Use an std::vector for inline_states
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0914bcdb 44
bc3b79fd
TJB
45/* Definition of a user function. */
46struct internal_function
47{
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58};
59
4e07d55f
PA
60/* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62struct range
63{
64 /* Lowest offset in the range. */
6b850546 65 LONGEST offset;
4e07d55f
PA
66
67 /* Length of the range. */
6b850546 68 LONGEST length;
4e07d55f 69
0c7e6dd8
TT
70 /* Returns true if THIS is strictly less than OTHER, useful for
71 searching. We keep ranges sorted by offset and coalesce
72 overlapping and contiguous ranges, so this just compares the
73 starting offset. */
4e07d55f 74
0c7e6dd8
TT
75 bool operator< (const range &other) const
76 {
77 return offset < other.offset;
78 }
79};
4e07d55f
PA
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
6b850546
DT
85ranges_overlap (LONGEST offset1, LONGEST len1,
86 LONGEST offset2, LONGEST len2)
4e07d55f
PA
87{
88 ULONGEST h, l;
89
325fac50
PA
90 l = std::max (offset1, offset2);
91 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
92 return (l < h);
93}
94
4e07d55f
PA
95/* Returns true if RANGES contains any range that overlaps [OFFSET,
96 OFFSET+LENGTH). */
97
98static int
0c7e6dd8
TT
99ranges_contain (const std::vector<range> &ranges, LONGEST offset,
100 LONGEST length)
4e07d55f 101{
0c7e6dd8 102 range what;
4e07d55f
PA
103
104 what.offset = offset;
105 what.length = length;
106
107 /* We keep ranges sorted by offset and coalesce overlapping and
108 contiguous ranges, so to check if a range list contains a given
109 range, we can do a binary search for the position the given range
110 would be inserted if we only considered the starting OFFSET of
111 ranges. We call that position I. Since we also have LENGTH to
112 care for (this is a range afterall), we need to check if the
113 _previous_ range overlaps the I range. E.g.,
114
115 R
116 |---|
117 |---| |---| |------| ... |--|
118 0 1 2 N
119
120 I=1
121
122 In the case above, the binary search would return `I=1', meaning,
123 this OFFSET should be inserted at position 1, and the current
124 position 1 should be pushed further (and before 2). But, `0'
125 overlaps with R.
126
127 Then we need to check if the I range overlaps the I range itself.
128 E.g.,
129
130 R
131 |---|
132 |---| |---| |-------| ... |--|
133 0 1 2 N
134
135 I=1
136 */
137
4e07d55f 138
0c7e6dd8
TT
139 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
140
141 if (i > ranges.begin ())
4e07d55f 142 {
0c7e6dd8 143 const struct range &bef = *(i - 1);
4e07d55f 144
0c7e6dd8 145 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
146 return 1;
147 }
148
0c7e6dd8 149 if (i < ranges.end ())
4e07d55f 150 {
0c7e6dd8 151 const struct range &r = *i;
4e07d55f 152
0c7e6dd8 153 if (ranges_overlap (r.offset, r.length, offset, length))
4e07d55f
PA
154 return 1;
155 }
156
157 return 0;
158}
159
bc3b79fd
TJB
160static struct cmd_list_element *functionlist;
161
87784a47
TT
162/* Note that the fields in this structure are arranged to save a bit
163 of memory. */
164
91294c83
AC
165struct value
166{
466ce3ae
TT
167 explicit value (struct type *type_)
168 : modifiable (1),
169 lazy (1),
170 initialized (1),
171 stack (0),
172 type (type_),
173 enclosing_type (type_)
174 {
175 location.address = 0;
176 }
177
178 ~value ()
179 {
466ce3ae
TT
180 if (VALUE_LVAL (this) == lval_computed)
181 {
182 const struct lval_funcs *funcs = location.computed.funcs;
183
184 if (funcs->free_closure)
185 funcs->free_closure (this);
186 }
187 else if (VALUE_LVAL (this) == lval_xcallable)
188 delete location.xm_worker;
466ce3ae
TT
189 }
190
191 DISABLE_COPY_AND_ASSIGN (value);
192
91294c83
AC
193 /* Type of value; either not an lval, or one of the various
194 different possible kinds of lval. */
466ce3ae 195 enum lval_type lval = not_lval;
91294c83
AC
196
197 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
198 unsigned int modifiable : 1;
199
200 /* If zero, contents of this value are in the contents field. If
201 nonzero, contents are in inferior. If the lval field is lval_memory,
202 the contents are in inferior memory at location.address plus offset.
203 The lval field may also be lval_register.
204
205 WARNING: This field is used by the code which handles watchpoints
206 (see breakpoint.c) to decide whether a particular value can be
207 watched by hardware watchpoints. If the lazy flag is set for
208 some member of a value chain, it is assumed that this member of
209 the chain doesn't need to be watched as part of watching the
210 value itself. This is how GDB avoids watching the entire struct
211 or array when the user wants to watch a single struct member or
212 array element. If you ever change the way lazy flag is set and
213 reset, be sure to consider this use as well! */
214 unsigned int lazy : 1;
215
87784a47
TT
216 /* If value is a variable, is it initialized or not. */
217 unsigned int initialized : 1;
218
219 /* If value is from the stack. If this is set, read_stack will be
220 used instead of read_memory to enable extra caching. */
221 unsigned int stack : 1;
91294c83
AC
222
223 /* Location of value (if lval). */
224 union
225 {
7dc54575 226 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
227 CORE_ADDR address;
228
7dc54575
YQ
229 /*If lval == lval_register, the value is from a register. */
230 struct
231 {
232 /* Register number. */
233 int regnum;
234 /* Frame ID of "next" frame to which a register value is relative.
235 If the register value is found relative to frame F, then the
236 frame id of F->next will be stored in next_frame_id. */
237 struct frame_id next_frame_id;
238 } reg;
239
91294c83
AC
240 /* Pointer to internal variable. */
241 struct internalvar *internalvar;
5f5233d4 242
e81e7f5e
SC
243 /* Pointer to xmethod worker. */
244 struct xmethod_worker *xm_worker;
245
5f5233d4
PA
246 /* If lval == lval_computed, this is a set of function pointers
247 to use to access and describe the value, and a closure pointer
248 for them to use. */
249 struct
250 {
c8f2448a
JK
251 /* Functions to call. */
252 const struct lval_funcs *funcs;
253
254 /* Closure for those functions to use. */
255 void *closure;
5f5233d4 256 } computed;
91294c83
AC
257 } location;
258
3723fda8 259 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
260 addressable memory units. Note also the member embedded_offset
261 below. */
466ce3ae 262 LONGEST offset = 0;
91294c83
AC
263
264 /* Only used for bitfields; number of bits contained in them. */
466ce3ae 265 LONGEST bitsize = 0;
91294c83
AC
266
267 /* Only used for bitfields; position of start of field. For
32c9a795 268 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 269 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
466ce3ae 270 LONGEST bitpos = 0;
91294c83 271
87784a47
TT
272 /* The number of references to this value. When a value is created,
273 the value chain holds a reference, so REFERENCE_COUNT is 1. If
274 release_value is called, this value is removed from the chain but
275 the caller of release_value now has a reference to this value.
276 The caller must arrange for a call to value_free later. */
466ce3ae 277 int reference_count = 1;
87784a47 278
4ea48cc1
DJ
279 /* Only used for bitfields; the containing value. This allows a
280 single read from the target when displaying multiple
281 bitfields. */
2c8331b9 282 value_ref_ptr parent;
4ea48cc1 283
91294c83
AC
284 /* Type of the value. */
285 struct type *type;
286
287 /* If a value represents a C++ object, then the `type' field gives
288 the object's compile-time type. If the object actually belongs
289 to some class derived from `type', perhaps with other base
290 classes and additional members, then `type' is just a subobject
291 of the real thing, and the full object is probably larger than
292 `type' would suggest.
293
294 If `type' is a dynamic class (i.e. one with a vtable), then GDB
295 can actually determine the object's run-time type by looking at
296 the run-time type information in the vtable. When this
297 information is available, we may elect to read in the entire
298 object, for several reasons:
299
300 - When printing the value, the user would probably rather see the
301 full object, not just the limited portion apparent from the
302 compile-time type.
303
304 - If `type' has virtual base classes, then even printing `type'
305 alone may require reaching outside the `type' portion of the
306 object to wherever the virtual base class has been stored.
307
308 When we store the entire object, `enclosing_type' is the run-time
309 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
310 offset of `type' within that larger type, in target addressable memory
311 units. The value_contents() macro takes `embedded_offset' into account,
312 so most GDB code continues to see the `type' portion of the value, just
313 as the inferior would.
91294c83
AC
314
315 If `type' is a pointer to an object, then `enclosing_type' is a
316 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
317 the offset in target addressable memory units from the full object
318 to the pointed-to object -- that is, the value `embedded_offset' would
319 have if we followed the pointer and fetched the complete object.
320 (I don't really see the point. Why not just determine the
321 run-time type when you indirect, and avoid the special case? The
322 contents don't matter until you indirect anyway.)
91294c83
AC
323
324 If we're not doing anything fancy, `enclosing_type' is equal to
325 `type', and `embedded_offset' is zero, so everything works
326 normally. */
327 struct type *enclosing_type;
466ce3ae
TT
328 LONGEST embedded_offset = 0;
329 LONGEST pointed_to_offset = 0;
91294c83 330
3e3d7139
JG
331 /* Actual contents of the value. Target byte-order. NULL or not
332 valid if lazy is nonzero. */
14c88955 333 gdb::unique_xmalloc_ptr<gdb_byte> contents;
828d3400 334
4e07d55f
PA
335 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
336 rather than available, since the common and default case is for a
9a0dc9e3
PA
337 value to be available. This is filled in at value read time.
338 The unavailable ranges are tracked in bits. Note that a contents
339 bit that has been optimized out doesn't really exist in the
340 program, so it can't be marked unavailable either. */
0c7e6dd8 341 std::vector<range> unavailable;
9a0dc9e3
PA
342
343 /* Likewise, but for optimized out contents (a chunk of the value of
344 a variable that does not actually exist in the program). If LVAL
345 is lval_register, this is a register ($pc, $sp, etc., never a
346 program variable) that has not been saved in the frame. Not
347 saved registers and optimized-out program variables values are
348 treated pretty much the same, except not-saved registers have a
349 different string representation and related error strings. */
0c7e6dd8 350 std::vector<range> optimized_out;
91294c83
AC
351};
352
e512cdbd
SM
353/* See value.h. */
354
355struct gdbarch *
356get_value_arch (const struct value *value)
357{
358 return get_type_arch (value_type (value));
359}
360
4e07d55f 361int
6b850546 362value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
363{
364 gdb_assert (!value->lazy);
365
366 return !ranges_contain (value->unavailable, offset, length);
367}
368
bdf22206 369int
6b850546
DT
370value_bytes_available (const struct value *value,
371 LONGEST offset, LONGEST length)
bdf22206
AB
372{
373 return value_bits_available (value,
374 offset * TARGET_CHAR_BIT,
375 length * TARGET_CHAR_BIT);
376}
377
9a0dc9e3
PA
378int
379value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
380{
381 gdb_assert (!value->lazy);
382
383 return ranges_contain (value->optimized_out, bit_offset, bit_length);
384}
385
ec0a52e1
PA
386int
387value_entirely_available (struct value *value)
388{
389 /* We can only tell whether the whole value is available when we try
390 to read it. */
391 if (value->lazy)
392 value_fetch_lazy (value);
393
0c7e6dd8 394 if (value->unavailable.empty ())
ec0a52e1
PA
395 return 1;
396 return 0;
397}
398
9a0dc9e3
PA
399/* Returns true if VALUE is entirely covered by RANGES. If the value
400 is lazy, it'll be read now. Note that RANGE is a pointer to
401 pointer because reading the value might change *RANGE. */
402
403static int
404value_entirely_covered_by_range_vector (struct value *value,
0c7e6dd8 405 const std::vector<range> &ranges)
6211c335 406{
9a0dc9e3
PA
407 /* We can only tell whether the whole value is optimized out /
408 unavailable when we try to read it. */
6211c335
YQ
409 if (value->lazy)
410 value_fetch_lazy (value);
411
0c7e6dd8 412 if (ranges.size () == 1)
6211c335 413 {
0c7e6dd8 414 const struct range &t = ranges[0];
6211c335 415
0c7e6dd8
TT
416 if (t.offset == 0
417 && t.length == (TARGET_CHAR_BIT
418 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
419 return 1;
420 }
421
422 return 0;
423}
424
9a0dc9e3
PA
425int
426value_entirely_unavailable (struct value *value)
427{
0c7e6dd8 428 return value_entirely_covered_by_range_vector (value, value->unavailable);
9a0dc9e3
PA
429}
430
431int
432value_entirely_optimized_out (struct value *value)
433{
0c7e6dd8 434 return value_entirely_covered_by_range_vector (value, value->optimized_out);
9a0dc9e3
PA
435}
436
437/* Insert into the vector pointed to by VECTORP the bit range starting of
438 OFFSET bits, and extending for the next LENGTH bits. */
439
440static void
0c7e6dd8 441insert_into_bit_range_vector (std::vector<range> *vectorp,
6b850546 442 LONGEST offset, LONGEST length)
4e07d55f 443{
0c7e6dd8 444 range newr;
4e07d55f
PA
445
446 /* Insert the range sorted. If there's overlap or the new range
447 would be contiguous with an existing range, merge. */
448
449 newr.offset = offset;
450 newr.length = length;
451
452 /* Do a binary search for the position the given range would be
453 inserted if we only considered the starting OFFSET of ranges.
454 Call that position I. Since we also have LENGTH to care for
455 (this is a range afterall), we need to check if the _previous_
456 range overlaps the I range. E.g., calling R the new range:
457
458 #1 - overlaps with previous
459
460 R
461 |-...-|
462 |---| |---| |------| ... |--|
463 0 1 2 N
464
465 I=1
466
467 In the case #1 above, the binary search would return `I=1',
468 meaning, this OFFSET should be inserted at position 1, and the
469 current position 1 should be pushed further (and become 2). But,
470 note that `0' overlaps with R, so we want to merge them.
471
472 A similar consideration needs to be taken if the new range would
473 be contiguous with the previous range:
474
475 #2 - contiguous with previous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 If there's no overlap with the previous range, as in:
485
486 #3 - not overlapping and not contiguous
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=1
494
495 or if I is 0:
496
497 #4 - R is the range with lowest offset
498
499 R
500 |-...-|
501 |--| |---| |------| ... |--|
502 0 1 2 N
503
504 I=0
505
506 ... we just push the new range to I.
