Change varobj to use value_ref_ptr
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
36160dc4 31#include "regcache.h"
fe898f56 32#include "block.h"
70100014 33#include "target-float.h"
bccdca4a 34#include "objfiles.h"
79a45b7d 35#include "valprint.h"
bc3b79fd 36#include "cli/cli-decode.h"
6dddc817 37#include "extension.h"
3bd0f5ef 38#include <ctype.h>
0914bcdb 39#include "tracepoint.h"
be335936 40#include "cp-abi.h"
a58e2656 41#include "user-regs.h"
325fac50 42#include <algorithm>
eb3ff9a5 43#include "completer.h"
0914bcdb 44
bc3b79fd
TJB
45/* Definition of a user function. */
46struct internal_function
47{
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58};
59
4e07d55f
PA
60/* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62struct range
63{
64 /* Lowest offset in the range. */
6b850546 65 LONGEST offset;
4e07d55f
PA
66
67 /* Length of the range. */
6b850546 68 LONGEST length;
4e07d55f
PA
69};
70
71typedef struct range range_s;
72
73DEF_VEC_O(range_s);
74
75/* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78static int
6b850546
DT
79ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
4e07d55f
PA
81{
82 ULONGEST h, l;
83
325fac50
PA
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
86 return (l < h);
87}
88
89/* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94static int
95range_lessthan (const range_s *r1, const range_s *r2)
96{
97 return r1->offset < r2->offset;
98}
99
100/* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103static int
6b850546 104ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
105{
106 range_s what;
6b850546 107 LONGEST i;
4e07d55f
PA
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162}
163
bc3b79fd
TJB
164static struct cmd_list_element *functionlist;
165
87784a47
TT
166/* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
91294c83
AC
169struct value
170{
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
87784a47
TT
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
91294c83 200
e848a8a5
TT
201 /* If the value has been released. */
202 unsigned int released : 1;
203
91294c83
AC
204 /* Location of value (if lval). */
205 union
206 {
7dc54575 207 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
208 CORE_ADDR address;
209
7dc54575
YQ
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
91294c83
AC
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4 223
e81e7f5e
SC
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
5f5233d4
PA
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
c8f2448a
JK
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
5f5233d4 237 } computed;
91294c83
AC
238 } location;
239
3723fda8 240 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
241 addressable memory units. Note also the member embedded_offset
242 below. */
6b850546 243 LONGEST offset;
91294c83
AC
244
245 /* Only used for bitfields; number of bits contained in them. */
6b850546 246 LONGEST bitsize;
91294c83
AC
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 251 LONGEST bitpos;
91294c83 252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
91294c83
AC
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
91294c83
AC
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
6b850546
DT
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
91294c83
AC
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
a08702d6
TJB
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
91294c83
AC
316 struct value *next;
317
3e3d7139
JG
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
828d3400 321
4e07d55f
PA
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
9a0dc9e3
PA
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
4e07d55f 328 VEC(range_s) *unavailable;
9a0dc9e3
PA
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
91294c83
AC
338};
339
e512cdbd
SM
340/* See value.h. */
341
342struct gdbarch *
343get_value_arch (const struct value *value)
344{
345 return get_type_arch (value_type (value));
346}
347
4e07d55f 348int
6b850546 349value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
350{
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354}
355
bdf22206 356int
6b850546
DT
357value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
bdf22206
AB
359{
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363}
364
9a0dc9e3
PA
365int
366value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367{
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371}
372
ec0a52e1
PA
373int
374value_entirely_available (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384}
385
9a0dc9e3
PA
386/* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390static int
391value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
6211c335 393{
