*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
f23631e4 3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
990a07ab
AC
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c 23
04624583
AC
24/* Hack so that value.h can detect when it's being included by
25 value.c. */
26#define VALUE_C
27
c906108c
SS
28#include "defs.h"
29#include "gdb_string.h"
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "value.h"
33#include "gdbcore.h"
c906108c
SS
34#include "command.h"
35#include "gdbcmd.h"
36#include "target.h"
37#include "language.h"
38#include "scm-lang.h"
39#include "demangle.h"
d16aafd8 40#include "doublest.h"
5ae326fa 41#include "gdb_assert.h"
36160dc4 42#include "regcache.h"
fe898f56 43#include "block.h"
c906108c
SS
44
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c
SS
48
49/* Prototypes for local functions. */
50
a14ed312 51static void show_values (char *, int);
c906108c 52
a14ed312 53static void show_convenience (char *, int);
c906108c 54
c906108c
SS
55
56/* The value-history records all the values printed
57 by print commands during this session. Each chunk
58 records 60 consecutive values. The first chunk on
59 the chain records the most recent values.
60 The total number of values is in value_history_count. */
61
62#define VALUE_HISTORY_CHUNK 60
63
64struct value_history_chunk
c5aa993b
JM
65 {
66 struct value_history_chunk *next;
f23631e4 67 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 68 };
c906108c
SS
69
70/* Chain of chunks now in use. */
71
72static struct value_history_chunk *value_history_chain;
73
74static int value_history_count; /* Abs number of last entry stored */
75\f
76/* List of all value objects currently allocated
77 (except for those released by calls to release_value)
78 This is so they can be freed after each command. */
79
f23631e4 80static struct value *all_values;
c906108c
SS
81
82/* Allocate a value that has the correct length for type TYPE. */
83
f23631e4 84struct value *
fba45db2 85allocate_value (struct type *type)
c906108c 86{
f23631e4 87 struct value *val;
c906108c
SS
88 struct type *atype = check_typedef (type);
89
5b90c7b5 90 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
df407dfe 91 val->next = all_values;
c906108c 92 all_values = val;
df407dfe 93 val->type = type;
4754a64e 94 val->enclosing_type = type;
c906108c
SS
95 VALUE_LVAL (val) = not_lval;
96 VALUE_ADDRESS (val) = 0;
1df6926e 97 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
98 val->offset = 0;
99 val->bitpos = 0;
100 val->bitsize = 0;
9ee8fc9d 101 VALUE_REGNUM (val) = -1;
d69fe07e 102 val->lazy = 0;
feb13ab0 103 val->optimized_out = 0;
13c3b5f5 104 val->embedded_offset = 0;
b44d461b 105 val->pointed_to_offset = 0;
c906108c
SS
106 val->modifiable = 1;
107 return val;
108}
109
110/* Allocate a value that has the correct length
111 for COUNT repetitions type TYPE. */
112
f23631e4 113struct value *
fba45db2 114allocate_repeat_value (struct type *type, int count)
c906108c 115{
c5aa993b 116 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 struct type *range_type
c5aa993b
JM
120 = create_range_type ((struct type *) NULL, builtin_type_int,
121 low_bound, count + low_bound - 1);
c906108c
SS
122 /* FIXME-type-allocation: need a way to free this type when we are
123 done with it. */
124 return allocate_value (create_array_type ((struct type *) NULL,
125 type, range_type));
126}
127
df407dfe
AC
128/* Accessor methods. */
129
130struct type *
131value_type (struct value *value)
132{
133 return value->type;
134}
04624583
AC
135void
136deprecated_set_value_type (struct value *value, struct type *type)
137{
138 value->type = type;
139}
df407dfe
AC
140
141int
142value_offset (struct value *value)
143{
144 return value->offset;
145}
146
147int
148value_bitpos (struct value *value)
149{
150 return value->bitpos;
151}
152
153int
154value_bitsize (struct value *value)
155{
156 return value->bitsize;
157}
158
990a07ab
AC
159bfd_byte *
160value_contents_raw (struct value *value)
161{
162 return value->aligner.contents + value->embedded_offset;
163}
164
165bfd_byte *
166value_contents_all_raw (struct value *value)
167{
168 return value->aligner.contents;
169}
170
4754a64e
AC
171struct type *
172value_enclosing_type (struct value *value)
173{
174 return value->enclosing_type;
175}
176
46615f07
AC
177const bfd_byte *
178value_contents_all (struct value *value)
179{
180 if (value->lazy)
181 value_fetch_lazy (value);
182 return value->aligner.contents;
183}
184
d69fe07e
AC
185int
186value_lazy (struct value *value)
187{
188 return value->lazy;
189}
190
dfa52d88
AC
191void
192set_value_lazy (struct value *value, int val)
193{
194 value->lazy = val;
195}
196
0fd88904
AC
197const bfd_byte *
198value_contents (struct value *value)
199{
200 return value_contents_writeable (value);
201}
202
203bfd_byte *
204value_contents_writeable (struct value *value)
205{
206 if (value->lazy)
207 value_fetch_lazy (value);
208 return value->aligner.contents;
209}
210
feb13ab0
AC
211int