507
508 All the 4 cases above need to consider that the new range may
509 also overlap several of the ranges that follow, or that R may be
510 contiguous with the following range, and merge. E.g.,
511
512 #5 - overlapping following ranges
513
514 R
515 |------------------------|
516 |--| |---| |------| ... |--|
517 0 1 2 N
518
519 I=0
520
521 or:
522
523 R
524 |-------|
525 |--| |---| |------| ... |--|
526 0 1 2 N
527
528 I=1
529
530 */
531
0c7e6dd8
TT
532 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
533 if (i > vectorp->begin ())
4e07d55f 534 {
0c7e6dd8 535 struct range &bef = *(i - 1);
4e07d55f 536
0c7e6dd8 537 if (ranges_overlap (bef.offset, bef.length, offset, length))
4e07d55f
PA
538 {
539 /* #1 */
0c7e6dd8
TT
540 ULONGEST l = std::min (bef.offset, offset);
541 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
4e07d55f 542
0c7e6dd8
TT
543 bef.offset = l;
544 bef.length = h - l;
4e07d55f
PA
545 i--;
546 }
0c7e6dd8 547 else if (offset == bef.offset + bef.length)
4e07d55f
PA
548 {
549 /* #2 */
0c7e6dd8 550 bef.length += length;
4e07d55f
PA
551 i--;
552 }
553 else
554 {
555 /* #3 */
0c7e6dd8 556 i = vectorp->insert (i, newr);
4e07d55f
PA
557 }
558 }
559 else
560 {
561 /* #4 */
0c7e6dd8 562 i = vectorp->insert (i, newr);
4e07d55f
PA
563 }
564
565 /* Check whether the ranges following the one we've just added or
566 touched can be folded in (#5 above). */
0c7e6dd8 567 if (i != vectorp->end () && i + 1 < vectorp->end ())
4e07d55f 568 {
4e07d55f 569 int removed = 0;
0c7e6dd8 570 auto next = i + 1;
4e07d55f
PA
571
572 /* Get the range we just touched. */
0c7e6dd8 573 struct range &t = *i;
4e07d55f
PA
574 removed = 0;
575
576 i = next;
0c7e6dd8
TT
577 for (; i < vectorp->end (); i++)
578 {
579 struct range &r = *i;
580 if (r.offset <= t.offset + t.length)
581 {
582 ULONGEST l, h;
583
584 l = std::min (t.offset, r.offset);
585 h = std::max (t.offset + t.length, r.offset + r.length);
586
587 t.offset = l;
588 t.length = h - l;
589
590 removed++;
591 }
592 else
593 {
594 /* If we couldn't merge this one, we won't be able to
595 merge following ones either, since the ranges are
596 always sorted by OFFSET. */
597 break;
598 }
599 }
4e07d55f
PA
600
601 if (removed != 0)
0c7e6dd8 602 vectorp->erase (next, next + removed);
4e07d55f
PA
603 }
604}
605
9a0dc9e3 606void
6b850546
DT
607mark_value_bits_unavailable (struct value *value,
608 LONGEST offset, LONGEST length)
9a0dc9e3
PA
609{
610 insert_into_bit_range_vector (&value->unavailable, offset, length);
611}
612
bdf22206 613void
6b850546
DT
614mark_value_bytes_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
bdf22206
AB
616{
617 mark_value_bits_unavailable (value,
618 offset * TARGET_CHAR_BIT,
619 length * TARGET_CHAR_BIT);
620}
621
c8c1c22f
PA
622/* Find the first range in RANGES that overlaps the range defined by
623 OFFSET and LENGTH, starting at element POS in the RANGES vector,
624 Returns the index into RANGES where such overlapping range was
625 found, or -1 if none was found. */
626
627static int
0c7e6dd8 628find_first_range_overlap (const std::vector<range> *ranges, int pos,
6b850546 629 LONGEST offset, LONGEST length)
c8c1c22f 630{
c8c1c22f
PA
631 int i;
632
0c7e6dd8
TT
633 for (i = pos; i < ranges->size (); i++)
634 {
635 const range &r = (*ranges)[i];
636 if (ranges_overlap (r.offset, r.length, offset, length))
637 return i;
638 }
c8c1c22f
PA
639
640 return -1;
641}
642
bdf22206
AB
643/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
644 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
645 return non-zero.
646
647 It must always be the case that:
648 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
649
650 It is assumed that memory can be accessed from:
651 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
652 to:
653 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
654 / TARGET_CHAR_BIT) */
655static int
656memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
657 const gdb_byte *ptr2, size_t offset2_bits,
658 size_t length_bits)
659{
660 gdb_assert (offset1_bits % TARGET_CHAR_BIT
661 == offset2_bits % TARGET_CHAR_BIT);
662
663 if (offset1_bits % TARGET_CHAR_BIT != 0)
664 {
665 size_t bits;
666 gdb_byte mask, b1, b2;
667
668 /* The offset from the base pointers PTR1 and PTR2 is not a complete
669 number of bytes. A number of bits up to either the next exact
670 byte boundary, or LENGTH_BITS (which ever is sooner) will be
671 compared. */
672 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
673 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
674 mask = (1 << bits) - 1;
675
676 if (length_bits < bits)
677 {
678 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
679 bits = length_bits;
680 }
681
682 /* Now load the two bytes and mask off the bits we care about. */
683 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
684 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
685
686 if (b1 != b2)
687 return 1;
688
689 /* Now update the length and offsets to take account of the bits
690 we've just compared. */
691 length_bits -= bits;
692 offset1_bits += bits;
693 offset2_bits += bits;
694 }
695
696 if (length_bits % TARGET_CHAR_BIT != 0)
697 {
698 size_t bits;
699 size_t o1, o2;
700 gdb_byte mask, b1, b2;
701
702 /* The length is not an exact number of bytes. After the previous
703 IF.. block then the offsets are byte aligned, or the
704 length is zero (in which case this code is not reached). Compare
705 a number of bits at the end of the region, starting from an exact
706 byte boundary. */
707 bits = length_bits % TARGET_CHAR_BIT;
708 o1 = offset1_bits + length_bits - bits;
709 o2 = offset2_bits + length_bits - bits;
710
711 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
712 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
713
714 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
715 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
716
717 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
718 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
719
720 if (b1 != b2)
721 return 1;
722
723 length_bits -= bits;
724 }
725
726 if (length_bits > 0)
727 {
728 /* We've now taken care of any stray "bits" at the start, or end of
729 the region to compare, the remainder can be covered with a simple
730 memcmp. */
731 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
732 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
733 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
734
735 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
736 ptr2 + offset2_bits / TARGET_CHAR_BIT,
737 length_bits / TARGET_CHAR_BIT);
738 }
739
740 /* Length is zero, regions match. */
741 return 0;
742}
743
9a0dc9e3
PA
744/* Helper struct for find_first_range_overlap_and_match and
745 value_contents_bits_eq. Keep track of which slot of a given ranges
746 vector have we last looked at. */
bdf22206 747
9a0dc9e3
PA
748struct ranges_and_idx
749{
750 /* The ranges. */
0c7e6dd8 751 const std::vector<range> *ranges;
9a0dc9e3
PA
752
753 /* The range we've last found in RANGES. Given ranges are sorted,
754 we can start the next lookup here. */
755 int idx;
756};
757
758/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
759 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
760 ranges starting at OFFSET2 bits. Return true if the ranges match
761 and fill in *L and *H with the overlapping window relative to
762 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
763
764static int
9a0dc9e3
PA
765find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
766 struct ranges_and_idx *rp2,
6b850546
DT
767 LONGEST offset1, LONGEST offset2,
768 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 769{
9a0dc9e3
PA
770 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
771 offset1, length);
772 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
773 offset2, length);
c8c1c22f 774
9a0dc9e3
PA
775 if (rp1->idx == -1 && rp2->idx == -1)
776 {
777 *l = length;
778 *h = length;
779 return 1;
780 }
781 else if (rp1->idx == -1 || rp2->idx == -1)
782 return 0;
783 else
c8c1c22f 784 {
0c7e6dd8 785 const range *r1, *r2;
c8c1c22f
PA
786 ULONGEST l1, h1;
787 ULONGEST l2, h2;
788
0c7e6dd8
TT
789 r1 = &(*rp1->ranges)[rp1->idx];
790 r2 = &(*rp2->ranges)[rp2->idx];
c8c1c22f
PA
791
792 /* Get the unavailable windows intersected by the incoming
793 ranges. The first and last ranges that overlap the argument
794 range may be wider than said incoming arguments ranges. */
325fac50
PA
795 l1 = std::max (offset1, r1->offset);
796 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 797
325fac50
PA
798 l2 = std::max (offset2, r2->offset);
799 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
800
801 /* Make them relative to the respective start offsets, so we can
802 compare them for equality. */
803 l1 -= offset1;
804 h1 -= offset1;
805
806 l2 -= offset2;
807 h2 -= offset2;
808
9a0dc9e3 809 /* Different ranges, no match. */
c8c1c22f
PA
810 if (l1 != l2 || h1 != h2)
811 return 0;
812
9a0dc9e3
PA
813 *h = h1;
814 *l = l1;
815 return 1;
816 }
817}
818
819/* Helper function for value_contents_eq. The only difference is that
820 this function is bit rather than byte based.
821
822 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
823 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
824 Return true if the available bits match. */
825
98ead37e 826static bool
9a0dc9e3
PA
827value_contents_bits_eq (const struct value *val1, int offset1,
828 const struct value *val2, int offset2,
829 int length)
830{
831 /* Each array element corresponds to a ranges source (unavailable,
832 optimized out). '1' is for VAL1, '2' for VAL2. */
833 struct ranges_and_idx rp1[2], rp2[2];
834
835 /* See function description in value.h. */
836 gdb_assert (!val1->lazy && !val2->lazy);
837
838 /* We shouldn't be trying to compare past the end of the values. */
839 gdb_assert (offset1 + length
840 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
841 gdb_assert (offset2 + length
842 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
843
844 memset (&rp1, 0, sizeof (rp1));
845 memset (&rp2, 0, sizeof (rp2));
0c7e6dd8
TT
846 rp1[0].ranges = &val1->unavailable;
847 rp2[0].ranges = &val2->unavailable;
848 rp1[1].ranges = &val1->optimized_out;
849 rp2[1].ranges = &val2->optimized_out;
9a0dc9e3
PA
850
851 while (length > 0)
852 {
000339af 853 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
854 int i;
855
856 for (i = 0; i < 2; i++)
857 {
858 ULONGEST l_tmp, h_tmp;
859
860 /* The contents only match equal if the invalid/unavailable
861 contents ranges match as well. */
862 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
863 offset1, offset2, length,
864 &l_tmp, &h_tmp))
98ead37e 865 return false;
9a0dc9e3
PA
866
867 /* We're interested in the lowest/first range found. */
868 if (i == 0 || l_tmp < l)
869 {
870 l = l_tmp;
871 h = h_tmp;
872 }
873 }
874
875 /* Compare the available/valid contents. */
14c88955
TT
876 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
877 val2->contents.get (), offset2, l) != 0)
98ead37e 878 return false;
c8c1c22f 879
9a0dc9e3
PA
880 length -= h;
881 offset1 += h;
882 offset2 += h;
c8c1c22f
PA
883 }
884
98ead37e 885 return true;
c8c1c22f
PA
886}
887
98ead37e 888bool
6b850546
DT
889value_contents_eq (const struct value *val1, LONGEST offset1,
890 const struct value *val2, LONGEST offset2,
891 LONGEST length)
bdf22206 892{
9a0dc9e3
PA
893 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
894 val2, offset2 * TARGET_CHAR_BIT,
895 length * TARGET_CHAR_BIT);
bdf22206
AB
896}
897
c906108c 898
4d0266a0
TT
899/* The value-history records all the values printed by print commands
900 during this session. */
c906108c 901
4d0266a0 902static std::vector<value_ref_ptr> value_history;
bc3b79fd 903
c906108c
SS
904\f
905/* List of all value objects currently allocated
906 (except for those released by calls to release_value)
907 This is so they can be freed after each command. */
908
062d818d 909static std::vector<value_ref_ptr> all_values;
c906108c 910
3e3d7139
JG
911/* Allocate a lazy value for type TYPE. Its actual content is
912 "lazily" allocated too: the content field of the return value is
913 NULL; it will be allocated when it is fetched from the target. */
c906108c 914
f23631e4 915struct value *
3e3d7139 916allocate_value_lazy (struct type *type)
c906108c 917{
f23631e4 918 struct value *val;
c54eabfa
JK
919
920 /* Call check_typedef on our type to make sure that, if TYPE
921 is a TYPE_CODE_TYPEDEF, its length is set to the length
922 of the target type instead of zero. However, we do not
923 replace the typedef type by the target type, because we want
924 to keep the typedef in order to be able to set the VAL's type
925 description correctly. */
926 check_typedef (type);
c906108c 927
466ce3ae 928 val = new struct value (type);
828d3400
DJ
929
930 /* Values start out on the all_values chain. */
062d818d 931 all_values.emplace_back (val);
828d3400 932
c906108c
SS
933 return val;
934}
935
5fdf6324
AB
936/* The maximum size, in bytes, that GDB will try to allocate for a value.
937 The initial value of 64k was not selected for any specific reason, it is
938 just a reasonable starting point. */
939
940static int max_value_size = 65536; /* 64k bytes */
941
942/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
943 LONGEST, otherwise GDB will not be able to parse integer values from the
944 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
945 be unable to parse "set max-value-size 2".