9a0dc9e3
PA
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
6211c335
YQ
396 if (value->lazy)
397 value_fetch_lazy (value);
398
9a0dc9e3 399 if (VEC_length (range_s, *ranges) == 1)
6211c335 400 {
9a0dc9e3 401 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
402
403 if (t->offset == 0
64c46ce4
JB
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
406 return 1;
407 }
408
409 return 0;
410}
411
9a0dc9e3
PA
412int
413value_entirely_unavailable (struct value *value)
414{
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416}
417
418int
419value_entirely_optimized_out (struct value *value)
420{
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422}
423
424/* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427static void
6b850546
DT
428insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
4e07d55f
PA
430{
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
9a0dc9e3 520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
521 if (i > 0)
522 {
9a0dc9e3 523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
325fac50
PA
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
9a0dc9e3 544 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
545 }
546 }
547 else
548 {
549 /* #4 */
9a0dc9e3 550 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
9a0dc9e3 555 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
9a0dc9e3 563 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
564 removed = 0;
565
566 i = next;
9a0dc9e3 567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
325fac50
PA
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
9a0dc9e3 589 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
590 }
591}
592
9a0dc9e3 593void
6b850546
DT
594mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
9a0dc9e3
PA
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206 600void
6b850546
DT
601mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
bdf22206
AB
603{
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607}
608
c8c1c22f
PA
609/* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614static int
615find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 616 LONGEST offset, LONGEST length)
c8c1c22f
PA
617{
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626}
627
bdf22206
AB
628/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640static int
641memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644{
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727}
728
9a0dc9e3
PA
729/* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
bdf22206 732
9a0dc9e3
PA
733struct ranges_and_idx
734{
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741};
742
743/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
748
749static int
9a0dc9e3
PA
750find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
6b850546
DT
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 754{
9a0dc9e3
PA
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
c8c1c22f 759
9a0dc9e3
PA
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
c8c1c22f
PA
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
9a0dc9e3
PA
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
325fac50
PA
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 782
325fac50
PA
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
9a0dc9e3 794 /* Different ranges, no match. */
c8c1c22f
PA
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
9a0dc9e3
PA
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802}
803
804/* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
98ead37e 811static bool
9a0dc9e3
PA
812value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815{
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
000339af 838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
98ead37e 850 return false;
9a0dc9e3
PA
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
bdf22206 861 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 862 val2->contents, offset2, l) != 0)
98ead37e 863 return false;
c8c1c22f 864
9a0dc9e3
PA
865 length -= h;
866 offset1 += h;
867 offset2 += h;
c8c1c22f
PA
868 }
869
98ead37e 870 return true;
c8c1c22f
PA
871}
872
98ead37e 873bool
6b850546
DT
874value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
bdf22206 877{
9a0dc9e3
PA
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
bdf22206
AB
881}
882
c906108c
SS
883
884/* The value-history records all the values printed
885 by print commands during this session. Each chunk
886 records 60 consecutive values. The first chunk on
887 the chain records the most recent values.
888 The total number of values is in value_history_count. */
889
890#define VALUE_HISTORY_CHUNK 60
891
892struct value_history_chunk
c5aa993b
JM
893 {
