326}
327
5f5233d4
PA
328struct value *
329allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332{
333 struct value *v = allocate_value (type);
a109c7c1 334
5f5233d4
PA
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341}
342
df407dfe
AC
343/* Accessor methods. */
344
17cf0ecd
AC
345struct value *
346value_next (struct value *value)
347{
348 return value->next;
349}
350
df407dfe 351struct type *
0e03807e 352value_type (const struct value *value)
df407dfe
AC
353{
354 return value->type;
355}
04624583
AC
356void
357deprecated_set_value_type (struct value *value, struct type *type)
358{
359 value->type = type;
360}
df407dfe
AC
361
362int
0e03807e 363value_offset (const struct value *value)
df407dfe
AC
364{
365 return value->offset;
366}
f5cf64a7
AC
367void
368set_value_offset (struct value *value, int offset)
369{
370 value->offset = offset;
371}
df407dfe
AC
372
373int
0e03807e 374value_bitpos (const struct value *value)
df407dfe
AC
375{
376 return value->bitpos;
377}
9bbda503
AC
378void
379set_value_bitpos (struct value *value, int bit)
380{
381 value->bitpos = bit;
382}
df407dfe
AC
383
384int
0e03807e 385value_bitsize (const struct value *value)
df407dfe
AC
386{
387 return value->bitsize;
388}
9bbda503
AC
389void
390set_value_bitsize (struct value *value, int bit)
391{
392 value->bitsize = bit;
393}
df407dfe 394
4ea48cc1
DJ
395struct value *
396value_parent (struct value *value)
397{
398 return value->parent;
399}
400
fc1a4b47 401gdb_byte *
990a07ab
AC
402value_contents_raw (struct value *value)
403{
3e3d7139
JG
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
990a07ab
AC
406}
407
fc1a4b47 408gdb_byte *
990a07ab
AC
409value_contents_all_raw (struct value *value)
410{
3e3d7139
JG
411 allocate_value_contents (value);
412 return value->contents;
990a07ab
AC
413}
414
4754a64e
AC
415struct type *
416value_enclosing_type (struct value *value)
417{
418 return value->enclosing_type;
419}
420
0e03807e
TT
421static void
422require_not_optimized_out (struct value *value)
423{
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426}
427
fc1a4b47 428const gdb_byte *
0e03807e 429value_contents_for_printing (struct value *value)
46615f07
AC
430{
431 if (value->lazy)
432 value_fetch_lazy (value);
3e3d7139 433 return value->contents;
46615f07
AC
434}
435
0e03807e
TT
436const gdb_byte *
437value_contents_all (struct value *value)
438{
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442}
443
d69fe07e
AC
444int
445value_lazy (struct value *value)
446{
447 return value->lazy;
448}
449
dfa52d88
AC
450void
451set_value_lazy (struct value *value, int val)
452{
453 value->lazy = val;
454}
455
4e5d721f
DE
456int
457value_stack (struct value *value)
458{
459 return value->stack;
460}
461
462void
463set_value_stack (struct value *value, int val)
464{
465 value->stack = val;
466}
467
fc1a4b47 468const gdb_byte *
0fd88904
AC
469value_contents (struct value *value)
470{
0e03807e
TT
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
0fd88904
AC
474}
475
fc1a4b47 476gdb_byte *
0fd88904
AC
477value_contents_writeable (struct value *value)
478{
479 if (value->lazy)
480 value_fetch_lazy (value);
fc0c53a0 481 return value_contents_raw (value);
0fd88904
AC
482}
483
a6c442d8
MK
484/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488int
489value_contents_equal (struct value *val1, struct value *val2)
490{
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502}
503
feb13ab0
AC
504int
505value_optimized_out (struct value *value)
506{
507 return value->optimized_out;
508}
509
510void
511set_value_optimized_out (struct value *value, int val)
512{
513 value->optimized_out = val;
514}
13c3b5f5 515
0e03807e
TT
516int
517value_entirely_optimized_out (const struct value *value)
518{
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
ba19bb4d 522 || !value->location.computed.funcs->check_any_valid)
0e03807e 523 return 1;
b65c7efe 524 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
525}
526
527int
528value_bits_valid (const struct value *value, int offset, int length)
529{
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537}
538
8cf6f0b1
TT
539int
540value_bits_synthetic_pointer (const struct value *value,
541 int offset, int length)
542{
543 if (value == NULL || value->lval != lval_computed
544 || !value->location.computed.funcs->check_synthetic_pointer)
545 return 0;
546 return value->location.computed.funcs->check_synthetic_pointer (value,
547 offset,
548 length);
549}
550
13c3b5f5
AC
551int
552value_embedded_offset (struct value *value)
553{
554 return value->embedded_offset;
555}
556
557void
558set_value_embedded_offset (struct value *value, int val)
559{
560 value->embedded_offset = val;
561}
b44d461b
AC
562
563int
564value_pointed_to_offset (struct value *value)
565{
566 return value->pointed_to_offset;
567}
568
569void
570set_value_pointed_to_offset (struct value *value, int val)
571{
572 value->pointed_to_offset = val;
573}
13bb5560 574
5f5233d4
PA
575struct lval_funcs *
576value_computed_funcs (struct value *v)
577{
578 gdb_assert (VALUE_LVAL (v) == lval_computed);
579
580 return v->location.computed.funcs;
581}
582
583void *
0e03807e 584value_computed_closure (const struct value *v)
5f5233d4 585{
0e03807e 586 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
587
588 return v->location.computed.closure;
589}
590
13bb5560
AC
591enum lval_type *
592deprecated_value_lval_hack (struct value *value)
593{
594 return &value->lval;
595}
596
42ae5230
TT
597CORE_ADDR
598value_address (struct value *value)
599{
600 if (value->lval == lval_internalvar
601 || value->lval == lval_internalvar_component)
602 return 0;
603 return value->location.address + value->offset;
604}
605
606CORE_ADDR
607value_raw_address (struct value *value)
608{
609 if (value->lval == lval_internalvar
610 || value->lval == lval_internalvar_component)
611 return 0;
612 return value->location.address;
613}
614
615void
616set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 617{
42ae5230
TT
618 gdb_assert (value->lval != lval_internalvar
619 && value->lval != lval_internalvar_component);
620 value->location.address = addr;
13bb5560
AC
621}
622
623struct internalvar **
624deprecated_value_internalvar_hack (struct value *value)
625{
626 return &value->location.internalvar;
627}
628
629struct frame_id *
630deprecated_value_frame_id_hack (struct value *value)
631{
632 return &value->frame_id;
633}
634
635short *
636deprecated_value_regnum_hack (struct value *value)
637{
638 return &value->regnum;
639}
88e3b34b
AC
640
641int
642deprecated_value_modifiable (struct value *value)
643{
644 return value->modifiable;
645}
646void
647deprecated_set_value_modifiable (struct value *value, int modifiable)
648{
649 value->modifiable = modifiable;
650}
990a07ab 651\f
c906108c
SS
652/* Return a mark in the value chain. All values allocated after the
653 mark is obtained (except for those released) are subject to being freed
654 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 655struct value *
fba45db2 656value_mark (void)
c906108c
SS
657{
658 return all_values;
659}
660
828d3400
DJ
661/* Take a reference to VAL. VAL will not be deallocated until all
662 references are released. */
663
664void
665value_incref (struct value *val)
666{
667 val->reference_count++;
668}
669
670/* Release a reference to VAL, which was acquired with value_incref.
671 This function is also called to deallocate values from the value
672 chain. */
673
3e3d7139
JG
674void
675value_free (struct value *val)
676{
677 if (val)
5f5233d4 678 {
828d3400
DJ
679 gdb_assert (val->reference_count > 0);
680 val->reference_count--;
681 if (val->reference_count > 0)
682 return;
683
4ea48cc1
DJ
684 /* If there's an associated parent value, drop our reference to
685 it. */
686 if (val->parent != NULL)
687 value_free (val->parent);
688
5f5233d4
PA
689 if (VALUE_LVAL (val) == lval_computed)
690 {
691 struct lval_funcs *funcs = val->location.computed.funcs;
692
693 if (funcs->free_closure)
694 funcs->free_closure (val);
695 }
696
697 xfree (val->contents);
698 }
3e3d7139
JG
699 xfree (val);
700}
701
c906108c
SS
702/* Free all values allocated since MARK was obtained by value_mark
703 (except for those released). */
704void
f23631e4 705value_free_to_mark (struct value *mark)
c906108c 706{
f23631e4
AC
707 struct value *val;
708 struct value *next;
c906108c
SS
709
710 for (val = all_values; val && val != mark; val = next)
711 {
df407dfe 712 next = val->next;
c906108c
SS
713 value_free (val);
714 }
715 all_values = val;
716}
717
718/* Free all the values that have been allocated (except for those released).