212value_optimized_out (struct value *value)
213{
214 return value->optimized_out;
215}
216
217void
218set_value_optimized_out (struct value *value, int val)
219{
220 value->optimized_out = val;
221}
13c3b5f5
AC
222
223int
224value_embedded_offset (struct value *value)
225{
226 return value->embedded_offset;
227}
228
229void
230set_value_embedded_offset (struct value *value, int val)
231{
232 value->embedded_offset = val;
233}
b44d461b
AC
234
235int
236value_pointed_to_offset (struct value *value)
237{
238 return value->pointed_to_offset;
239}
240
241void
242set_value_pointed_to_offset (struct value *value, int val)
243{
244 value->pointed_to_offset = val;
245}
13bb5560
AC
246
247enum lval_type *
248deprecated_value_lval_hack (struct value *value)
249{
250 return &value->lval;
251}
252
253CORE_ADDR *
254deprecated_value_address_hack (struct value *value)
255{
256 return &value->location.address;
257}
258
259struct internalvar **
260deprecated_value_internalvar_hack (struct value *value)
261{
262 return &value->location.internalvar;
263}
264
265struct frame_id *
266deprecated_value_frame_id_hack (struct value *value)
267{
268 return &value->frame_id;
269}
270
271short *
272deprecated_value_regnum_hack (struct value *value)
273{
274 return &value->regnum;
275}
990a07ab 276\f
c906108c
SS
277/* Return a mark in the value chain. All values allocated after the
278 mark is obtained (except for those released) are subject to being freed
279 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 280struct value *
fba45db2 281value_mark (void)
c906108c
SS
282{
283 return all_values;
284}
285
286/* Free all values allocated since MARK was obtained by value_mark
287 (except for those released). */
288void
f23631e4 289value_free_to_mark (struct value *mark)
c906108c 290{
f23631e4
AC
291 struct value *val;
292 struct value *next;
c906108c
SS
293
294 for (val = all_values; val && val != mark; val = next)
295 {
df407dfe 296 next = val->next;
c906108c
SS
297 value_free (val);
298 }
299 all_values = val;
300}
301
302/* Free all the values that have been allocated (except for those released).
303 Called after each command, successful or not. */
304
305void
fba45db2 306free_all_values (void)
c906108c 307{
f23631e4
AC
308 struct value *val;
309 struct value *next;
c906108c
SS
310
311 for (val = all_values; val; val = next)
312 {
df407dfe 313 next = val->next;
c906108c
SS
314 value_free (val);
315 }
316
317 all_values = 0;
318}
319
320/* Remove VAL from the chain all_values
321 so it will not be freed automatically. */
322
323void
f23631e4 324release_value (struct value *val)
c906108c 325{
f23631e4 326 struct value *v;
c906108c
SS
327
328 if (all_values == val)
329 {
330 all_values = val->next;
331 return;
332 }
333
334 for (v = all_values; v; v = v->next)
335 {
336 if (v->next == val)
337 {
338 v->next = val->next;
339 break;
340 }
341 }
342}
343
344/* Release all values up to mark */
f23631e4
AC
345struct value *
346value_release_to_mark (struct value *mark)
c906108c 347{
f23631e4
AC
348 struct value *val;
349 struct value *next;
c906108c 350
df407dfe
AC
351 for (val = next = all_values; next; next = next->next)
352 if (next->next == mark)
c906108c 353 {
df407dfe
AC
354 all_values = next->next;
355 next->next = NULL;
c906108c
SS
356 return val;
357 }
358 all_values = 0;
359 return val;
360}
361
362/* Return a copy of the value ARG.
363 It contains the same contents, for same memory address,
364 but it's a different block of storage. */
365
f23631e4
AC
366struct value *
367value_copy (struct value *arg)
c906108c 368{
4754a64e 369 struct type *encl_type = value_enclosing_type (arg);
f23631e4 370 struct value *val = allocate_value (encl_type);
df407dfe 371 val->type = arg->type;
c906108c
SS
372 VALUE_LVAL (val) = VALUE_LVAL (arg);
373 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
df407dfe
AC
374 val->offset = arg->offset;
375 val->bitpos = arg->bitpos;
376 val->bitsize = arg->bitsize;
1df6926e 377 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 378 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 379 val->lazy = arg->lazy;
feb13ab0 380 val->optimized_out = arg->optimized_out;
13c3b5f5 381 val->embedded_offset = value_embedded_offset (arg);
b44d461b 382 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 383 val->modifiable = arg->modifiable;
d69fe07e 384 if (!value_lazy (val))
c906108c 385 {
990a07ab 386 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 387 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
388
389 }
390 return val;
391}
392\f
393/* Access to the value history. */
394
395/* Record a new value in the value history.
396 Returns the absolute history index of the entry.
397 Result of -1 indicates the value was not saved; otherwise it is the
398 value history index of this new item. */
399
400int
f23631e4 401record_latest_value (struct value *val)
c906108c
SS
402{
403 int i;
404
405 /* We don't want this value to have anything to do with the inferior anymore.