894 struct value_history_chunk *next;
f23631e4 895 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 896 };
c906108c
SS
897
898/* Chain of chunks now in use. */
899
900static struct value_history_chunk *value_history_chain;
901
581e13c1 902static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 903
c906108c
SS
904\f
905/* List of all value objects currently allocated
906 (except for those released by calls to release_value)
907 This is so they can be freed after each command. */
908
f23631e4 909static struct value *all_values;
c906108c 910
3e3d7139
JG
911/* Allocate a lazy value for type TYPE. Its actual content is
912 "lazily" allocated too: the content field of the return value is
913 NULL; it will be allocated when it is fetched from the target. */
c906108c 914
f23631e4 915struct value *
3e3d7139 916allocate_value_lazy (struct type *type)
c906108c 917{
f23631e4 918 struct value *val;
c54eabfa
JK
919
920 /* Call check_typedef on our type to make sure that, if TYPE
921 is a TYPE_CODE_TYPEDEF, its length is set to the length
922 of the target type instead of zero. However, we do not
923 replace the typedef type by the target type, because we want
924 to keep the typedef in order to be able to set the VAL's type
925 description correctly. */
926 check_typedef (type);
c906108c 927
8d749320 928 val = XCNEW (struct value);
3e3d7139 929 val->contents = NULL;
df407dfe 930 val->next = all_values;
c906108c 931 all_values = val;
df407dfe 932 val->type = type;
4754a64e 933 val->enclosing_type = type;
c906108c 934 VALUE_LVAL (val) = not_lval;
42ae5230 935 val->location.address = 0;
df407dfe
AC
936 val->offset = 0;
937 val->bitpos = 0;
938 val->bitsize = 0;
3e3d7139 939 val->lazy = 1;
13c3b5f5 940 val->embedded_offset = 0;
b44d461b 941 val->pointed_to_offset = 0;
c906108c 942 val->modifiable = 1;
42be36b3 943 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
944
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
947
c906108c
SS
948 return val;
949}
950
5fdf6324
AB
951/* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
954
955static int max_value_size = 65536; /* 64k bytes */
956
957/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
961
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
965
966#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
968
969/* Implement the "set max-value-size" command. */
970
971static void
eb4c3f4a 972set_max_value_size (const char *args, int from_tty,
5fdf6324
AB
973 struct cmd_list_element *c)
974{
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
976
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
978 {
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
981 max_value_size);
982 }
983}
984
985/* Implement the "show max-value-size" command. */
986
987static void
988show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
990{
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
993 else
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
995 max_value_size);
996}
997
998/* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1003
1004static void
1005check_type_length_before_alloc (const struct type *type)
1006{
1007 unsigned int length = TYPE_LENGTH (type);
1008
1009 if (max_value_size > -1 && length > max_value_size)
1010 {
1011 if (TYPE_NAME (type) != NULL)
1012 error (_("value of type `%s' requires %u bytes, which is more "
1013 "than max-value-size"), TYPE_NAME (type), length);
1014 else
1015 error (_("value requires %u bytes, which is more than "
1016 "max-value-size"), length);
1017 }
1018}
1019
3e3d7139
JG
1020/* Allocate the contents of VAL if it has not been allocated yet. */
1021
548b762d 1022static void
3e3d7139
JG
1023allocate_value_contents (struct value *val)
1024{
1025 if (!val->contents)
5fdf6324
AB
1026 {
1027 check_type_length_before_alloc (val->enclosing_type);
1028 val->contents
1029 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1030 }
3e3d7139
JG
1031}
1032
1033/* Allocate a value and its contents for type TYPE. */
1034
1035struct value *
1036allocate_value (struct type *type)
1037{
1038 struct value *val = allocate_value_lazy (type);
a109c7c1 1039
3e3d7139
JG
1040 allocate_value_contents (val);
1041 val->lazy = 0;
1042 return val;
1043}
1044
c906108c 1045/* Allocate a value that has the correct length
938f5214 1046 for COUNT repetitions of type TYPE. */
c906108c 1047
f23631e4 1048struct value *
fba45db2 1049allocate_repeat_value (struct type *type, int count)
c906108c 1050{
c5aa993b 1051 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1052 /* FIXME-type-allocation: need a way to free this type when we are
1053 done with it. */
e3506a9f
UW
1054 struct type *array_type
1055 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1056