946
947 As we want a consistent GDB experience across hosts with different sizes
948 of LONGEST, this arbitrary minimum value was selected, so long as this
949 is bigger than LONGEST on all GDB supported hosts we're fine. */
950
951#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
952gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
953
954/* Implement the "set max-value-size" command. */
955
956static void
eb4c3f4a 957set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
958 struct cmd_list_element *c)
959{
960 gdb_assert (max_value_size == -1 || max_value_size >= 0);
961
962 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
963 {
964 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
965 error (_("max-value-size set too low, increasing to %d bytes"),
966 max_value_size);
967 }
968}
969
970/* Implement the "show max-value-size" command. */
971
972static void
973show_max_value_size (struct ui_file *file, int from_tty,
974 struct cmd_list_element *c, const char *value)
975{
976 if (max_value_size == -1)
977 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
978 else
979 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
980 max_value_size);
981}
982
983/* Called before we attempt to allocate or reallocate a buffer for the
984 contents of a value. TYPE is the type of the value for which we are
985 allocating the buffer. If the buffer is too large (based on the user
986 controllable setting) then throw an error. If this function returns
987 then we should attempt to allocate the buffer. */
988
989static void
990check_type_length_before_alloc (const struct type *type)
991{
992 unsigned int length = TYPE_LENGTH (type);
993
994 if (max_value_size > -1 && length > max_value_size)
995 {
996 if (TYPE_NAME (type) != NULL)
997 error (_("value of type `%s' requires %u bytes, which is more "
998 "than max-value-size"), TYPE_NAME (type), length);
999 else
1000 error (_("value requires %u bytes, which is more than "
1001 "max-value-size"), length);
1002 }
1003}
1004
3e3d7139
JG
1005/* Allocate the contents of VAL if it has not been allocated yet. */
1006
548b762d 1007static void
3e3d7139
JG
1008allocate_value_contents (struct value *val)
1009{
1010 if (!val->contents)
5fdf6324
AB
1011 {
1012 check_type_length_before_alloc (val->enclosing_type);
14c88955
TT
1013 val->contents.reset
1014 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
5fdf6324 1015 }
3e3d7139
JG
1016}
1017
1018/* Allocate a value and its contents for type TYPE. */
1019
1020struct value *
1021allocate_value (struct type *type)
1022{
1023 struct value *val = allocate_value_lazy (type);
a109c7c1 1024
3e3d7139
JG
1025 allocate_value_contents (val);
1026 val->lazy = 0;
1027 return val;
1028}
1029
c906108c 1030/* Allocate a value that has the correct length
938f5214 1031 for COUNT repetitions of type TYPE. */
c906108c 1032
f23631e4 1033struct value *
fba45db2 1034allocate_repeat_value (struct type *type, int count)
c906108c 1035{
c5aa993b 1036 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1037 /* FIXME-type-allocation: need a way to free this type when we are
1038 done with it. */
e3506a9f
UW
1039 struct type *array_type
1040 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1041
e3506a9f 1042 return allocate_value (array_type);
c906108c
SS
1043}
1044
5f5233d4
PA
1045struct value *
1046allocate_computed_value (struct type *type,
c8f2448a 1047 const struct lval_funcs *funcs,
5f5233d4
PA
1048 void *closure)
1049{
41e8491f 1050 struct value *v = allocate_value_lazy (type);
a109c7c1 1051
5f5233d4
PA
1052 VALUE_LVAL (v) = lval_computed;
1053 v->location.computed.funcs = funcs;
1054 v->location.computed.closure = closure;
5f5233d4
PA
1055
1056 return v;
1057}
1058
a7035dbb
JK
1059/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1060
1061struct value *
1062allocate_optimized_out_value (struct type *type)
1063{
1064 struct value *retval = allocate_value_lazy (type);
1065
9a0dc9e3
PA
1066 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1067 set_value_lazy (retval, 0);
a7035dbb
JK
1068 return retval;
1069}
1070
df407dfe
AC
1071/* Accessor methods. */
1072
1073struct type *
0e03807e 1074value_type (const struct value *value)
df407dfe
AC
1075{
1076 return value->type;
1077}
04624583
AC
1078void
1079deprecated_set_value_type (struct value *value, struct type *type)
1080{
1081 value->type = type;
1082}
df407dfe 1083
6b850546 1084LONGEST
0e03807e 1085value_offset (const struct value *value)
df407dfe
AC
1086{
1087 return value->offset;
1088}
f5cf64a7 1089void
6b850546 1090set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1091{
1092 value->offset = offset;
1093}
df407dfe 1094
6b850546 1095LONGEST
0e03807e 1096value_bitpos (const struct value *value)
df407dfe
AC
1097{
1098 return value->bitpos;
1099}
9bbda503 1100void
6b850546 1101set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1102{
1103 value->bitpos = bit;
1104}
df407dfe 1105
6b850546 1106LONGEST
0e03807e 1107value_bitsize (const struct value *value)
df407dfe
AC
1108{
1109 return value->bitsize;
1110}
9bbda503 1111void
6b850546 1112set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1113{
1114 value->bitsize = bit;
1115}
df407dfe 1116
4ea48cc1 1117struct value *
4bf7b526 1118value_parent (const struct value *value)
4ea48cc1 1119{
2c8331b9 1120 return value->parent.get ();
4ea48cc1
DJ
1121}
1122
53ba8333
JB
1123/* See value.h. */
1124
1125void
1126set_value_parent (struct value *value, struct value *parent)
1127{
2c8331b9 1128 value->parent = value_ref_ptr (value_incref (parent));
53ba8333
JB
1129}
1130
fc1a4b47 1131gdb_byte *
990a07ab
AC
1132value_contents_raw (struct value *value)
1133{
3ae385af
SM
1134 struct gdbarch *arch = get_value_arch (value);
1135 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1136
3e3d7139 1137 allocate_value_contents (value);
14c88955 1138 return value->contents.get () + value->embedded_offset * unit_size;
990a07ab
AC
1139}
1140
fc1a4b47 1141gdb_byte *
990a07ab
AC
1142value_contents_all_raw (struct value *value)
1143{
3e3d7139 1144 allocate_value_contents (value);
14c88955 1145 return value->contents.get ();
990a07ab
AC
1146}
1147
4754a64e 1148struct type *
4bf7b526 1149value_enclosing_type (const struct value *value)
4754a64e
AC
1150{
1151 return value->enclosing_type;
1152}
1153
8264ba82
AG
1154/* Look at value.h for description. */
1155
1156struct type *
1157value_actual_type (struct value *value, int resolve_simple_types,
1158 int *real_type_found)
1159{
1160 struct value_print_options opts;
8264ba82
AG
1161 struct type *result;
1162
1163 get_user_print_options (&opts);
1164
1165 if (real_type_found)
1166 *real_type_found = 0;
1167 result = value_type (value);
1168 if (opts.objectprint)
1169 {
5e34c6c3
LM
1170 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1171 fetch its rtti type. */
aa006118 1172 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1173 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1174 == TYPE_CODE_STRUCT
1175 && !value_optimized_out (value))
8264ba82
AG
1176 {
1177 struct type *real_type;
1178
1179 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1180 if (real_type)
1181 {
1182 if (real_type_found)
1183 *real_type_found = 1;
1184 result = real_type;
1185 }
1186 }
1187 else if (resolve_simple_types)
1188 {
1189 if (real_type_found)
1190 *real_type_found = 1;
1191 result = value_enclosing_type (value);
1192 }
1193 }
1194
1195 return result;
1196}
1197
901461f8
PA
1198void
1199error_value_optimized_out (void)
1200{
1201 error (_("value has been optimized out"));
1202}
1203
0e03807e 1204static void
4e07d55f 1205require_not_optimized_out (const struct value *value)
0e03807e 1206{
0c7e6dd8 1207 if (!value->optimized_out.empty ())
901461f8
PA
1208 {
1209 if (value->lval == lval_register)
1210 error (_("register has not been saved in frame"));
1211 else
1212 error_value_optimized_out ();
1213 }
0e03807e
TT
1214}
1215
4e07d55f
PA
1216static void
1217require_available (const struct value *value)
1218{
0c7e6dd8 1219 if (!value->unavailable.empty ())
8af8e3bc 1220 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1221}
1222
fc1a4b47 1223const gdb_byte *
0e03807e 1224value_contents_for_printing (struct value *value)
46615f07
AC
1225{
1226 if (value->lazy)
1227 value_fetch_lazy (value);
14c88955 1228 return value->contents.get ();
46615f07
AC
1229}
1230
de4127a3
PA
1231const gdb_byte *
1232value_contents_for_printing_const (const struct value *value)
1233{
1234 gdb_assert (!value->lazy);
14c88955 1235 return value->contents.get ();
de4127a3
PA
1236}
1237
0e03807e
TT
1238const gdb_byte *
1239value_contents_all (struct value *value)
1240{
1241 const gdb_byte *result = value_contents_for_printing (value);
1242 require_not_optimized_out (value);
4e07d55f 1243 require_available (value);
0e03807e
TT
1244 return result;
1245}
1246
9a0dc9e3
PA
1247/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1248 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1249
1250static void
0c7e6dd8
TT
1251ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1252 const std::vector<range> &src_range, int src_bit_offset,
9a0dc9e3
PA
1253 int bit_length)
1254{
0c7e6dd8 1255 for (const range &r : src_range)
9a0dc9e3
PA
1256 {
1257 ULONGEST h, l;
1258
0c7e6dd8
TT
1259 l = std::max (r.offset, (LONGEST) src_bit_offset);
1260 h = std::min (r.offset + r.length,
325fac50 1261 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1262
1263 if (l < h)
1264 insert_into_bit_range_vector (dst_range,
1265 dst_bit_offset + (l - src_bit_offset),
1266 h - l);
1267 }
1268}
1269
4875ffdb
PA
1270/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1271 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1272
1273static void
1274value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1275 const struct value *src, int src_bit_offset,
1276 int bit_length)
1277{
1278 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1279 src->unavailable, src_bit_offset,
1280 bit_length);
1281 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1282 src->optimized_out, src_bit_offset,
1283 bit_length);
1284}
1285
3ae385af 1286/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1287 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1288 contents, starting at DST_OFFSET. If unavailable contents are
1289 being copied from SRC, the corresponding DST contents are marked
1290 unavailable accordingly. Neither DST nor SRC may be lazy
1291 values.
1292
1293 It is assumed the contents of DST in the [DST_OFFSET,
1294 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1295
1296void
6b850546
DT
1297value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1298 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1299{
6b850546 1300 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1301 struct gdbarch *arch = get_value_arch (src);
1302 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1303
1304 /* A lazy DST would make that this copy operation useless, since as
1305 soon as DST's contents were un-lazied (by a later value_contents
1306 call, say), the contents would be overwritten. A lazy SRC would
1307 mean we'd be copying garbage. */
1308 gdb_assert (!dst->lazy && !src->lazy);
1309
29976f3f
PA
1310 /* The overwritten DST range gets unavailability ORed in, not
1311 replaced. Make sure to remember to implement replacing if it
1312 turns out actually necessary. */
1313 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1314 gdb_assert (!value_bits_any_optimized_out (dst,
1315 TARGET_CHAR_BIT * dst_offset,
1316 TARGET_CHAR_BIT * length));
29976f3f 1317
39d37385 1318 /* Copy the data. */
3ae385af
SM
1319 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1320 value_contents_all_raw (src) + src_offset * unit_size,
1321 length * unit_size);
39d37385
PA
1322
1323 /* Copy the meta-data, adjusted. */
3ae385af
SM
1324 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1325 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1326 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1327
4875ffdb
PA
1328 value_ranges_copy_adjusted (dst, dst_bit_offset,
1329 src, src_bit_offset,
1330 bit_length);
39d37385
PA
1331}
1332
29976f3f
PA
1333/* Copy LENGTH bytes of SRC value's (all) contents
1334 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1335 (all) contents, starting at DST_OFFSET. If unavailable contents
1336 are being copied from SRC, the corresponding DST contents are
1337 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1338 lazy, it will be fetched now.
29976f3f
PA
1339
1340 It is assumed the contents of DST in the [DST_OFFSET,
1341 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1342
1343void
6b850546
DT
1344value_contents_copy (struct value *dst, LONGEST dst_offset,
1345 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1346{
39d37385
PA
1347 if (src->lazy)
1348 value_fetch_lazy (src);
1349
1350 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1351}
1352
d69fe07e 1353int
4bf7b526 1354value_lazy (const struct value *value)
d69fe07e
AC
1355{
1356 return value->lazy;
1357}
1358
dfa52d88
AC
1359void
1360set_value_lazy (struct value *value, int val)
1361{
1362 value->lazy = val;
1363}
1364
4e5d721f 1365int
4bf7b526 1366value_stack (const struct value *value)
4e5d721f
DE
1367{
1368 return value->stack;
1369}
1370
1371void
1372set_value_stack (struct value *value, int val)
1373{
1374 value->stack = val;
1375}
1376
fc1a4b47 1377const gdb_byte *
0fd88904
AC
1378value_contents (struct value *value)
1379{
0e03807e
TT
1380 const gdb_byte *result = value_contents_writeable (value);
1381 require_not_optimized_out (value);
4e07d55f 1382 require_available (value);
0e03807e 1383 return result;
0fd88904
AC
1384}
1385
fc1a4b47 1386gdb_byte *
0fd88904
AC
1387value_contents_writeable (struct value *value)
1388{
1389 if (value->lazy)
1390 value_fetch_lazy (value);
fc0c53a0 1391 return value_contents_raw (value);
0fd88904
AC
1392}
1393
feb13ab0
AC
1394int
1395value_optimized_out (struct value *value)
1396{
691a26f5
AB
1397 /* We can only know if a value is optimized out once we have tried to
1398 fetch it. */
0c7e6dd8 1399 if (value->optimized_out.empty () && value->lazy)
ecf2e90c
DB
1400 {
1401 TRY
1402 {
1403 value_fetch_lazy (value);
1404 }
1405 CATCH (ex, RETURN_MASK_ERROR)
1406 {
1407 /* Fall back to checking value->optimized_out. */
1408 }
1409 END_CATCH
1410 }
691a26f5 1411
0c7e6dd8 1412 return !value->optimized_out.empty ();
feb13ab0
AC
1413}
1414
9a0dc9e3
PA
1415/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1416 the following LENGTH bytes. */
eca07816 1417
feb13ab0 1418void
9a0dc9e3 1419mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1420{
9a0dc9e3
PA
1421 mark_value_bits_optimized_out (value,
1422 offset * TARGET_CHAR_BIT,
1423 length * TARGET_CHAR_BIT);
feb13ab0 1424}
13c3b5f5 1425
9a0dc9e3 1426/* See value.h. */
0e03807e 1427
9a0dc9e3 1428void
6b850546
DT
1429mark_value_bits_optimized_out (struct value *value,
1430 LONGEST offset, LONGEST length)
0e03807e 1431{
9a0dc9e3 1432 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1433}
1434
8cf6f0b1
TT
1435int
1436value_bits_synthetic_pointer (const struct value *value,
6b850546 1437 LONGEST offset, LONGEST length)
8cf6f0b1 1438{
e7303042 1439 if (value->lval != lval_computed
8cf6f0b1
TT
1440 || !value->location.computed.funcs->check_synthetic_pointer)
1441 return 0;
1442 return value->location.computed.funcs->check_synthetic_pointer (value,
1443 offset,
1444 length);
1445}
1446
6b850546 1447LONGEST
4bf7b526 1448value_embedded_offset (const struct value *value)
13c3b5f5
AC
1449{
1450 return value->embedded_offset;
1451}
1452
1453void
6b850546 1454set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1455{
1456 value->embedded_offset = val;
1457}
b44d461b 1458
6b850546 1459LONGEST
4bf7b526 1460value_pointed_to_offset (const struct value *value)
b44d461b
AC
1461{
1462 return value->pointed_to_offset;
1463}
1464
1465void
6b850546 1466set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1467{
1468 value->pointed_to_offset = val;
1469}
13bb5560 1470
c8f2448a 1471const struct lval_funcs *
a471c594 1472value_computed_funcs (const struct value *v)
5f5233d4 1473{
a471c594 1474 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1475
1476 return v->location.computed.funcs;
1477}
1478
1479void *
0e03807e 1480value_computed_closure (const struct value *v)
5f5233d4 1481{
0e03807e 1482 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1483
1484 return v->location.computed.closure;
1485}
1486
13bb5560
AC
1487enum lval_type *
1488deprecated_value_lval_hack (struct value *value)
1489{
1490 return &value->lval;
1491}
1492
a471c594
JK
1493enum lval_type
1494value_lval_const (const struct value *value)
1495{
1496 return value->lval;
1497}
1498
42ae5230 1499CORE_ADDR
de4127a3 1500value_address (const struct value *value)
42ae5230 1501{
1a088441 1502 if (value->lval != lval_memory)
42ae5230 1503 return 0;
53ba8333 1504 if (value->parent != NULL)
2c8331b9 1505 return value_address (value->parent.get ()) + value->offset;
9920b434
BH
1506 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1507 {
1508 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1509 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1510 }
1511
1512 return value->location.address + value->offset;
42ae5230
TT
1513}
1514
1515CORE_ADDR
4bf7b526 1516value_raw_address (const struct value *value)
42ae5230 1517{
1a088441 1518 if (value->lval != lval_memory)
42ae5230
TT
1519 return 0;
1520 return value->location.address;
1521}
1522
1523void
1524set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1525{
1a088441 1526 gdb_assert (value->lval == lval_memory);
42ae5230 1527 value->location.address = addr;
13bb5560
AC
1528}
1529
1530struct internalvar **
1531deprecated_value_internalvar_hack (struct value *value)
1532{
1533 return &value->location.internalvar;
1534}
1535
1536struct frame_id *
41b56feb 1537deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1538{
7c2ba67e 1539 gdb_assert (value->lval == lval_register);
7dc54575 1540 return &value->location.reg.next_frame_id;
13bb5560
AC
1541}
1542
7dc54575 1543int *
13bb5560
AC
1544deprecated_value_regnum_hack (struct value *value)
1545{
7c2ba67e 1546 gdb_assert (value->lval == lval_register);
7dc54575 1547 return &value->location.reg.regnum;
13bb5560 1548}
88e3b34b
AC
1549
1550int
4bf7b526 1551deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1552{
1553 return value->modifiable;
1554}
990a07ab 1555\f
c906108c
SS
1556/* Return a mark in the value chain. All values allocated after the
1557 mark is obtained (except for those released) are subject to being freed
1558 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1559struct value *
fba45db2 1560value_mark (void)
c906108c 1561{
062d818d
TT
1562 if (all_values.empty ())
1563 return nullptr;
1564 return all_values.back ().get ();
c906108c
SS
1565}
1566
828d3400
DJ
1567/* Take a reference to VAL. VAL will not be deallocated until all
1568 references are released. */
1569
22bc8444 1570struct value *
828d3400
DJ
1571value_incref (struct value *val)
1572{
1573 val->reference_count++;
22bc8444 1574 return val;
828d3400
DJ
1575}
1576
1577/* Release a reference to VAL, which was acquired with value_incref.
