ChangeLog:
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 5 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
0914bcdb
SS
45#include "tracepoint.h"
46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
66static struct cmd_list_element *functionlist;
67
91294c83
AC
68struct value
69{
70 /* Type of value; either not an lval, or one of the various
71 different possible kinds of lval. */
72 enum lval_type lval;
73
74 /* Is it modifiable? Only relevant if lval != not_lval. */
75 int modifiable;
76
77 /* Location of value (if lval). */
78 union
79 {
80 /* If lval == lval_memory, this is the address in the inferior.
81 If lval == lval_register, this is the byte offset into the
82 registers structure. */
83 CORE_ADDR address;
84
85 /* Pointer to internal variable. */
86 struct internalvar *internalvar;
5f5233d4
PA
87
88 /* If lval == lval_computed, this is a set of function pointers
89 to use to access and describe the value, and a closure pointer
90 for them to use. */
91 struct
92 {
93 struct lval_funcs *funcs; /* Functions to call. */
94 void *closure; /* Closure for those functions to use. */
95 } computed;
91294c83
AC
96 } location;
97
98 /* Describes offset of a value within lval of a structure in bytes.
99 If lval == lval_memory, this is an offset to the address. If
100 lval == lval_register, this is a further offset from
101 location.address within the registers structure. Note also the
102 member embedded_offset below. */
103 int offset;
104
105 /* Only used for bitfields; number of bits contained in them. */
106 int bitsize;
107
108 /* Only used for bitfields; position of start of field. For
32c9a795 109 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 110 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
111 int bitpos;
112
4ea48cc1
DJ
113 /* Only used for bitfields; the containing value. This allows a
114 single read from the target when displaying multiple
115 bitfields. */
116 struct value *parent;
117
91294c83
AC
118 /* Frame register value is relative to. This will be described in
119 the lval enum above as "lval_register". */
120 struct frame_id frame_id;
121
122 /* Type of the value. */
123 struct type *type;
124
125 /* If a value represents a C++ object, then the `type' field gives
126 the object's compile-time type. If the object actually belongs
127 to some class derived from `type', perhaps with other base
128 classes and additional members, then `type' is just a subobject
129 of the real thing, and the full object is probably larger than
130 `type' would suggest.
131
132 If `type' is a dynamic class (i.e. one with a vtable), then GDB
133 can actually determine the object's run-time type by looking at
134 the run-time type information in the vtable. When this
135 information is available, we may elect to read in the entire
136 object, for several reasons:
137
138 - When printing the value, the user would probably rather see the
139 full object, not just the limited portion apparent from the
140 compile-time type.
141
142 - If `type' has virtual base classes, then even printing `type'
143 alone may require reaching outside the `type' portion of the
144 object to wherever the virtual base class has been stored.
145
146 When we store the entire object, `enclosing_type' is the run-time
147 type -- the complete object -- and `embedded_offset' is the
148 offset of `type' within that larger type, in bytes. The
149 value_contents() macro takes `embedded_offset' into account, so
150 most GDB code continues to see the `type' portion of the value,
151 just as the inferior would.
152
153 If `type' is a pointer to an object, then `enclosing_type' is a
154 pointer to the object's run-time type, and `pointed_to_offset' is
155 the offset in bytes from the full object to the pointed-to object
156 -- that is, the value `embedded_offset' would have if we followed
157 the pointer and fetched the complete object. (I don't really see
158 the point. Why not just determine the run-time type when you
159 indirect, and avoid the special case? The contents don't matter
160 until you indirect anyway.)
161
162 If we're not doing anything fancy, `enclosing_type' is equal to
163 `type', and `embedded_offset' is zero, so everything works
164 normally. */
165 struct type *enclosing_type;
166 int embedded_offset;
167 int pointed_to_offset;
168
169 /* Values are stored in a chain, so that they can be deleted easily
170 over calls to the inferior. Values assigned to internal
a08702d6
TJB
171 variables, put into the value history or exposed to Python are
172 taken off this list. */
91294c83
AC
173 struct value *next;
174
175 /* Register number if the value is from a register. */
176 short regnum;
177
178 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
91294c83
AC
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 char lazy;
193
194 /* If nonzero, this is the value of a variable which does not
195 actually exist in the program. */
196 char optimized_out;
197
42be36b3
CT
198 /* If value is a variable, is it initialized or not. */
199 int initialized;
200
4e5d721f
DE
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 int stack;
204
3e3d7139
JG
205 /* Actual contents of the value. Target byte-order. NULL or not
206 valid if lazy is nonzero. */
207 gdb_byte *contents;
828d3400
DJ
208
209 /* The number of references to this value. When a value is created,
210 the value chain holds a reference, so REFERENCE_COUNT is 1. If
211 release_value is called, this value is removed from the chain but
212 the caller of release_value now has a reference to this value.
213 The caller must arrange for a call to value_free later. */
214 int reference_count;
91294c83
AC
215};
216
581e13c1 217/* Prototypes for local functions. */
c906108c 218
a14ed312 219static void show_values (char *, int);
c906108c 220
a14ed312 221static void show_convenience (char *, int);
c906108c 222
c906108c
SS
223
224/* The value-history records all the values printed
225 by print commands during this session. Each chunk
226 records 60 consecutive values. The first chunk on
227 the chain records the most recent values.
228 The total number of values is in value_history_count. */
229
230#define VALUE_HISTORY_CHUNK 60
231
232struct value_history_chunk
c5aa993b
JM
233 {
234 struct value_history_chunk *next;
f23631e4 235 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 236 };
c906108c
SS
237
238/* Chain of chunks now in use. */
239
240static struct value_history_chunk *value_history_chain;
241
581e13c1 242static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 243
c906108c
SS
244\f
245/* List of all value objects currently allocated
246 (except for those released by calls to release_value)
247 This is so they can be freed after each command. */
248
f23631e4 249static struct value *all_values;
c906108c 250
3e3d7139
JG
251/* Allocate a lazy value for type TYPE. Its actual content is
252 "lazily" allocated too: the content field of the return value is
253 NULL; it will be allocated when it is fetched from the target. */
c906108c 254
f23631e4 255struct value *
3e3d7139 256allocate_value_lazy (struct type *type)
c906108c 257{
f23631e4 258 struct value *val;
c54eabfa
JK
259
260 /* Call check_typedef on our type to make sure that, if TYPE
261 is a TYPE_CODE_TYPEDEF, its length is set to the length
262 of the target type instead of zero. However, we do not
263 replace the typedef type by the target type, because we want
264 to keep the typedef in order to be able to set the VAL's type
265 description correctly. */
266 check_typedef (type);
c906108c 267
3e3d7139
JG
268 val = (struct value *) xzalloc (sizeof (struct value));
269 val->contents = NULL;
df407dfe 270 val->next = all_values;
c906108c 271 all_values = val;
df407dfe 272 val->type = type;
4754a64e 273 val->enclosing_type = type;
c906108c 274 VALUE_LVAL (val) = not_lval;
42ae5230 275 val->location.address = 0;
1df6926e 276 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
277 val->offset = 0;
278 val->bitpos = 0;
279 val->bitsize = 0;
9ee8fc9d 280 VALUE_REGNUM (val) = -1;
3e3d7139 281 val->lazy = 1;
feb13ab0 282 val->optimized_out = 0;
13c3b5f5 283 val->embedded_offset = 0;
b44d461b 284 val->pointed_to_offset = 0;
c906108c 285 val->modifiable = 1;
42be36b3 286 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
287
288 /* Values start out on the all_values chain. */
289 val->reference_count = 1;
290
c906108c
SS
291 return val;
292}
293
3e3d7139
JG
294/* Allocate the contents of VAL if it has not been allocated yet. */
295
296void
297allocate_value_contents (struct value *val)
298{
299 if (!val->contents)
300 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
301}
302
303/* Allocate a value and its contents for type TYPE. */
304
305struct value *
306allocate_value (struct type *type)
307{
308 struct value *val = allocate_value_lazy (type);
a109c7c1 309
3e3d7139
JG
310 allocate_value_contents (val);
311 val->lazy = 0;
312 return val;
313}
314
c906108c 315/* Allocate a value that has the correct length
938f5214 316 for COUNT repetitions of type TYPE. */
c906108c 317
f23631e4 318struct value *
fba45db2 319allocate_repeat_value (struct type *type, int count)
c906108c 320{
c5aa993b 321 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
322 /* FIXME-type-allocation: need a way to free this type when we are
323 done with it. */
e3506a9f
UW
324 struct type *array_type
325 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 326
e3506a9f 327 return allocate_value (array_type);
c906108c
SS
328}
329
5f5233d4
PA
330struct value *
331allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334{