e3506a9f 1057 return allocate_value (array_type);
c906108c
SS
1058}
1059
5f5233d4
PA
1060struct value *
1061allocate_computed_value (struct type *type,
c8f2448a 1062 const struct lval_funcs *funcs,
5f5233d4
PA
1063 void *closure)
1064{
41e8491f 1065 struct value *v = allocate_value_lazy (type);
a109c7c1 1066
5f5233d4
PA
1067 VALUE_LVAL (v) = lval_computed;
1068 v->location.computed.funcs = funcs;
1069 v->location.computed.closure = closure;
5f5233d4
PA
1070
1071 return v;
1072}
1073
a7035dbb
JK
1074/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1075
1076struct value *
1077allocate_optimized_out_value (struct type *type)
1078{
1079 struct value *retval = allocate_value_lazy (type);
1080
9a0dc9e3
PA
1081 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1082 set_value_lazy (retval, 0);
a7035dbb
JK
1083 return retval;
1084}
1085
df407dfe
AC
1086/* Accessor methods. */
1087
17cf0ecd 1088struct value *
4bf7b526 1089value_next (const struct value *value)
17cf0ecd
AC
1090{
1091 return value->next;
1092}
1093
df407dfe 1094struct type *
0e03807e 1095value_type (const struct value *value)
df407dfe
AC
1096{
1097 return value->type;
1098}
04624583
AC
1099void
1100deprecated_set_value_type (struct value *value, struct type *type)
1101{
1102 value->type = type;
1103}
df407dfe 1104
6b850546 1105LONGEST
0e03807e 1106value_offset (const struct value *value)
df407dfe
AC
1107{
1108 return value->offset;
1109}
f5cf64a7 1110void
6b850546 1111set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1112{
1113 value->offset = offset;
1114}
df407dfe 1115
6b850546 1116LONGEST
0e03807e 1117value_bitpos (const struct value *value)
df407dfe
AC
1118{
1119 return value->bitpos;
1120}
9bbda503 1121void
6b850546 1122set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1123{
1124 value->bitpos = bit;
1125}
df407dfe 1126
6b850546 1127LONGEST
0e03807e 1128value_bitsize (const struct value *value)
df407dfe
AC
1129{
1130 return value->bitsize;
1131}
9bbda503 1132void
6b850546 1133set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1134{
1135 value->bitsize = bit;
1136}
df407dfe 1137
4ea48cc1 1138struct value *
4bf7b526 1139value_parent (const struct value *value)
4ea48cc1
DJ
1140{
1141 return value->parent;
1142}
1143
53ba8333
JB
1144/* See value.h. */
1145
1146void
1147set_value_parent (struct value *value, struct value *parent)
1148{
40501e00
TT
1149 struct value *old = value->parent;
1150
53ba8333 1151 value->parent = parent;
40501e00
TT
1152 if (parent != NULL)
1153 value_incref (parent);
22bc8444 1154 value_decref (old);
53ba8333
JB
1155}
1156
fc1a4b47 1157gdb_byte *
990a07ab
AC
1158value_contents_raw (struct value *value)
1159{
3ae385af
SM
1160 struct gdbarch *arch = get_value_arch (value);
1161 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1162
3e3d7139 1163 allocate_value_contents (value);
3ae385af 1164 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1165}
1166
fc1a4b47 1167gdb_byte *
990a07ab
AC
1168value_contents_all_raw (struct value *value)
1169{
3e3d7139
JG
1170 allocate_value_contents (value);
1171 return value->contents;
990a07ab
AC
1172}
1173
4754a64e 1174struct type *
4bf7b526 1175value_enclosing_type (const struct value *value)
4754a64e
AC
1176{
1177 return value->enclosing_type;
1178}
1179
8264ba82
AG
1180/* Look at value.h for description. */
1181
1182struct type *
1183value_actual_type (struct value *value, int resolve_simple_types,
1184 int *real_type_found)
1185{
1186 struct value_print_options opts;
8264ba82
AG
1187 struct type *result;
1188
1189 get_user_print_options (&opts);
1190
1191 if (real_type_found)
1192 *real_type_found = 0;
1193 result = value_type (value);
1194 if (opts.objectprint)
1195 {
5e34c6c3
LM
1196 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1197 fetch its rtti type. */
aa006118 1198 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1199 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1200 == TYPE_CODE_STRUCT
1201 && !value_optimized_out (value))
8264ba82
AG
1202 {
1203 struct type *real_type;
1204
1205 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1206 if (real_type)
1207 {
1208 if (real_type_found)
1209 *real_type_found = 1;
1210 result = real_type;
1211 }
1212 }
1213 else if (resolve_simple_types)
1214 {
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = value_enclosing_type (value);
1218 }
1219 }
1220
1221 return result;
1222}
1223
901461f8
PA
1224void
1225error_value_optimized_out (void)
1226{
1227 error (_("value has been optimized out"));
1228}
1229
0e03807e 1230static void
4e07d55f 1231require_not_optimized_out (const struct value *value)
0e03807e 1232{
9a0dc9e3 1233 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1234 {