1578 This function is also called to deallocate values from the value
1579 chain. */
1580
3e3d7139 1581void
22bc8444 1582value_decref (struct value *val)
3e3d7139 1583{
466ce3ae 1584 if (val != nullptr)
5f5233d4 1585 {
828d3400
DJ
1586 gdb_assert (val->reference_count > 0);
1587 val->reference_count--;
466ce3ae
TT
1588 if (val->reference_count == 0)
1589 delete val;
5f5233d4 1590 }
3e3d7139
JG
1591}
1592
c906108c
SS
1593/* Free all values allocated since MARK was obtained by value_mark
1594 (except for those released). */
1595void
4bf7b526 1596value_free_to_mark (const struct value *mark)
c906108c 1597{
062d818d
TT
1598 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1599 if (iter == all_values.end ())
1600 all_values.clear ();
1601 else
1602 all_values.erase (iter + 1, all_values.end ());
c906108c
SS
1603}
1604
c906108c
SS
1605/* Remove VAL from the chain all_values
1606 so it will not be freed automatically. */
1607
22bc8444 1608value_ref_ptr
f23631e4 1609release_value (struct value *val)
c906108c 1610{
f23631e4 1611 struct value *v;
c906108c 1612
850645cf
TT
1613 if (val == nullptr)
1614 return value_ref_ptr ();
1615
062d818d
TT
1616 std::vector<value_ref_ptr>::reverse_iterator iter;
1617 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
c906108c 1618 {
062d818d 1619 if (*iter == val)
c906108c 1620 {
062d818d
TT
1621 value_ref_ptr result = *iter;
1622 all_values.erase (iter.base () - 1);
1623 return result;
c906108c
SS
1624 }
1625 }
c906108c 1626
062d818d
TT
1627 /* We must always return an owned reference. Normally this happens
1628 because we transfer the reference from the value chain, but in
1629 this case the value was not on the chain. */
1630 return value_ref_ptr (value_incref (val));
e848a8a5
TT
1631}
1632
a6535de1
TT
1633/* See value.h. */
1634
1635std::vector<value_ref_ptr>
4bf7b526 1636value_release_to_mark (const struct value *mark)
c906108c 1637{
a6535de1 1638 std::vector<value_ref_ptr> result;
c906108c 1639
062d818d
TT
1640 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1641 if (iter == all_values.end ())
1642 std::swap (result, all_values);
1643 else
e848a8a5 1644 {
062d818d
TT
1645 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1646 all_values.erase (iter + 1, all_values.end ());
e848a8a5 1647 }
062d818d 1648 std::reverse (result.begin (), result.end ());
a6535de1 1649 return result;
c906108c
SS
1650}
1651
1652/* Return a copy of the value ARG.
1653 It contains the same contents, for same memory address,
1654 but it's a different block of storage. */
1655
f23631e4
AC
1656struct value *
1657value_copy (struct value *arg)
c906108c 1658{
4754a64e 1659 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1660 struct value *val;
1661
1662 if (value_lazy (arg))
1663 val = allocate_value_lazy (encl_type);
1664 else
1665 val = allocate_value (encl_type);
df407dfe 1666 val->type = arg->type;
c906108c 1667 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1668 val->location = arg->location;
df407dfe
AC
1669 val->offset = arg->offset;
1670 val->bitpos = arg->bitpos;
1671 val->bitsize = arg->bitsize;
d69fe07e 1672 val->lazy = arg->lazy;
13c3b5f5 1673 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1674 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1675 val->modifiable = arg->modifiable;
d69fe07e 1676 if (!value_lazy (val))
c906108c 1677 {
990a07ab 1678 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1679 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1680
1681 }
0c7e6dd8
TT
1682 val->unavailable = arg->unavailable;
1683 val->optimized_out = arg->optimized_out;
2c8331b9 1684 val->parent = arg->parent;
5f5233d4
PA
1685 if (VALUE_LVAL (val) == lval_computed)
1686 {
c8f2448a 1687 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1688
1689 if (funcs->copy_closure)
1690 val->location.computed.closure = funcs->copy_closure (val);
1691 }
c906108c
SS
1692 return val;
1693}
74bcbdf3 1694
4c082a81
SC
1695/* Return a "const" and/or "volatile" qualified version of the value V.
1696 If CNST is true, then the returned value will be qualified with
1697 "const".
1698 if VOLTL is true, then the returned value will be qualified with
1699 "volatile". */
1700
1701struct value *
1702make_cv_value (int cnst, int voltl, struct value *v)
1703{
1704 struct type *val_type = value_type (v);
1705 struct type *enclosing_type = value_enclosing_type (v);
1706 struct value *cv_val = value_copy (v);
1707
1708 deprecated_set_value_type (cv_val,
1709 make_cv_type (cnst, voltl, val_type, NULL));
1710 set_value_enclosing_type (cv_val,
1711 make_cv_type (cnst, voltl, enclosing_type, NULL));
1712
1713 return cv_val;
1714}
1715
c37f7098
KW
1716/* Return a version of ARG that is non-lvalue. */
1717
1718struct value *
1719value_non_lval (struct value *arg)
1720{
1721 if (VALUE_LVAL (arg) != not_lval)
1722 {
1723 struct type *enc_type = value_enclosing_type (arg);
1724 struct value *val = allocate_value (enc_type);
1725
1726 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1727 TYPE_LENGTH (enc_type));
1728 val->type = arg->type;
1729 set_value_embedded_offset (val, value_embedded_offset (arg));
1730 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1731 return val;
1732 }
1733 return arg;
1734}
1735
6c659fc2
SC
1736/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1737
1738void
1739value_force_lval (struct value *v, CORE_ADDR addr)
1740{
1741 gdb_assert (VALUE_LVAL (v) == not_lval);
1742
1743 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1744 v->lval = lval_memory;
1745 v->location.address = addr;
1746}
1747
74bcbdf3 1748void
0e03807e
TT
1749set_value_component_location (struct value *component,
1750 const struct value *whole)
74bcbdf3 1751{
9920b434
BH
1752 struct type *type;
1753
e81e7f5e
SC
1754 gdb_assert (whole->lval != lval_xcallable);
1755
0e03807e 1756 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1757 VALUE_LVAL (component) = lval_internalvar_component;
1758 else
0e03807e 1759 VALUE_LVAL (component) = whole->lval;
5f5233d4 1760
74bcbdf3 1761 component->location = whole->location;
0e03807e 1762 if (whole->lval == lval_computed)
5f5233d4 1763 {
c8f2448a 1764 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1765
1766 if (funcs->copy_closure)
1767 component->location.computed.closure = funcs->copy_closure (whole);
1768 }
9920b434
BH
1769
1770 /* If type has a dynamic resolved location property
1771 update it's value address. */
1772 type = value_type (whole);
1773 if (NULL != TYPE_DATA_LOCATION (type)
1774 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1775 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1776}
1777
c906108c
SS
1778/* Access to the value history. */
1779
1780/* Record a new value in the value history.
eddf0bae 1781 Returns the absolute history index of the entry. */
c906108c
SS
1782
1783int
f23631e4 1784record_latest_value (struct value *val)
c906108c
SS
1785{
1786 int i;
1787
1788 /* We don't want this value to have anything to do with the inferior anymore.
1789 In particular, "set $1 = 50" should not affect the variable from which
1790 the value was taken, and fast watchpoints should be able to assume that
1791 a value on the value history never changes. */
d69fe07e 1792 if (value_lazy (val))
c906108c
SS
1793 value_fetch_lazy (val);
1794 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1795 from. This is a bit dubious, because then *&$1 does not just return $1
1796 but the current contents of that location. c'est la vie... */
1797 val->modifiable = 0;
350e1a76 1798
4d0266a0 1799 value_history.push_back (release_value (val));
a109c7c1 1800
4d0266a0 1801 return value_history.size ();
c906108c
SS
1802}
1803
1804/* Return a copy of the value in the history with sequence number NUM. */
1805
f23631e4 1806struct value *
fba45db2 1807access_value_history (int num)
c906108c 1808{
52f0bd74
AC
1809 int i;
1810 int absnum = num;
c906108c
SS
1811
1812 if (absnum <= 0)
4d0266a0 1813 absnum += value_history.size ();
c906108c
SS
1814
1815 if (absnum <= 0)
1816 {
1817 if (num == 0)
8a3fe4f8 1818 error (_("The history is empty."));
c906108c 1819 else if (num == 1)
8a3fe4f8 1820 error (_("There is only one value in the history."));
c906108c 1821 else
8a3fe4f8 1822 error (_("History does not go back to $$%d."), -num);
c906108c 1823 }
4d0266a0 1824 if (absnum > value_history.size ())
8a3fe4f8 1825 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1826
1827 absnum--;
1828
4d0266a0 1829 return value_copy (value_history[absnum].get ());
c906108c
SS
1830}
1831
c906108c 1832static void
5fed81ff 1833show_values (const char *num_exp, int from_tty)
c906108c 1834{
52f0bd74 1835 int i;
f23631e4 1836 struct value *val;
c906108c
SS
1837 static int num = 1;
1838
1839 if (num_exp)
1840 {
f132ba9d
TJB
1841 /* "show values +" should print from the stored position.
1842 "show values <exp>" should print around value number <exp>. */
c906108c 1843 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1844 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1845 }
1846 else
1847 {
f132ba9d 1848 /* "show values" means print the last 10 values. */
4d0266a0 1849 num = value_history.size () - 9;
c906108c
SS
1850 }
1851
1852 if (num <= 0)
1853 num = 1;
1854
4d0266a0 1855 for (i = num; i < num + 10 && i <= value_history.size (); i++)
c906108c 1856 {
79a45b7d 1857 struct value_print_options opts;
a109c7c1 1858
c906108c 1859 val = access_value_history (i);
a3f17187 1860 printf_filtered (("$%d = "), i);
79a45b7d
TT
1861 get_user_print_options (&opts);
1862 value_print (val, gdb_stdout, &opts);
a3f17187 1863 printf_filtered (("\n"));
c906108c
SS
1864 }
1865
f132ba9d 1866 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1867 num += 10;
1868
1869 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1870 "show values +". If num_exp is null, this is unnecessary, since
1871 "show values +" is not useful after "show values". */
c906108c 1872 if (from_tty && num_exp)
85c4be7c 1873 set_repeat_arguments ("+");
c906108c
SS
1874}
1875\f
52059ffd
TT
1876enum internalvar_kind
1877{
1878 /* The internal variable is empty. */
1879 INTERNALVAR_VOID,
1880
1881 /* The value of the internal variable is provided directly as
1882 a GDB value object. */
1883 INTERNALVAR_VALUE,
1884
1885 /* A fresh value is computed via a call-back routine on every
1886 access to the internal variable. */
1887 INTERNALVAR_MAKE_VALUE,
1888
1889 /* The internal variable holds a GDB internal convenience function. */
1890 INTERNALVAR_FUNCTION,
1891
1892 /* The variable holds an integer value. */
1893 INTERNALVAR_INTEGER,
1894
1895 /* The variable holds a GDB-provided string. */
1896 INTERNALVAR_STRING,
1897};
1898
1899union internalvar_data
1900{
1901 /* A value object used with INTERNALVAR_VALUE. */
1902 struct value *value;
1903
1904 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1905 struct
1906 {
1907 /* The functions to call. */
1908 const struct internalvar_funcs *functions;
1909
1910 /* The function's user-data. */
1911 void *data;
1912 } make_value;
1913
1914 /* The internal function used with INTERNALVAR_FUNCTION. */
1915 struct
1916 {
1917 struct internal_function *function;
1918 /* True if this is the canonical name for the function. */
1919 int canonical;
1920 } fn;
1921
1922 /* An integer value used with INTERNALVAR_INTEGER. */
1923 struct
1924 {
1925 /* If type is non-NULL, it will be used as the type to generate
1926 a value for this internal variable. If type is NULL, a default
1927 integer type for the architecture is used. */
1928 struct type *type;
1929 LONGEST val;
1930 } integer;
1931
1932 /* A string value used with INTERNALVAR_STRING. */
1933 char *string;
1934};
1935
c906108c
SS
1936/* Internal variables. These are variables within the debugger
1937 that hold values assigned by debugger commands.
1938 The user refers to them with a '$' prefix
1939 that does not appear in the variable names stored internally. */
1940
4fa62494
UW
1941struct internalvar
1942{
1943 struct internalvar *next;
1944 char *name;
4fa62494 1945
78267919
UW
1946 /* We support various different kinds of content of an internal variable.
1947 enum internalvar_kind specifies the kind, and union internalvar_data
1948 provides the data associated with this particular kind. */
1949
52059ffd 1950 enum internalvar_kind kind;
4fa62494 1951
52059ffd 1952 union internalvar_data u;
4fa62494
UW
1953};
1954
c906108c
SS
1955static struct internalvar *internalvars;
1956
3e43a32a
MS
1957/* If the variable does not already exist create it and give it the
1958 value given. If no value is given then the default is zero. */
53e5f3cf 1959static void
0b39b52e 1960init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
1961{
1962 struct internalvar* intvar;
1963
1964 /* Parse the expression - this is taken from set_command(). */
4d01a485 1965 expression_up expr = parse_expression (args);
53e5f3cf
AS
1966
1967 /* Validate the expression.
1968 Was the expression an assignment?
1969 Or even an expression at all? */
1970 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1971 error (_("Init-if-undefined requires an assignment expression."));
1972
1973 /* Extract the variable from the parsed expression.
1974 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1975 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1976 error (_("The first parameter to init-if-undefined "
1977 "should be a GDB variable."));
53e5f3cf
AS
1978 intvar = expr->elts[2].internalvar;
1979
1980 /* Only evaluate the expression if the lvalue is void.
1981 This may still fail if the expresssion is invalid. */
78267919 1982 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 1983 evaluate_expression (expr.get ());
53e5f3cf
AS
1984}
1985
1986
c906108c
SS
1987/* Look up an internal variable with name NAME. NAME should not
1988 normally include a dollar sign.
1989
1990 If the specified internal variable does not exist,
c4a3d09a 1991 the return value is NULL. */
c906108c
SS
1992
1993struct internalvar *
bc3b79fd 1994lookup_only_internalvar (const char *name)
c906108c 1995{
52f0bd74 1996 struct internalvar *var;
c906108c
SS
1997
1998 for (var = internalvars; var; var = var->next)
5cb316ef 1999 if (strcmp (var->name, name) == 0)
c906108c
SS
2000 return var;
2001
c4a3d09a
MF
2002 return NULL;
2003}
2004
eb3ff9a5
PA
2005/* Complete NAME by comparing it to the names of internal
2006 variables. */
d55637df 2007
eb3ff9a5
PA
2008void
2009complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2010{
d55637df
TT
2011 struct internalvar *var;
2012 int len;
2013
2014 len = strlen (name);
2015
2016 for (var = internalvars; var; var = var->next)
2017 if (strncmp (var->name, name, len) == 0)
2018 {
eb3ff9a5 2019 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2020
eb3ff9a5 2021 tracker.add_completion (std::move (copy));
d55637df 2022 }
d55637df 2023}
c4a3d09a
MF
2024
2025/* Create an internal variable with name NAME and with a void value.