41e8491f 335 struct value *v = allocate_value_lazy (type);
a109c7c1 336
5f5233d4
PA
337 VALUE_LVAL (v) = lval_computed;
338 v->location.computed.funcs = funcs;
339 v->location.computed.closure = closure;
5f5233d4
PA
340
341 return v;
342}
343
df407dfe
AC
344/* Accessor methods. */
345
17cf0ecd
AC
346struct value *
347value_next (struct value *value)
348{
349 return value->next;
350}
351
df407dfe 352struct type *
0e03807e 353value_type (const struct value *value)
df407dfe
AC
354{
355 return value->type;
356}
04624583
AC
357void
358deprecated_set_value_type (struct value *value, struct type *type)
359{
360 value->type = type;
361}
df407dfe
AC
362
363int
0e03807e 364value_offset (const struct value *value)
df407dfe
AC
365{
366 return value->offset;
367}
f5cf64a7
AC
368void
369set_value_offset (struct value *value, int offset)
370{
371 value->offset = offset;
372}
df407dfe
AC
373
374int
0e03807e 375value_bitpos (const struct value *value)
df407dfe
AC
376{
377 return value->bitpos;
378}
9bbda503
AC
379void
380set_value_bitpos (struct value *value, int bit)
381{
382 value->bitpos = bit;
383}
df407dfe
AC
384
385int
0e03807e 386value_bitsize (const struct value *value)
df407dfe
AC
387{
388 return value->bitsize;
389}
9bbda503
AC
390void
391set_value_bitsize (struct value *value, int bit)
392{
393 value->bitsize = bit;
394}
df407dfe 395
4ea48cc1
DJ
396struct value *
397value_parent (struct value *value)
398{
399 return value->parent;
400}
401
fc1a4b47 402gdb_byte *
990a07ab
AC
403value_contents_raw (struct value *value)
404{
3e3d7139
JG
405 allocate_value_contents (value);
406 return value->contents + value->embedded_offset;
990a07ab
AC
407}
408
fc1a4b47 409gdb_byte *
990a07ab
AC
410value_contents_all_raw (struct value *value)
411{
3e3d7139
JG
412 allocate_value_contents (value);
413 return value->contents;
990a07ab
AC
414}
415
4754a64e
AC
416struct type *
417value_enclosing_type (struct value *value)
418{
419 return value->enclosing_type;
420}
421
0e03807e
TT
422static void
423require_not_optimized_out (struct value *value)
424{
425 if (value->optimized_out)
426 error (_("value has been optimized out"));
427}
428
fc1a4b47 429const gdb_byte *
0e03807e 430value_contents_for_printing (struct value *value)
46615f07
AC
431{
432 if (value->lazy)
433 value_fetch_lazy (value);
3e3d7139 434 return value->contents;
46615f07
AC
435}
436
de4127a3
PA
437const gdb_byte *
438value_contents_for_printing_const (const struct value *value)
439{
440 gdb_assert (!value->lazy);
441 return value->contents;
442}
443
0e03807e
TT
444const gdb_byte *
445value_contents_all (struct value *value)
446{
447 const gdb_byte *result = value_contents_for_printing (value);
448 require_not_optimized_out (value);
449 return result;
450}
451
d69fe07e
AC
452int
453value_lazy (struct value *value)
454{
455 return value->lazy;
456}
457
dfa52d88
AC
458void
459set_value_lazy (struct value *value, int val)
460{
461 value->lazy = val;
462}
463
4e5d721f
DE
464int
465value_stack (struct value *value)
466{
467 return value->stack;
468}
469
470void
471set_value_stack (struct value *value, int val)
472{
473 value->stack = val;
474}
475
fc1a4b47 476const gdb_byte *
0fd88904
AC
477value_contents (struct value *value)
478{
0e03807e
TT
479 const gdb_byte *result = value_contents_writeable (value);
480 require_not_optimized_out (value);
481 return result;
0fd88904
AC
482}
483
fc1a4b47 484gdb_byte *
0fd88904
AC
485value_contents_writeable (struct value *value)
486{
487 if (value->lazy)
488 value_fetch_lazy (value);
fc0c53a0 489 return value_contents_raw (value);
0fd88904
AC
490}
491
a6c442d8
MK
492/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
493 this function is different from value_equal; in C the operator ==
494 can return 0 even if the two values being compared are equal. */
495
496int
497value_contents_equal (struct value *val1, struct value *val2)
498{
499 struct type *type1;
500 struct type *type2;
501 int len;
502
503 type1 = check_typedef (value_type (val1));
504 type2 = check_typedef (value_type (val2));
505 len = TYPE_LENGTH (type1);
506 if (len != TYPE_LENGTH (type2))
507 return 0;
508
509 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
510}
511
feb13ab0
AC
512int
513value_optimized_out (struct value *value)
514{
515 return value->optimized_out;
516}
517
518void
519set_value_optimized_out (struct value *value, int val)
520{
521 value->optimized_out = val;
522}
13c3b5f5 523
0e03807e
TT
524int
525value_entirely_optimized_out (const struct value *value)
526{
527 if (!value->optimized_out)
528 return 0;
529 if (value->lval != lval_computed
ba19bb4d 530 || !value->location.computed.funcs->check_any_valid)
0e03807e 531 return 1;
b65c7efe 532 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
533}
534
535int
536value_bits_valid (const struct value *value, int offset, int length)
537{
538 if (value == NULL || !value->optimized_out)
539 return 1;
540 if (value->lval != lval_computed
541 || !value->location.computed.funcs->check_validity)
542 return 0;
543 return value->location.computed.funcs->check_validity (value, offset,
544 length);
545}
546
8cf6f0b1
TT
547int
548value_bits_synthetic_pointer (const struct value *value,
549 int offset, int length)
550{
551 if (value == NULL || value->lval != lval_computed
552 || !value->location.computed.funcs->check_synthetic_pointer)
553 return 0;
554 return value->location.computed.funcs->check_synthetic_pointer (value,
555 offset,
556 length);
557}
558
13c3b5f5
AC
559int
560value_embedded_offset (struct value *value)
561{
562 return value->embedded_offset;
563}
564
565void
566set_value_embedded_offset (struct value *value, int val)
567{
568 value->embedded_offset = val;
569}
b44d461b
AC
570
571int
572value_pointed_to_offset (struct value *value)
573{
574 return value->pointed_to_offset;
575}
576
577void
578set_value_pointed_to_offset (struct value *value, int val)
579{
580 value->pointed_to_offset = val;
581}
13bb5560 582
5f5233d4
PA
583struct lval_funcs *
584value_computed_funcs (struct value *v)
585{
586 gdb_assert (VALUE_LVAL (v) == lval_computed);
587
588 return v->location.computed.funcs;
589}
590
591void *
0e03807e 592value_computed_closure (const struct value *v)
5f5233d4 593{
0e03807e 594 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
595
596 return v->location.computed.closure;
597}
598
13bb5560
AC
599enum lval_type *
600deprecated_value_lval_hack (struct value *value)
601{
602 return &value->lval;
603}
604
42ae5230 605CORE_ADDR
de4127a3 606value_address (const struct value *value)
42ae5230
TT
607{
608 if (value->lval == lval_internalvar
609 || value->lval == lval_internalvar_component)
610 return 0;
611 return value->location.address + value->offset;
612}
613
614CORE_ADDR
615value_raw_address (struct value *value)
616{
617 if (value->lval == lval_internalvar
618 || value->lval == lval_internalvar_component)
619 return 0;
620 return value->location.address;
621}
622
623void
624set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 625{
42ae5230
TT
626 gdb_assert (value->lval != lval_internalvar
627 && value->lval != lval_internalvar_component);
628 value->location.address = addr;
13bb5560
AC
629}
630
631struct internalvar **
632deprecated_value_internalvar_hack (struct value *value)
633{
634 return &value->location.internalvar;
635}
636
637struct frame_id *
638deprecated_value_frame_id_hack (struct value *value)
639{
640 return &value->frame_id;
641}
642
643short *
644deprecated_value_regnum_hack (struct value *value)
645{
646 return &value->regnum;
647}
88e3b34b
AC
648
649int
650deprecated_value_modifiable (struct value *value)
651{
652 return value->modifiable;
653}
654void
655deprecated_set_value_modifiable (struct value *value, int modifiable)
656{
657 value->modifiable = modifiable;
658}
990a07ab 659\f
c906108c
SS
660/* Return a mark in the value chain. All values allocated after the
661 mark is obtained (except for those released) are subject to being freed
662 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 663struct value *
fba45db2 664value_mark (void)
c906108c
SS
665{
666 return all_values;
667}
668
828d3400
DJ
669/* Take a reference to VAL. VAL will not be deallocated until all
670 references are released. */
671
672void
673value_incref (struct value *val)
674{
675 val->reference_count++;
676}
677
678/* Release a reference to VAL, which was acquired with value_incref.
679 This function is also called to deallocate values from the value
680 chain. */
681
3e3d7139
JG
682void
683value_free (struct value *val)
684{
685 if (val)
5f5233d4 686 {
828d3400
DJ
687 gdb_assert (val->reference_count > 0);
688 val->reference_count--;
689 if (val->reference_count > 0)
690 return;
691
4ea48cc1
DJ
692 /* If there's an associated parent value, drop our reference to
693 it. */
694 if (val->parent != NULL)
695 value_free (val->parent);
696
5f5233d4
PA
697 if (VALUE_LVAL (val) == lval_computed)
698 {
699 struct lval_funcs *funcs = val->location.computed.funcs;
700
701 if (funcs->free_closure)
702 funcs->free_closure (val);
703 }
704
705 xfree (val->contents);
706 }
3e3d7139
JG
707 xfree (val);
708}
709
c906108c
SS
710/* Free all values allocated since MARK was obtained by value_mark
711 (except for those released). */
712void
f23631e4 713value_free_to_mark (struct value *mark)
c906108c 714{
f23631e4
AC
715 struct value *val;
716 struct value *next;
c906108c
SS
717
718 for (val = all_values; val && val != mark; val = next)
719 {
df407dfe 720 next = val->next;
c906108c
SS
721 value_free (val);
722 }
723 all_values = val;
724}
725
726/* Free all the values that have been allocated (except for those released).