406 In particular, "set $1 = 50" should not affect the variable from which
407 the value was taken, and fast watchpoints should be able to assume that
408 a value on the value history never changes. */
d69fe07e 409 if (value_lazy (val))
c906108c
SS
410 value_fetch_lazy (val);
411 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
412 from. This is a bit dubious, because then *&$1 does not just return $1
413 but the current contents of that location. c'est la vie... */
414 val->modifiable = 0;
415 release_value (val);
416
417 /* Here we treat value_history_count as origin-zero
418 and applying to the value being stored now. */
419
420 i = value_history_count % VALUE_HISTORY_CHUNK;
421 if (i == 0)
422 {
f23631e4 423 struct value_history_chunk *new
c5aa993b
JM
424 = (struct value_history_chunk *)
425 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
426 memset (new->values, 0, sizeof new->values);
427 new->next = value_history_chain;
428 value_history_chain = new;
429 }
430
431 value_history_chain->values[i] = val;
432
433 /* Now we regard value_history_count as origin-one
434 and applying to the value just stored. */
435
436 return ++value_history_count;
437}
438
439/* Return a copy of the value in the history with sequence number NUM. */
440
f23631e4 441struct value *
fba45db2 442access_value_history (int num)
c906108c 443{
f23631e4 444 struct value_history_chunk *chunk;
52f0bd74
AC
445 int i;
446 int absnum = num;
c906108c
SS
447
448 if (absnum <= 0)
449 absnum += value_history_count;
450
451 if (absnum <= 0)
452 {
453 if (num == 0)
454 error ("The history is empty.");
455 else if (num == 1)
456 error ("There is only one value in the history.");
457 else
458 error ("History does not go back to $$%d.", -num);
459 }
460 if (absnum > value_history_count)
461 error ("History has not yet reached $%d.", absnum);
462
463 absnum--;
464
465 /* Now absnum is always absolute and origin zero. */
466
467 chunk = value_history_chain;
468 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
469 i > 0; i--)
470 chunk = chunk->next;
471
472 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
473}
474
475/* Clear the value history entirely.
476 Must be done when new symbol tables are loaded,
477 because the type pointers become invalid. */
478
479void
fba45db2 480clear_value_history (void)
c906108c 481{
f23631e4 482 struct value_history_chunk *next;
52f0bd74 483 int i;
f23631e4 484 struct value *val;
c906108c
SS
485
486 while (value_history_chain)
487 {
488 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
489 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 490 xfree (val);
c906108c 491 next = value_history_chain->next;
b8c9b27d 492 xfree (value_history_chain);
c906108c
SS
493 value_history_chain = next;
494 }
495 value_history_count = 0;
496}
497
498static void
fba45db2 499show_values (char *num_exp, int from_tty)
c906108c 500{
52f0bd74 501 int i;
f23631e4 502 struct value *val;
c906108c
SS
503 static int num = 1;
504
505 if (num_exp)
506 {
c5aa993b
JM
507 /* "info history +" should print from the stored position.
508 "info history <exp>" should print around value number <exp>. */
c906108c 509 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 510 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
511 }
512 else
513 {
514 /* "info history" means print the last 10 values. */
515 num = value_history_count - 9;
516 }
517
518 if (num <= 0)
519 num = 1;
520
521 for (i = num; i < num + 10 && i <= value_history_count; i++)
522 {
523 val = access_value_history (i);
524 printf_filtered ("$%d = ", i);
525 value_print (val, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
527 }
528
529 /* The next "info history +" should start after what we just printed. */
530 num += 10;
531
532 /* Hitting just return after this command should do the same thing as
533 "info history +". If num_exp is null, this is unnecessary, since
534 "info history +" is not useful after "info history". */
535 if (from_tty && num_exp)
536 {
537 num_exp[0] = '+';
538 num_exp[1] = '\0';
539 }
540}
541\f
542/* Internal variables. These are variables within the debugger
543 that hold values assigned by debugger commands.
544 The user refers to them with a '$' prefix
545 that does not appear in the variable names stored internally. */
546
547static struct internalvar *internalvars;
548
549/* Look up an internal variable with name NAME. NAME should not
550 normally include a dollar sign.
551
552 If the specified internal variable does not exist,
553 one is created, with a void value. */
554
555struct internalvar *
fba45db2 556lookup_internalvar (char *name)
c906108c 557{
52f0bd74 558 struct internalvar *var;
c906108c
SS
559
560 for (var = internalvars; var; var = var->next)
5cb316ef 561 if (strcmp (var->name, name) == 0)
c906108c
SS
562 return var;
563
564 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
565 var->name = concat (name, NULL);
566 var->value = allocate_value (builtin_type_void);
567 release_value (var->value);
568 var->next = internalvars;
569 internalvars = var;
570 return var;
571}
572
f23631e4 573struct value *
fba45db2 574value_of_internalvar (struct internalvar *var)
c906108c 575{
f23631e4 576 struct value *val;
c906108c 577
c906108c 578 val = value_copy (var->value);
d69fe07e 579 if (value_lazy (val))
c906108c
SS
580 value_fetch_lazy (val);
581 VALUE_LVAL (val) = lval_internalvar;
582 VALUE_INTERNALVAR (val) = var;
583 return val;
584}
585
586void
fba45db2 587set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 588 int bitsize, struct value *newval)
c906108c 589{
0fd88904 590 bfd_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 591
c906108c
SS
592 if (bitsize)
593 modify_field (addr, value_as_long (newval),
594 bitpos, bitsize);
595 else
0fd88904 596 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
597}
598
599void
f23631e4 600set_internalvar (struct internalvar *var, struct value *val)
c906108c 601{
f23631e4 602 struct value *newval;
c906108c 603
c906108c
SS
604 newval = value_copy (val);
605 newval->modifiable = 1;
606
607 /* Force the value to be fetched from the target now, to avoid problems
608 later when this internalvar is referenced and the target is gone or
609 has changed. */
d69fe07e 610 if (value_lazy (newval))
c906108c
SS
611 value_fetch_lazy (newval);
612
613 /* Begin code which must not call error(). If var->value points to
614 something free'd, an error() obviously leaves a dangling pointer.