2026 NAME should not normally include a dollar sign. */
2027
2028struct internalvar *
bc3b79fd 2029create_internalvar (const char *name)
c4a3d09a 2030{
8d749320 2031 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2032
1754f103 2033 var->name = concat (name, (char *)NULL);
78267919 2034 var->kind = INTERNALVAR_VOID;
c906108c
SS
2035 var->next = internalvars;
2036 internalvars = var;
2037 return var;
2038}
2039
4aa995e1
PA
2040/* Create an internal variable with name NAME and register FUN as the
2041 function that value_of_internalvar uses to create a value whenever
2042 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2043 dollar sign. DATA is passed uninterpreted to FUN when it is
2044 called. CLEANUP, if not NULL, is called when the internal variable
2045 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2046
2047struct internalvar *
22d2b532
SDJ
2048create_internalvar_type_lazy (const char *name,
2049 const struct internalvar_funcs *funcs,
2050 void *data)
4aa995e1 2051{
4fa62494 2052 struct internalvar *var = create_internalvar (name);
a109c7c1 2053
78267919 2054 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2055 var->u.make_value.functions = funcs;
2056 var->u.make_value.data = data;
4aa995e1
PA
2057 return var;
2058}
c4a3d09a 2059
22d2b532
SDJ
2060/* See documentation in value.h. */
2061
2062int
2063compile_internalvar_to_ax (struct internalvar *var,
2064 struct agent_expr *expr,
2065 struct axs_value *value)
2066{
2067 if (var->kind != INTERNALVAR_MAKE_VALUE
2068 || var->u.make_value.functions->compile_to_ax == NULL)
2069 return 0;
2070
2071 var->u.make_value.functions->compile_to_ax (var, expr, value,
2072 var->u.make_value.data);
2073 return 1;
2074}
2075
c4a3d09a
MF
2076/* Look up an internal variable with name NAME. NAME should not
2077 normally include a dollar sign.
2078
2079 If the specified internal variable does not exist,
2080 one is created, with a void value. */
2081
2082struct internalvar *
bc3b79fd 2083lookup_internalvar (const char *name)
c4a3d09a
MF
2084{
2085 struct internalvar *var;
2086
2087 var = lookup_only_internalvar (name);
2088 if (var)
2089 return var;
2090
2091 return create_internalvar (name);
2092}
2093
78267919
UW
2094/* Return current value of internal variable VAR. For variables that
2095 are not inherently typed, use a value type appropriate for GDBARCH. */
2096
f23631e4 2097struct value *
78267919 2098value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2099{
f23631e4 2100 struct value *val;
0914bcdb
SS
2101 struct trace_state_variable *tsv;
2102
2103 /* If there is a trace state variable of the same name, assume that
2104 is what we really want to see. */
2105 tsv = find_trace_state_variable (var->name);
2106 if (tsv)
2107 {
2108 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2109 &(tsv->value));
2110 if (tsv->value_known)
2111 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2112 tsv->value);
2113 else
2114 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2115 return val;
2116 }
c906108c 2117
78267919 2118 switch (var->kind)
5f5233d4 2119 {
78267919
UW
2120 case INTERNALVAR_VOID:
2121 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2122 break;
4fa62494 2123
78267919
UW
2124 case INTERNALVAR_FUNCTION:
2125 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2126 break;
4fa62494 2127
cab0c772
UW
2128 case INTERNALVAR_INTEGER:
2129 if (!var->u.integer.type)
78267919 2130 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2131 var->u.integer.val);
78267919 2132 else
cab0c772
UW
2133 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2134 break;
2135
78267919
UW
2136 case INTERNALVAR_STRING:
2137 val = value_cstring (var->u.string, strlen (var->u.string),
2138 builtin_type (gdbarch)->builtin_char);
2139 break;
4fa62494 2140
78267919
UW
2141 case INTERNALVAR_VALUE:
2142 val = value_copy (var->u.value);
4aa995e1
PA
2143 if (value_lazy (val))
2144 value_fetch_lazy (val);
78267919 2145 break;
4aa995e1 2146
78267919 2147 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2148 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2149 var->u.make_value.data);
78267919
UW
2150 break;
2151
2152 default:
9b20d036 2153 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2154 }
2155
2156 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2157 on this value go back to affect the original internal variable.
2158
2159 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2160 no underlying modifyable state in the internal variable.
2161
2162 Likewise, if the variable's value is a computed lvalue, we want
2163 references to it to produce another computed lvalue, where
2164 references and assignments actually operate through the
2165 computed value's functions.
2166
2167 This means that internal variables with computed values
2168 behave a little differently from other internal variables:
2169 assignments to them don't just replace the previous value
2170 altogether. At the moment, this seems like the behavior we
2171 want. */
2172
2173 if (var->kind != INTERNALVAR_MAKE_VALUE
2174 && val->lval != lval_computed)
2175 {
2176 VALUE_LVAL (val) = lval_internalvar;
2177 VALUE_INTERNALVAR (val) = var;
5f5233d4 2178 }
d3c139e9 2179
4fa62494
UW
2180 return val;
2181}
d3c139e9 2182
4fa62494
UW
2183int
2184get_internalvar_integer (struct internalvar *var, LONGEST *result)
2185{
3158c6ed 2186 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2187 {
cab0c772
UW
2188 *result = var->u.integer.val;
2189 return 1;
3158c6ed 2190 }
d3c139e9 2191
3158c6ed
PA
2192 if (var->kind == INTERNALVAR_VALUE)
2193 {
2194 struct type *type = check_typedef (value_type (var->u.value));
2195
2196 if (TYPE_CODE (type) == TYPE_CODE_INT)
2197 {
2198 *result = value_as_long (var->u.value);
2199 return 1;
2200 }
4fa62494 2201 }
3158c6ed
PA
2202
2203 return 0;
4fa62494 2204}
d3c139e9 2205
4fa62494
UW
2206static int
2207get_internalvar_function (struct internalvar *var,
2208 struct internal_function **result)
2209{
78267919 2210 switch (var->kind)
d3c139e9 2211 {
78267919
UW
2212 case INTERNALVAR_FUNCTION:
2213 *result = var->u.fn.function;
4fa62494 2214 return 1;
d3c139e9 2215
4fa62494
UW
2216 default:
2217 return 0;
2218 }
c906108c
SS
2219}
2220
2221void
6b850546
DT
2222set_internalvar_component (struct internalvar *var,
2223 LONGEST offset, LONGEST bitpos,
2224 LONGEST bitsize, struct value *newval)
c906108c 2225{
4fa62494 2226 gdb_byte *addr;
3ae385af
SM
2227 struct gdbarch *arch;
2228 int unit_size;
c906108c 2229
78267919 2230 switch (var->kind)
4fa62494 2231 {
78267919
UW
2232 case INTERNALVAR_VALUE:
2233 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2234 arch = get_value_arch (var->u.value);
2235 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2236
2237 if (bitsize)
50810684 2238 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2239 value_as_long (newval), bitpos, bitsize);
2240 else
3ae385af 2241 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2242 TYPE_LENGTH (value_type (newval)));
2243 break;
78267919
UW
2244
2245 default:
2246 /* We can never get a component of any other kind. */
9b20d036 2247 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2248 }
c906108c
SS
2249}
2250
2251void
f23631e4 2252set_internalvar (struct internalvar *var, struct value *val)
c906108c 2253{
78267919 2254 enum internalvar_kind new_kind;
4fa62494 2255 union internalvar_data new_data = { 0 };
c906108c 2256
78267919 2257 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2258 error (_("Cannot overwrite convenience function %s"), var->name);
2259
4fa62494 2260 /* Prepare new contents. */
78267919 2261 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2262 {
2263 case TYPE_CODE_VOID:
78267919 2264 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2265 break;
2266
2267 case TYPE_CODE_INTERNAL_FUNCTION:
2268 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2269 new_kind = INTERNALVAR_FUNCTION;
2270 get_internalvar_function (VALUE_INTERNALVAR (val),
2271 &new_data.fn.function);
2272 /* Copies created here are never canonical. */
4fa62494
UW
2273 break;
2274
4fa62494 2275 default:
78267919
UW
2276 new_kind = INTERNALVAR_VALUE;
2277 new_data.value = value_copy (val);
2278 new_data.value->modifiable = 1;
4fa62494
UW
2279
2280 /* Force the value to be fetched from the target now, to avoid problems
2281 later when this internalvar is referenced and the target is gone or
2282 has changed. */
78267919
UW
2283 if (value_lazy (new_data.value))
2284 value_fetch_lazy (new_data.value);
4fa62494
UW
2285
2286 /* Release the value from the value chain to prevent it from being
2287 deleted by free_all_values. From here on this function should not
2288 call error () until new_data is installed into the var->u to avoid
2289 leaking memory. */
22bc8444 2290 release_value (new_data.value).release ();
9920b434
BH
2291
2292 /* Internal variables which are created from values with a dynamic
2293 location don't need the location property of the origin anymore.
2294 The resolved dynamic location is used prior then any other address
2295 when accessing the value.
2296 If we keep it, we would still refer to the origin value.
2297 Remove the location property in case it exist. */
2298 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2299
4fa62494
UW
2300 break;
2301 }
2302
2303 /* Clean up old contents. */
2304 clear_internalvar (var);
2305
2306 /* Switch over. */
78267919 2307 var->kind = new_kind;
4fa62494 2308 var->u = new_data;
c906108c
SS
2309 /* End code which must not call error(). */
2310}
2311
4fa62494
UW
2312void
2313set_internalvar_integer (struct internalvar *var, LONGEST l)
2314{
2315 /* Clean up old contents. */
2316 clear_internalvar (var);
2317
cab0c772
UW
2318 var->kind = INTERNALVAR_INTEGER;
2319 var->u.integer.type = NULL;
2320 var->u.integer.val = l;
78267919
UW
2321}
2322
2323void
2324set_internalvar_string (struct internalvar *var, const char *string)
2325{
2326 /* Clean up old contents. */
2327 clear_internalvar (var);
2328
2329 var->kind = INTERNALVAR_STRING;
2330 var->u.string = xstrdup (string);
4fa62494
UW
2331}
2332
2333static void
2334set_internalvar_function (struct internalvar *var, struct internal_function *f)
2335{
2336 /* Clean up old contents. */
2337 clear_internalvar (var);
2338
78267919
UW
2339 var->kind = INTERNALVAR_FUNCTION;
2340 var->u.fn.function = f;
2341 var->u.fn.canonical = 1;
2342 /* Variables installed here are always the canonical version. */
4fa62494
UW
2343}
2344
2345void
2346clear_internalvar (struct internalvar *var)
2347{
2348 /* Clean up old contents. */
78267919 2349 switch (var->kind)
4fa62494 2350 {
78267919 2351 case INTERNALVAR_VALUE:
22bc8444 2352 value_decref (var->u.value);
78267919
UW
2353 break;
2354
2355 case INTERNALVAR_STRING:
2356 xfree (var->u.string);
4fa62494
UW
2357 break;
2358
22d2b532
SDJ
2359 case INTERNALVAR_MAKE_VALUE:
2360 if (var->u.make_value.functions->destroy != NULL)
2361 var->u.make_value.functions->destroy (var->u.make_value.data);
2362 break;
2363
4fa62494 2364 default:
4fa62494
UW
2365 break;
2366 }
2367
78267919
UW
2368 /* Reset to void kind. */
2369 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2370}
2371
c906108c 2372char *
4bf7b526 2373internalvar_name (const struct internalvar *var)
c906108c
SS
2374{
2375 return var->name;
2376}
2377
4fa62494
UW
2378static struct internal_function *
2379create_internal_function (const char *name,
2380 internal_function_fn handler, void *cookie)
bc3b79fd 2381{
bc3b79fd 2382 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2383
bc3b79fd
TJB
2384 ifn->name = xstrdup (name);
2385 ifn->handler = handler;
2386 ifn->cookie = cookie;
4fa62494 2387 return ifn;
bc3b79fd
TJB
2388}
2389
2390char *
2391value_internal_function_name (struct value *val)
2392{
4fa62494
UW
2393 struct internal_function *ifn;
2394 int result;
2395
2396 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2397 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2398 gdb_assert (result);
2399
bc3b79fd
TJB
2400 return ifn->name;
2401}
2402
2403struct value *
d452c4bc
UW
2404call_internal_function (struct gdbarch *gdbarch,
2405 const struct language_defn *language,
2406 struct value *func, int argc, struct value **argv)
bc3b79fd 2407{
4fa62494
UW
2408 struct internal_function *ifn;
2409 int result;
2410
2411 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2412 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2413 gdb_assert (result);
2414
d452c4bc 2415 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2416}
2417
2418/* The 'function' command. This does nothing -- it is just a
2419 placeholder to let "help function NAME" work. This is also used as
2420 the implementation of the sub-command that is created when
2421 registering an internal function. */
2422static void
981a3fb3 2423function_command (const char *command, int from_tty)
bc3b79fd
TJB
2424{
2425 /* Do nothing. */
2426}
2427
2428/* Clean up if an internal function's command is destroyed. */
2429static void
2430function_destroyer (struct cmd_list_element *self, void *ignore)
2431{
6f937416 2432 xfree ((char *) self->name);
1947513d 2433 xfree ((char *) self->doc);
bc3b79fd
TJB
2434}
2435
2436/* Add a new internal function. NAME is the name of the function; DOC
2437 is a documentation string describing the function. HANDLER is
2438 called when the function is invoked. COOKIE is an arbitrary
2439 pointer which is passed to HANDLER and is intended for "user
2440 data". */
2441void
2442add_internal_function (const char *name, const char *doc,
2443 internal_function_fn handler, void *cookie)
2444{
2445 struct cmd_list_element *cmd;
4fa62494 2446 struct internal_function *ifn;
bc3b79fd 2447 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2448
2449 ifn = create_internal_function (name, handler, cookie);
2450 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2451
2452 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2453 &functionlist);
2454 cmd->destroyer = function_destroyer;
2455}
2456
ae5a43e0
DJ
2457/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2458 prevent cycles / duplicates. */
2459
4e7a5ef5 2460void
ae5a43e0
DJ
2461preserve_one_value (struct value *value, struct objfile *objfile,
2462 htab_t copied_types)
2463{
2464 if (TYPE_OBJFILE (value->type) == objfile)
2465 value->type = copy_type_recursive (objfile, value->type, copied_types);
2466
2467 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2468 value->enclosing_type = copy_type_recursive (objfile,
2469 value->enclosing_type,
2470 copied_types);
2471}
2472
78267919
UW
2473/* Likewise for internal variable VAR. */
2474
2475static void
2476preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2477 htab_t copied_types)
2478{
2479 switch (var->kind)
2480 {
cab0c772
UW
2481 case INTERNALVAR_INTEGER:
2482 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2483 var->u.integer.type
2484 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2485 break;
2486
78267919
UW
2487 case INTERNALVAR_VALUE:
2488 preserve_one_value (var->u.value, objfile, copied_types);
2489 break;
2490 }
2491}
2492
ae5a43e0
DJ
2493/* Update the internal variables and value history when OBJFILE is
2494 discarded; we must copy the types out of the objfile. New global types
2495 will be created for every convenience variable which currently points to
2496 this objfile's types, and the convenience variables will be adjusted to
2497 use the new global types. */
c906108c
SS
2498
2499void
ae5a43e0 2500preserve_values (struct objfile *objfile)
c906108c 2501{
ae5a43e0 2502 htab_t copied_types;
52f0bd74 2503 struct internalvar *var;
ae5a43e0 2504 int i;
c906108c 2505
ae5a43e0
DJ
2506 /* Create the hash table. We allocate on the objfile's obstack, since
2507 it is soon to be deleted. */
2508 copied_types = create_copied_types_hash (objfile);
2509
4d0266a0
TT
2510 for (const value_ref_ptr &item : value_history)
2511 preserve_one_value (item.get (), objfile, copied_types);
ae5a43e0
DJ
2512
2513 for (var = internalvars; var; var = var->next)
78267919 2514 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2515
6dddc817 2516 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2517
ae5a43e0 2518 htab_delete (copied_types);
c906108c
SS
2519}
2520
2521static void
ad25e423 2522show_convenience (const char *ignore, int from_tty)
c906108c 2523{
e17c207e 2524 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2525 struct internalvar *var;
c906108c 2526 int varseen = 0;
79a45b7d 2527 struct value_print_options opts;
c906108c 2528
79a45b7d 2529 get_user_print_options (&opts);
c906108c
SS
2530 for (var = internalvars; var; var = var->next)
2531 {
c709acd1 2532
c906108c
SS
2533 if (!varseen)
2534 {
2535 varseen = 1;
2536 }
a3f17187 2537 printf_filtered (("$%s = "), var->name);
c709acd1 2538
492d29ea 2539 TRY
c709acd1
PA
2540 {
2541 struct value *val;
2542
2543 val = value_of_internalvar (gdbarch, var);
2544 value_print (val, gdb_stdout, &opts);
2545 }
492d29ea
PA
2546 CATCH (ex, RETURN_MASK_ERROR)
2547 {
2548 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2549 }
2550 END_CATCH
2551
a3f17187 2552 printf_filtered (("\n"));
c906108c
SS
2553 }
2554 if (!varseen)
f47f77df
DE
2555 {
2556 /* This text does not mention convenience functions on purpose.