725e88af
DE
727 Call after each command, successful or not.
728 In practice this is called before each command, which is sufficient. */
c906108c
SS
729
730void
fba45db2 731free_all_values (void)
c906108c 732{
f23631e4
AC
733 struct value *val;
734 struct value *next;
c906108c
SS
735
736 for (val = all_values; val; val = next)
737 {
df407dfe 738 next = val->next;
c906108c
SS
739 value_free (val);
740 }
741
742 all_values = 0;
743}
744
0cf6dd15
TJB
745/* Frees all the elements in a chain of values. */
746
747void
748free_value_chain (struct value *v)
749{
750 struct value *next;
751
752 for (; v; v = next)
753 {
754 next = value_next (v);
755 value_free (v);
756 }
757}
758
c906108c
SS
759/* Remove VAL from the chain all_values
760 so it will not be freed automatically. */
761
762void
f23631e4 763release_value (struct value *val)
c906108c 764{
f23631e4 765 struct value *v;
c906108c
SS
766
767 if (all_values == val)
768 {
769 all_values = val->next;
06a64a0b 770 val->next = NULL;
c906108c
SS
771 return;
772 }
773
774 for (v = all_values; v; v = v->next)
775 {
776 if (v->next == val)
777 {
778 v->next = val->next;
06a64a0b 779 val->next = NULL;
c906108c
SS
780 break;
781 }
782 }
783}
784
785/* Release all values up to mark */
f23631e4
AC
786struct value *
787value_release_to_mark (struct value *mark)
c906108c 788{
f23631e4
AC
789 struct value *val;
790 struct value *next;
c906108c 791
df407dfe
AC
792 for (val = next = all_values; next; next = next->next)
793 if (next->next == mark)
c906108c 794 {
df407dfe
AC
795 all_values = next->next;
796 next->next = NULL;
c906108c
SS
797 return val;
798 }
799 all_values = 0;
800 return val;
801}
802
803/* Return a copy of the value ARG.
804 It contains the same contents, for same memory address,
805 but it's a different block of storage. */
806
f23631e4
AC
807struct value *
808value_copy (struct value *arg)
c906108c 809{
4754a64e 810 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
811 struct value *val;
812
813 if (value_lazy (arg))
814 val = allocate_value_lazy (encl_type);
815 else
816 val = allocate_value (encl_type);
df407dfe 817 val->type = arg->type;
c906108c 818 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 819 val->location = arg->location;
df407dfe
AC
820 val->offset = arg->offset;
821 val->bitpos = arg->bitpos;
822 val->bitsize = arg->bitsize;
1df6926e 823 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 824 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 825 val->lazy = arg->lazy;
feb13ab0 826 val->optimized_out = arg->optimized_out;
13c3b5f5 827 val->embedded_offset = value_embedded_offset (arg);
b44d461b 828 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 829 val->modifiable = arg->modifiable;
d69fe07e 830 if (!value_lazy (val))
c906108c 831 {
990a07ab 832 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 833 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
834
835 }
4ea48cc1
DJ
836 val->parent = arg->parent;
837 if (val->parent)
838 value_incref (val->parent);
5f5233d4
PA
839 if (VALUE_LVAL (val) == lval_computed)
840 {
841 struct lval_funcs *funcs = val->location.computed.funcs;
842
843 if (funcs->copy_closure)
844 val->location.computed.closure = funcs->copy_closure (val);
845 }
c906108c
SS
846 return val;
847}
74bcbdf3 848
c37f7098
KW
849/* Return a version of ARG that is non-lvalue. */
850
851struct value *
852value_non_lval (struct value *arg)
853{
854 if (VALUE_LVAL (arg) != not_lval)
855 {
856 struct type *enc_type = value_enclosing_type (arg);
857 struct value *val = allocate_value (enc_type);
858
859 memcpy (value_contents_all_raw (val), value_contents_all (arg),
860 TYPE_LENGTH (enc_type));
861 val->type = arg->type;
862 set_value_embedded_offset (val, value_embedded_offset (arg));
863 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
864 return val;
865 }
866 return arg;
867}
868
74bcbdf3 869void
0e03807e
TT
870set_value_component_location (struct value *component,
871 const struct value *whole)
74bcbdf3 872{
0e03807e 873 if (whole->lval == lval_internalvar)
74bcbdf3
PA
874 VALUE_LVAL (component) = lval_internalvar_component;
875 else
0e03807e 876 VALUE_LVAL (component) = whole->lval;
5f5233d4 877
74bcbdf3 878 component->location = whole->location;
0e03807e 879 if (whole->lval == lval_computed)
5f5233d4
PA
880 {
881 struct lval_funcs *funcs = whole->location.computed.funcs;
882
883 if (funcs->copy_closure)
884 component->location.computed.closure = funcs->copy_closure (whole);
885 }
74bcbdf3
PA
886}
887
c906108c
SS
888\f
889/* Access to the value history. */
890
891/* Record a new value in the value history.
892 Returns the absolute history index of the entry.
893 Result of -1 indicates the value was not saved; otherwise it is the
894 value history index of this new item. */
895
896int
f23631e4 897record_latest_value (struct value *val)
c906108c
SS
898{
899 int i;
900
901 /* We don't want this value to have anything to do with the inferior anymore.
902 In particular, "set $1 = 50" should not affect the variable from which
903 the value was taken, and fast watchpoints should be able to assume that
904 a value on the value history never changes. */
d69fe07e 905 if (value_lazy (val))
c906108c
SS
906 value_fetch_lazy (val);
907 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
908 from. This is a bit dubious, because then *&$1 does not just return $1
909 but the current contents of that location. c'est la vie... */
910 val->modifiable = 0;
911 release_value (val);
912
913 /* Here we treat value_history_count as origin-zero
914 and applying to the value being stored now. */
915
916 i = value_history_count % VALUE_HISTORY_CHUNK;
917 if (i == 0)
918 {
f23631e4 919 struct value_history_chunk *new
a109c7c1
MS
920 = (struct value_history_chunk *)
921
c5aa993b 922 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
923 memset (new->values, 0, sizeof new->values);
924 new->next = value_history_chain;
925 value_history_chain = new;
926 }
927
928 value_history_chain->values[i] = val;
929
930 /* Now we regard value_history_count as origin-one
931 and applying to the value just stored. */
932
933 return ++value_history_count;
934}
935
936/* Return a copy of the value in the history with sequence number NUM. */
937
f23631e4 938struct value *
fba45db2 939access_value_history (int num)
c906108c 940{
f23631e4 941 struct value_history_chunk *chunk;
52f0bd74
AC
942 int i;
943 int absnum = num;
c906108c
SS
944
945 if (absnum <= 0)
946 absnum += value_history_count;
947
948 if (absnum <= 0)
949 {
950 if (num == 0)
8a3fe4f8 951 error (_("The history is empty."));
c906108c 952 else if (num == 1)
8a3fe4f8 953 error (_("There is only one value in the history."));
c906108c 954 else
8a3fe4f8 955 error (_("History does not go back to $$%d."), -num);
c906108c
SS
956 }
957 if (absnum > value_history_count)
8a3fe4f8 958 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
959
960 absnum--;
961
962 /* Now absnum is always absolute and origin zero. */
963
964 chunk = value_history_chain;
3e43a32a
MS
965 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
966 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
967 i > 0; i--)
968 chunk = chunk->next;
969
970 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
971}
972
c906108c 973static void
fba45db2 974show_values (char *num_exp, int from_tty)
c906108c 975{
52f0bd74 976 int i;
f23631e4 977 struct value *val;
c906108c
SS
978 static int num = 1;
979
980 if (num_exp)
981 {
f132ba9d
TJB
982 /* "show values +" should print from the stored position.
983 "show values <exp>" should print around value number <exp>. */
c906108c 984 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 985 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
986 }
987 else
988 {
f132ba9d 989 /* "show values" means print the last 10 values. */
c906108c
SS
990 num = value_history_count - 9;
991 }
992
993 if (num <= 0)
994 num = 1;
995
996 for (i = num; i < num + 10 && i <= value_history_count; i++)
997 {
79a45b7d 998 struct value_print_options opts;
a109c7c1 999
c906108c 1000 val = access_value_history (i);
a3f17187 1001 printf_filtered (("$%d = "), i);
79a45b7d
TT
1002 get_user_print_options (&opts);
1003 value_print (val, gdb_stdout, &opts);
a3f17187 1004 printf_filtered (("\n"));
c906108c
SS
1005 }
1006
f132ba9d 1007 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1008 num += 10;
1009
1010 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1011 "show values +". If num_exp is null, this is unnecessary, since
1012 "show values +" is not useful after "show values". */
c906108c
SS
1013 if (from_tty && num_exp)
1014 {
1015 num_exp[0] = '+';
1016 num_exp[1] = '\0';
1017 }
1018}
1019\f
1020/* Internal variables. These are variables within the debugger
1021 that hold values assigned by debugger commands.
1022 The user refers to them with a '$' prefix
1023 that does not appear in the variable names stored internally. */
1024
4fa62494
UW
1025struct internalvar
1026{
1027 struct internalvar *next;
1028 char *name;
4fa62494 1029
78267919
UW
1030 /* We support various different kinds of content of an internal variable.