725e88af
DE
719 Call after each command, successful or not.
720 In practice this is called before each command, which is sufficient. */
c906108c
SS
721
722void
fba45db2 723free_all_values (void)
c906108c 724{
f23631e4
AC
725 struct value *val;
726 struct value *next;
c906108c
SS
727
728 for (val = all_values; val; val = next)
729 {
df407dfe 730 next = val->next;
c906108c
SS
731 value_free (val);
732 }
733
734 all_values = 0;
735}
736
0cf6dd15
TJB
737/* Frees all the elements in a chain of values. */
738
739void
740free_value_chain (struct value *v)
741{
742 struct value *next;
743
744 for (; v; v = next)
745 {
746 next = value_next (v);
747 value_free (v);
748 }
749}
750
c906108c
SS
751/* Remove VAL from the chain all_values
752 so it will not be freed automatically. */
753
754void
f23631e4 755release_value (struct value *val)
c906108c 756{
f23631e4 757 struct value *v;
c906108c
SS
758
759 if (all_values == val)
760 {
761 all_values = val->next;
06a64a0b 762 val->next = NULL;
c906108c
SS
763 return;
764 }
765
766 for (v = all_values; v; v = v->next)
767 {
768 if (v->next == val)
769 {
770 v->next = val->next;
06a64a0b 771 val->next = NULL;
c906108c
SS
772 break;
773 }
774 }
775}
776
777/* Release all values up to mark */
f23631e4
AC
778struct value *
779value_release_to_mark (struct value *mark)
c906108c 780{
f23631e4
AC
781 struct value *val;
782 struct value *next;
c906108c 783
df407dfe
AC
784 for (val = next = all_values; next; next = next->next)
785 if (next->next == mark)
c906108c 786 {
df407dfe
AC
787 all_values = next->next;
788 next->next = NULL;
c906108c
SS
789 return val;
790 }
791 all_values = 0;
792 return val;
793}
794
795/* Return a copy of the value ARG.
796 It contains the same contents, for same memory address,
797 but it's a different block of storage. */
798
f23631e4
AC
799struct value *
800value_copy (struct value *arg)
c906108c 801{
4754a64e 802 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
803 struct value *val;
804
805 if (value_lazy (arg))
806 val = allocate_value_lazy (encl_type);
807 else
808 val = allocate_value (encl_type);
df407dfe 809 val->type = arg->type;
c906108c 810 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 811 val->location = arg->location;
df407dfe
AC
812 val->offset = arg->offset;
813 val->bitpos = arg->bitpos;
814 val->bitsize = arg->bitsize;
1df6926e 815 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 816 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 817 val->lazy = arg->lazy;
feb13ab0 818 val->optimized_out = arg->optimized_out;
13c3b5f5 819 val->embedded_offset = value_embedded_offset (arg);
b44d461b 820 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 821 val->modifiable = arg->modifiable;
d69fe07e 822 if (!value_lazy (val))
c906108c 823 {
990a07ab 824 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 825 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
826
827 }
4ea48cc1
DJ
828 val->parent = arg->parent;
829 if (val->parent)
830 value_incref (val->parent);
5f5233d4
PA
831 if (VALUE_LVAL (val) == lval_computed)
832 {
833 struct lval_funcs *funcs = val->location.computed.funcs;
834
835 if (funcs->copy_closure)
836 val->location.computed.closure = funcs->copy_closure (val);
837 }
c906108c
SS
838 return val;
839}
74bcbdf3 840
c37f7098
KW
841/* Return a version of ARG that is non-lvalue. */
842
843struct value *
844value_non_lval (struct value *arg)
845{
846 if (VALUE_LVAL (arg) != not_lval)
847 {
848 struct type *enc_type = value_enclosing_type (arg);
849 struct value *val = allocate_value (enc_type);
850
851 memcpy (value_contents_all_raw (val), value_contents_all (arg),
852 TYPE_LENGTH (enc_type));
853 val->type = arg->type;
854 set_value_embedded_offset (val, value_embedded_offset (arg));
855 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
856 return val;
857 }
858 return arg;
859}
860
74bcbdf3 861void
0e03807e
TT
862set_value_component_location (struct value *component,
863 const struct value *whole)
74bcbdf3 864{
0e03807e 865 if (whole->lval == lval_internalvar)
74bcbdf3
PA
866 VALUE_LVAL (component) = lval_internalvar_component;
867 else
0e03807e 868 VALUE_LVAL (component) = whole->lval;
5f5233d4 869
74bcbdf3 870 component->location = whole->location;
0e03807e 871 if (whole->lval == lval_computed)
5f5233d4
PA
872 {
873 struct lval_funcs *funcs = whole->location.computed.funcs;
874
875 if (funcs->copy_closure)
876 component->location.computed.closure = funcs->copy_closure (whole);
877 }
74bcbdf3
PA
878}
879
c906108c
SS
880\f
881/* Access to the value history. */
882
883/* Record a new value in the value history.
884 Returns the absolute history index of the entry.
885 Result of -1 indicates the value was not saved; otherwise it is the
886 value history index of this new item. */
887
888int
f23631e4 889record_latest_value (struct value *val)
c906108c
SS
890{
891 int i;
892
893 /* We don't want this value to have anything to do with the inferior anymore.
894 In particular, "set $1 = 50" should not affect the variable from which
895 the value was taken, and fast watchpoints should be able to assume that
896 a value on the value history never changes. */
d69fe07e 897 if (value_lazy (val))
c906108c
SS
898 value_fetch_lazy (val);
899 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
900 from. This is a bit dubious, because then *&$1 does not just return $1
901 but the current contents of that location. c'est la vie... */
902 val->modifiable = 0;
903 release_value (val);
904
905 /* Here we treat value_history_count as origin-zero
906 and applying to the value being stored now. */
907
908 i = value_history_count % VALUE_HISTORY_CHUNK;
909 if (i == 0)
910 {
f23631e4 911 struct value_history_chunk *new
a109c7c1
MS
912 = (struct value_history_chunk *)
913
c5aa993b 914 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
915 memset (new->values, 0, sizeof new->values);
916 new->next = value_history_chain;
917 value_history_chain = new;
918 }
919
920 value_history_chain->values[i] = val;
921
922 /* Now we regard value_history_count as origin-one
923 and applying to the value just stored. */
924
925 return ++value_history_count;
926}
927
928/* Return a copy of the value in the history with sequence number NUM. */
929
f23631e4 930struct value *
fba45db2 931access_value_history (int num)
c906108c 932{
f23631e4 933 struct value_history_chunk *chunk;
52f0bd74
AC
934 int i;
935 int absnum = num;
c906108c
SS
936
937 if (absnum <= 0)
938 absnum += value_history_count;
939
940 if (absnum <= 0)
941 {
942 if (num == 0)
8a3fe4f8 943 error (_("The history is empty."));
c906108c 944 else if (num == 1)
8a3fe4f8 945 error (_("There is only one value in the history."));
c906108c 946 else
8a3fe4f8 947 error (_("History does not go back to $$%d."), -num);
c906108c
SS
948 }
949 if (absnum > value_history_count)
8a3fe4f8 950 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
951
952 absnum--;
953
954 /* Now absnum is always absolute and origin zero. */
955
956 chunk = value_history_chain;
957 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
958 i > 0; i--)
959 chunk = chunk->next;
960
961 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
962}
963
c906108c 964static void
fba45db2 965show_values (char *num_exp, int from_tty)
c906108c 966{
52f0bd74 967 int i;
f23631e4 968 struct value *val;
c906108c
SS
969 static int num = 1;
970
971 if (num_exp)
972 {
f132ba9d
TJB
973 /* "show values +" should print from the stored position.