1235 if (value->lval == lval_register)
1236 error (_("register has not been saved in frame"));
1237 else
1238 error_value_optimized_out ();
1239 }
0e03807e
TT
1240}
1241
4e07d55f
PA
1242static void
1243require_available (const struct value *value)
1244{
1245 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1246 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1247}
1248
fc1a4b47 1249const gdb_byte *
0e03807e 1250value_contents_for_printing (struct value *value)
46615f07
AC
1251{
1252 if (value->lazy)
1253 value_fetch_lazy (value);
3e3d7139 1254 return value->contents;
46615f07
AC
1255}
1256
de4127a3
PA
1257const gdb_byte *
1258value_contents_for_printing_const (const struct value *value)
1259{
1260 gdb_assert (!value->lazy);
1261 return value->contents;
1262}
1263
0e03807e
TT
1264const gdb_byte *
1265value_contents_all (struct value *value)
1266{
1267 const gdb_byte *result = value_contents_for_printing (value);
1268 require_not_optimized_out (value);
4e07d55f 1269 require_available (value);
0e03807e
TT
1270 return result;
1271}
1272
9a0dc9e3
PA
1273/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1274 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1275
1276static void
1277ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1278 VEC (range_s) *src_range, int src_bit_offset,
1279 int bit_length)
1280{
1281 range_s *r;
1282 int i;
1283
1284 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1285 {
1286 ULONGEST h, l;
1287
325fac50
PA
1288 l = std::max (r->offset, (LONGEST) src_bit_offset);
1289 h = std::min (r->offset + r->length,
1290 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1291
1292 if (l < h)
1293 insert_into_bit_range_vector (dst_range,
1294 dst_bit_offset + (l - src_bit_offset),
1295 h - l);
1296 }
1297}
1298
4875ffdb
PA
1299/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1300 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1301
1302static void
1303value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1304 const struct value *src, int src_bit_offset,
1305 int bit_length)
1306{
1307 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1308 src->unavailable, src_bit_offset,
1309 bit_length);
1310 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1311 src->optimized_out, src_bit_offset,
1312 bit_length);
1313}
1314
3ae385af 1315/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1316 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1317 contents, starting at DST_OFFSET. If unavailable contents are
1318 being copied from SRC, the corresponding DST contents are marked
1319 unavailable accordingly. Neither DST nor SRC may be lazy
1320 values.
1321
1322 It is assumed the contents of DST in the [DST_OFFSET,
1323 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1324
1325void
6b850546
DT
1326value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1327 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1328{
6b850546 1329 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1330 struct gdbarch *arch = get_value_arch (src);
1331 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1332
1333 /* A lazy DST would make that this copy operation useless, since as
1334 soon as DST's contents were un-lazied (by a later value_contents
1335 call, say), the contents would be overwritten. A lazy SRC would
1336 mean we'd be copying garbage. */
1337 gdb_assert (!dst->lazy && !src->lazy);
1338
29976f3f
PA
1339 /* The overwritten DST range gets unavailability ORed in, not
1340 replaced. Make sure to remember to implement replacing if it
1341 turns out actually necessary. */
1342 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1343 gdb_assert (!value_bits_any_optimized_out (dst,
1344 TARGET_CHAR_BIT * dst_offset,
1345 TARGET_CHAR_BIT * length));
29976f3f 1346
39d37385 1347 /* Copy the data. */
3ae385af
SM
1348 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1349 value_contents_all_raw (src) + src_offset * unit_size,
1350 length * unit_size);
39d37385
PA
1351
1352 /* Copy the meta-data, adjusted. */
3ae385af
SM
1353 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1354 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1355 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1356
4875ffdb
PA
1357 value_ranges_copy_adjusted (dst, dst_bit_offset,
1358 src, src_bit_offset,
1359 bit_length);
39d37385
PA
1360}
1361
29976f3f
PA
1362/* Copy LENGTH bytes of SRC value's (all) contents
1363 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1364 (all) contents, starting at DST_OFFSET. If unavailable contents
1365 are being copied from SRC, the corresponding DST contents are
1366 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1367 lazy, it will be fetched now.