1031 enum internalvar_kind specifies the kind, and union internalvar_data
1032 provides the data associated with this particular kind. */
1033
1034 enum internalvar_kind
1035 {
1036 /* The internal variable is empty. */
1037 INTERNALVAR_VOID,
1038
1039 /* The value of the internal variable is provided directly as
1040 a GDB value object. */
1041 INTERNALVAR_VALUE,
1042
1043 /* A fresh value is computed via a call-back routine on every
1044 access to the internal variable. */
1045 INTERNALVAR_MAKE_VALUE,
4fa62494 1046
78267919
UW
1047 /* The internal variable holds a GDB internal convenience function. */
1048 INTERNALVAR_FUNCTION,
1049
cab0c772
UW
1050 /* The variable holds an integer value. */
1051 INTERNALVAR_INTEGER,
1052
1053 /* The variable holds a pointer value. */
1054 INTERNALVAR_POINTER,
78267919
UW
1055
1056 /* The variable holds a GDB-provided string. */
1057 INTERNALVAR_STRING,
1058
1059 } kind;
4fa62494 1060
4fa62494
UW
1061 union internalvar_data
1062 {
78267919
UW
1063 /* A value object used with INTERNALVAR_VALUE. */
1064 struct value *value;
1065
1066 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1067 internalvar_make_value make_value;
1068
1069 /* The internal function used with INTERNALVAR_FUNCTION. */
1070 struct
1071 {
1072 struct internal_function *function;
1073 /* True if this is the canonical name for the function. */
1074 int canonical;
1075 } fn;
1076
cab0c772 1077 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1078 struct
1079 {
1080 /* If type is non-NULL, it will be used as the type to generate
1081 a value for this internal variable. If type is NULL, a default
1082 integer type for the architecture is used. */
1083 struct type *type;
cab0c772
UW
1084 LONGEST val;
1085 } integer;
1086
1087 /* A pointer value used with INTERNALVAR_POINTER. */
1088 struct
1089 {
1090 struct type *type;
1091 CORE_ADDR val;
1092 } pointer;
78267919
UW
1093
1094 /* A string value used with INTERNALVAR_STRING. */
1095 char *string;
4fa62494
UW
1096 } u;
1097};
1098
c906108c
SS
1099static struct internalvar *internalvars;
1100
3e43a32a
MS
1101/* If the variable does not already exist create it and give it the
1102 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1103static void
1104init_if_undefined_command (char* args, int from_tty)
1105{
1106 struct internalvar* intvar;
1107
1108 /* Parse the expression - this is taken from set_command(). */
1109 struct expression *expr = parse_expression (args);
1110 register struct cleanup *old_chain =
1111 make_cleanup (free_current_contents, &expr);
1112
1113 /* Validate the expression.
1114 Was the expression an assignment?
1115 Or even an expression at all? */
1116 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1117 error (_("Init-if-undefined requires an assignment expression."));
1118
1119 /* Extract the variable from the parsed expression.
1120 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1121 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1122 error (_("The first parameter to init-if-undefined "
1123 "should be a GDB variable."));
53e5f3cf
AS
1124 intvar = expr->elts[2].internalvar;
1125
1126 /* Only evaluate the expression if the lvalue is void.
1127 This may still fail if the expresssion is invalid. */
78267919 1128 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1129 evaluate_expression (expr);
1130
1131 do_cleanups (old_chain);
1132}
1133
1134
c906108c
SS
1135/* Look up an internal variable with name NAME. NAME should not
1136 normally include a dollar sign.
1137
1138 If the specified internal variable does not exist,
c4a3d09a 1139 the return value is NULL. */
c906108c
SS
1140
1141struct internalvar *
bc3b79fd 1142lookup_only_internalvar (const char *name)
c906108c 1143{
52f0bd74 1144 struct internalvar *var;
c906108c
SS
1145
1146 for (var = internalvars; var; var = var->next)
5cb316ef 1147 if (strcmp (var->name, name) == 0)
c906108c
SS
1148 return var;
1149
c4a3d09a
MF
1150 return NULL;
1151}
1152
1153
1154/* Create an internal variable with name NAME and with a void value.
1155 NAME should not normally include a dollar sign. */
1156
1157struct internalvar *
bc3b79fd 1158create_internalvar (const char *name)
c4a3d09a
MF
1159{
1160 struct internalvar *var;
a109c7c1 1161
c906108c 1162 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1163 var->name = concat (name, (char *)NULL);
78267919 1164 var->kind = INTERNALVAR_VOID;
c906108c
SS
1165 var->next = internalvars;
1166 internalvars = var;
1167 return var;
1168}
1169
4aa995e1
PA
1170/* Create an internal variable with name NAME and register FUN as the
1171 function that value_of_internalvar uses to create a value whenever
1172 this variable is referenced. NAME should not normally include a
1173 dollar sign. */
1174
1175struct internalvar *
1176create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1177{
4fa62494 1178 struct internalvar *var = create_internalvar (name);
a109c7c1 1179
78267919
UW
1180 var->kind = INTERNALVAR_MAKE_VALUE;
1181 var->u.make_value = fun;
4aa995e1
PA
1182 return var;
1183}
c4a3d09a
MF
1184
1185/* Look up an internal variable with name NAME. NAME should not
1186 normally include a dollar sign.
1187
1188 If the specified internal variable does not exist,
1189 one is created, with a void value. */
1190
1191struct internalvar *
bc3b79fd 1192lookup_internalvar (const char *name)
c4a3d09a
MF
1193{
1194 struct internalvar *var;
1195
1196 var = lookup_only_internalvar (name);
1197 if (var)
1198 return var;
1199
1200 return create_internalvar (name);
1201}
1202
78267919
UW
1203/* Return current value of internal variable VAR. For variables that
1204 are not inherently typed, use a value type appropriate for GDBARCH. */
1205
f23631e4 1206struct value *
78267919 1207value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1208{
f23631e4 1209 struct value *val;
0914bcdb
SS
1210 struct trace_state_variable *tsv;
1211
1212 /* If there is a trace state variable of the same name, assume that
1213 is what we really want to see. */
1214 tsv = find_trace_state_variable (var->name);
1215 if (tsv)
1216 {
1217 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1218 &(tsv->value));
1219 if (tsv->value_known)
1220 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1221 tsv->value);
1222 else
1223 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1224 return val;
1225 }
c906108c 1226
78267919 1227 switch (var->kind)
5f5233d4 1228 {
78267919
UW
1229 case INTERNALVAR_VOID:
1230 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1231 break;
4fa62494 1232
78267919
UW
1233 case INTERNALVAR_FUNCTION:
1234 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1235 break;
4fa62494 1236
cab0c772
UW
1237 case INTERNALVAR_INTEGER:
1238 if (!var->u.integer.type)
78267919 1239 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1240 var->u.integer.val);
78267919 1241 else
cab0c772
UW
1242 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1243 break;
1244
1245 case INTERNALVAR_POINTER:
1246 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1247 break;
4fa62494 1248
78267919
UW
1249 case INTERNALVAR_STRING:
1250 val = value_cstring (var->u.string, strlen (var->u.string),
1251 builtin_type (gdbarch)->builtin_char);
1252 break;
4fa62494 1253
78267919
UW
1254 case INTERNALVAR_VALUE:
1255 val = value_copy (var->u.value);
4aa995e1
PA
1256 if (value_lazy (val))
1257 value_fetch_lazy (val);
78267919 1258 break;
4aa995e1 1259
78267919
UW
1260 case INTERNALVAR_MAKE_VALUE:
1261 val = (*var->u.make_value) (gdbarch, var);
1262 break;
1263
1264 default:
9b20d036 1265 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1266 }
1267
1268 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1269 on this value go back to affect the original internal variable.
1270
1271 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1272 no underlying modifyable state in the internal variable.
1273
1274 Likewise, if the variable's value is a computed lvalue, we want
1275 references to it to produce another computed lvalue, where
1276 references and assignments actually operate through the
1277 computed value's functions.