615 But we also get a danling pointer if var->value points to
616 something in the value chain (i.e., before release_value is
617 called), because after the error free_all_values will get called before
618 long. */
b8c9b27d 619 xfree (var->value);
c906108c
SS
620 var->value = newval;
621 release_value (newval);
622 /* End code which must not call error(). */
623}
624
625char *
fba45db2 626internalvar_name (struct internalvar *var)
c906108c
SS
627{
628 return var->name;
629}
630
631/* Free all internalvars. Done when new symtabs are loaded,
632 because that makes the values invalid. */
633
634void
fba45db2 635clear_internalvars (void)
c906108c 636{
52f0bd74 637 struct internalvar *var;
c906108c
SS
638
639 while (internalvars)
640 {
641 var = internalvars;
642 internalvars = var->next;
b8c9b27d
KB
643 xfree (var->name);
644 xfree (var->value);
645 xfree (var);
c906108c
SS
646 }
647}
648
649static void
fba45db2 650show_convenience (char *ignore, int from_tty)
c906108c 651{
52f0bd74 652 struct internalvar *var;
c906108c
SS
653 int varseen = 0;
654
655 for (var = internalvars; var; var = var->next)
656 {
c906108c
SS
657 if (!varseen)
658 {
659 varseen = 1;
660 }
661 printf_filtered ("$%s = ", var->name);
662 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
663 printf_filtered ("\n");
664 }
665 if (!varseen)
666 printf_unfiltered ("No debugger convenience variables now defined.\n\
667Convenience variables have names starting with \"$\";\n\
668use \"set\" as in \"set $foo = 5\" to define them.\n");
669}
670\f
671/* Extract a value as a C number (either long or double).
672 Knows how to convert fixed values to double, or
673 floating values to long.
674 Does not deallocate the value. */
675
676LONGEST
f23631e4 677value_as_long (struct value *val)
c906108c
SS
678{
679 /* This coerces arrays and functions, which is necessary (e.g.
680 in disassemble_command). It also dereferences references, which
681 I suspect is the most logical thing to do. */
994b9211 682 val = coerce_array (val);
0fd88904 683 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
684}
685
686DOUBLEST
f23631e4 687value_as_double (struct value *val)
c906108c
SS
688{
689 DOUBLEST foo;
690 int inv;
c5aa993b 691
0fd88904 692 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c
SS
693 if (inv)
694 error ("Invalid floating value found in program.");
695 return foo;
696}
4478b372
JB
697/* Extract a value as a C pointer. Does not deallocate the value.
698 Note that val's type may not actually be a pointer; value_as_long
699 handles all the cases. */
c906108c 700CORE_ADDR
f23631e4 701value_as_address (struct value *val)
c906108c
SS
702{
703 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
704 whether we want this to be true eventually. */
705#if 0
706 /* ADDR_BITS_REMOVE is wrong if we are being called for a
707 non-address (e.g. argument to "signal", "info break", etc.), or
708 for pointers to char, in which the low bits *are* significant. */
c5aa993b 709 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 710#else
f312f057
JB
711
712 /* There are several targets (IA-64, PowerPC, and others) which
713 don't represent pointers to functions as simply the address of
714 the function's entry point. For example, on the IA-64, a
715 function pointer points to a two-word descriptor, generated by
716 the linker, which contains the function's entry point, and the
717 value the IA-64 "global pointer" register should have --- to
718 support position-independent code. The linker generates
719 descriptors only for those functions whose addresses are taken.
720
721 On such targets, it's difficult for GDB to convert an arbitrary
722 function address into a function pointer; it has to either find
723 an existing descriptor for that function, or call malloc and
724 build its own. On some targets, it is impossible for GDB to
725 build a descriptor at all: the descriptor must contain a jump
726 instruction; data memory cannot be executed; and code memory
727 cannot be modified.
728
729 Upon entry to this function, if VAL is a value of type `function'
730 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
731 VALUE_ADDRESS (val) is the address of the function. This is what
732 you'll get if you evaluate an expression like `main'. The call
733 to COERCE_ARRAY below actually does all the usual unary
734 conversions, which includes converting values of type `function'
735 to `pointer to function'. This is the challenging conversion
736 discussed above. Then, `unpack_long' will convert that pointer
737 back into an address.
738
739 So, suppose the user types `disassemble foo' on an architecture
740 with a strange function pointer representation, on which GDB
741 cannot build its own descriptors, and suppose further that `foo'
742 has no linker-built descriptor. The address->pointer conversion
743 will signal an error and prevent the command from running, even
744 though the next step would have been to convert the pointer
745 directly back into the same address.
746
747 The following shortcut avoids this whole mess. If VAL is a
748 function, just return its address directly. */
df407dfe
AC
749 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
750 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
751 return VALUE_ADDRESS (val);
752
994b9211 753 val = coerce_array (val);
fc0c74b1
AC
754
755 /* Some architectures (e.g. Harvard), map instruction and data
756 addresses onto a single large unified address space. For
757 instance: An architecture may consider a large integer in the
758 range 0x10000000 .. 0x1000ffff to already represent a data
759 addresses (hence not need a pointer to address conversion) while
760 a small integer would still need to be converted integer to
761 pointer to address. Just assume such architectures handle all
762 integer conversions in a single function. */
763
764 /* JimB writes:
765
766 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
767 must admonish GDB hackers to make sure its behavior matches the
768 compiler's, whenever possible.
769
770 In general, I think GDB should evaluate expressions the same way
771 the compiler does. When the user copies an expression out of
772 their source code and hands it to a `print' command, they should
773 get the same value the compiler would have computed. Any
774 deviation from this rule can cause major confusion and annoyance,
775 and needs to be justified carefully. In other words, GDB doesn't
776 really have the freedom to do these conversions in clever and
777 useful ways.
778
779 AndrewC pointed out that users aren't complaining about how GDB
780 casts integers to pointers; they are complaining that they can't
781 take an address from a disassembly listing and give it to `x/i'.