29976f3f
PA
1368
1369 It is assumed the contents of DST in the [DST_OFFSET,
1370 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1371
1372void
6b850546
DT
1373value_contents_copy (struct value *dst, LONGEST dst_offset,
1374 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1375{
39d37385
PA
1376 if (src->lazy)
1377 value_fetch_lazy (src);
1378
1379 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1380}
1381
d69fe07e 1382int
4bf7b526 1383value_lazy (const struct value *value)
d69fe07e
AC
1384{
1385 return value->lazy;
1386}
1387
dfa52d88
AC
1388void
1389set_value_lazy (struct value *value, int val)
1390{
1391 value->lazy = val;
1392}
1393
4e5d721f 1394int
4bf7b526 1395value_stack (const struct value *value)
4e5d721f
DE
1396{
1397 return value->stack;
1398}
1399
1400void
1401set_value_stack (struct value *value, int val)
1402{
1403 value->stack = val;
1404}
1405
fc1a4b47 1406const gdb_byte *
0fd88904
AC
1407value_contents (struct value *value)
1408{
0e03807e
TT
1409 const gdb_byte *result = value_contents_writeable (value);
1410 require_not_optimized_out (value);
4e07d55f 1411 require_available (value);
0e03807e 1412 return result;
0fd88904
AC
1413}
1414
fc1a4b47 1415gdb_byte *
0fd88904
AC
1416value_contents_writeable (struct value *value)
1417{
1418 if (value->lazy)
1419 value_fetch_lazy (value);
fc0c53a0 1420 return value_contents_raw (value);
0fd88904
AC
1421}
1422
feb13ab0
AC
1423int
1424value_optimized_out (struct value *value)
1425{
691a26f5
AB
1426 /* We can only know if a value is optimized out once we have tried to
1427 fetch it. */
9a0dc9e3 1428 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1429 {
1430 TRY
1431 {
1432 value_fetch_lazy (value);
1433 }
1434 CATCH (ex, RETURN_MASK_ERROR)
1435 {
1436 /* Fall back to checking value->optimized_out. */
1437 }
1438 END_CATCH
1439 }
691a26f5 1440
9a0dc9e3 1441 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1442}
1443
9a0dc9e3
PA
1444/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1445 the following LENGTH bytes. */
eca07816 1446
feb13ab0 1447void
9a0dc9e3 1448mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1449{
9a0dc9e3
PA
1450 mark_value_bits_optimized_out (value,
1451 offset * TARGET_CHAR_BIT,
1452 length * TARGET_CHAR_BIT);
feb13ab0 1453}
13c3b5f5 1454
9a0dc9e3 1455/* See value.h. */
0e03807e 1456
9a0dc9e3 1457void
6b850546
DT
1458mark_value_bits_optimized_out (struct value *value,
1459 LONGEST offset, LONGEST length)
0e03807e 1460{
9a0dc9e3 1461 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1462}
1463
8cf6f0b1
TT
1464int
1465value_bits_synthetic_pointer (const struct value *value,
6b850546 1466 LONGEST offset, LONGEST length)
8cf6f0b1 1467{
e7303042 1468 if (value->lval != lval_computed
8cf6f0b1
TT
1469 || !value->location.computed.funcs->check_synthetic_pointer)
1470 return 0;
1471 return value->location.computed.funcs->check_synthetic_pointer (value,
1472 offset,
1473 length);
1474}
1475
6b850546 1476LONGEST
4bf7b526 1477value_embedded_offset (const struct value *value)
13c3b5f5
AC
1478{
1479 return value->embedded_offset;
1480}
1481
1482void
6b850546 1483set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1484{
1485 value->embedded_offset = val;
1486}
b44d461b 1487
6b850546 1488LONGEST
4bf7b526 1489value_pointed_to_offset (const struct value *value)
b44d461b
AC
1490{
1491 return value->pointed_to_offset;
1492}
1493
1494void
6b850546 1495set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1496{
1497 value->pointed_to_offset = val;
1498}
13bb5560 1499
c8f2448a 1500const struct lval_funcs *
a471c594 1501value_computed_funcs (const struct value *v)
5f5233d4 1502{
a471c594 1503 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1504
1505 return v->location.computed.funcs;
1506}
1507
1508void *
0e03807e 1509value_computed_closure (const struct value *v)
5f5233d4 1510{
0e03807e 1511 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1512
1513 return v->location.computed.closure;
1514}
1515
13bb5560
AC
1516enum lval_type *
1517deprecated_value_lval_hack (struct value *value)
1518{
1519 return &value->lval;