1278
1279 This means that internal variables with computed values
1280 behave a little differently from other internal variables:
1281 assignments to them don't just replace the previous value
1282 altogether. At the moment, this seems like the behavior we
1283 want. */
1284
1285 if (var->kind != INTERNALVAR_MAKE_VALUE
1286 && val->lval != lval_computed)
1287 {
1288 VALUE_LVAL (val) = lval_internalvar;
1289 VALUE_INTERNALVAR (val) = var;
5f5233d4 1290 }
d3c139e9 1291
4fa62494
UW
1292 return val;
1293}
d3c139e9 1294
4fa62494
UW
1295int
1296get_internalvar_integer (struct internalvar *var, LONGEST *result)
1297{
78267919 1298 switch (var->kind)
4fa62494 1299 {
cab0c772
UW
1300 case INTERNALVAR_INTEGER:
1301 *result = var->u.integer.val;
1302 return 1;
d3c139e9 1303
4fa62494
UW
1304 default:
1305 return 0;
1306 }
1307}
d3c139e9 1308
4fa62494
UW
1309static int
1310get_internalvar_function (struct internalvar *var,
1311 struct internal_function **result)
1312{
78267919 1313 switch (var->kind)
d3c139e9 1314 {
78267919
UW
1315 case INTERNALVAR_FUNCTION:
1316 *result = var->u.fn.function;
4fa62494 1317 return 1;
d3c139e9 1318
4fa62494
UW
1319 default:
1320 return 0;
1321 }
c906108c
SS
1322}
1323
1324void
fba45db2 1325set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1326 int bitsize, struct value *newval)
c906108c 1327{
4fa62494 1328 gdb_byte *addr;
c906108c 1329
78267919 1330 switch (var->kind)
4fa62494 1331 {
78267919
UW
1332 case INTERNALVAR_VALUE:
1333 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1334
1335 if (bitsize)
50810684 1336 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1337 value_as_long (newval), bitpos, bitsize);
1338 else
1339 memcpy (addr + offset, value_contents (newval),
1340 TYPE_LENGTH (value_type (newval)));
1341 break;
78267919
UW
1342
1343 default:
1344 /* We can never get a component of any other kind. */
9b20d036 1345 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1346 }
c906108c
SS
1347}
1348
1349void
f23631e4 1350set_internalvar (struct internalvar *var, struct value *val)
c906108c 1351{
78267919 1352 enum internalvar_kind new_kind;
4fa62494 1353 union internalvar_data new_data = { 0 };
c906108c 1354
78267919 1355 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1356 error (_("Cannot overwrite convenience function %s"), var->name);
1357
4fa62494 1358 /* Prepare new contents. */
78267919 1359 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1360 {
1361 case TYPE_CODE_VOID:
78267919 1362 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1363 break;
1364
1365 case TYPE_CODE_INTERNAL_FUNCTION:
1366 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1367 new_kind = INTERNALVAR_FUNCTION;
1368 get_internalvar_function (VALUE_INTERNALVAR (val),
1369 &new_data.fn.function);
1370 /* Copies created here are never canonical. */
4fa62494
UW
1371 break;
1372
1373 case TYPE_CODE_INT:
cab0c772
UW
1374 new_kind = INTERNALVAR_INTEGER;
1375 new_data.integer.type = value_type (val);
1376 new_data.integer.val = value_as_long (val);
4fa62494
UW
1377 break;
1378
1379 case TYPE_CODE_PTR:
cab0c772
UW
1380 new_kind = INTERNALVAR_POINTER;
1381 new_data.pointer.type = value_type (val);
1382 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1383 break;
1384
1385 default:
78267919
UW
1386 new_kind = INTERNALVAR_VALUE;
1387 new_data.value = value_copy (val);
1388 new_data.value->modifiable = 1;
4fa62494
UW
1389
1390 /* Force the value to be fetched from the target now, to avoid problems
1391 later when this internalvar is referenced and the target is gone or
1392 has changed. */
78267919
UW
1393 if (value_lazy (new_data.value))
1394 value_fetch_lazy (new_data.value);
4fa62494
UW
1395
1396 /* Release the value from the value chain to prevent it from being
1397 deleted by free_all_values. From here on this function should not
1398 call error () until new_data is installed into the var->u to avoid
1399 leaking memory. */
78267919 1400 release_value (new_data.value);
4fa62494
UW
1401 break;
1402 }
1403
1404 /* Clean up old contents. */
1405 clear_internalvar (var);
1406
1407 /* Switch over. */
78267919 1408 var->kind = new_kind;
4fa62494 1409 var->u = new_data;
c906108c
SS
1410 /* End code which must not call error(). */
1411}
1412
4fa62494
UW
1413void
1414set_internalvar_integer (struct internalvar *var, LONGEST l)
1415{
1416 /* Clean up old contents. */
1417 clear_internalvar (var);
1418
cab0c772
UW
1419 var->kind = INTERNALVAR_INTEGER;
1420 var->u.integer.type = NULL;
1421 var->u.integer.val = l;
78267919
UW
1422}
1423
1424void
1425set_internalvar_string (struct internalvar *var, const char *string)
1426{
1427 /* Clean up old contents. */
1428 clear_internalvar (var);
1429
1430 var->kind = INTERNALVAR_STRING;
1431 var->u.string = xstrdup (string);
4fa62494
UW
1432}
1433
1434static void
1435set_internalvar_function (struct internalvar *var, struct internal_function *f)
1436{
1437 /* Clean up old contents. */
1438 clear_internalvar (var);
1439
78267919
UW
1440 var->kind = INTERNALVAR_FUNCTION;
1441 var->u.fn.function = f;
1442 var->u.fn.canonical = 1;
1443 /* Variables installed here are always the canonical version. */
4fa62494
UW
1444}
1445
1446void
1447clear_internalvar (struct internalvar *var)
1448{
1449 /* Clean up old contents. */
78267919 1450 switch (var->kind)
4fa62494 1451 {
78267919
UW
1452 case INTERNALVAR_VALUE:
1453 value_free (var->u.value);
1454 break;
1455
1456 case INTERNALVAR_STRING:
1457 xfree (var->u.string);
4fa62494
UW
1458 break;
1459
1460 default:
4fa62494
UW
1461 break;
1462 }
1463
78267919
UW
1464 /* Reset to void kind. */
1465 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1466}
1467
c906108c 1468char *
fba45db2 1469internalvar_name (struct internalvar *var)
c906108c
SS
1470{
1471 return var->name;
1472}
1473
4fa62494
UW
1474static struct internal_function *
1475create_internal_function (const char *name,
1476 internal_function_fn handler, void *cookie)
bc3b79fd 1477{
bc3b79fd 1478 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1479
bc3b79fd
TJB
1480 ifn->name = xstrdup (name);
1481 ifn->handler = handler;
1482 ifn->cookie = cookie;
4fa62494 1483 return ifn;
bc3b79fd
TJB
1484}
1485
1486char *
1487value_internal_function_name (struct value *val)
1488{
4fa62494
UW
1489 struct internal_function *ifn;
1490 int result;
1491
1492 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1493 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1494 gdb_assert (result);
1495
bc3b79fd
TJB
1496 return ifn->name;
1497}
1498
1499struct value *
d452c4bc
UW
1500call_internal_function (struct gdbarch *gdbarch,
1501 const struct language_defn *language,
1502 struct value *func, int argc, struct value **argv)
bc3b79fd 1503{
4fa62494
UW
1504 struct internal_function *ifn;
1505 int result;
1506
1507 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1508 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1509 gdb_assert (result);
1510
d452c4bc 1511 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1512}
1513
1514/* The 'function' command. This does nothing -- it is just a
1515 placeholder to let "help function NAME" work. This is also used as
1516 the implementation of the sub-command that is created when
1517 registering an internal function. */
1518static void
1519function_command (char *command, int from_tty)
1520{
1521 /* Do nothing. */
1522}
1523
1524/* Clean up if an internal function's command is destroyed. */
1525static void
1526function_destroyer (struct cmd_list_element *self, void *ignore)
1527{
1528 xfree (self->name);
1529 xfree (self->doc);
1530}
1531
1532/* Add a new internal function. NAME is the name of the function; DOC
1533 is a documentation string describing the function. HANDLER is
1534 called when the function is invoked. COOKIE is an arbitrary
1535 pointer which is passed to HANDLER and is intended for "user
1536 data". */
1537void
1538add_internal_function (const char *name, const char *doc,
1539 internal_function_fn handler, void *cookie)
1540{
1541 struct cmd_list_element *cmd;
4fa62494 1542 struct internal_function *ifn;
bc3b79fd 1543 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1544
1545 ifn = create_internal_function (name, handler, cookie);
1546 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1547
1548 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1549 &functionlist);
1550 cmd->destroyer = function_destroyer;
1551}
1552
ae5a43e0
DJ
1553/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1554 prevent cycles / duplicates. */
1555
4e7a5ef5 1556void
ae5a43e0
DJ
1557preserve_one_value (struct value *value, struct objfile *objfile,
1558 htab_t copied_types)
1559{
1560 if (TYPE_OBJFILE (value->type) == objfile)
1561 value->type = copy_type_recursive (objfile, value->type, copied_types);
1562
1563 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1564 value->enclosing_type = copy_type_recursive (objfile,
1565 value->enclosing_type,
1566 copied_types);
1567}
1568
78267919
UW
1569/* Likewise for internal variable VAR. */
1570
1571static void
1572preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1573 htab_t copied_types)
1574{
1575 switch (var->kind)
1576 {
cab0c772
UW
1577 case INTERNALVAR_INTEGER:
1578 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1579 var->u.integer.type
1580 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1581 break;
1582
1583 case INTERNALVAR_POINTER:
1584 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1585 var->u.pointer.type
1586 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1587 break;
1588
1589 case INTERNALVAR_VALUE:
1590 preserve_one_value (var->u.value, objfile, copied_types);
1591 break;
1592 }
1593}
1594
ae5a43e0
DJ
1595/* Update the internal variables and value history when OBJFILE is
1596 discarded; we must copy the types out of the objfile. New global types
1597 will be created for every convenience variable which currently points to
1598 this objfile's types, and the convenience variables will be adjusted to
1599 use the new global types. */
c906108c
SS
1600
1601void
ae5a43e0 1602preserve_values (struct objfile *objfile)
c906108c 1603{
ae5a43e0
DJ
1604 htab_t copied_types;
1605 struct value_history_chunk *cur;
52f0bd74 1606 struct internalvar *var;
ae5a43e0 1607 int i;
c906108c 1608
ae5a43e0
DJ
1609 /* Create the hash table. We allocate on the objfile's obstack, since
1610 it is soon to be deleted. */
1611 copied_types = create_copied_types_hash (objfile);
1612
1613 for (cur = value_history_chain; cur; cur = cur->next)
1614 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1615 if (cur->values[i])
1616 preserve_one_value (cur->values[i], objfile, copied_types);
1617
1618 for (var = internalvars; var; var = var->next)
78267919 1619 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1620
4e7a5ef5 1621 preserve_python_values (objfile, copied_types);
a08702d6 1622
ae5a43e0 1623 htab_delete (copied_types);
c906108c
SS
1624}
1625
1626static void
fba45db2 1627show_convenience (char *ignore, int from_tty)
c906108c 1628{
e17c207e 1629 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1630 struct internalvar *var;
c906108c 1631 int varseen = 0;
79a45b7d 1632 struct value_print_options opts;
c906108c 1633
79a45b7d 1634 get_user_print_options (&opts);
c906108c
SS
1635 for (var = internalvars; var; var = var->next)
1636 {
c906108c
SS
1637 if (!varseen)
1638 {
1639 varseen = 1;
1640 }
a3f17187 1641 printf_filtered (("$%s = "), var->name);
78267919 1642 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1643 &opts);
a3f17187 1644 printf_filtered (("\n"));
c906108c
SS
1645 }
1646 if (!varseen)
3e43a32a
MS
1647 printf_unfiltered (_("No debugger convenience variables now defined.\n"
1648 "Convenience variables have "
1649 "names starting with \"$\";\n"
1650 "use \"set\" as in \"set "
1651 "$foo = 5\" to define them.\n"));
c906108c
SS
1652}
1653\f
1654/* Extract a value as a C number (either long or double).
1655 Knows how to convert fixed values to double, or
1656 floating values to long.
1657 Does not deallocate the value. */
1658
1659LONGEST
f23631e4 1660value_as_long (struct value *val)
c906108c
SS
1661{
1662 /* This coerces arrays and functions, which is necessary (e.g.