974 "show values <exp>" should print around value number <exp>. */
c906108c 975 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 976 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
977 }
978 else
979 {
f132ba9d 980 /* "show values" means print the last 10 values. */
c906108c
SS
981 num = value_history_count - 9;
982 }
983
984 if (num <= 0)
985 num = 1;
986
987 for (i = num; i < num + 10 && i <= value_history_count; i++)
988 {
79a45b7d 989 struct value_print_options opts;
a109c7c1 990
c906108c 991 val = access_value_history (i);
a3f17187 992 printf_filtered (("$%d = "), i);
79a45b7d
TT
993 get_user_print_options (&opts);
994 value_print (val, gdb_stdout, &opts);
a3f17187 995 printf_filtered (("\n"));
c906108c
SS
996 }
997
f132ba9d 998 /* The next "show values +" should start after what we just printed. */
c906108c
SS
999 num += 10;
1000
1001 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1002 "show values +". If num_exp is null, this is unnecessary, since
1003 "show values +" is not useful after "show values". */
c906108c
SS
1004 if (from_tty && num_exp)
1005 {
1006 num_exp[0] = '+';
1007 num_exp[1] = '\0';
1008 }
1009}
1010\f
1011/* Internal variables. These are variables within the debugger
1012 that hold values assigned by debugger commands.
1013 The user refers to them with a '$' prefix
1014 that does not appear in the variable names stored internally. */
1015
4fa62494
UW
1016struct internalvar
1017{
1018 struct internalvar *next;
1019 char *name;
4fa62494 1020
78267919
UW
1021 /* We support various different kinds of content of an internal variable.
1022 enum internalvar_kind specifies the kind, and union internalvar_data
1023 provides the data associated with this particular kind. */
1024
1025 enum internalvar_kind
1026 {
1027 /* The internal variable is empty. */
1028 INTERNALVAR_VOID,
1029
1030 /* The value of the internal variable is provided directly as
1031 a GDB value object. */
1032 INTERNALVAR_VALUE,
1033
1034 /* A fresh value is computed via a call-back routine on every
1035 access to the internal variable. */
1036 INTERNALVAR_MAKE_VALUE,
4fa62494 1037
78267919
UW
1038 /* The internal variable holds a GDB internal convenience function. */
1039 INTERNALVAR_FUNCTION,
1040
cab0c772
UW
1041 /* The variable holds an integer value. */
1042 INTERNALVAR_INTEGER,
1043
1044 /* The variable holds a pointer value. */
1045 INTERNALVAR_POINTER,
78267919
UW
1046
1047 /* The variable holds a GDB-provided string. */
1048 INTERNALVAR_STRING,
1049
1050 } kind;
4fa62494 1051
4fa62494
UW
1052 union internalvar_data
1053 {
78267919
UW
1054 /* A value object used with INTERNALVAR_VALUE. */
1055 struct value *value;
1056
1057 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1058 internalvar_make_value make_value;
1059
1060 /* The internal function used with INTERNALVAR_FUNCTION. */
1061 struct
1062 {
1063 struct internal_function *function;
1064 /* True if this is the canonical name for the function. */
1065 int canonical;
1066 } fn;
1067
cab0c772 1068 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1069 struct
1070 {
1071 /* If type is non-NULL, it will be used as the type to generate
1072 a value for this internal variable. If type is NULL, a default
1073 integer type for the architecture is used. */
1074 struct type *type;
cab0c772
UW
1075 LONGEST val;
1076 } integer;
1077
1078 /* A pointer value used with INTERNALVAR_POINTER. */
1079 struct
1080 {
1081 struct type *type;
1082 CORE_ADDR val;
1083 } pointer;
78267919
UW
1084
1085 /* A string value used with INTERNALVAR_STRING. */
1086 char *string;
4fa62494
UW
1087 } u;
1088};
1089
c906108c
SS
1090static struct internalvar *internalvars;
1091
53e5f3cf
AS
1092/* If the variable does not already exist create it and give it the value given.
1093 If no value is given then the default is zero. */
1094static void
1095init_if_undefined_command (char* args, int from_tty)
1096{
1097 struct internalvar* intvar;
1098
1099 /* Parse the expression - this is taken from set_command(). */
1100 struct expression *expr = parse_expression (args);
1101 register struct cleanup *old_chain =
1102 make_cleanup (free_current_contents, &expr);
1103
1104 /* Validate the expression.
1105 Was the expression an assignment?
1106 Or even an expression at all? */
1107 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1108 error (_("Init-if-undefined requires an assignment expression."));
1109
1110 /* Extract the variable from the parsed expression.
1111 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1112 if (expr->elts[1].opcode != OP_INTERNALVAR)
1113 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1114 intvar = expr->elts[2].internalvar;
1115
1116 /* Only evaluate the expression if the lvalue is void.
1117 This may still fail if the expresssion is invalid. */
78267919 1118 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1119 evaluate_expression (expr);
1120
1121 do_cleanups (old_chain);
1122}
1123
1124
c906108c
SS
1125/* Look up an internal variable with name NAME. NAME should not
1126 normally include a dollar sign.
1127
1128 If the specified internal variable does not exist,
c4a3d09a 1129 the return value is NULL. */
c906108c
SS
1130
1131struct internalvar *
bc3b79fd 1132lookup_only_internalvar (const char *name)
c906108c 1133{
52f0bd74 1134 struct internalvar *var;
c906108c
SS
1135
1136 for (var = internalvars; var; var = var->next)
5cb316ef 1137 if (strcmp (var->name, name) == 0)
c906108c
SS
1138 return var;
1139
c4a3d09a
MF
1140 return NULL;
1141}
1142
1143
1144/* Create an internal variable with name NAME and with a void value.
1145 NAME should not normally include a dollar sign. */
1146
1147struct internalvar *
bc3b79fd 1148create_internalvar (const char *name)
c4a3d09a
MF
1149{
1150 struct internalvar *var;
a109c7c1 1151
c906108c 1152 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1153 var->name = concat (name, (char *)NULL);
78267919 1154 var->kind = INTERNALVAR_VOID;
c906108c
SS
1155 var->next = internalvars;
1156 internalvars = var;
1157 return var;
1158}
1159
4aa995e1
PA
1160/* Create an internal variable with name NAME and register FUN as the
1161 function that value_of_internalvar uses to create a value whenever
1162 this variable is referenced. NAME should not normally include a
1163 dollar sign. */
1164
1165struct internalvar *
1166create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1167{
4fa62494 1168 struct internalvar *var = create_internalvar (name);
a109c7c1 1169
78267919
UW
1170 var->kind = INTERNALVAR_MAKE_VALUE;
1171 var->u.make_value = fun;
4aa995e1
PA
1172 return var;
1173}
c4a3d09a
MF
1174
1175/* Look up an internal variable with name NAME. NAME should not
1176 normally include a dollar sign.
1177
1178 If the specified internal variable does not exist,
1179 one is created, with a void value. */
1180
1181struct internalvar *
bc3b79fd 1182lookup_internalvar (const char *name)
c4a3d09a
MF
1183{
1184 struct internalvar *var;
1185
1186 var = lookup_only_internalvar (name);
1187 if (var)
1188 return var;
1189
1190 return create_internalvar (name);
1191}
1192
78267919
UW
1193/* Return current value of internal variable VAR. For variables that
1194 are not inherently typed, use a value type appropriate for GDBARCH. */
1195
f23631e4 1196struct value *
78267919 1197value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1198{
f23631e4 1199 struct value *val;
c906108c 1200
78267919 1201 switch (var->kind)
5f5233d4 1202 {
78267919
UW
1203 case INTERNALVAR_VOID:
1204 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1205 break;
4fa62494 1206
78267919
UW
1207 case INTERNALVAR_FUNCTION:
1208 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1209 break;
4fa62494 1210
cab0c772
UW
1211 case INTERNALVAR_INTEGER:
1212 if (!var->u.integer.type)
78267919 1213 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1214 var->u.integer.val);
78267919 1215 else
cab0c772
UW
1216 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1217 break;
1218
1219 case INTERNALVAR_POINTER:
1220 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1221 break;
4fa62494 1222
78267919
UW
1223 case INTERNALVAR_STRING:
1224 val = value_cstring (var->u.string, strlen (var->u.string),
1225 builtin_type (gdbarch)->builtin_char);
1226 break;
4fa62494 1227
78267919
UW
1228 case INTERNALVAR_VALUE:
1229 val = value_copy (var->u.value);
4aa995e1
PA
1230 if (value_lazy (val))
1231 value_fetch_lazy (val);
78267919 1232 break;
4aa995e1 1233
78267919
UW
1234 case INTERNALVAR_MAKE_VALUE:
1235 val = (*var->u.make_value) (gdbarch, var);
1236 break;
1237
1238 default:
1239 internal_error (__FILE__, __LINE__, "bad kind");
1240 }
1241
1242 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1243 on this value go back to affect the original internal variable.