782 This is certainly important.
783
79dd2d24 784 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
785 makes it possible for GDB to "get it right" in all circumstances
786 --- the target has complete control over how things get done, so
787 people can Do The Right Thing for their target without breaking
788 anyone else. The standard doesn't specify how integers get
789 converted to pointers; usually, the ABI doesn't either, but
790 ABI-specific code is a more reasonable place to handle it. */
791
df407dfe
AC
792 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
793 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
794 && gdbarch_integer_to_address_p (current_gdbarch))
795 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 796 value_contents (val));
fc0c74b1 797
0fd88904 798 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
799#endif
800}
801\f
802/* Unpack raw data (copied from debugee, target byte order) at VALADDR
803 as a long, or as a double, assuming the raw data is described
804 by type TYPE. Knows how to convert different sizes of values
805 and can convert between fixed and floating point. We don't assume
806 any alignment for the raw data. Return value is in host byte order.
807
808 If you want functions and arrays to be coerced to pointers, and
809 references to be dereferenced, call value_as_long() instead.
810
811 C++: It is assumed that the front-end has taken care of
812 all matters concerning pointers to members. A pointer
813 to member which reaches here is considered to be equivalent
814 to an INT (or some size). After all, it is only an offset. */
815
816LONGEST
66140c26 817unpack_long (struct type *type, const char *valaddr)
c906108c 818{
52f0bd74
AC
819 enum type_code code = TYPE_CODE (type);
820 int len = TYPE_LENGTH (type);
821 int nosign = TYPE_UNSIGNED (type);
c906108c
SS
822
823 if (current_language->la_language == language_scm
824 && is_scmvalue_type (type))
825 return scm_unpack (type, valaddr, TYPE_CODE_INT);
826
827 switch (code)
828 {
829 case TYPE_CODE_TYPEDEF:
830 return unpack_long (check_typedef (type), valaddr);
831 case TYPE_CODE_ENUM:
832 case TYPE_CODE_BOOL:
833 case TYPE_CODE_INT:
834 case TYPE_CODE_CHAR:
835 case TYPE_CODE_RANGE:
836 if (nosign)
837 return extract_unsigned_integer (valaddr, len);
838 else
839 return extract_signed_integer (valaddr, len);
840
841 case TYPE_CODE_FLT:
96d2f608 842 return extract_typed_floating (valaddr, type);
c906108c
SS
843
844 case TYPE_CODE_PTR:
845 case TYPE_CODE_REF:
846 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 847 whether we want this to be true eventually. */
4478b372 848 return extract_typed_address (valaddr, type);
c906108c
SS
849
850 case TYPE_CODE_MEMBER:
851 error ("not implemented: member types in unpack_long");
852
853 default:
854 error ("Value can't be converted to integer.");
855 }
c5aa993b 856 return 0; /* Placate lint. */
c906108c
SS
857}
858
859/* Return a double value from the specified type and address.
860 INVP points to an int which is set to 0 for valid value,
861 1 for invalid value (bad float format). In either case,
862 the returned double is OK to use. Argument is in target
863 format, result is in host format. */
864
865DOUBLEST
66140c26 866unpack_double (struct type *type, const char *valaddr, int *invp)
c906108c
SS
867{
868 enum type_code code;
869 int len;
870 int nosign;
871
872 *invp = 0; /* Assume valid. */
873 CHECK_TYPEDEF (type);
874 code = TYPE_CODE (type);
875 len = TYPE_LENGTH (type);
876 nosign = TYPE_UNSIGNED (type);
877 if (code == TYPE_CODE_FLT)
878 {
75bc7ddf
AC
879 /* NOTE: cagney/2002-02-19: There was a test here to see if the
880 floating-point value was valid (using the macro
881 INVALID_FLOAT). That test/macro have been removed.
882
883 It turns out that only the VAX defined this macro and then
884 only in a non-portable way. Fixing the portability problem
885 wouldn't help since the VAX floating-point code is also badly
886 bit-rotten. The target needs to add definitions for the
887 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
888 exactly describe the target floating-point format. The
889 problem here is that the corresponding floatformat_vax_f and
890 floatformat_vax_d values these methods should be set to are
891 also not defined either. Oops!
892
893 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
894 definitions and the new cases for floatformat_is_valid (). */
895
896 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
897 {
898 *invp = 1;
899 return 0.0;
900 }
901
96d2f608 902 return extract_typed_floating (valaddr, type);
c906108c
SS
903 }
904 else if (nosign)
905 {
906 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 907 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
908 }
909 else
910 {
911 /* Signed -- we are OK with unpack_long. */
912 return unpack_long (type, valaddr);
913 }
914}
915
916/* Unpack raw data (copied from debugee, target byte order) at VALADDR
917 as a CORE_ADDR, assuming the raw data is described by type TYPE.
918 We don't assume any alignment for the raw data. Return value is in
919 host byte order.