1663 in disassemble_command). It also dereferences references, which
1664 I suspect is the most logical thing to do. */
994b9211 1665 val = coerce_array (val);
0fd88904 1666 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1667}
1668
1669DOUBLEST
f23631e4 1670value_as_double (struct value *val)
c906108c
SS
1671{
1672 DOUBLEST foo;
1673 int inv;
c5aa993b 1674
0fd88904 1675 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1676 if (inv)
8a3fe4f8 1677 error (_("Invalid floating value found in program."));
c906108c
SS
1678 return foo;
1679}
4ef30785 1680
581e13c1 1681/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
1682 Note that val's type may not actually be a pointer; value_as_long
1683 handles all the cases. */
c906108c 1684CORE_ADDR
f23631e4 1685value_as_address (struct value *val)
c906108c 1686{
50810684
UW
1687 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1688
c906108c
SS
1689 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1690 whether we want this to be true eventually. */
1691#if 0
bf6ae464 1692 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1693 non-address (e.g. argument to "signal", "info break", etc.), or
1694 for pointers to char, in which the low bits *are* significant. */
50810684 1695 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1696#else
f312f057
JB
1697
1698 /* There are several targets (IA-64, PowerPC, and others) which
1699 don't represent pointers to functions as simply the address of
1700 the function's entry point. For example, on the IA-64, a
1701 function pointer points to a two-word descriptor, generated by
1702 the linker, which contains the function's entry point, and the
1703 value the IA-64 "global pointer" register should have --- to
1704 support position-independent code. The linker generates
1705 descriptors only for those functions whose addresses are taken.
1706
1707 On such targets, it's difficult for GDB to convert an arbitrary
1708 function address into a function pointer; it has to either find
1709 an existing descriptor for that function, or call malloc and
1710 build its own. On some targets, it is impossible for GDB to
1711 build a descriptor at all: the descriptor must contain a jump
1712 instruction; data memory cannot be executed; and code memory
1713 cannot be modified.
1714
1715 Upon entry to this function, if VAL is a value of type `function'
1716 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1717 value_address (val) is the address of the function. This is what
f312f057
JB
1718 you'll get if you evaluate an expression like `main'. The call
1719 to COERCE_ARRAY below actually does all the usual unary
1720 conversions, which includes converting values of type `function'
1721 to `pointer to function'. This is the challenging conversion
1722 discussed above. Then, `unpack_long' will convert that pointer
1723 back into an address.
1724
1725 So, suppose the user types `disassemble foo' on an architecture
1726 with a strange function pointer representation, on which GDB
1727 cannot build its own descriptors, and suppose further that `foo'
1728 has no linker-built descriptor. The address->pointer conversion
1729 will signal an error and prevent the command from running, even
1730 though the next step would have been to convert the pointer
1731 directly back into the same address.
1732
1733 The following shortcut avoids this whole mess. If VAL is a
1734 function, just return its address directly. */
df407dfe
AC
1735 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1736 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1737 return value_address (val);
f312f057 1738
994b9211 1739 val = coerce_array (val);
fc0c74b1
AC
1740
1741 /* Some architectures (e.g. Harvard), map instruction and data
1742 addresses onto a single large unified address space. For
1743 instance: An architecture may consider a large integer in the
1744 range 0x10000000 .. 0x1000ffff to already represent a data
1745 addresses (hence not need a pointer to address conversion) while
1746 a small integer would still need to be converted integer to
1747 pointer to address. Just assume such architectures handle all
1748 integer conversions in a single function. */
1749
1750 /* JimB writes:
1751
1752 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1753 must admonish GDB hackers to make sure its behavior matches the
1754 compiler's, whenever possible.
1755
1756 In general, I think GDB should evaluate expressions the same way
1757 the compiler does. When the user copies an expression out of
1758 their source code and hands it to a `print' command, they should
1759 get the same value the compiler would have computed. Any
1760 deviation from this rule can cause major confusion and annoyance,
1761 and needs to be justified carefully. In other words, GDB doesn't
1762 really have the freedom to do these conversions in clever and
1763 useful ways.
1764
1765 AndrewC pointed out that users aren't complaining about how GDB
1766 casts integers to pointers; they are complaining that they can't
1767 take an address from a disassembly listing and give it to `x/i'.
1768 This is certainly important.
1769
79dd2d24 1770 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1771 makes it possible for GDB to "get it right" in all circumstances
1772 --- the target has complete control over how things get done, so
1773 people can Do The Right Thing for their target without breaking
1774 anyone else. The standard doesn't specify how integers get
1775 converted to pointers; usually, the ABI doesn't either, but
1776 ABI-specific code is a more reasonable place to handle it. */
1777
df407dfe
AC
1778 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1779 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1780 && gdbarch_integer_to_address_p (gdbarch))
1781 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1782 value_contents (val));
fc0c74b1 1783
0fd88904 1784 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1785#endif
1786}
1787\f
1788/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1789 as a long, or as a double, assuming the raw data is described
1790 by type TYPE. Knows how to convert different sizes of values
1791 and can convert between fixed and floating point. We don't assume
1792 any alignment for the raw data. Return value is in host byte order.
1793
1794 If you want functions and arrays to be coerced to pointers, and
1795 references to be dereferenced, call value_as_long() instead.
1796
1797 C++: It is assumed that the front-end has taken care of
1798 all matters concerning pointers to members. A pointer
1799 to member which reaches here is considered to be equivalent
1800 to an INT (or some size). After all, it is only an offset. */
1801
1802LONGEST
fc1a4b47 1803unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1804{
e17a4113 1805 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1806 enum type_code code = TYPE_CODE (type);
1807 int len = TYPE_LENGTH (type);
1808 int nosign = TYPE_UNSIGNED (type);
c906108c 1809
c906108c
SS
1810 switch (code)
1811 {
1812 case TYPE_CODE_TYPEDEF:
1813 return unpack_long (check_typedef (type), valaddr);
1814 case TYPE_CODE_ENUM:
4f2aea11 1815 case TYPE_CODE_FLAGS:
c906108c
SS
1816 case TYPE_CODE_BOOL:
1817 case TYPE_CODE_INT:
1818 case TYPE_CODE_CHAR:
1819 case TYPE_CODE_RANGE:
0d5de010 1820 case TYPE_CODE_MEMBERPTR:
c906108c 1821 if (nosign)
e17a4113 1822 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1823 else
e17a4113 1824 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1825
1826 case TYPE_CODE_FLT:
96d2f608 1827 return extract_typed_floating (valaddr, type);
c906108c 1828
4ef30785
TJB
1829 case TYPE_CODE_DECFLOAT:
1830 /* libdecnumber has a function to convert from decimal to integer, but
1831 it doesn't work when the decimal number has a fractional part. */
e17a4113 1832 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1833
c906108c
SS
1834 case TYPE_CODE_PTR:
1835 case TYPE_CODE_REF:
1836 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1837 whether we want this to be true eventually. */
4478b372 1838 return extract_typed_address (valaddr, type);
c906108c 1839
c906108c 1840 default:
8a3fe4f8 1841 error (_("Value can't be converted to integer."));
c906108c 1842 }
c5aa993b 1843 return 0; /* Placate lint. */
c906108c
SS
1844}
1845
1846/* Return a double value from the specified type and address.
1847 INVP points to an int which is set to 0 for valid value,
1848 1 for invalid value (bad float format). In either case,
1849 the returned double is OK to use. Argument is in target
1850 format, result is in host format. */
1851
1852DOUBLEST
fc1a4b47 1853unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1854{
e17a4113 1855 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1856 enum type_code code;
1857 int len;
1858 int nosign;
1859
581e13c1 1860 *invp = 0; /* Assume valid. */
c906108c
SS
1861 CHECK_TYPEDEF (type);
1862 code = TYPE_CODE (type);
1863 len = TYPE_LENGTH (type);
1864 nosign = TYPE_UNSIGNED (type);
1865 if (code == TYPE_CODE_FLT)
1866 {
75bc7ddf
AC
1867 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1868 floating-point value was valid (using the macro
1869 INVALID_FLOAT). That test/macro have been removed.
1870
1871 It turns out that only the VAX defined this macro and then
1872 only in a non-portable way. Fixing the portability problem
1873 wouldn't help since the VAX floating-point code is also badly
1874 bit-rotten. The target needs to add definitions for the
ea06eb3d 1875 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1876 exactly describe the target floating-point format. The
1877 problem here is that the corresponding floatformat_vax_f and
1878 floatformat_vax_d values these methods should be set to are
1879 also not defined either. Oops!
1880
1881 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1882 definitions and the new cases for floatformat_is_valid (). */
1883
1884 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1885 {
1886 *invp = 1;
1887 return 0.0;
1888 }
1889
96d2f608 1890 return extract_typed_floating (valaddr, type);
c906108c 1891 }
4ef30785 1892 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1893 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1894 else if (nosign)
1895 {
1896 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1897 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1898 }
1899 else
1900 {
1901 /* Signed -- we are OK with unpack_long. */
1902 return unpack_long (type, valaddr);
1903 }
1904}
1905
1906/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1907 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1908 We don't assume any alignment for the raw data. Return value is in
1909 host byte order.