1244
1245 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1246 no underlying modifyable state in the internal variable.
1247
1248 Likewise, if the variable's value is a computed lvalue, we want
1249 references to it to produce another computed lvalue, where
1250 references and assignments actually operate through the
1251 computed value's functions.
1252
1253 This means that internal variables with computed values
1254 behave a little differently from other internal variables:
1255 assignments to them don't just replace the previous value
1256 altogether. At the moment, this seems like the behavior we
1257 want. */
1258
1259 if (var->kind != INTERNALVAR_MAKE_VALUE
1260 && val->lval != lval_computed)
1261 {
1262 VALUE_LVAL (val) = lval_internalvar;
1263 VALUE_INTERNALVAR (val) = var;
5f5233d4 1264 }
d3c139e9 1265
4fa62494
UW
1266 return val;
1267}
d3c139e9 1268
4fa62494
UW
1269int
1270get_internalvar_integer (struct internalvar *var, LONGEST *result)
1271{
78267919 1272 switch (var->kind)
4fa62494 1273 {
cab0c772
UW
1274 case INTERNALVAR_INTEGER:
1275 *result = var->u.integer.val;
1276 return 1;
d3c139e9 1277
4fa62494
UW
1278 default:
1279 return 0;
1280 }
1281}
d3c139e9 1282
4fa62494
UW
1283static int
1284get_internalvar_function (struct internalvar *var,
1285 struct internal_function **result)
1286{
78267919 1287 switch (var->kind)
d3c139e9 1288 {
78267919
UW
1289 case INTERNALVAR_FUNCTION:
1290 *result = var->u.fn.function;
4fa62494 1291 return 1;
d3c139e9 1292
4fa62494
UW
1293 default:
1294 return 0;
1295 }
c906108c
SS
1296}
1297
1298void
fba45db2 1299set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1300 int bitsize, struct value *newval)
c906108c 1301{
4fa62494 1302 gdb_byte *addr;
c906108c 1303
78267919 1304 switch (var->kind)
4fa62494 1305 {
78267919
UW
1306 case INTERNALVAR_VALUE:
1307 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1308
1309 if (bitsize)
50810684 1310 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1311 value_as_long (newval), bitpos, bitsize);
1312 else
1313 memcpy (addr + offset, value_contents (newval),
1314 TYPE_LENGTH (value_type (newval)));
1315 break;
78267919
UW
1316
1317 default:
1318 /* We can never get a component of any other kind. */
1319 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1320 }
c906108c
SS
1321}
1322
1323void
f23631e4 1324set_internalvar (struct internalvar *var, struct value *val)
c906108c 1325{
78267919 1326 enum internalvar_kind new_kind;
4fa62494 1327 union internalvar_data new_data = { 0 };
c906108c 1328
78267919 1329 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1330 error (_("Cannot overwrite convenience function %s"), var->name);
1331
4fa62494 1332 /* Prepare new contents. */
78267919 1333 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1334 {
1335 case TYPE_CODE_VOID:
78267919 1336 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1337 break;
1338
1339 case TYPE_CODE_INTERNAL_FUNCTION:
1340 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1341 new_kind = INTERNALVAR_FUNCTION;
1342 get_internalvar_function (VALUE_INTERNALVAR (val),
1343 &new_data.fn.function);
1344 /* Copies created here are never canonical. */
4fa62494
UW
1345 break;
1346
1347 case TYPE_CODE_INT:
cab0c772
UW
1348 new_kind = INTERNALVAR_INTEGER;
1349 new_data.integer.type = value_type (val);
1350 new_data.integer.val = value_as_long (val);
4fa62494
UW
1351 break;
1352
1353 case TYPE_CODE_PTR:
cab0c772
UW
1354 new_kind = INTERNALVAR_POINTER;
1355 new_data.pointer.type = value_type (val);
1356 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1357 break;
1358
1359 default:
78267919
UW
1360 new_kind = INTERNALVAR_VALUE;
1361 new_data.value = value_copy (val);
1362 new_data.value->modifiable = 1;
4fa62494
UW
1363
1364 /* Force the value to be fetched from the target now, to avoid problems
1365 later when this internalvar is referenced and the target is gone or
1366 has changed. */
78267919
UW
1367 if (value_lazy (new_data.value))
1368 value_fetch_lazy (new_data.value);
4fa62494
UW
1369
1370 /* Release the value from the value chain to prevent it from being
1371 deleted by free_all_values. From here on this function should not
1372 call error () until new_data is installed into the var->u to avoid
1373 leaking memory. */
78267919 1374 release_value (new_data.value);
4fa62494
UW
1375 break;
1376 }
1377
1378 /* Clean up old contents. */
1379 clear_internalvar (var);
1380
1381 /* Switch over. */
78267919 1382 var->kind = new_kind;
4fa62494 1383 var->u = new_data;
c906108c
SS
1384 /* End code which must not call error(). */
1385}
1386
4fa62494
UW
1387void
1388set_internalvar_integer (struct internalvar *var, LONGEST l)
1389{
1390 /* Clean up old contents. */
1391 clear_internalvar (var);
1392
cab0c772
UW
1393 var->kind = INTERNALVAR_INTEGER;
1394 var->u.integer.type = NULL;
1395 var->u.integer.val = l;
78267919
UW
1396}
1397
1398void
1399set_internalvar_string (struct internalvar *var, const char *string)
1400{
1401 /* Clean up old contents. */
1402 clear_internalvar (var);
1403
1404 var->kind = INTERNALVAR_STRING;
1405 var->u.string = xstrdup (string);
4fa62494
UW
1406}
1407
1408static void
1409set_internalvar_function (struct internalvar *var, struct internal_function *f)
1410{
1411 /* Clean up old contents. */
1412 clear_internalvar (var);
1413
78267919
UW
1414 var->kind = INTERNALVAR_FUNCTION;
1415 var->u.fn.function = f;
1416 var->u.fn.canonical = 1;
1417 /* Variables installed here are always the canonical version. */
4fa62494
UW
1418}
1419
1420void
1421clear_internalvar (struct internalvar *var)
1422{
1423 /* Clean up old contents. */
78267919 1424 switch (var->kind)
4fa62494 1425 {
78267919
UW
1426 case INTERNALVAR_VALUE:
1427 value_free (var->u.value);
1428 break;
1429
1430 case INTERNALVAR_STRING:
1431 xfree (var->u.string);
4fa62494
UW
1432 break;
1433
1434 default:
4fa62494
UW
1435 break;
1436 }
1437
78267919
UW
1438 /* Reset to void kind. */
1439 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1440}
1441
c906108c 1442char *
fba45db2 1443internalvar_name (struct internalvar *var)
c906108c
SS
1444{
1445 return var->name;
1446}
1447
4fa62494
UW
1448static struct internal_function *
1449create_internal_function (const char *name,
1450 internal_function_fn handler, void *cookie)
bc3b79fd 1451{
bc3b79fd 1452 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1453
bc3b79fd
TJB
1454 ifn->name = xstrdup (name);
1455 ifn->handler = handler;
1456 ifn->cookie = cookie;
4fa62494 1457 return ifn;
bc3b79fd
TJB
1458}
1459
1460char *
1461value_internal_function_name (struct value *val)
1462{
4fa62494
UW
1463 struct internal_function *ifn;
1464 int result;
1465
1466 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1467 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1468 gdb_assert (result);
1469
bc3b79fd
TJB
1470 return ifn->name;
1471}
1472
1473struct value *
d452c4bc
UW
1474call_internal_function (struct gdbarch *gdbarch,
1475 const struct language_defn *language,
1476 struct value *func, int argc, struct value **argv)
bc3b79fd 1477{
4fa62494
UW
1478 struct internal_function *ifn;
1479 int result;
1480
1481 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1482 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1483 gdb_assert (result);
1484
d452c4bc 1485 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1486}
1487
1488/* The 'function' command. This does nothing -- it is just a
1489 placeholder to let "help function NAME" work. This is also used as
1490 the implementation of the sub-command that is created when
1491 registering an internal function. */
1492static void
1493function_command (char *command, int from_tty)
1494{
1495 /* Do nothing. */
1496}
1497
1498/* Clean up if an internal function's command is destroyed. */
1499static void
1500function_destroyer (struct cmd_list_element *self, void *ignore)
1501{
1502 xfree (self->name);
1503 xfree (self->doc);
1504}
1505
1506/* Add a new internal function. NAME is the name of the function; DOC
1507 is a documentation string describing the function. HANDLER is
1508 called when the function is invoked. COOKIE is an arbitrary
1509 pointer which is passed to HANDLER and is intended for "user
1510 data". */
1511void
1512add_internal_function (const char *name, const char *doc,
1513 internal_function_fn handler, void *cookie)
1514{
1515 struct cmd_list_element *cmd;
4fa62494 1516 struct internal_function *ifn;
bc3b79fd 1517 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1518