2557 The user can't create them except via Python, and if Python support
2558 is installed this message will never be printed ($_streq will
2559 exist). */
2560 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2561 "Convenience variables have "
2562 "names starting with \"$\";\n"
2563 "use \"set\" as in \"set "
2564 "$foo = 5\" to define them.\n"));
2565 }
c906108c
SS
2566}
2567\f
ba18742c
SM
2568
2569/* See value.h. */
e81e7f5e
SC
2570
2571struct value *
ba18742c 2572value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2573{
ba18742c 2574 struct value *v;
e81e7f5e 2575
ba18742c
SM
2576 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2577 v->lval = lval_xcallable;
2578 v->location.xm_worker = worker.release ();
2579 v->modifiable = 0;
e81e7f5e 2580
ba18742c 2581 return v;
e81e7f5e
SC
2582}
2583
2ce1cdbf
DE
2584/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2585
2586struct type *
2587result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2588{
2589 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2590 && method->lval == lval_xcallable && argc > 0);
2591
ba18742c
SM
2592 return method->location.xm_worker->get_result_type
2593 (argv[0], argv + 1, argc - 1);
2ce1cdbf
DE
2594}
2595
e81e7f5e
SC
2596/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2597
2598struct value *
2599call_xmethod (struct value *method, int argc, struct value **argv)
2600{
2601 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2602 && method->lval == lval_xcallable && argc > 0);
2603
ba18742c 2604 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
e81e7f5e
SC
2605}
2606\f
c906108c
SS
2607/* Extract a value as a C number (either long or double).
2608 Knows how to convert fixed values to double, or
2609 floating values to long.
2610 Does not deallocate the value. */
2611
2612LONGEST
f23631e4 2613value_as_long (struct value *val)
c906108c
SS
2614{
2615 /* This coerces arrays and functions, which is necessary (e.g.
2616 in disassemble_command). It also dereferences references, which
2617 I suspect is the most logical thing to do. */
994b9211 2618 val = coerce_array (val);
0fd88904 2619 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2620}
2621
581e13c1 2622/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2623 Note that val's type may not actually be a pointer; value_as_long
2624 handles all the cases. */
c906108c 2625CORE_ADDR
f23631e4 2626value_as_address (struct value *val)
c906108c 2627{
50810684
UW
2628 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2629
c906108c
SS
2630 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2631 whether we want this to be true eventually. */
2632#if 0
bf6ae464 2633 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2634 non-address (e.g. argument to "signal", "info break", etc.), or
2635 for pointers to char, in which the low bits *are* significant. */
50810684 2636 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2637#else
f312f057
JB
2638
2639 /* There are several targets (IA-64, PowerPC, and others) which
2640 don't represent pointers to functions as simply the address of
2641 the function's entry point. For example, on the IA-64, a
2642 function pointer points to a two-word descriptor, generated by
2643 the linker, which contains the function's entry point, and the
2644 value the IA-64 "global pointer" register should have --- to
2645 support position-independent code. The linker generates
2646 descriptors only for those functions whose addresses are taken.
2647
2648 On such targets, it's difficult for GDB to convert an arbitrary
2649 function address into a function pointer; it has to either find
2650 an existing descriptor for that function, or call malloc and
2651 build its own. On some targets, it is impossible for GDB to
2652 build a descriptor at all: the descriptor must contain a jump
2653 instruction; data memory cannot be executed; and code memory
2654 cannot be modified.
2655
2656 Upon entry to this function, if VAL is a value of type `function'
2657 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2658 value_address (val) is the address of the function. This is what
f312f057
JB
2659 you'll get if you evaluate an expression like `main'. The call
2660 to COERCE_ARRAY below actually does all the usual unary
2661 conversions, which includes converting values of type `function'
2662 to `pointer to function'. This is the challenging conversion
2663 discussed above. Then, `unpack_long' will convert that pointer
2664 back into an address.
2665
2666 So, suppose the user types `disassemble foo' on an architecture
2667 with a strange function pointer representation, on which GDB
2668 cannot build its own descriptors, and suppose further that `foo'
2669 has no linker-built descriptor. The address->pointer conversion
2670 will signal an error and prevent the command from running, even
2671 though the next step would have been to convert the pointer
2672 directly back into the same address.
2673
2674 The following shortcut avoids this whole mess. If VAL is a
2675 function, just return its address directly. */
df407dfe
AC
2676 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2677 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2678 return value_address (val);
f312f057 2679
994b9211 2680 val = coerce_array (val);
fc0c74b1
AC
2681
2682 /* Some architectures (e.g. Harvard), map instruction and data
2683 addresses onto a single large unified address space. For
2684 instance: An architecture may consider a large integer in the
2685 range 0x10000000 .. 0x1000ffff to already represent a data
2686 addresses (hence not need a pointer to address conversion) while
2687 a small integer would still need to be converted integer to
2688 pointer to address. Just assume such architectures handle all
2689 integer conversions in a single function. */
2690
2691 /* JimB writes:
2692
2693 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2694 must admonish GDB hackers to make sure its behavior matches the
2695 compiler's, whenever possible.
2696
2697 In general, I think GDB should evaluate expressions the same way
2698 the compiler does. When the user copies an expression out of
2699 their source code and hands it to a `print' command, they should
2700 get the same value the compiler would have computed. Any
2701 deviation from this rule can cause major confusion and annoyance,
2702 and needs to be justified carefully. In other words, GDB doesn't
2703 really have the freedom to do these conversions in clever and
2704 useful ways.
2705
2706 AndrewC pointed out that users aren't complaining about how GDB
2707 casts integers to pointers; they are complaining that they can't
2708 take an address from a disassembly listing and give it to `x/i'.
2709 This is certainly important.
2710
79dd2d24 2711 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2712 makes it possible for GDB to "get it right" in all circumstances
2713 --- the target has complete control over how things get done, so
2714 people can Do The Right Thing for their target without breaking
2715 anyone else. The standard doesn't specify how integers get
2716 converted to pointers; usually, the ABI doesn't either, but
2717 ABI-specific code is a more reasonable place to handle it. */
2718
df407dfe 2719 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2720 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2721 && gdbarch_integer_to_address_p (gdbarch))
2722 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2723 value_contents (val));
fc0c74b1 2724
0fd88904 2725 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2726#endif
2727}
2728\f
2729/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2730 as a long, or as a double, assuming the raw data is described
2731 by type TYPE. Knows how to convert different sizes of values
2732 and can convert between fixed and floating point. We don't assume
2733 any alignment for the raw data. Return value is in host byte order.
2734
2735 If you want functions and arrays to be coerced to pointers, and
2736 references to be dereferenced, call value_as_long() instead.
2737
2738 C++: It is assumed that the front-end has taken care of
2739 all matters concerning pointers to members. A pointer
2740 to member which reaches here is considered to be equivalent
2741 to an INT (or some size). After all, it is only an offset. */
2742
2743LONGEST
fc1a4b47 2744unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2745{
e17a4113 2746 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2747 enum type_code code = TYPE_CODE (type);
2748 int len = TYPE_LENGTH (type);
2749 int nosign = TYPE_UNSIGNED (type);
c906108c 2750
c906108c
SS
2751 switch (code)
2752 {
2753 case TYPE_CODE_TYPEDEF:
2754 return unpack_long (check_typedef (type), valaddr);
2755 case TYPE_CODE_ENUM:
4f2aea11 2756 case TYPE_CODE_FLAGS:
c906108c
SS
2757 case TYPE_CODE_BOOL:
2758 case TYPE_CODE_INT:
2759 case TYPE_CODE_CHAR:
2760 case TYPE_CODE_RANGE:
0d5de010 2761 case TYPE_CODE_MEMBERPTR:
c906108c 2762 if (nosign)
e17a4113 2763 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2764 else
e17a4113 2765 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2766
2767 case TYPE_CODE_FLT:
4ef30785 2768 case TYPE_CODE_DECFLOAT:
50637b26 2769 return target_float_to_longest (valaddr, type);
4ef30785 2770
c906108c
SS
2771 case TYPE_CODE_PTR:
2772 case TYPE_CODE_REF:
aa006118 2773 case TYPE_CODE_RVALUE_REF:
c906108c 2774 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2775 whether we want this to be true eventually. */
4478b372 2776 return extract_typed_address (valaddr, type);
c906108c 2777
c906108c 2778 default:
8a3fe4f8 2779 error (_("Value can't be converted to integer."));
c906108c 2780 }
c5aa993b 2781 return 0; /* Placate lint. */
c906108c
SS
2782}
2783
c906108c
SS
2784/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2785 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2786 We don't assume any alignment for the raw data. Return value is in
2787 host byte order.
2788
2789 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2790 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2791
2792 C++: It is assumed that the front-end has taken care of
2793 all matters concerning pointers to members. A pointer
2794 to member which reaches here is considered to be equivalent
2795 to an INT (or some size). After all, it is only an offset. */
2796
2797CORE_ADDR
fc1a4b47 2798unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2799{
2800 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2801 whether we want this to be true eventually. */
2802 return unpack_long (type, valaddr);
2803}
4478b372 2804
70100014
UW
2805bool
2806is_floating_value (struct value *val)
2807{
2808 struct type *type = check_typedef (value_type (val));
2809
2810 if (is_floating_type (type))
2811 {
2812 if (!target_float_is_valid (value_contents (val), type))
2813 error (_("Invalid floating value found in program."));
2814 return true;
2815 }
2816
2817 return false;
2818}
2819
c906108c 2820\f
1596cb5d 2821/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2822 TYPE. */
c906108c 2823
f23631e4 2824struct value *
fba45db2 2825value_static_field (struct type *type, int fieldno)
c906108c 2826{
948e66d9
DJ
2827 struct value *retval;
2828
1596cb5d 2829 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2830 {
1596cb5d 2831 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2832 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2833 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2834 break;
2835 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2836 {
ff355380 2837 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2838 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2839 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2840
d12307c1 2841 if (sym.symbol == NULL)
c906108c 2842 {
a109c7c1 2843 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2844 reported as non-debuggable symbols. */
3b7344d5
TT
2845 struct bound_minimal_symbol msym
2846 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2847 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2848
3b7344d5 2849 if (!msym.minsym)
c2e0e465 2850 retval = allocate_optimized_out_value (field_type);
c906108c 2851 else
c2e0e465 2852 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2853 }
2854 else
d12307c1 2855 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2856 break;
c906108c 2857 }
1596cb5d 2858 default:
f3574227 2859 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2860 }
2861
948e66d9 2862 return retval;
c906108c
SS
2863}
2864
4dfea560
DE
2865/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2866 You have to be careful here, since the size of the data area for the value
2867 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2868 than the old enclosing type, you have to allocate more space for the
2869 data. */
2b127877 2870
4dfea560
DE
2871void
2872set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2873{
5fdf6324
AB
2874 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2875 {
2876 check_type_length_before_alloc (new_encl_type);
2877 val->contents
14c88955
TT
2878 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2879 TYPE_LENGTH (new_encl_type)));
5fdf6324 2880 }
3e3d7139
JG
2881
2882 val->enclosing_type = new_encl_type;
2b127877
DB
2883}
2884
c906108c
SS
2885/* Given a value ARG1 (offset by OFFSET bytes)
2886 of a struct or union type ARG_TYPE,
2887 extract and return the value of one of its (non-static) fields.
581e13c1 2888 FIELDNO says which field. */
c906108c 2889
f23631e4 2890struct value *
6b850546 2891value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 2892 int fieldno, struct type *arg_type)
c906108c 2893{
f23631e4 2894 struct value *v;
52f0bd74 2895 struct type *type;
3ae385af
SM
2896 struct gdbarch *arch = get_value_arch (arg1);
2897 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 2898
f168693b 2899 arg_type = check_typedef (arg_type);
c906108c 2900 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2901
2902 /* Call check_typedef on our type to make sure that, if TYPE
2903 is a TYPE_CODE_TYPEDEF, its length is set to the length
2904 of the target type instead of zero. However, we do not
2905 replace the typedef type by the target type, because we want
2906 to keep the typedef in order to be able to print the type
2907 description correctly. */
2908 check_typedef (type);
c906108c 2909
691a26f5 2910 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2911 {
22c05d8a
JK
2912 /* Handle packed fields.
2913
2914 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2915 set. If possible, arrange offset and bitpos so that we can
2916 do a single aligned read of the size of the containing type.
2917 Otherwise, adjust offset to the byte containing the first
2918 bit. Assume that the address, offset, and embedded offset
2919 are sufficiently aligned. */
22c05d8a 2920
6b850546
DT
2921 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2922 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 2923
9a0dc9e3
PA
2924 v = allocate_value_lazy (type);
2925 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2926 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2927 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2928 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2929 else
9a0dc9e3
PA
2930 v->bitpos = bitpos % 8;
2931 v->offset = (value_embedded_offset (arg1)
2932 + offset
2933 + (bitpos - v->bitpos) / 8);
2934 set_value_parent (v, arg1);
2935 if (!value_lazy (arg1))
2936 value_fetch_lazy (v);
c906108c
SS
2937 }
2938 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2939 {
2940 /* This field is actually a base subobject, so preserve the
39d37385
PA
2941 entire object's contents for later references to virtual
2942 bases, etc. */
6b850546 2943 LONGEST boffset;
a4e2ee12
DJ
2944
2945 /* Lazy register values with offsets are not supported. */
2946 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2947 value_fetch_lazy (arg1);
2948
9a0dc9e3
PA
2949 /* We special case virtual inheritance here because this
2950 requires access to the contents, which we would rather avoid
2951 for references to ordinary fields of unavailable values. */
2952 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2953 boffset = baseclass_offset (arg_type, fieldno,
2954 value_contents (arg1),
2955 value_embedded_offset (arg1),
2956 value_address (arg1),
2957 arg1);
c906108c 2958 else
9a0dc9e3 2959 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2960
9a0dc9e3
PA
2961 if (value_lazy (arg1))
2962 v = allocate_value_lazy (value_enclosing_type (arg1));
2963 else
2964 {
2965 v = allocate_value (value_enclosing_type (arg1));
2966 value_contents_copy_raw (v, 0, arg1, 0,
2967 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 2968 }
9a0dc9e3
PA
2969 v->type = type;
2970 v->offset = value_offset (arg1);
2971 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 2972 }
9920b434
BH
2973 else if (NULL != TYPE_DATA_LOCATION (type))
2974 {
2975 /* Field is a dynamic data member. */
2976
2977 gdb_assert (0 == offset);
2978 /* We expect an already resolved data location. */
2979 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2980 /* For dynamic data types defer memory allocation
2981 until we actual access the value. */
2982 v = allocate_value_lazy (type);
2983 }
c906108c
SS
2984 else
2985 {
2986 /* Plain old data member */
3ae385af
SM
2987 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2988 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
2989
2990 /* Lazy register values with offsets are not supported. */
2991 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2992 value_fetch_lazy (arg1);
2993
9a0dc9e3 2994 if (value_lazy (arg1))
3e3d7139 2995 v = allocate_value_lazy (type);
c906108c 2996 else
3e3d7139
JG
2997 {
2998 v = allocate_value (type);
39d37385
PA
2999 value_contents_copy_raw (v, value_embedded_offset (v),
3000 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3001 type_length_units (type));
3e3d7139 3002 }
df407dfe 3003 v->offset = (value_offset (arg1) + offset
13c3b5f5 3004 + value_embedded_offset (arg1));
c906108c 3005 }
74bcbdf3 3006 set_value_component_location (v, arg1);
c906108c
SS
3007 return v;
3008}
3009
3010/* Given a value ARG1 of a struct or union type,
3011 extract and return the value of one of its (non-static) fields.