1910
1911 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1912 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1913
1914 C++: It is assumed that the front-end has taken care of
1915 all matters concerning pointers to members. A pointer
1916 to member which reaches here is considered to be equivalent
1917 to an INT (or some size). After all, it is only an offset. */
1918
1919CORE_ADDR
fc1a4b47 1920unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1921{
1922 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1923 whether we want this to be true eventually. */
1924 return unpack_long (type, valaddr);
1925}
4478b372 1926
c906108c 1927\f
1596cb5d 1928/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 1929 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 1930 optimized out. */
c906108c 1931
f23631e4 1932struct value *
fba45db2 1933value_static_field (struct type *type, int fieldno)
c906108c 1934{
948e66d9
DJ
1935 struct value *retval;
1936
1596cb5d 1937 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 1938 {
1596cb5d 1939 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
1940 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1941 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
1942 break;
1943 case FIELD_LOC_KIND_PHYSNAME:
c906108c
SS
1944 {
1945 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 1946 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 1947 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 1948
948e66d9 1949 if (sym == NULL)
c906108c 1950 {
a109c7c1 1951 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 1952 reported as non-debuggable symbols. */
a109c7c1
MS
1953 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1954 NULL, NULL);
1955
c906108c
SS
1956 if (!msym)
1957 return NULL;
1958 else
c5aa993b 1959 {
52e9fde8
SS
1960 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1961 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1962 }
1963 }
1964 else
515ed532 1965 retval = value_of_variable (sym, NULL);
1596cb5d 1966 break;
c906108c 1967 }
1596cb5d 1968 default:
f3574227 1969 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
1970 }
1971
948e66d9 1972 return retval;
c906108c
SS
1973}
1974
4dfea560
DE
1975/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1976 You have to be careful here, since the size of the data area for the value
1977 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1978 than the old enclosing type, you have to allocate more space for the
1979 data. */
2b127877 1980
4dfea560
DE
1981void
1982set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1983{
3e3d7139
JG
1984 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1985 val->contents =
1986 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1987
1988 val->enclosing_type = new_encl_type;
2b127877
DB
1989}
1990
c906108c
SS
1991/* Given a value ARG1 (offset by OFFSET bytes)
1992 of a struct or union type ARG_TYPE,
1993 extract and return the value of one of its (non-static) fields.
581e13c1 1994 FIELDNO says which field. */
c906108c 1995
f23631e4
AC
1996struct value *
1997value_primitive_field (struct value *arg1, int offset,
aa1ee363 1998 int fieldno, struct type *arg_type)
c906108c 1999{
f23631e4 2000 struct value *v;
52f0bd74 2001 struct type *type;
c906108c
SS
2002
2003 CHECK_TYPEDEF (arg_type);
2004 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2005
2006 /* Call check_typedef on our type to make sure that, if TYPE
2007 is a TYPE_CODE_TYPEDEF, its length is set to the length
2008 of the target type instead of zero. However, we do not
2009 replace the typedef type by the target type, because we want
2010 to keep the typedef in order to be able to print the type
2011 description correctly. */
2012 check_typedef (type);
c906108c
SS
2013
2014 /* Handle packed fields */
2015
2016 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2017 {
4ea48cc1
DJ
2018 /* Create a new value for the bitfield, with bitpos and bitsize
2019 set. If possible, arrange offset and bitpos so that we can
2020 do a single aligned read of the size of the containing type.
2021 Otherwise, adjust offset to the byte containing the first
2022 bit. Assume that the address, offset, and embedded offset
2023 are sufficiently aligned. */
2024 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2025 int container_bitsize = TYPE_LENGTH (type) * 8;
2026
2027 v = allocate_value_lazy (type);
df407dfe 2028 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2029 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2030 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2031 v->bitpos = bitpos % container_bitsize;
2032 else
2033 v->bitpos = bitpos % 8;
38f12cfc
TT
2034 v->offset = (value_embedded_offset (arg1)
2035 + offset
2036 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2037 v->parent = arg1;
2038 value_incref (v->parent);
2039 if (!value_lazy (arg1))
2040 value_fetch_lazy (v);
c906108c
SS
2041 }
2042 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2043 {
2044 /* This field is actually a base subobject, so preserve the
2045 entire object's contents for later references to virtual
2046 bases, etc. */
a4e2ee12
DJ
2047
2048 /* Lazy register values with offsets are not supported. */
2049 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2050 value_fetch_lazy (arg1);
2051
2052 if (value_lazy (arg1))
3e3d7139 2053 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2054 else
3e3d7139
JG
2055 {
2056 v = allocate_value (value_enclosing_type (arg1));
2057 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2058 TYPE_LENGTH (value_enclosing_type (arg1)));
2059 }
2060 v->type = type;
df407dfe 2061 v->offset = value_offset (arg1);
13c3b5f5
AC
2062 v->embedded_offset = (offset + value_embedded_offset (arg1)
2063 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2064 }
2065 else
2066 {
2067 /* Plain old data member */
2068 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2069
2070 /* Lazy register values with offsets are not supported. */
2071 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2072 value_fetch_lazy (arg1);
2073
2074 if (value_lazy (arg1))
3e3d7139 2075 v = allocate_value_lazy (type);
c906108c 2076 else
3e3d7139
JG
2077 {
2078 v = allocate_value (type);
2079 memcpy (value_contents_raw (v),
2080 value_contents_raw (arg1) + offset,
2081 TYPE_LENGTH (type));
2082 }
df407dfe 2083 v->offset = (value_offset (arg1) + offset
13c3b5f5 2084 + value_embedded_offset (arg1));
c906108c 2085 }
74bcbdf3 2086 set_value_component_location (v, arg1);
9ee8fc9d 2087 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2088 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2089 return v;
2090}
2091
2092/* Given a value ARG1 of a struct or union type,
2093 extract and return the value of one of its (non-static) fields.
581e13c1 2094 FIELDNO says which field. */
c906108c 2095
f23631e4 2096struct value *
aa1ee363 2097value_field (struct value *arg1, int fieldno)
c906108c 2098{
df407dfe 2099 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2100}
2101
2102/* Return a non-virtual function as a value.
2103 F is the list of member functions which contains the desired method.
0478d61c
FF
2104 J is an index into F which provides the desired method.
2105
2106 We only use the symbol for its address, so be happy with either a
581e13c1 2107 full symbol or a minimal symbol. */
c906108c 2108
f23631e4 2109struct value *
3e43a32a
MS
2110value_fn_field (struct value **arg1p, struct fn_field *f,
2111 int j, struct type *type,
fba45db2 2112 int offset)
c906108c 2113{
f23631e4 2114 struct value *v;
52f0bd74 2115 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2116 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2117 struct symbol *sym;
0478d61c 2118 struct minimal_symbol *msym;
c906108c 2119
2570f2b7 2120 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2121 if (sym != NULL)
0478d61c 2122 {
5ae326fa
AC
2123 msym = NULL;
2124 }
2125 else
2126 {
2127 gdb_assert (sym == NULL);
0478d61c 2128 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2129 if (msym == NULL)
2130 return NULL;
0478d61c
FF
2131 }
2132
c906108c 2133 v = allocate_value (ftype);
0478d61c
FF
2134 if (sym)
2135 {
42ae5230 2136 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2137 }
2138 else
2139 {
bccdca4a
UW
2140 /* The minimal symbol might point to a function descriptor;
2141 resolve it to the actual code address instead. */
2142 struct objfile *objfile = msymbol_objfile (msym);
2143 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2144
42ae5230
TT
2145 set_value_address (v,
2146 gdbarch_convert_from_func_ptr_addr
2147 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2148 }
c906108c
SS
2149
2150 if (arg1p)
c5aa993b 2151 {
df407dfe 2152 if (type != value_type (*arg1p))
c5aa993b
JM
2153 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2154 value_addr (*arg1p)));
2155
070ad9f0 2156 /* Move the `this' pointer according to the offset.
581e13c1 2157 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2158 }
2159
2160 return v;
2161}
2162
c906108c 2163\f
4ea48cc1
DJ
2164/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2165 object at VALADDR. The bitfield starts at BITPOS bits and contains
2166 BITSIZE bits.
c906108c
SS
2167
2168 Extracting bits depends on endianness of the machine. Compute the
2169 number of least significant bits to discard. For big endian machines,
2170 we compute the total number of bits in the anonymous object, subtract
2171 off the bit count from the MSB of the object to the MSB of the
2172 bitfield, then the size of the bitfield, which leaves the LSB discard
2173 count. For little endian machines, the discard count is simply the
2174 number of bits from the LSB of the anonymous object to the LSB of the
2175 bitfield.