1519 ifn = create_internal_function (name, handler, cookie);
1520 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1521
1522 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1523 &functionlist);
1524 cmd->destroyer = function_destroyer;
1525}
1526
ae5a43e0
DJ
1527/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1528 prevent cycles / duplicates. */
1529
4e7a5ef5 1530void
ae5a43e0
DJ
1531preserve_one_value (struct value *value, struct objfile *objfile,
1532 htab_t copied_types)
1533{
1534 if (TYPE_OBJFILE (value->type) == objfile)
1535 value->type = copy_type_recursive (objfile, value->type, copied_types);
1536
1537 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1538 value->enclosing_type = copy_type_recursive (objfile,
1539 value->enclosing_type,
1540 copied_types);
1541}
1542
78267919
UW
1543/* Likewise for internal variable VAR. */
1544
1545static void
1546preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1547 htab_t copied_types)
1548{
1549 switch (var->kind)
1550 {
cab0c772
UW
1551 case INTERNALVAR_INTEGER:
1552 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1553 var->u.integer.type
1554 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1555 break;
1556
1557 case INTERNALVAR_POINTER:
1558 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1559 var->u.pointer.type
1560 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1561 break;
1562
1563 case INTERNALVAR_VALUE:
1564 preserve_one_value (var->u.value, objfile, copied_types);
1565 break;
1566 }
1567}
1568
ae5a43e0
DJ
1569/* Update the internal variables and value history when OBJFILE is
1570 discarded; we must copy the types out of the objfile. New global types
1571 will be created for every convenience variable which currently points to
1572 this objfile's types, and the convenience variables will be adjusted to
1573 use the new global types. */
c906108c
SS
1574
1575void
ae5a43e0 1576preserve_values (struct objfile *objfile)
c906108c 1577{
ae5a43e0
DJ
1578 htab_t copied_types;
1579 struct value_history_chunk *cur;
52f0bd74 1580 struct internalvar *var;
ae5a43e0 1581 int i;
c906108c 1582
ae5a43e0
DJ
1583 /* Create the hash table. We allocate on the objfile's obstack, since
1584 it is soon to be deleted. */
1585 copied_types = create_copied_types_hash (objfile);
1586
1587 for (cur = value_history_chain; cur; cur = cur->next)
1588 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1589 if (cur->values[i])
1590 preserve_one_value (cur->values[i], objfile, copied_types);
1591
1592 for (var = internalvars; var; var = var->next)
78267919 1593 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1594
4e7a5ef5 1595 preserve_python_values (objfile, copied_types);
a08702d6 1596
ae5a43e0 1597 htab_delete (copied_types);
c906108c
SS
1598}
1599
1600static void
fba45db2 1601show_convenience (char *ignore, int from_tty)
c906108c 1602{
e17c207e 1603 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1604 struct internalvar *var;
c906108c 1605 int varseen = 0;
79a45b7d 1606 struct value_print_options opts;
c906108c 1607
79a45b7d 1608 get_user_print_options (&opts);
c906108c
SS
1609 for (var = internalvars; var; var = var->next)
1610 {
c906108c
SS
1611 if (!varseen)
1612 {
1613 varseen = 1;
1614 }
a3f17187 1615 printf_filtered (("$%s = "), var->name);
78267919 1616 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1617 &opts);
a3f17187 1618 printf_filtered (("\n"));
c906108c
SS
1619 }
1620 if (!varseen)
a3f17187
AC
1621 printf_unfiltered (_("\
1622No debugger convenience variables now defined.\n\
c906108c 1623Convenience variables have names starting with \"$\";\n\
a3f17187 1624use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1625}
1626\f
1627/* Extract a value as a C number (either long or double).
1628 Knows how to convert fixed values to double, or
1629 floating values to long.
1630 Does not deallocate the value. */
1631
1632LONGEST
f23631e4 1633value_as_long (struct value *val)
c906108c
SS
1634{
1635 /* This coerces arrays and functions, which is necessary (e.g.
1636 in disassemble_command). It also dereferences references, which
1637 I suspect is the most logical thing to do. */
994b9211 1638 val = coerce_array (val);
0fd88904 1639 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1640}
1641
1642DOUBLEST
f23631e4 1643value_as_double (struct value *val)
c906108c
SS
1644{
1645 DOUBLEST foo;
1646 int inv;
c5aa993b 1647
0fd88904 1648 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1649 if (inv)
8a3fe4f8 1650 error (_("Invalid floating value found in program."));
c906108c
SS
1651 return foo;
1652}
4ef30785 1653
4478b372
JB
1654/* Extract a value as a C pointer. Does not deallocate the value.
1655 Note that val's type may not actually be a pointer; value_as_long
1656 handles all the cases. */
c906108c 1657CORE_ADDR
f23631e4 1658value_as_address (struct value *val)
c906108c 1659{
50810684
UW
1660 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1661
c906108c
SS
1662 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1663 whether we want this to be true eventually. */
1664#if 0
bf6ae464 1665 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1666 non-address (e.g. argument to "signal", "info break", etc.), or
1667 for pointers to char, in which the low bits *are* significant. */
50810684 1668 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1669#else
f312f057
JB
1670
1671 /* There are several targets (IA-64, PowerPC, and others) which
1672 don't represent pointers to functions as simply the address of
1673 the function's entry point. For example, on the IA-64, a
1674 function pointer points to a two-word descriptor, generated by
1675 the linker, which contains the function's entry point, and the
1676 value the IA-64 "global pointer" register should have --- to
1677 support position-independent code. The linker generates
1678 descriptors only for those functions whose addresses are taken.
1679
1680 On such targets, it's difficult for GDB to convert an arbitrary
1681 function address into a function pointer; it has to either find
1682 an existing descriptor for that function, or call malloc and
1683 build its own. On some targets, it is impossible for GDB to
1684 build a descriptor at all: the descriptor must contain a jump
1685 instruction; data memory cannot be executed; and code memory
1686 cannot be modified.
1687
1688 Upon entry to this function, if VAL is a value of type `function'
1689 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1690 value_address (val) is the address of the function. This is what
f312f057
JB
1691 you'll get if you evaluate an expression like `main'. The call
1692 to COERCE_ARRAY below actually does all the usual unary
1693 conversions, which includes converting values of type `function'
1694 to `pointer to function'. This is the challenging conversion
1695 discussed above. Then, `unpack_long' will convert that pointer
1696 back into an address.
1697
1698 So, suppose the user types `disassemble foo' on an architecture
1699 with a strange function pointer representation, on which GDB
1700 cannot build its own descriptors, and suppose further that `foo'
1701 has no linker-built descriptor. The address->pointer conversion
1702 will signal an error and prevent the command from running, even
1703 though the next step would have been to convert the pointer
1704 directly back into the same address.
1705
1706 The following shortcut avoids this whole mess. If VAL is a
1707 function, just return its address directly. */
df407dfe
AC
1708 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1709 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1710 return value_address (val);
f312f057 1711
994b9211 1712 val = coerce_array (val);
fc0c74b1
AC
1713
1714 /* Some architectures (e.g. Harvard), map instruction and data
1715 addresses onto a single large unified address space. For
1716 instance: An architecture may consider a large integer in the
1717 range 0x10000000 .. 0x1000ffff to already represent a data
1718 addresses (hence not need a pointer to address conversion) while
1719 a small integer would still need to be converted integer to
1720 pointer to address. Just assume such architectures handle all
1721 integer conversions in a single function. */
1722
1723 /* JimB writes:
1724
1725 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1726 must admonish GDB hackers to make sure its behavior matches the
1727 compiler's, whenever possible.