581e13c1 3012 FIELDNO says which field. */
c906108c 3013
f23631e4 3014struct value *
aa1ee363 3015value_field (struct value *arg1, int fieldno)
c906108c 3016{
df407dfe 3017 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3018}
3019
3020/* Return a non-virtual function as a value.
3021 F is the list of member functions which contains the desired method.
0478d61c
FF
3022 J is an index into F which provides the desired method.
3023
3024 We only use the symbol for its address, so be happy with either a
581e13c1 3025 full symbol or a minimal symbol. */
c906108c 3026
f23631e4 3027struct value *
3e43a32a
MS
3028value_fn_field (struct value **arg1p, struct fn_field *f,
3029 int j, struct type *type,
6b850546 3030 LONGEST offset)
c906108c 3031{
f23631e4 3032 struct value *v;
52f0bd74 3033 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3034 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3035 struct symbol *sym;
7c7b6655 3036 struct bound_minimal_symbol msym;
c906108c 3037
d12307c1 3038 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3039 if (sym != NULL)
0478d61c 3040 {
7c7b6655 3041 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3042 }
3043 else
3044 {
3045 gdb_assert (sym == NULL);
7c7b6655
TT
3046 msym = lookup_bound_minimal_symbol (physname);
3047 if (msym.minsym == NULL)
5ae326fa 3048 return NULL;
0478d61c
FF
3049 }
3050
c906108c 3051 v = allocate_value (ftype);
1a088441 3052 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3053 if (sym)
3054 {
42ae5230 3055 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3056 }
3057 else
3058 {
bccdca4a
UW
3059 /* The minimal symbol might point to a function descriptor;
3060 resolve it to the actual code address instead. */
7c7b6655 3061 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3062 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3063
42ae5230
TT
3064 set_value_address (v,
3065 gdbarch_convert_from_func_ptr_addr
77e371c0 3066 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3067 }
c906108c
SS
3068
3069 if (arg1p)
c5aa993b 3070 {
df407dfe 3071 if (type != value_type (*arg1p))
c5aa993b
JM
3072 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3073 value_addr (*arg1p)));
3074
070ad9f0 3075 /* Move the `this' pointer according to the offset.
581e13c1 3076 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3077 }
3078
3079 return v;
3080}
3081
c906108c 3082\f
c906108c 3083
4875ffdb
PA
3084/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3085 VALADDR, and store the result in *RESULT.
15ce8941
TT
3086 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3087 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3088
4875ffdb
PA
3089 Extracting bits depends on endianness of the machine. Compute the
3090 number of least significant bits to discard. For big endian machines,
3091 we compute the total number of bits in the anonymous object, subtract
3092 off the bit count from the MSB of the object to the MSB of the
3093 bitfield, then the size of the bitfield, which leaves the LSB discard
3094 count. For little endian machines, the discard count is simply the
3095 number of bits from the LSB of the anonymous object to the LSB of the
3096 bitfield.
3097
3098 If the field is signed, we also do sign extension. */
3099
3100static LONGEST
3101unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3102 LONGEST bitpos, LONGEST bitsize)
c906108c 3103{
4ea48cc1 3104 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3105 ULONGEST val;
3106 ULONGEST valmask;
c906108c 3107 int lsbcount;
6b850546
DT
3108 LONGEST bytes_read;
3109 LONGEST read_offset;
c906108c 3110
4a76eae5
DJ
3111 /* Read the minimum number of bytes required; there may not be
3112 enough bytes to read an entire ULONGEST. */
f168693b 3113 field_type = check_typedef (field_type);
4a76eae5
DJ
3114 if (bitsize)
3115 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3116 else
15ce8941
TT
3117 {
3118 bytes_read = TYPE_LENGTH (field_type);
3119 bitsize = 8 * bytes_read;
3120 }
4a76eae5 3121
5467c6c8
PA
3122 read_offset = bitpos / 8;
3123
4875ffdb 3124 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3125 bytes_read, byte_order);
c906108c 3126
581e13c1 3127 /* Extract bits. See comment above. */
c906108c 3128
4ea48cc1 3129 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3130 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3131 else
3132 lsbcount = (bitpos % 8);
3133 val >>= lsbcount;
3134
3135 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3136 If the field is signed, and is negative, then sign extend. */
c906108c 3137
15ce8941 3138 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3139 {
3140 valmask = (((ULONGEST) 1) << bitsize) - 1;
3141 val &= valmask;
3142 if (!TYPE_UNSIGNED (field_type))
3143 {
3144 if (val & (valmask ^ (valmask >> 1)))
3145 {
3146 val |= ~valmask;
3147 }
3148 }
3149 }
5467c6c8 3150
4875ffdb 3151 return val;
5467c6c8
PA
3152}
3153
3154/* Unpack a field FIELDNO of the specified TYPE, from the object at
3155 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3156 ORIGINAL_VALUE, which must not be NULL. See
3157 unpack_value_bits_as_long for more details. */
3158
3159int
3160unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3161 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3162 const struct value *val, LONGEST *result)
3163{
4875ffdb
PA
3164 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3165 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3166 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3167 int bit_offset;
3168
5467c6c8
PA
3169 gdb_assert (val != NULL);
3170
4875ffdb
PA
3171 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3172 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3173 || !value_bits_available (val, bit_offset, bitsize))
3174 return 0;
3175
3176 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3177 bitpos, bitsize);
3178 return 1;
5467c6c8
PA
3179}
3180
3181/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3182 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3183
3184LONGEST
3185unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3186{
4875ffdb
PA
3187 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3188 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3189 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3190
4875ffdb
PA
3191 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3192}
3193
3194/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3195 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3196 the contents in DEST_VAL, zero or sign extending if the type of
3197 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3198 VAL. If the VAL's contents required to extract the bitfield from
3199 are unavailable/optimized out, DEST_VAL is correspondingly
3200 marked unavailable/optimized out. */
3201
bb9d5f81 3202void
4875ffdb 3203unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3204 LONGEST bitpos, LONGEST bitsize,
3205 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3206 const struct value *val)
3207{
3208 enum bfd_endian byte_order;
3209 int src_bit_offset;
3210 int dst_bit_offset;
4875ffdb
PA
3211 struct type *field_type = value_type (dest_val);
3212
4875ffdb 3213 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3214
3215 /* First, unpack and sign extend the bitfield as if it was wholly
3216 valid. Optimized out/unavailable bits are read as zero, but
3217 that's OK, as they'll end up marked below. If the VAL is
3218 wholly-invalid we may have skipped allocating its contents,
3219 though. See allocate_optimized_out_value. */
3220 if (valaddr != NULL)
3221 {
3222 LONGEST num;
3223
3224 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3225 bitpos, bitsize);
3226 store_signed_integer (value_contents_raw (dest_val),
3227 TYPE_LENGTH (field_type), byte_order, num);
3228 }
4875ffdb
PA
3229
3230 /* Now copy the optimized out / unavailability ranges to the right
3231 bits. */
3232 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3233 if (byte_order == BFD_ENDIAN_BIG)
3234 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3235 else
3236 dst_bit_offset = 0;
3237 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3238 val, src_bit_offset, bitsize);
5467c6c8
PA
3239}
3240
3241/* Return a new value with type TYPE, which is FIELDNO field of the
3242 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3243 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3244 from are unavailable/optimized out, the new value is
3245 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3246
3247struct value *
3248value_field_bitfield (struct type *type, int fieldno,
3249 const gdb_byte *valaddr,
6b850546 3250 LONGEST embedded_offset, const struct value *val)
5467c6c8 3251{
4875ffdb
PA
3252 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3253 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3254 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3255
4875ffdb
PA
3256 unpack_value_bitfield (res_val, bitpos, bitsize,
3257 valaddr, embedded_offset, val);
3258
3259 return res_val;
4ea48cc1
DJ
3260}
3261
c906108c
SS
3262/* Modify the value of a bitfield. ADDR points to a block of memory in
3263 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3264 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3265 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3266 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3267 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3268
3269void
50810684 3270modify_field (struct type *type, gdb_byte *addr,
6b850546 3271 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3272{
e17a4113 3273 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3274 ULONGEST oword;
3275 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3276 LONGEST bytesize;
19f220c3
JK
3277
3278 /* Normalize BITPOS. */
3279 addr += bitpos / 8;
3280 bitpos %= 8;
c906108c
SS
3281
3282 /* If a negative fieldval fits in the field in question, chop
3283 off the sign extension bits. */
f4e88c8e
PH
3284 if ((~fieldval & ~(mask >> 1)) == 0)
3285 fieldval &= mask;
c906108c
SS
3286
3287 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3288 if (0 != (fieldval & ~mask))
c906108c
SS
3289 {
3290 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3291 we don't have a sprintf_longest. */
6b850546 3292 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3293
3294 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3295 fieldval &= mask;
c906108c
SS
3296 }
3297
19f220c3
JK
3298 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3299 false valgrind reports. */
3300
3301 bytesize = (bitpos + bitsize + 7) / 8;
3302 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3303
3304 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3305 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3306 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3307
f4e88c8e 3308 oword &= ~(mask << bitpos);
c906108c
SS
3309 oword |= fieldval << bitpos;
3310
19f220c3 3311 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3312}
3313\f
14d06750 3314/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3315
14d06750
DJ
3316void
3317pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3318{
e17a4113 3319 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3320 LONGEST len;
14d06750
DJ
3321
3322 type = check_typedef (type);
c906108c
SS
3323 len = TYPE_LENGTH (type);
3324
14d06750 3325 switch (TYPE_CODE (type))
c906108c 3326 {
c906108c
SS
3327 case TYPE_CODE_INT:
3328 case TYPE_CODE_CHAR:
3329 case TYPE_CODE_ENUM:
4f2aea11 3330 case TYPE_CODE_FLAGS:
c906108c
SS
3331 case TYPE_CODE_BOOL:
3332 case TYPE_CODE_RANGE:
0d5de010 3333 case TYPE_CODE_MEMBERPTR:
e17a4113 3334 store_signed_integer (buf, len, byte_order, num);
c906108c 3335 break;
c5aa993b 3336
c906108c 3337 case TYPE_CODE_REF:
aa006118 3338 case TYPE_CODE_RVALUE_REF:
c906108c 3339 case TYPE_CODE_PTR:
14d06750 3340 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3341 break;
c5aa993b 3342
50637b26
UW
3343 case TYPE_CODE_FLT:
3344 case TYPE_CODE_DECFLOAT:
3345 target_float_from_longest (buf, type, num);
3346 break;
3347
c906108c 3348 default:
14d06750
DJ
3349 error (_("Unexpected type (%d) encountered for integer constant."),
3350 TYPE_CODE (type));
c906108c 3351 }
14d06750
DJ
3352}
3353
3354
595939de
PM
3355/* Pack NUM into BUF using a target format of TYPE. */
3356
70221824 3357static void
595939de
PM
3358pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3359{
6b850546 3360 LONGEST len;
595939de
PM
3361 enum bfd_endian byte_order;
3362
3363 type = check_typedef (type);
3364 len = TYPE_LENGTH (type);
3365 byte_order = gdbarch_byte_order (get_type_arch (type));
3366
3367 switch (TYPE_CODE (type))
3368 {
3369 case TYPE_CODE_INT:
3370 case TYPE_CODE_CHAR:
3371 case TYPE_CODE_ENUM:
3372 case TYPE_CODE_FLAGS:
3373 case TYPE_CODE_BOOL:
3374 case TYPE_CODE_RANGE:
3375 case TYPE_CODE_MEMBERPTR:
3376 store_unsigned_integer (buf, len, byte_order, num);
3377 break;
3378
3379 case TYPE_CODE_REF:
aa006118 3380 case TYPE_CODE_RVALUE_REF:
595939de
PM
3381 case TYPE_CODE_PTR:
3382 store_typed_address (buf, type, (CORE_ADDR) num);
3383 break;
3384
50637b26
UW
3385 case TYPE_CODE_FLT:
3386 case TYPE_CODE_DECFLOAT:
3387 target_float_from_ulongest (buf, type, num);
3388 break;
3389
595939de 3390 default:
3e43a32a
MS
3391 error (_("Unexpected type (%d) encountered "
3392 "for unsigned integer constant."),
595939de
PM
3393 TYPE_CODE (type));
3394 }
3395}
3396
3397
14d06750
DJ
3398/* Convert C numbers into newly allocated values. */
3399
3400struct value *
3401value_from_longest (struct type *type, LONGEST num)
3402{
3403 struct value *val = allocate_value (type);
3404
3405 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3406 return val;
3407}
3408
4478b372 3409
595939de
PM
3410/* Convert C unsigned numbers into newly allocated values. */
3411
3412struct value *
3413value_from_ulongest (struct type *type, ULONGEST num)
3414{
3415 struct value *val = allocate_value (type);
3416
3417 pack_unsigned_long (value_contents_raw (val), type, num);
3418
3419 return val;
3420}
3421
3422
4478b372 3423/* Create a value representing a pointer of type TYPE to the address
cb417230 3424 ADDR. */
80180f79 3425
f23631e4 3426struct value *
4478b372
JB
3427value_from_pointer (struct type *type, CORE_ADDR addr)
3428{
cb417230 3429 struct value *val = allocate_value (type);
a109c7c1 3430
80180f79 3431 store_typed_address (value_contents_raw (val),
cb417230 3432 check_typedef (type), addr);
4478b372
JB
3433 return val;
3434}
3435
3436
012370f6
TT
3437/* Create a value of type TYPE whose contents come from VALADDR, if it
3438 is non-null, and whose memory address (in the inferior) is
3439 ADDRESS. The type of the created value may differ from the passed
3440 type TYPE. Make sure to retrieve values new type after this call.
3441 Note that TYPE is not passed through resolve_dynamic_type; this is
3442 a special API intended for use only by Ada. */
3443
3444struct value *
3445value_from_contents_and_address_unresolved (struct type *type,
3446 const gdb_byte *valaddr,
3447 CORE_ADDR address)
3448{
3449 struct value *v;
3450
3451 if (valaddr == NULL)
3452 v = allocate_value_lazy (type);
3453 else
3454 v = value_from_contents (type, valaddr);
012370f6 3455 VALUE_LVAL (v) = lval_memory;
1a088441 3456 set_value_address (v, address);
012370f6
TT
3457 return v;
3458}
3459
8acb6b92
TT
3460/* Create a value of type TYPE whose contents come from VALADDR, if it
3461 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3462 ADDRESS. The type of the created value may differ from the passed
3463 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3464
3465struct value *
3466value_from_contents_and_address (struct type *type,
3467 const gdb_byte *valaddr,
3468 CORE_ADDR address)
3469{
c3345124 3470 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3471 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3472 struct value *v;
a109c7c1 3473
8acb6b92 3474 if (valaddr == NULL)
80180f79 3475 v = allocate_value_lazy (resolved_type);
8acb6b92 3476 else
80180f79 3477 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3478 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3479 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3480 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3481 VALUE_LVAL (v) = lval_memory;
1a088441 3482 set_value_address (v, address);
8acb6b92
TT
3483 return v;
3484}
3485
8a9b8146
TT
3486/* Create a value of type TYPE holding the contents CONTENTS.