1520}
1521
a471c594
JK
1522enum lval_type
1523value_lval_const (const struct value *value)
1524{
1525 return value->lval;
1526}
1527
42ae5230 1528CORE_ADDR
de4127a3 1529value_address (const struct value *value)
42ae5230 1530{
1a088441 1531 if (value->lval != lval_memory)
42ae5230 1532 return 0;
53ba8333
JB
1533 if (value->parent != NULL)
1534 return value_address (value->parent) + value->offset;
9920b434
BH
1535 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1536 {
1537 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1538 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1539 }
1540
1541 return value->location.address + value->offset;
42ae5230
TT
1542}
1543
1544CORE_ADDR
4bf7b526 1545value_raw_address (const struct value *value)
42ae5230 1546{
1a088441 1547 if (value->lval != lval_memory)
42ae5230
TT
1548 return 0;
1549 return value->location.address;
1550}
1551
1552void
1553set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1554{
1a088441 1555 gdb_assert (value->lval == lval_memory);
42ae5230 1556 value->location.address = addr;
13bb5560
AC
1557}
1558
1559struct internalvar **
1560deprecated_value_internalvar_hack (struct value *value)
1561{
1562 return &value->location.internalvar;
1563}
1564
1565struct frame_id *
41b56feb 1566deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1567{
7c2ba67e 1568 gdb_assert (value->lval == lval_register);
7dc54575 1569 return &value->location.reg.next_frame_id;
13bb5560
AC
1570}
1571
7dc54575 1572int *
13bb5560
AC
1573deprecated_value_regnum_hack (struct value *value)
1574{
7c2ba67e 1575 gdb_assert (value->lval == lval_register);
7dc54575 1576 return &value->location.reg.regnum;
13bb5560 1577}
88e3b34b
AC
1578
1579int
4bf7b526 1580deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1581{
1582 return value->modifiable;
1583}
990a07ab 1584\f
c906108c
SS
1585/* Return a mark in the value chain. All values allocated after the
1586 mark is obtained (except for those released) are subject to being freed
1587 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1588struct value *
fba45db2 1589value_mark (void)
c906108c
SS
1590{
1591 return all_values;
1592}
1593
828d3400
DJ
1594/* Take a reference to VAL. VAL will not be deallocated until all
1595 references are released. */
1596
22bc8444 1597struct value *
828d3400
DJ
1598value_incref (struct value *val)
1599{
1600 val->reference_count++;
22bc8444 1601 return val;
828d3400
DJ
1602}
1603
1604/* Release a reference to VAL, which was acquired with value_incref.
1605 This function is also called to deallocate values from the value
1606 chain. */
1607
3e3d7139 1608void
22bc8444 1609value_decref (struct value *val)
3e3d7139
JG
1610{
1611 if (val)
5f5233d4 1612 {
828d3400
DJ
1613 gdb_assert (val->reference_count > 0);
1614 val->reference_count--;
1615 if (val->reference_count > 0)
1616 return;
1617
4ea48cc1
DJ
1618 /* If there's an associated parent value, drop our reference to
1619 it. */
1620 if (val->parent != NULL)
22bc8444 1621 value_decref (val->parent);
4ea48cc1 1622
5f5233d4
PA
1623 if (VALUE_LVAL (val) == lval_computed)
1624 {
c8f2448a 1625 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1626
1627 if (funcs->free_closure)
1628 funcs->free_closure (val);
1629 }
e81e7f5e 1630 else if (VALUE_LVAL (val) == lval_xcallable)
ba18742c 1631 delete val->location.xm_worker;
5f5233d4
PA
1632
1633 xfree (val->contents);
4e07d55f 1634 VEC_free (range_s, val->unavailable);
5f5233d4 1635 }
3e3d7139
JG
1636 xfree (val);
1637}
1638
c906108c
SS
1639/* Free all values allocated since MARK was obtained by value_mark
1640 (except for those released). */
1641void
4bf7b526 1642value_free_to_mark (const struct value *mark)
c906108c 1643{
f23631e4
AC
1644 struct value *val;
1645 struct value *next;
c906108c
SS
1646
1647 for (val = all_values; val && val != mark; val = next)
1648 {
df407dfe 1649 next = val->next;
e848a8a5 1650 val->released = 1;
22bc8444 1651 value_decref (val);
c906108c
SS
1652 }
1653 all_values = val;
1654}
1655
1656/* Free all the values that have been allocated (except for those released).