1728
1729 In general, I think GDB should evaluate expressions the same way
1730 the compiler does. When the user copies an expression out of
1731 their source code and hands it to a `print' command, they should
1732 get the same value the compiler would have computed. Any
1733 deviation from this rule can cause major confusion and annoyance,
1734 and needs to be justified carefully. In other words, GDB doesn't
1735 really have the freedom to do these conversions in clever and
1736 useful ways.
1737
1738 AndrewC pointed out that users aren't complaining about how GDB
1739 casts integers to pointers; they are complaining that they can't
1740 take an address from a disassembly listing and give it to `x/i'.
1741 This is certainly important.
1742
79dd2d24 1743 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1744 makes it possible for GDB to "get it right" in all circumstances
1745 --- the target has complete control over how things get done, so
1746 people can Do The Right Thing for their target without breaking
1747 anyone else. The standard doesn't specify how integers get
1748 converted to pointers; usually, the ABI doesn't either, but
1749 ABI-specific code is a more reasonable place to handle it. */
1750
df407dfe
AC
1751 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1752 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1753 && gdbarch_integer_to_address_p (gdbarch))
1754 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1755 value_contents (val));
fc0c74b1 1756
0fd88904 1757 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1758#endif
1759}
1760\f
1761/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1762 as a long, or as a double, assuming the raw data is described
1763 by type TYPE. Knows how to convert different sizes of values
1764 and can convert between fixed and floating point. We don't assume
1765 any alignment for the raw data. Return value is in host byte order.
1766
1767 If you want functions and arrays to be coerced to pointers, and
1768 references to be dereferenced, call value_as_long() instead.
1769
1770 C++: It is assumed that the front-end has taken care of
1771 all matters concerning pointers to members. A pointer
1772 to member which reaches here is considered to be equivalent
1773 to an INT (or some size). After all, it is only an offset. */
1774
1775LONGEST
fc1a4b47 1776unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1777{
e17a4113 1778 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1779 enum type_code code = TYPE_CODE (type);
1780 int len = TYPE_LENGTH (type);
1781 int nosign = TYPE_UNSIGNED (type);
c906108c 1782
c906108c
SS
1783 switch (code)
1784 {
1785 case TYPE_CODE_TYPEDEF:
1786 return unpack_long (check_typedef (type), valaddr);
1787 case TYPE_CODE_ENUM:
4f2aea11 1788 case TYPE_CODE_FLAGS:
c906108c
SS
1789 case TYPE_CODE_BOOL:
1790 case TYPE_CODE_INT:
1791 case TYPE_CODE_CHAR:
1792 case TYPE_CODE_RANGE:
0d5de010 1793 case TYPE_CODE_MEMBERPTR:
c906108c 1794 if (nosign)
e17a4113 1795 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1796 else
e17a4113 1797 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1798
1799 case TYPE_CODE_FLT:
96d2f608 1800 return extract_typed_floating (valaddr, type);
c906108c 1801
4ef30785
TJB
1802 case TYPE_CODE_DECFLOAT:
1803 /* libdecnumber has a function to convert from decimal to integer, but
1804 it doesn't work when the decimal number has a fractional part. */
e17a4113 1805 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1806
c906108c
SS
1807 case TYPE_CODE_PTR:
1808 case TYPE_CODE_REF:
1809 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1810 whether we want this to be true eventually. */
4478b372 1811 return extract_typed_address (valaddr, type);
c906108c 1812
c906108c 1813 default:
8a3fe4f8 1814 error (_("Value can't be converted to integer."));
c906108c 1815 }
c5aa993b 1816 return 0; /* Placate lint. */
c906108c
SS
1817}
1818
1819/* Return a double value from the specified type and address.
1820 INVP points to an int which is set to 0 for valid value,
1821 1 for invalid value (bad float format). In either case,
1822 the returned double is OK to use. Argument is in target
1823 format, result is in host format. */
1824
1825DOUBLEST
fc1a4b47 1826unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1827{
e17a4113 1828 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1829 enum type_code code;
1830 int len;
1831 int nosign;
1832
1833 *invp = 0; /* Assume valid. */
1834 CHECK_TYPEDEF (type);
1835 code = TYPE_CODE (type);
1836 len = TYPE_LENGTH (type);
1837 nosign = TYPE_UNSIGNED (type);
1838 if (code == TYPE_CODE_FLT)
1839 {
75bc7ddf
AC
1840 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1841 floating-point value was valid (using the macro
1842 INVALID_FLOAT). That test/macro have been removed.
1843
1844 It turns out that only the VAX defined this macro and then
1845 only in a non-portable way. Fixing the portability problem
1846 wouldn't help since the VAX floating-point code is also badly
1847 bit-rotten. The target needs to add definitions for the
ea06eb3d 1848 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1849 exactly describe the target floating-point format. The
1850 problem here is that the corresponding floatformat_vax_f and
1851 floatformat_vax_d values these methods should be set to are
1852 also not defined either. Oops!
1853
1854 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1855 definitions and the new cases for floatformat_is_valid (). */
1856
1857 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1858 {
1859 *invp = 1;
1860 return 0.0;
1861 }
1862
96d2f608 1863 return extract_typed_floating (valaddr, type);
c906108c 1864 }
4ef30785 1865 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1866 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1867 else if (nosign)
1868 {
1869 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1870 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1871 }
1872 else
1873 {
1874 /* Signed -- we are OK with unpack_long. */
1875 return unpack_long (type, valaddr);
1876 }
1877}
1878
1879/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1880 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1881 We don't assume any alignment for the raw data. Return value is in
1882 host byte order.
1883
1884 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1885 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1886
1887 C++: It is assumed that the front-end has taken care of
1888 all matters concerning pointers to members. A pointer
1889 to member which reaches here is considered to be equivalent
1890 to an INT (or some size). After all, it is only an offset. */
1891
1892CORE_ADDR
fc1a4b47 1893unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1894{
1895 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1896 whether we want this to be true eventually. */
1897 return unpack_long (type, valaddr);
1898}
4478b372 1899
c906108c 1900\f
1596cb5d 1901/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0
DC
1902 TYPE. Return NULL if the field doesn't exist or has been
1903 optimized out. */
c906108c 1904
f23631e4 1905struct value *
fba45db2 1906value_static_field (struct type *type, int fieldno)
c906108c 1907{
948e66d9
DJ
1908 struct value *retval;
1909
1596cb5d 1910 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 1911 {
1596cb5d 1912 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
1913 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1914 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
1915 break;
1916 case FIELD_LOC_KIND_PHYSNAME:
c906108c
SS
1917 {
1918 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
a109c7c1 1919 /*TYPE_FIELD_NAME (type, fieldno);*/
2570f2b7 1920 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 1921
948e66d9 1922 if (sym == NULL)
c906108c 1923 {
a109c7c1
MS
1924 /* With some compilers, e.g. HP aCC, static data members are
1925 reported as non-debuggable symbols */
1926 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1927 NULL, NULL);
1928
c906108c
SS
1929 if (!msym)
1930 return NULL;
1931 else
c5aa993b 1932 {
52e9fde8
SS
1933 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1934 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1935 }
1936 }
1937 else
515ed532 1938 retval = value_of_variable (sym, NULL);
1596cb5d 1939 break;
c906108c 1940 }
1596cb5d 1941 default:
f3574227 1942 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
1943 }
1944
948e66d9 1945 return retval;
c906108c
SS
1946}
1947
4dfea560
DE
1948/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1949 You have to be careful here, since the size of the data area for the value
1950 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1951 than the old enclosing type, you have to allocate more space for the
1952 data. */
2b127877 1953
4dfea560
DE
1954void
1955set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1956{
3e3d7139
JG
1957 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1958 val->contents =
1959 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1960
1961 val->enclosing_type = new_encl_type;
2b127877
DB
1962}
1963
c906108c
SS
1964/* Given a value ARG1 (offset by OFFSET bytes)
1965 of a struct or union type ARG_TYPE,
1966 extract and return the value of one of its (non-static) fields.
1967 FIELDNO says which field. */
1968
f23631e4
AC
1969struct value *
1970value_primitive_field (struct value *arg1, int offset,
aa1ee363 1971 int fieldno, struct type *arg_type)
c906108c 1972{
f23631e4 1973 struct value *v;
52f0bd74 1974 struct type *type;
c906108c
SS
1975
1976 CHECK_TYPEDEF (arg_type);
1977 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
1978
1979 /* Call check_typedef on our type to make sure that, if TYPE
1980 is a TYPE_CODE_TYPEDEF, its length is set to the length
1981 of the target type instead of zero. However, we do not
1982 replace the typedef type by the target type, because we want
1983 to keep the typedef in order to be able to print the type
1984 description correctly. */
1985 check_typedef (type);
c906108c
SS
1986
1987 /* Handle packed fields */
1988
1989 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1990 {
4ea48cc1
DJ
1991 /* Create a new value for the bitfield, with bitpos and bitsize
1992 set. If possible, arrange offset and bitpos so that we can
1993 do a single aligned read of the size of the containing type.