920
921 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 922 references to be dereferenced, call value_as_address() instead.
c906108c
SS
923
924 C++: It is assumed that the front-end has taken care of
925 all matters concerning pointers to members. A pointer
926 to member which reaches here is considered to be equivalent
927 to an INT (or some size). After all, it is only an offset. */
928
929CORE_ADDR
66140c26 930unpack_pointer (struct type *type, const char *valaddr)
c906108c
SS
931{
932 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
933 whether we want this to be true eventually. */
934 return unpack_long (type, valaddr);
935}
4478b372 936
c906108c 937\f
2c2738a0
DC
938/* Get the value of the FIELDN'th field (which must be static) of
939 TYPE. Return NULL if the field doesn't exist or has been
940 optimized out. */
c906108c 941
f23631e4 942struct value *
fba45db2 943value_static_field (struct type *type, int fieldno)
c906108c 944{
948e66d9
DJ
945 struct value *retval;
946
c906108c
SS
947 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
948 {
948e66d9 949 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 950 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
951 }
952 else
953 {
954 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
176620f1 955 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
948e66d9 956 if (sym == NULL)
c906108c
SS
957 {
958 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
959 as non-debuggable symbols */
960 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
961 if (!msym)
962 return NULL;
963 else
c5aa993b 964 {
948e66d9 965 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 966 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
967 }
968 }
969 else
970 {
948e66d9
DJ
971 /* SYM should never have a SYMBOL_CLASS which will require
972 read_var_value to use the FRAME parameter. */
973 if (symbol_read_needs_frame (sym))
974 warning ("static field's value depends on the current "
975 "frame - bad debug info?");
976 retval = read_var_value (sym, NULL);
2b127877 977 }
948e66d9
DJ
978 if (retval && VALUE_LVAL (retval) == lval_memory)
979 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
980 VALUE_ADDRESS (retval));
c906108c 981 }
948e66d9 982 return retval;
c906108c
SS
983}
984
2b127877
DB
985/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
986 You have to be careful here, since the size of the data area for the value
987 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
988 than the old enclosing type, you have to allocate more space for the data.
989 The return value is a pointer to the new version of this value structure. */
990
f23631e4
AC
991struct value *
992value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 993{
4754a64e 994 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
2b127877 995 {
4754a64e 996 val->enclosing_type = new_encl_type;
2b127877
DB
997 return val;
998 }
999 else
1000 {
f23631e4
AC
1001 struct value *new_val;
1002 struct value *prev;
2b127877 1003
f23631e4 1004 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028 1005
4754a64e 1006 new_val->enclosing_type = new_encl_type;
cc303028 1007
2b127877
DB
1008 /* We have to make sure this ends up in the same place in the value
1009 chain as the original copy, so it's clean-up behavior is the same.
1010 If the value has been released, this is a waste of time, but there
1011 is no way to tell that in advance, so... */
1012
1013 if (val != all_values)
1014 {
1015 for (prev = all_values; prev != NULL; prev = prev->next)
1016 {
1017 if (prev->next == val)
1018 {
1019 prev->next = new_val;
1020 break;
1021 }
1022 }
1023 }
1024
1025 return new_val;
1026 }
1027}
1028
c906108c
SS
1029/* Given a value ARG1 (offset by OFFSET bytes)
1030 of a struct or union type ARG_TYPE,
1031 extract and return the value of one of its (non-static) fields.
1032 FIELDNO says which field. */
1033
f23631e4
AC
1034struct value *
1035value_primitive_field (struct value *arg1, int offset,
aa1ee363 1036 int fieldno, struct type *arg_type)
c906108c 1037{
f23631e4 1038 struct value *v;
52f0bd74 1039 struct type *type;
c906108c
SS
1040
1041 CHECK_TYPEDEF (arg_type);
1042 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1043
1044 /* Handle packed fields */
1045
1046 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1047 {
1048 v = value_from_longest (type,
1049 unpack_field_as_long (arg_type,
0fd88904 1050 value_contents (arg1)
c5aa993b 1051 + offset,
c906108c 1052 fieldno));
df407dfe
AC
1053 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1054 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1055 v->offset = value_offset (arg1) + offset
2e70b7b9 1056 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1057 }
1058 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1059 {
1060 /* This field is actually a base subobject, so preserve the
1061 entire object's contents for later references to virtual
1062 bases, etc. */
4754a64e 1063 v = allocate_value (value_enclosing_type (arg1));
df407dfe 1064 v->type = type;
d69fe07e 1065 if (value_lazy (arg1))
dfa52d88 1066 set_value_lazy (v, 1);
c906108c 1067 else
990a07ab 1068 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
4754a64e 1069 TYPE_LENGTH (value_enclosing_type (arg1)));
df407dfe 1070 v->offset = value_offset (arg1);
13c3b5f5
AC
1071 v->embedded_offset = (offset + value_embedded_offset (arg1)
1072 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1073 }
1074 else
1075 {
1076 /* Plain old data member */
1077 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1078 v = allocate_value (type);
d69fe07e 1079 if (value_lazy (arg1))
dfa52d88 1080 set_value_lazy (v, 1);
c906108c 1081 else
990a07ab
AC
1082 memcpy (value_contents_raw (v),
1083 value_contents_raw (arg1) + offset,
c906108c 1084 TYPE_LENGTH (type));
df407dfe 1085 v->offset = (value_offset (arg1) + offset
13c3b5f5 1086 + value_embedded_offset (arg1));
c906108c
SS
1087 }
1088 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1089 if (VALUE_LVAL (arg1) == lval_internalvar)
1090 VALUE_LVAL (v) = lval_internalvar_component;
1091 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
9ee8fc9d 1092 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1093 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c 1094/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 1095 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
1096 return v;
1097}
1098
1099/* Given a value ARG1 of a struct or union type,
1100 extract and return the value of one of its (non-static) fields.
1101 FIELDNO says which field. */
1102
f23631e4 1103struct value *
aa1ee363 1104value_field (struct value *arg1, int fieldno)
c906108c 1105{
df407dfe 1106 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1107}
1108
1109/* Return a non-virtual function as a value.
1110 F is the list of member functions which contains the desired method.
0478d61c
FF
1111 J is an index into F which provides the desired method.
1112
1113 We only use the symbol for its address, so be happy with either a
1114 full symbol or a minimal symbol.