3487 The new value is `not_lval'. */
3488
3489struct value *
3490value_from_contents (struct type *type, const gdb_byte *contents)
3491{
3492 struct value *result;
3493
3494 result = allocate_value (type);
3495 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3496 return result;
3497}
3498
3bd0f5ef
MS
3499/* Extract a value from the history file. Input will be of the form
3500 $digits or $$digits. See block comment above 'write_dollar_variable'
3501 for details. */
3502
3503struct value *
e799154c 3504value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3505{
3506 int index, len;
3507
3508 if (h[0] == '$')
3509 len = 1;
3510 else
3511 return NULL;
3512
3513 if (h[1] == '$')
3514 len = 2;
3515
3516 /* Find length of numeral string. */
3517 for (; isdigit (h[len]); len++)
3518 ;
3519
3520 /* Make sure numeral string is not part of an identifier. */
3521 if (h[len] == '_' || isalpha (h[len]))
3522 return NULL;
3523
3524 /* Now collect the index value. */
3525 if (h[1] == '$')
3526 {
3527 if (len == 2)
3528 {
3529 /* For some bizarre reason, "$$" is equivalent to "$$1",
3530 rather than to "$$0" as it ought to be! */
3531 index = -1;
3532 *endp += len;
3533 }
3534 else
e799154c
TT
3535 {
3536 char *local_end;
3537
3538 index = -strtol (&h[2], &local_end, 10);
3539 *endp = local_end;
3540 }
3bd0f5ef
MS
3541 }
3542 else
3543 {
3544 if (len == 1)
3545 {
3546 /* "$" is equivalent to "$0". */
3547 index = 0;
3548 *endp += len;
3549 }
3550 else
e799154c
TT
3551 {
3552 char *local_end;
3553
3554 index = strtol (&h[1], &local_end, 10);
3555 *endp = local_end;
3556 }
3bd0f5ef
MS
3557 }
3558
3559 return access_value_history (index);
3560}
3561
3fff9862
YQ
3562/* Get the component value (offset by OFFSET bytes) of a struct or
3563 union WHOLE. Component's type is TYPE. */
3564
3565struct value *
3566value_from_component (struct value *whole, struct type *type, LONGEST offset)
3567{
3568 struct value *v;
3569
3570 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3571 v = allocate_value_lazy (type);
3572 else
3573 {
3574 v = allocate_value (type);
3575 value_contents_copy (v, value_embedded_offset (v),
3576 whole, value_embedded_offset (whole) + offset,
3577 type_length_units (type));
3578 }
3579 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3580 set_value_component_location (v, whole);
3fff9862
YQ
3581
3582 return v;
3583}
3584
a471c594
JK
3585struct value *
3586coerce_ref_if_computed (const struct value *arg)
3587{
3588 const struct lval_funcs *funcs;
3589
aa006118 3590 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3591 return NULL;
3592
3593 if (value_lval_const (arg) != lval_computed)
3594 return NULL;
3595
3596 funcs = value_computed_funcs (arg);
3597 if (funcs->coerce_ref == NULL)
3598 return NULL;
3599
3600 return funcs->coerce_ref (arg);
3601}
3602
dfcee124
AG
3603/* Look at value.h for description. */
3604
3605struct value *
3606readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3607 const struct type *original_type,
3608 const struct value *original_value)
dfcee124
AG
3609{
3610 /* Re-adjust type. */
3611 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3612
3613 /* Add embedding info. */
3614 set_value_enclosing_type (value, enc_type);
3615 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3616
3617 /* We may be pointing to an object of some derived type. */
3618 return value_full_object (value, NULL, 0, 0, 0);
3619}
3620
994b9211
AC
3621struct value *
3622coerce_ref (struct value *arg)
3623{
df407dfe 3624 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3625 struct value *retval;
dfcee124 3626 struct type *enc_type;
a109c7c1 3627
a471c594
JK
3628 retval = coerce_ref_if_computed (arg);
3629 if (retval)
3630 return retval;
3631
aa006118 3632 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3633 return arg;
3634
dfcee124
AG
3635 enc_type = check_typedef (value_enclosing_type (arg));
3636 enc_type = TYPE_TARGET_TYPE (enc_type);
3637
3638 retval = value_at_lazy (enc_type,
3639 unpack_pointer (value_type (arg),
3640 value_contents (arg)));
9f1f738a 3641 enc_type = value_type (retval);
dfcee124
AG
3642 return readjust_indirect_value_type (retval, enc_type,
3643 value_type_arg_tmp, arg);
994b9211
AC
3644}
3645
3646struct value *
3647coerce_array (struct value *arg)
3648{
f3134b88
TT
3649 struct type *type;
3650
994b9211 3651 arg = coerce_ref (arg);
f3134b88
TT
3652 type = check_typedef (value_type (arg));
3653
3654 switch (TYPE_CODE (type))
3655 {
3656 case TYPE_CODE_ARRAY:
7346b668 3657 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3658 arg = value_coerce_array (arg);
3659 break;
3660 case TYPE_CODE_FUNC:
3661 arg = value_coerce_function (arg);
3662 break;
3663 }
994b9211
AC
3664 return arg;
3665}
c906108c 3666\f
c906108c 3667
bbfdfe1c
DM
3668/* Return the return value convention that will be used for the
3669 specified type. */
3670
3671enum return_value_convention
3672struct_return_convention (struct gdbarch *gdbarch,
3673 struct value *function, struct type *value_type)
3674{
3675 enum type_code code = TYPE_CODE (value_type);
3676
3677 if (code == TYPE_CODE_ERROR)
3678 error (_("Function return type unknown."));
3679
3680 /* Probe the architecture for the return-value convention. */
3681 return gdbarch_return_value (gdbarch, function, value_type,
3682 NULL, NULL, NULL);
3683}
3684
48436ce6
AC
3685/* Return true if the function returning the specified type is using
3686 the convention of returning structures in memory (passing in the
82585c72 3687 address as a hidden first parameter). */
c906108c
SS
3688
3689int
d80b854b 3690using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3691 struct value *function, struct type *value_type)
c906108c 3692{
bbfdfe1c 3693 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3694 /* A void return value is never in memory. See also corresponding
44e5158b 3695 code in "print_return_value". */
667e784f
AC
3696 return 0;
3697
bbfdfe1c 3698 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3699 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3700}
3701
42be36b3
CT
3702/* Set the initialized field in a value struct. */
3703
3704void
3705set_value_initialized (struct value *val, int status)
3706{
3707 val->initialized = status;
3708}
3709
3710/* Return the initialized field in a value struct. */
3711
3712int
4bf7b526 3713value_initialized (const struct value *val)
42be36b3
CT
3714{
3715 return val->initialized;
3716}
3717
a844296a
SM
3718/* Load the actual content of a lazy value. Fetch the data from the
3719 user's process and clear the lazy flag to indicate that the data in
3720 the buffer is valid.
a58e2656
AB
3721
3722 If the value is zero-length, we avoid calling read_memory, which
3723 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3724 it. */
a58e2656 3725
a844296a 3726void
a58e2656
AB
3727value_fetch_lazy (struct value *val)
3728{
3729 gdb_assert (value_lazy (val));
3730 allocate_value_contents (val);
9a0dc9e3
PA
3731 /* A value is either lazy, or fully fetched. The
3732 availability/validity is only established as we try to fetch a
3733 value. */
0c7e6dd8
TT
3734 gdb_assert (val->optimized_out.empty ());
3735 gdb_assert (val->unavailable.empty ());
a58e2656
AB
3736 if (value_bitsize (val))
3737 {
3738 /* To read a lazy bitfield, read the entire enclosing value. This
3739 prevents reading the same block of (possibly volatile) memory once
3740 per bitfield. It would be even better to read only the containing
3741 word, but we have no way to record that just specific bits of a
3742 value have been fetched. */
3743 struct type *type = check_typedef (value_type (val));
a58e2656 3744 struct value *parent = value_parent (val);
a58e2656 3745
b0c54aa5
AB
3746 if (value_lazy (parent))
3747 value_fetch_lazy (parent);
3748
4875ffdb
PA
3749 unpack_value_bitfield (val,
3750 value_bitpos (val), value_bitsize (val),
3751 value_contents_for_printing (parent),
3752 value_offset (val), parent);
a58e2656
AB
3753 }
3754 else if (VALUE_LVAL (val) == lval_memory)
3755 {
3756 CORE_ADDR addr = value_address (val);
3757 struct type *type = check_typedef (value_enclosing_type (val));
3758
3759 if (TYPE_LENGTH (type))
3760 read_value_memory (val, 0, value_stack (val),
3761 addr, value_contents_all_raw (val),
3ae385af 3762 type_length_units (type));
a58e2656
AB
3763 }
3764 else if (VALUE_LVAL (val) == lval_register)
3765 {
41b56feb 3766 struct frame_info *next_frame;
a58e2656
AB
3767 int regnum;
3768 struct type *type = check_typedef (value_type (val));
3769 struct value *new_val = val, *mark = value_mark ();
3770
3771 /* Offsets are not supported here; lazy register values must
3772 refer to the entire register. */
3773 gdb_assert (value_offset (val) == 0);
3774
3775 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3776 {
41b56feb 3777 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3778
41b56feb 3779 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3780 regnum = VALUE_REGNUM (new_val);
3781
41b56feb 3782 gdb_assert (next_frame != NULL);
a58e2656
AB
3783
3784 /* Convertible register routines are used for multi-register
3785 values and for interpretation in different types
3786 (e.g. float or int from a double register). Lazy
3787 register values should have the register's natural type,
3788 so they do not apply. */
41b56feb 3789 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3790 regnum, type));
3791
41b56feb
KB
3792 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3793 Since a "->next" operation was performed when setting
3794 this field, we do not need to perform a "next" operation
3795 again when unwinding the register. That's why
3796 frame_unwind_register_value() is called here instead of
3797 get_frame_register_value(). */
3798 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3799
3800 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3801 register is found by reading it from NEXT_FRAME's next frame.
3802 frame_unwind_register_value should never return a value with
3803 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3804 either have two consecutive frames with the same frame id
3805 in the frame chain, or some code is trying to unwind
3806 behind get_prev_frame's back (e.g., a frame unwind
3807 sniffer trying to unwind), bypassing its validations. In
3808 any case, it should always be an internal error to end up
3809 in this situation. */
3810 if (VALUE_LVAL (new_val) == lval_register
3811 && value_lazy (new_val)
41b56feb 3812 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3813 internal_error (__FILE__, __LINE__,
3814 _("infinite loop while fetching a register"));
a58e2656
AB
3815 }
3816
3817 /* If it's still lazy (for instance, a saved register on the
3818 stack), fetch it. */
3819 if (value_lazy (new_val))
3820 value_fetch_lazy (new_val);
3821
9a0dc9e3
PA
3822 /* Copy the contents and the unavailability/optimized-out
3823 meta-data from NEW_VAL to VAL. */
3824 set_value_lazy (val, 0);
3825 value_contents_copy (val, value_embedded_offset (val),
3826 new_val, value_embedded_offset (new_val),
3ae385af 3827 type_length_units (type));
a58e2656
AB
3828
3829 if (frame_debug)
3830 {
3831 struct gdbarch *gdbarch;
41b56feb
KB
3832 struct frame_info *frame;
3833 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3834 so that the frame level will be shown correctly. */
a58e2656
AB
3835 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3836 regnum = VALUE_REGNUM (val);
3837 gdbarch = get_frame_arch (frame);
3838
3839 fprintf_unfiltered (gdb_stdlog,
3840 "{ value_fetch_lazy "
3841 "(frame=%d,regnum=%d(%s),...) ",
3842 frame_relative_level (frame), regnum,
3843 user_reg_map_regnum_to_name (gdbarch, regnum));
3844
3845 fprintf_unfiltered (gdb_stdlog, "->");
3846 if (value_optimized_out (new_val))
f6c01fc5
AB
3847 {
3848 fprintf_unfiltered (gdb_stdlog, " ");
3849 val_print_optimized_out (new_val, gdb_stdlog);
3850 }
a58e2656
AB
3851 else
3852 {
3853 int i;
3854 const gdb_byte *buf = value_contents (new_val);
3855
3856 if (VALUE_LVAL (new_val) == lval_register)
3857 fprintf_unfiltered (gdb_stdlog, " register=%d",
3858 VALUE_REGNUM (new_val));
3859 else if (VALUE_LVAL (new_val) == lval_memory)
3860 fprintf_unfiltered (gdb_stdlog, " address=%s",
3861 paddress (gdbarch,
3862 value_address (new_val)));
3863 else
3864 fprintf_unfiltered (gdb_stdlog, " computed");
3865
3866 fprintf_unfiltered (gdb_stdlog, " bytes=");
3867 fprintf_unfiltered (gdb_stdlog, "[");
3868 for (i = 0; i < register_size (gdbarch, regnum); i++)
3869 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3870 fprintf_unfiltered (gdb_stdlog, "]");
3871 }
3872
3873 fprintf_unfiltered (gdb_stdlog, " }\n");
3874 }
3875
3876 /* Dispose of the intermediate values. This prevents
3877 watchpoints from trying to watch the saved frame pointer. */
3878 value_free_to_mark (mark);
3879 }
3880 else if (VALUE_LVAL (val) == lval_computed
3881 && value_computed_funcs (val)->read != NULL)
3882 value_computed_funcs (val)->read (val);
a58e2656
AB
3883 else
3884 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3885
3886 set_value_lazy (val, 0);
a58e2656
AB
3887}
3888
a280dbd1
SDJ
3889/* Implementation of the convenience function $_isvoid. */
3890
3891static struct value *
3892isvoid_internal_fn (struct gdbarch *gdbarch,
3893 const struct language_defn *language,
3894 void *cookie, int argc, struct value **argv)
3895{
3896 int ret;
3897
3898 if (argc != 1)
6bc305f5 3899 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3900
3901 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3902
3903 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3904}
3905
c906108c 3906void
fba45db2 3907_initialize_values (void)
c906108c 3908{
1a966eab 3909 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3910Debugger convenience (\"$foo\") variables and functions.\n\
3911Convenience variables are created when you assign them values;\n\
3912thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3913\n\
c906108c
SS
3914A few convenience variables are given values automatically:\n\
3915\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3916\"$__\" holds the contents of the last address examined with \"x\"."
3917#ifdef HAVE_PYTHON
3918"\n\n\
3919Convenience functions are defined via the Python API."
3920#endif
3921 ), &showlist);
7e20dfcd 3922 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3923
db5f229b 3924 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3925Elements of value history around item number IDX (or last ten)."),
c906108c 3926 &showlist);
53e5f3cf
AS
3927
3928 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3929Initialize a convenience variable if necessary.\n\
3930init-if-undefined VARIABLE = EXPRESSION\n\
3931Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3932exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3933VARIABLE is already initialized."));
bc3b79fd
TJB
3934
3935 add_prefix_cmd ("function", no_class, function_command, _("\
3936Placeholder command for showing help on convenience functions."),
3937 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3938
3939 add_internal_function ("_isvoid", _("\
3940Check whether an expression is void.\n\
3941Usage: $_isvoid (expression)\n\
3942Return 1 if the expression is void, zero otherwise."),
3943 isvoid_internal_fn, NULL);
5fdf6324
AB
3944
3945 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
3946 class_support, &max_value_size, _("\
3947Set maximum sized value gdb will load from the inferior."), _("\
3948Show maximum sized value gdb will load from the inferior."), _("\
3949Use this to control the maximum size, in bytes, of a value that gdb\n\
3950will load from the inferior. Setting this value to 'unlimited'\n\
3951disables checking.\n\
3952Setting this does not invalidate already allocated values, it only\n\
3953prevents future values, larger than this size, from being allocated."),
3954 set_max_value_size,
3955 show_max_value_size,
3956 &setlist, &showlist);
c906108c 3957}
This page took 2.153259 seconds and 4 git commands to generate.