1994 Otherwise, adjust offset to the byte containing the first
1995 bit. Assume that the address, offset, and embedded offset
1996 are sufficiently aligned. */
1997 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1998 int container_bitsize = TYPE_LENGTH (type) * 8;
1999
2000 v = allocate_value_lazy (type);
df407dfe 2001 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2002 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2003 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2004 v->bitpos = bitpos % container_bitsize;
2005 else
2006 v->bitpos = bitpos % 8;
38f12cfc
TT
2007 v->offset = (value_embedded_offset (arg1)
2008 + offset
2009 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2010 v->parent = arg1;
2011 value_incref (v->parent);
2012 if (!value_lazy (arg1))
2013 value_fetch_lazy (v);
c906108c
SS
2014 }
2015 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2016 {
2017 /* This field is actually a base subobject, so preserve the
2018 entire object's contents for later references to virtual
2019 bases, etc. */
a4e2ee12
DJ
2020
2021 /* Lazy register values with offsets are not supported. */
2022 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2023 value_fetch_lazy (arg1);
2024
2025 if (value_lazy (arg1))
3e3d7139 2026 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2027 else
3e3d7139
JG
2028 {
2029 v = allocate_value (value_enclosing_type (arg1));
2030 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2031 TYPE_LENGTH (value_enclosing_type (arg1)));
2032 }
2033 v->type = type;
df407dfe 2034 v->offset = value_offset (arg1);
13c3b5f5
AC
2035 v->embedded_offset = (offset + value_embedded_offset (arg1)
2036 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2037 }
2038 else
2039 {
2040 /* Plain old data member */
2041 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2042
2043 /* Lazy register values with offsets are not supported. */
2044 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2045 value_fetch_lazy (arg1);
2046
2047 if (value_lazy (arg1))
3e3d7139 2048 v = allocate_value_lazy (type);
c906108c 2049 else
3e3d7139
JG
2050 {
2051 v = allocate_value (type);
2052 memcpy (value_contents_raw (v),
2053 value_contents_raw (arg1) + offset,
2054 TYPE_LENGTH (type));
2055 }
df407dfe 2056 v->offset = (value_offset (arg1) + offset
13c3b5f5 2057 + value_embedded_offset (arg1));
c906108c 2058 }
74bcbdf3 2059 set_value_component_location (v, arg1);
9ee8fc9d 2060 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2061 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2062 return v;
2063}
2064
2065/* Given a value ARG1 of a struct or union type,
2066 extract and return the value of one of its (non-static) fields.
2067 FIELDNO says which field. */
2068
f23631e4 2069struct value *
aa1ee363 2070value_field (struct value *arg1, int fieldno)
c906108c 2071{
df407dfe 2072 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2073}
2074
2075/* Return a non-virtual function as a value.
2076 F is the list of member functions which contains the desired method.
0478d61c
FF
2077 J is an index into F which provides the desired method.
2078
2079 We only use the symbol for its address, so be happy with either a
2080 full symbol or a minimal symbol.
2081 */
c906108c 2082
f23631e4
AC
2083struct value *
2084value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 2085 int offset)
c906108c 2086{
f23631e4 2087 struct value *v;
52f0bd74 2088 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2089 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2090 struct symbol *sym;
0478d61c 2091 struct minimal_symbol *msym;
c906108c 2092
2570f2b7 2093 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2094 if (sym != NULL)
0478d61c 2095 {
5ae326fa
AC
2096 msym = NULL;
2097 }
2098 else
2099 {
2100 gdb_assert (sym == NULL);
0478d61c 2101 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2102 if (msym == NULL)
2103 return NULL;
0478d61c
FF
2104 }
2105
c906108c 2106 v = allocate_value (ftype);
0478d61c
FF
2107 if (sym)
2108 {
42ae5230 2109 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2110 }
2111 else
2112 {
bccdca4a
UW
2113 /* The minimal symbol might point to a function descriptor;
2114 resolve it to the actual code address instead. */
2115 struct objfile *objfile = msymbol_objfile (msym);
2116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2117
42ae5230
TT
2118 set_value_address (v,
2119 gdbarch_convert_from_func_ptr_addr
2120 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2121 }
c906108c
SS
2122
2123 if (arg1p)
c5aa993b 2124 {
df407dfe 2125 if (type != value_type (*arg1p))
c5aa993b
JM
2126 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2127 value_addr (*arg1p)));
2128
070ad9f0 2129 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2130 VALUE_OFFSET (*arg1p) += offset;
2131 */
c906108c
SS
2132 }
2133
2134 return v;
2135}
2136
c906108c 2137\f
4ea48cc1
DJ
2138/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2139 object at VALADDR. The bitfield starts at BITPOS bits and contains
2140 BITSIZE bits.
c906108c
SS
2141
2142 Extracting bits depends on endianness of the machine. Compute the
2143 number of least significant bits to discard. For big endian machines,
2144 we compute the total number of bits in the anonymous object, subtract
2145 off the bit count from the MSB of the object to the MSB of the
2146 bitfield, then the size of the bitfield, which leaves the LSB discard
2147 count. For little endian machines, the discard count is simply the
2148 number of bits from the LSB of the anonymous object to the LSB of the
2149 bitfield.
2150
2151 If the field is signed, we also do sign extension. */
2152
2153LONGEST
4ea48cc1
DJ
2154unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2155 int bitpos, int bitsize)
c906108c 2156{
4ea48cc1 2157 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2158 ULONGEST val;
2159 ULONGEST valmask;
c906108c 2160 int lsbcount;
4a76eae5 2161 int bytes_read;
c906108c 2162
4a76eae5
DJ
2163 /* Read the minimum number of bytes required; there may not be
2164 enough bytes to read an entire ULONGEST. */
c906108c 2165 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2166 if (bitsize)
2167 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2168 else
2169 bytes_read = TYPE_LENGTH (field_type);
2170
2171 val = extract_unsigned_integer (valaddr + bitpos / 8,
2172 bytes_read, byte_order);
c906108c
SS
2173
2174 /* Extract bits. See comment above. */
2175
4ea48cc1 2176 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2177 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2178 else
2179 lsbcount = (bitpos % 8);
2180 val >>= lsbcount;
2181
2182 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2183 If the field is signed, and is negative, then sign extend. */
2184
2185 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2186 {
2187 valmask = (((ULONGEST) 1) << bitsize) - 1;
2188 val &= valmask;
2189 if (!TYPE_UNSIGNED (field_type))
2190 {
2191 if (val & (valmask ^ (valmask >> 1)))
2192 {
2193 val |= ~valmask;
2194 }
2195 }
2196 }
2197 return (val);
2198}
2199
4ea48cc1
DJ
2200/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2201 VALADDR. See unpack_bits_as_long for more details. */
2202
2203LONGEST
2204unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2205{
2206 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2207 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2208 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2209
2210 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2211}
2212
c906108c
SS
2213/* Modify the value of a bitfield. ADDR points to a block of memory in
2214 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2215 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e 2216 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2217 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2218 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2219
2220void
50810684
UW
2221modify_field (struct type *type, gdb_byte *addr,
2222 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2223{
e17a4113 2224 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2225 ULONGEST oword;
2226 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2227 int bytesize;
2228
2229 /* Normalize BITPOS. */
2230 addr += bitpos / 8;
2231 bitpos %= 8;
c906108c
SS
2232
2233 /* If a negative fieldval fits in the field in question, chop
2234 off the sign extension bits. */
f4e88c8e
PH
2235 if ((~fieldval & ~(mask >> 1)) == 0)
2236 fieldval &= mask;
c906108c
SS
2237
2238 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2239 if (0 != (fieldval & ~mask))
c906108c
SS
2240 {
2241 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2242 we don't have a sprintf_longest. */