1115 */
c906108c 1116
f23631e4
AC
1117struct value *
1118value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1119 int offset)
c906108c 1120{
f23631e4 1121 struct value *v;
52f0bd74 1122 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1123 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1124 struct symbol *sym;
0478d61c 1125 struct minimal_symbol *msym;
c906108c 1126
176620f1 1127 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
5ae326fa 1128 if (sym != NULL)
0478d61c 1129 {
5ae326fa
AC
1130 msym = NULL;
1131 }
1132 else
1133 {
1134 gdb_assert (sym == NULL);
0478d61c 1135 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1136 if (msym == NULL)
1137 return NULL;
0478d61c
FF
1138 }
1139
c906108c 1140 v = allocate_value (ftype);
0478d61c
FF
1141 if (sym)
1142 {
1143 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1144 }
1145 else
1146 {
1147 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1148 }
c906108c
SS
1149
1150 if (arg1p)
c5aa993b 1151 {
df407dfe 1152 if (type != value_type (*arg1p))
c5aa993b
JM
1153 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1154 value_addr (*arg1p)));
1155
070ad9f0 1156 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1157 VALUE_OFFSET (*arg1p) += offset;
1158 */
c906108c
SS
1159 }
1160
1161 return v;
1162}
1163
c906108c
SS
1164\f
1165/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1166 VALADDR.
1167
1168 Extracting bits depends on endianness of the machine. Compute the
1169 number of least significant bits to discard. For big endian machines,
1170 we compute the total number of bits in the anonymous object, subtract
1171 off the bit count from the MSB of the object to the MSB of the
1172 bitfield, then the size of the bitfield, which leaves the LSB discard
1173 count. For little endian machines, the discard count is simply the
1174 number of bits from the LSB of the anonymous object to the LSB of the
1175 bitfield.
1176
1177 If the field is signed, we also do sign extension. */
1178
1179LONGEST
66140c26 1180unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
c906108c
SS
1181{
1182 ULONGEST val;
1183 ULONGEST valmask;
1184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1186 int lsbcount;
1187 struct type *field_type;
1188
1189 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1190 field_type = TYPE_FIELD_TYPE (type, fieldno);
1191 CHECK_TYPEDEF (field_type);
1192
1193 /* Extract bits. See comment above. */
1194
1195 if (BITS_BIG_ENDIAN)
1196 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1197 else
1198 lsbcount = (bitpos % 8);
1199 val >>= lsbcount;
1200
1201 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1202 If the field is signed, and is negative, then sign extend. */
1203
1204 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1205 {
1206 valmask = (((ULONGEST) 1) << bitsize) - 1;
1207 val &= valmask;
1208 if (!TYPE_UNSIGNED (field_type))
1209 {
1210 if (val & (valmask ^ (valmask >> 1)))
1211 {
1212 val |= ~valmask;
1213 }
1214 }
1215 }
1216 return (val);
1217}
1218
1219/* Modify the value of a bitfield. ADDR points to a block of memory in
1220 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1221 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1222 indicate which bits (in target bit order) comprise the bitfield.
1223 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1224 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1225
1226void
fba45db2 1227modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1228{
f4e88c8e
PH
1229 ULONGEST oword;
1230 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1231
1232 /* If a negative fieldval fits in the field in question, chop
1233 off the sign extension bits. */
f4e88c8e
PH
1234 if ((~fieldval & ~(mask >> 1)) == 0)
1235 fieldval &= mask;
c906108c
SS
1236
1237 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1238 if (0 != (fieldval & ~mask))
c906108c
SS
1239 {
1240 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1241 we don't have a sprintf_longest. */
c906108c
SS
1242 warning ("Value does not fit in %d bits.", bitsize);
1243
1244 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1245 fieldval &= mask;
c906108c
SS
1246 }
1247
f4e88c8e 1248 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1249
1250 /* Shifting for bit field depends on endianness of the target machine. */
1251 if (BITS_BIG_ENDIAN)
1252 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1253
f4e88c8e 1254 oword &= ~(mask << bitpos);
c906108c
SS
1255 oword |= fieldval << bitpos;
1256
f4e88c8e 1257 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1258}
1259\f
1260/* Convert C numbers into newly allocated values */
1261
f23631e4 1262struct value *
aa1ee363 1263value_from_longest (struct type *type, LONGEST num)
c906108c 1264{
f23631e4 1265 struct value *val = allocate_value (type);
52f0bd74
AC
1266 enum type_code code;
1267 int len;
c5aa993b 1268retry:
c906108c
SS
1269 code = TYPE_CODE (type);
1270 len = TYPE_LENGTH (type);
1271
1272 switch (code)
1273 {
1274 case TYPE_CODE_TYPEDEF:
1275 type = check_typedef (type);
1276 goto retry;
1277 case TYPE_CODE_INT:
1278 case TYPE_CODE_CHAR:
1279 case TYPE_CODE_ENUM:
1280 case TYPE_CODE_BOOL:
1281 case TYPE_CODE_RANGE:
990a07ab 1282 store_signed_integer (value_contents_raw (val), len, num);
c906108c 1283 break;
c5aa993b 1284
c906108c
SS
1285 case TYPE_CODE_REF:
1286 case TYPE_CODE_PTR:
990a07ab 1287 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
c906108c 1288 break;
c5aa993b 1289
c906108c
SS
1290 default:
1291 error ("Unexpected type (%d) encountered for integer constant.", code);
1292 }
1293 return val;
1294}
1295
4478b372
JB
1296
1297/* Create a value representing a pointer of type TYPE to the address
1298 ADDR. */
f23631e4 1299struct value *
4478b372
JB
1300value_from_pointer (struct type *type, CORE_ADDR addr)
1301{