2176
581e13c1 2177 If the field is signed, we also do sign extension. */
c906108c
SS
2178
2179LONGEST
4ea48cc1
DJ
2180unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2181 int bitpos, int bitsize)
c906108c 2182{
4ea48cc1 2183 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2184 ULONGEST val;
2185 ULONGEST valmask;
c906108c 2186 int lsbcount;
4a76eae5 2187 int bytes_read;
c906108c 2188
4a76eae5
DJ
2189 /* Read the minimum number of bytes required; there may not be
2190 enough bytes to read an entire ULONGEST. */
c906108c 2191 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2192 if (bitsize)
2193 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2194 else
2195 bytes_read = TYPE_LENGTH (field_type);
2196
2197 val = extract_unsigned_integer (valaddr + bitpos / 8,
2198 bytes_read, byte_order);
c906108c 2199
581e13c1 2200 /* Extract bits. See comment above. */
c906108c 2201
4ea48cc1 2202 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2203 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2204 else
2205 lsbcount = (bitpos % 8);
2206 val >>= lsbcount;
2207
2208 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2209 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2210
2211 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2212 {
2213 valmask = (((ULONGEST) 1) << bitsize) - 1;
2214 val &= valmask;
2215 if (!TYPE_UNSIGNED (field_type))
2216 {
2217 if (val & (valmask ^ (valmask >> 1)))
2218 {
2219 val |= ~valmask;
2220 }
2221 }
2222 }
2223 return (val);
2224}
2225
4ea48cc1
DJ
2226/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2227 VALADDR. See unpack_bits_as_long for more details. */
2228
2229LONGEST
2230unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2231{
2232 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2233 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2234 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2235
2236 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2237}
2238
c906108c
SS
2239/* Modify the value of a bitfield. ADDR points to a block of memory in
2240 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2241 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2242 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2243 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2244 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2245
2246void
50810684
UW
2247modify_field (struct type *type, gdb_byte *addr,
2248 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2249{
e17a4113 2250 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2251 ULONGEST oword;
2252 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2253 int bytesize;
2254
2255 /* Normalize BITPOS. */
2256 addr += bitpos / 8;
2257 bitpos %= 8;
c906108c
SS
2258
2259 /* If a negative fieldval fits in the field in question, chop
2260 off the sign extension bits. */
f4e88c8e
PH
2261 if ((~fieldval & ~(mask >> 1)) == 0)
2262 fieldval &= mask;
c906108c
SS
2263
2264 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2265 if (0 != (fieldval & ~mask))
c906108c
SS
2266 {
2267 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2268 we don't have a sprintf_longest. */
8a3fe4f8 2269 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2270
2271 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2272 fieldval &= mask;
c906108c
SS
2273 }
2274
19f220c3
JK
2275 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2276 false valgrind reports. */
2277
2278 bytesize = (bitpos + bitsize + 7) / 8;
2279 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
2280
2281 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2282 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 2283 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 2284
f4e88c8e 2285 oword &= ~(mask << bitpos);
c906108c
SS
2286 oword |= fieldval << bitpos;
2287
19f220c3 2288 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
2289}
2290\f
14d06750 2291/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2292
14d06750
DJ
2293void
2294pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2295{
e17a4113 2296 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2297 int len;
14d06750
DJ
2298
2299 type = check_typedef (type);
c906108c
SS
2300 len = TYPE_LENGTH (type);
2301
14d06750 2302 switch (TYPE_CODE (type))
c906108c 2303 {
c906108c
SS
2304 case TYPE_CODE_INT:
2305 case TYPE_CODE_CHAR:
2306 case TYPE_CODE_ENUM:
4f2aea11 2307 case TYPE_CODE_FLAGS:
c906108c
SS
2308 case TYPE_CODE_BOOL:
2309 case TYPE_CODE_RANGE:
0d5de010 2310 case TYPE_CODE_MEMBERPTR:
e17a4113 2311 store_signed_integer (buf, len, byte_order, num);
c906108c 2312 break;
c5aa993b 2313
c906108c
SS
2314 case TYPE_CODE_REF:
2315 case TYPE_CODE_PTR:
14d06750 2316 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2317 break;
c5aa993b 2318
c906108c 2319 default:
14d06750
DJ
2320 error (_("Unexpected type (%d) encountered for integer constant."),
2321 TYPE_CODE (type));
c906108c 2322 }
14d06750
DJ
2323}
2324
2325
595939de
PM
2326/* Pack NUM into BUF using a target format of TYPE. */
2327
2328void
2329pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2330{
2331 int len;
2332 enum bfd_endian byte_order;
2333
2334 type = check_typedef (type);
2335 len = TYPE_LENGTH (type);
2336 byte_order = gdbarch_byte_order (get_type_arch (type));
2337
2338 switch (TYPE_CODE (type))
2339 {
2340 case TYPE_CODE_INT:
2341 case TYPE_CODE_CHAR:
2342 case TYPE_CODE_ENUM:
2343 case TYPE_CODE_FLAGS:
2344 case TYPE_CODE_BOOL:
2345 case TYPE_CODE_RANGE:
2346 case TYPE_CODE_MEMBERPTR:
2347 store_unsigned_integer (buf, len, byte_order, num);
2348 break;
2349
2350 case TYPE_CODE_REF:
2351 case TYPE_CODE_PTR:
2352 store_typed_address (buf, type, (CORE_ADDR) num);
2353 break;
2354
2355 default:
3e43a32a
MS
2356 error (_("Unexpected type (%d) encountered "
2357 "for unsigned integer constant."),
595939de
PM
2358 TYPE_CODE (type));
2359 }
2360}
2361
2362
14d06750
DJ
2363/* Convert C numbers into newly allocated values. */
2364
2365struct value *
2366value_from_longest (struct type *type, LONGEST num)
2367{
2368 struct value *val = allocate_value (type);
2369
2370 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2371 return val;
2372}
2373
4478b372 2374
595939de
PM
2375/* Convert C unsigned numbers into newly allocated values. */
2376
2377struct value *
2378value_from_ulongest (struct type *type, ULONGEST num)
2379{
2380 struct value *val = allocate_value (type);
2381
2382 pack_unsigned_long (value_contents_raw (val), type, num);
2383
2384 return val;
2385}
2386
2387
4478b372
JB
2388/* Create a value representing a pointer of type TYPE to the address
2389 ADDR. */
f23631e4 2390struct value *
4478b372
JB
2391value_from_pointer (struct type *type, CORE_ADDR addr)
2392{
f23631e4 2393 struct value *val = allocate_value (type);
a109c7c1 2394
cab0c772 2395 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2396 return val;
2397}
2398
2399
8acb6b92
TT
2400/* Create a value of type TYPE whose contents come from VALADDR, if it
2401 is non-null, and whose memory address (in the inferior) is
2402 ADDRESS. */
2403
2404struct value *
2405value_from_contents_and_address (struct type *type,
2406 const gdb_byte *valaddr,
2407 CORE_ADDR address)
2408{
41e8491f 2409 struct value *v;
a109c7c1 2410
8acb6b92 2411 if (valaddr == NULL)
41e8491f 2412 v = allocate_value_lazy (type);
8acb6b92 2413 else
41e8491f
JK
2414 {
2415 v = allocate_value (type);
2416 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2417 }
42ae5230 2418 set_value_address (v, address);
33d502b4 2419 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2420 return v;
2421}
2422
f23631e4 2423struct value *
fba45db2 2424value_from_double (struct type *type, DOUBLEST num)
c906108c 2425{
f23631e4 2426 struct value *val = allocate_value (type);
c906108c 2427 struct type *base_type = check_typedef (type);
52f0bd74 2428 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2429
2430 if (code == TYPE_CODE_FLT)
2431 {
990a07ab 2432 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2433 }
2434 else
8a3fe4f8 2435 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2436
2437 return val;
2438}
994b9211 2439
27bc4d80 2440struct value *
4ef30785 2441value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2442{
2443 struct value *val = allocate_value (type);
27bc4d80 2444
4ef30785 2445 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
2446 return val;
2447}
2448
994b9211
AC
2449struct value *
2450coerce_ref (struct value *arg)
2451{
df407dfe 2452 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 2453
994b9211
AC
2454 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2455 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2456 unpack_pointer (value_type (arg),
0fd88904 2457 value_contents (arg)));
994b9211
AC
2458 return arg;
2459}
2460
2461struct value *
2462coerce_array (struct value *arg)
2463{
f3134b88
TT
2464 struct type *type;
2465
994b9211 2466 arg = coerce_ref (arg);
f3134b88
TT
2467 type = check_typedef (value_type (arg));
2468
2469 switch (TYPE_CODE (type))
2470 {
2471 case TYPE_CODE_ARRAY:
7346b668 2472 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
2473 arg = value_coerce_array (arg);
2474 break;
2475 case TYPE_CODE_FUNC:
2476 arg = value_coerce_function (arg);
2477 break;
2478 }
994b9211
AC
2479 return arg;
2480}
c906108c 2481\f
c906108c 2482
48436ce6
AC
2483/* Return true if the function returning the specified type is using
2484 the convention of returning structures in memory (passing in the
82585c72 2485 address as a hidden first parameter). */
c906108c
SS
2486
2487int
d80b854b
UW
2488using_struct_return (struct gdbarch *gdbarch,
2489 struct type *func_type, struct type *value_type)
c906108c 2490{
52f0bd74 2491 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2492
2493 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2494 error (_("Function return type unknown."));
c906108c 2495
667e784f
AC
2496 if (code == TYPE_CODE_VOID)
2497 /* A void return value is never in memory. See also corresponding
44e5158b 2498 code in "print_return_value". */
667e784f
AC
2499 return 0;
2500
92ad9cd9 2501 /* Probe the architecture for the return-value convention. */
d80b854b 2502 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2503 NULL, NULL, NULL)
31db7b6c 2504 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2505}
2506
42be36b3
CT
2507/* Set the initialized field in a value struct. */
2508
2509void
2510set_value_initialized (struct value *val, int status)
2511{
2512 val->initialized = status;
2513}
2514
2515/* Return the initialized field in a value struct. */
2516
2517int
2518value_initialized (struct value *val)
2519{
2520 return val->initialized;
2521}
2522
c906108c 2523void
fba45db2 2524_initialize_values (void)
c906108c 2525{
1a966eab
AC
2526 add_cmd ("convenience", no_class, show_convenience, _("\
2527Debugger convenience (\"$foo\") variables.\n\
c906108c 2528These variables are created when you assign them values;\n\
1a966eab
AC
2529thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2530\n\
c906108c
SS
2531A few convenience variables are given values automatically:\n\
2532\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2533\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2534 &showlist);
2535
3e43a32a
MS
2536 add_cmd ("values", no_class, show_values, _("\
2537Elements of value history around item number IDX (or last ten)."),
c906108c 2538 &showlist);
53e5f3cf
AS
2539
2540 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2541Initialize a convenience variable if necessary.\n\
2542init-if-undefined VARIABLE = EXPRESSION\n\
2543Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2544exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2545VARIABLE is already initialized."));
bc3b79fd
TJB
2546
2547 add_prefix_cmd ("function", no_class, function_command, _("\
2548Placeholder command for showing help on convenience functions."),
2549 &functionlist, "function ", 0, &cmdlist);
c906108c 2550}
This page took 1.183257 seconds and 4 git commands to generate.