8a3fe4f8 2243 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2244
2245 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2246 fieldval &= mask;
c906108c
SS
2247 }
2248
19f220c3
JK
2249 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2250 false valgrind reports. */
2251
2252 bytesize = (bitpos + bitsize + 7) / 8;
2253 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
2254
2255 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2256 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 2257 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 2258
f4e88c8e 2259 oword &= ~(mask << bitpos);
c906108c
SS
2260 oword |= fieldval << bitpos;
2261
19f220c3 2262 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
2263}
2264\f
14d06750 2265/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2266
14d06750
DJ
2267void
2268pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2269{
e17a4113 2270 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2271 int len;
14d06750
DJ
2272
2273 type = check_typedef (type);
c906108c
SS
2274 len = TYPE_LENGTH (type);
2275
14d06750 2276 switch (TYPE_CODE (type))
c906108c 2277 {
c906108c
SS
2278 case TYPE_CODE_INT:
2279 case TYPE_CODE_CHAR:
2280 case TYPE_CODE_ENUM:
4f2aea11 2281 case TYPE_CODE_FLAGS:
c906108c
SS
2282 case TYPE_CODE_BOOL:
2283 case TYPE_CODE_RANGE:
0d5de010 2284 case TYPE_CODE_MEMBERPTR:
e17a4113 2285 store_signed_integer (buf, len, byte_order, num);
c906108c 2286 break;
c5aa993b 2287
c906108c
SS
2288 case TYPE_CODE_REF:
2289 case TYPE_CODE_PTR:
14d06750 2290 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2291 break;
c5aa993b 2292
c906108c 2293 default:
14d06750
DJ
2294 error (_("Unexpected type (%d) encountered for integer constant."),
2295 TYPE_CODE (type));
c906108c 2296 }
14d06750
DJ
2297}
2298
2299
595939de
PM
2300/* Pack NUM into BUF using a target format of TYPE. */
2301
2302void
2303pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2304{
2305 int len;
2306 enum bfd_endian byte_order;
2307
2308 type = check_typedef (type);
2309 len = TYPE_LENGTH (type);
2310 byte_order = gdbarch_byte_order (get_type_arch (type));
2311
2312 switch (TYPE_CODE (type))
2313 {
2314 case TYPE_CODE_INT:
2315 case TYPE_CODE_CHAR:
2316 case TYPE_CODE_ENUM:
2317 case TYPE_CODE_FLAGS:
2318 case TYPE_CODE_BOOL:
2319 case TYPE_CODE_RANGE:
2320 case TYPE_CODE_MEMBERPTR:
2321 store_unsigned_integer (buf, len, byte_order, num);
2322 break;
2323
2324 case TYPE_CODE_REF:
2325 case TYPE_CODE_PTR:
2326 store_typed_address (buf, type, (CORE_ADDR) num);
2327 break;
2328
2329 default:
2330 error (_("\
2331Unexpected type (%d) encountered for unsigned integer constant."),
2332 TYPE_CODE (type));
2333 }
2334}
2335
2336
14d06750
DJ
2337/* Convert C numbers into newly allocated values. */
2338
2339struct value *
2340value_from_longest (struct type *type, LONGEST num)
2341{
2342 struct value *val = allocate_value (type);
2343
2344 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2345 return val;
2346}
2347
4478b372 2348
595939de
PM
2349/* Convert C unsigned numbers into newly allocated values. */
2350
2351struct value *
2352value_from_ulongest (struct type *type, ULONGEST num)
2353{
2354 struct value *val = allocate_value (type);
2355
2356 pack_unsigned_long (value_contents_raw (val), type, num);
2357
2358 return val;
2359}
2360
2361
4478b372
JB
2362/* Create a value representing a pointer of type TYPE to the address
2363 ADDR. */
f23631e4 2364struct value *
4478b372
JB
2365value_from_pointer (struct type *type, CORE_ADDR addr)
2366{
f23631e4 2367 struct value *val = allocate_value (type);
a109c7c1 2368
cab0c772 2369 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2370 return val;
2371}
2372
2373
8acb6b92
TT
2374/* Create a value of type TYPE whose contents come from VALADDR, if it
2375 is non-null, and whose memory address (in the inferior) is
2376 ADDRESS. */
2377
2378struct value *
2379value_from_contents_and_address (struct type *type,
2380 const gdb_byte *valaddr,
2381 CORE_ADDR address)
2382{
2383 struct value *v = allocate_value (type);
a109c7c1 2384
8acb6b92
TT
2385 if (valaddr == NULL)
2386 set_value_lazy (v, 1);
2387 else
2388 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2389 set_value_address (v, address);
33d502b4 2390 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2391 return v;
2392}
2393
f23631e4 2394struct value *
fba45db2 2395value_from_double (struct type *type, DOUBLEST num)
c906108c 2396{
f23631e4 2397 struct value *val = allocate_value (type);
c906108c 2398 struct type *base_type = check_typedef (type);
52f0bd74 2399 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2400
2401 if (code == TYPE_CODE_FLT)
2402 {
990a07ab 2403 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2404 }
2405 else
8a3fe4f8 2406 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2407
2408 return val;
2409}
994b9211 2410
27bc4d80 2411struct value *
4ef30785 2412value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2413{
2414 struct value *val = allocate_value (type);
27bc4d80 2415
4ef30785 2416 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
2417 return val;
2418}
2419
994b9211
AC
2420struct value *
2421coerce_ref (struct value *arg)
2422{
df407dfe 2423 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 2424
994b9211
AC
2425 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2426 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2427 unpack_pointer (value_type (arg),
0fd88904 2428 value_contents (arg)));
994b9211
AC
2429 return arg;
2430}
2431
2432struct value *
2433coerce_array (struct value *arg)
2434{
f3134b88
TT
2435 struct type *type;
2436
994b9211 2437 arg = coerce_ref (arg);
f3134b88
TT
2438 type = check_typedef (value_type (arg));
2439
2440 switch (TYPE_CODE (type))
2441 {
2442 case TYPE_CODE_ARRAY:
7346b668 2443 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
2444 arg = value_coerce_array (arg);
2445 break;
2446 case TYPE_CODE_FUNC:
2447 arg = value_coerce_function (arg);
2448 break;
2449 }
994b9211
AC
2450 return arg;
2451}
c906108c 2452\f
c906108c 2453
48436ce6
AC
2454/* Return true if the function returning the specified type is using
2455 the convention of returning structures in memory (passing in the
82585c72 2456 address as a hidden first parameter). */
c906108c
SS
2457
2458int
d80b854b
UW
2459using_struct_return (struct gdbarch *gdbarch,
2460 struct type *func_type, struct type *value_type)
c906108c 2461{
52f0bd74 2462 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2463
2464 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2465 error (_("Function return type unknown."));
c906108c 2466
667e784f
AC
2467 if (code == TYPE_CODE_VOID)
2468 /* A void return value is never in memory. See also corresponding
44e5158b 2469 code in "print_return_value". */
667e784f
AC
2470 return 0;
2471
92ad9cd9 2472 /* Probe the architecture for the return-value convention. */
d80b854b 2473 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2474 NULL, NULL, NULL)
31db7b6c 2475 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2476}
2477
42be36b3
CT
2478/* Set the initialized field in a value struct. */
2479
2480void
2481set_value_initialized (struct value *val, int status)
2482{
2483 val->initialized = status;
2484}
2485
2486/* Return the initialized field in a value struct. */
2487
2488int
2489value_initialized (struct value *val)
2490{
2491 return val->initialized;
2492}
2493
c906108c 2494void
fba45db2 2495_initialize_values (void)
c906108c 2496{
1a966eab
AC
2497 add_cmd ("convenience", no_class, show_convenience, _("\
2498Debugger convenience (\"$foo\") variables.\n\
c906108c 2499These variables are created when you assign them values;\n\
1a966eab
AC
2500thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2501\n\
c906108c
SS
2502A few convenience variables are given values automatically:\n\
2503\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2504\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2505 &showlist);
2506
2507 add_cmd ("values", no_class, show_values,
1a966eab 2508 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2509 &showlist);
53e5f3cf
AS
2510
2511 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2512Initialize a convenience variable if necessary.\n\
2513init-if-undefined VARIABLE = EXPRESSION\n\
2514Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2515exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2516VARIABLE is already initialized."));
bc3b79fd
TJB
2517
2518 add_prefix_cmd ("function", no_class, function_command, _("\
2519Placeholder command for showing help on convenience functions."),
2520 &functionlist, "function ", 0, &cmdlist);
c906108c 2521}
This page took 1.186166 seconds and 4 git commands to generate.