f23631e4 1302 struct value *val = allocate_value (type);
990a07ab 1303 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1304 return val;
1305}
1306
1307
0f71a2f6 1308/* Create a value for a string constant to be stored locally
070ad9f0 1309 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1310 This is analogous to value_from_longest, which also does not
1311 use inferior memory. String shall NOT contain embedded nulls. */
1312
f23631e4 1313struct value *
fba45db2 1314value_from_string (char *ptr)
0f71a2f6 1315{
f23631e4 1316 struct value *val;
c5aa993b 1317 int len = strlen (ptr);
0f71a2f6 1318 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1319 struct type *string_char_type;
1320 struct type *rangetype;
1321 struct type *stringtype;
1322
1323 rangetype = create_range_type ((struct type *) NULL,
1324 builtin_type_int,
1325 lowbound, len + lowbound - 1);
1326 string_char_type = language_string_char_type (current_language,
1327 current_gdbarch);
1328 stringtype = create_array_type ((struct type *) NULL,
1329 string_char_type,
1330 rangetype);
0f71a2f6 1331 val = allocate_value (stringtype);
990a07ab 1332 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1333 return val;
1334}
1335
f23631e4 1336struct value *
fba45db2 1337value_from_double (struct type *type, DOUBLEST num)
c906108c 1338{
f23631e4 1339 struct value *val = allocate_value (type);
c906108c 1340 struct type *base_type = check_typedef (type);
52f0bd74
AC
1341 enum type_code code = TYPE_CODE (base_type);
1342 int len = TYPE_LENGTH (base_type);
c906108c
SS
1343
1344 if (code == TYPE_CODE_FLT)
1345 {
990a07ab 1346 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1347 }
1348 else
1349 error ("Unexpected type encountered for floating constant.");
1350
1351 return val;
1352}
994b9211
AC
1353
1354struct value *
1355coerce_ref (struct value *arg)
1356{
df407dfe 1357 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1358 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1359 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1360 unpack_pointer (value_type (arg),
0fd88904 1361 value_contents (arg)));
994b9211
AC
1362 return arg;
1363}
1364
1365struct value *
1366coerce_array (struct value *arg)
1367{
1368 arg = coerce_ref (arg);
1369 if (current_language->c_style_arrays
df407dfe 1370 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
994b9211 1371 arg = value_coerce_array (arg);
df407dfe 1372 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
994b9211
AC
1373 arg = value_coerce_function (arg);
1374 return arg;
1375}
1376
1377struct value *
1378coerce_number (struct value *arg)
1379{
1380 arg = coerce_array (arg);
1381 arg = coerce_enum (arg);
1382 return arg;
1383}
1384
1385struct value *
1386coerce_enum (struct value *arg)
1387{
df407dfe 1388 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
994b9211
AC
1389 arg = value_cast (builtin_type_unsigned_int, arg);
1390 return arg;
1391}
c906108c 1392\f
c906108c 1393
74055713
AC
1394/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1395 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1396 is the type (which is known to be struct, union or array).
c906108c
SS
1397
1398 On most machines, the struct convention is used unless we are
1399 using gcc and the type is of a special size. */
1400/* As of about 31 Mar 93, GCC was changed to be compatible with the
1401 native compiler. GCC 2.3.3 was the last release that did it the
1402 old way. Since gcc2_compiled was not changed, we have no
1403 way to correctly win in all cases, so we just do the right thing
1404 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1405 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1406 would cause more chaos than dealing with some struct returns being
1407 handled wrong. */
bc87dfa0
AC
1408/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1409 dead. */
c906108c
SS
1410
1411int
fba45db2 1412generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1413{
bc87dfa0
AC
1414 return !(TYPE_LENGTH (value_type) == 1
1415 || TYPE_LENGTH (value_type) == 2
1416 || TYPE_LENGTH (value_type) == 4
1417 || TYPE_LENGTH (value_type) == 8);
c906108c
SS
1418}
1419
48436ce6
AC
1420/* Return true if the function returning the specified type is using
1421 the convention of returning structures in memory (passing in the
1422 address as a hidden first parameter). GCC_P is nonzero if compiled
c906108c
SS
1423 with GCC. */
1424
1425int
48436ce6 1426using_struct_return (struct type *value_type, int gcc_p)
c906108c 1427{
52f0bd74 1428 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1429
1430 if (code == TYPE_CODE_ERROR)
1431 error ("Function return type unknown.");
1432
667e784f
AC
1433 if (code == TYPE_CODE_VOID)
1434 /* A void return value is never in memory. See also corresponding
44e5158b 1435 code in "print_return_value". */
667e784f
AC
1436 return 0;
1437
92ad9cd9
AC
1438 /* Probe the architecture for the return-value convention. */
1439 return (gdbarch_return_value (current_gdbarch, value_type,
1440 NULL, NULL, NULL)
31db7b6c 1441 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1442}
1443
c906108c 1444void
fba45db2 1445_initialize_values (void)
c906108c
SS
1446{
1447 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1448 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1449These variables are created when you assign them values;\n\
1450thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1451A few convenience variables are given values automatically:\n\
1452\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1453\"$__\" holds the contents of the last address examined with \"x\".",
1454 &showlist);
1455
1456 add_cmd ("values", no_class, show_values,
1457 "Elements of value history around item number IDX (or last ten).",
1458 &showlist);
1459}
This page took 0.594971 seconds and 4 git commands to generate.