725e88af
DE
1657 Call after each command, successful or not.
1658 In practice this is called before each command, which is sufficient. */
c906108c
SS
1659
1660void
fba45db2 1661free_all_values (void)
c906108c 1662{
f23631e4
AC
1663 struct value *val;
1664 struct value *next;
c906108c
SS
1665
1666 for (val = all_values; val; val = next)
1667 {
df407dfe 1668 next = val->next;
e848a8a5 1669 val->released = 1;
22bc8444 1670 value_decref (val);
c906108c
SS
1671 }
1672
1673 all_values = 0;
1674}
1675
0cf6dd15
TJB
1676/* Frees all the elements in a chain of values. */
1677
1678void
1679free_value_chain (struct value *v)
1680{
1681 struct value *next;
1682
1683 for (; v; v = next)
1684 {
1685 next = value_next (v);
22bc8444 1686 value_decref (v);
0cf6dd15
TJB
1687 }
1688}
1689
c906108c
SS
1690/* Remove VAL from the chain all_values
1691 so it will not be freed automatically. */
1692
22bc8444 1693value_ref_ptr
f23631e4 1694release_value (struct value *val)
c906108c 1695{
f23631e4 1696 struct value *v;
22bc8444 1697 bool released = false;
c906108c 1698
850645cf
TT
1699 if (val == nullptr)
1700 return value_ref_ptr ();
1701
c906108c
SS
1702 if (all_values == val)
1703 {
1704 all_values = val->next;
06a64a0b 1705 val->next = NULL;
22bc8444 1706 released = true;
c906108c 1707 }
22bc8444 1708 else
c906108c 1709 {
22bc8444 1710 for (v = all_values; v; v = v->next)
c906108c 1711 {
22bc8444
TT
1712 if (v->next == val)
1713 {
1714 v->next = val->next;
1715 val->next = NULL;
1716 released = true;
1717 break;
1718 }
c906108c
SS
1719 }
1720 }
c906108c 1721
22bc8444
TT
1722 if (!released)
1723 {
1724 /* We must always return an owned reference. Normally this
1725 happens because we transfer the reference from the value
1726 chain, but in this case the value was not on the chain. */
1727 value_incref (val);
1728 }
e848a8a5 1729
22bc8444 1730 return value_ref_ptr (val);
e848a8a5
TT
1731}
1732
c906108c 1733/* Release all values up to mark */
f23631e4 1734struct value *
4bf7b526 1735value_release_to_mark (const struct value *mark)
c906108c 1736{
f23631e4
AC
1737 struct value *val;
1738 struct value *next;
c906108c 1739
df407dfe 1740 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1741 {
1742 if (next->next == mark)
1743 {
1744 all_values = next->next;
1745 next->next = NULL;
1746 return val;
1747 }
1748 next->released = 1;
1749 }
c906108c
SS
1750 all_values = 0;
1751 return val;
1752}
1753
1754/* Return a copy of the value ARG.
1755 It contains the same contents, for same memory address,
1756 but it's a different block of storage. */
1757
f23631e4
AC
1758struct value *
1759value_copy (struct value *arg)
c906108c 1760{
4754a64e 1761 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1762 struct value *val;
1763
1764 if (value_lazy (arg))
1765 val = allocate_value_lazy (encl_type);
1766 else
1767 val = allocate_value (encl_type);
df407dfe 1768 val->type = arg->type;
c906108c 1769 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1770 val->location = arg->location;
df407dfe
AC
1771 val->offset = arg->offset;
1772 val->bitpos = arg->bitpos;
1773 val->bitsize = arg->bitsize;
d69fe07e 1774 val->lazy = arg->lazy;
13c3b5f5 1775 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1776 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1777 val->modifiable = arg->modifiable;
d69fe07e 1778 if (!value_lazy (val))
c906108c 1779 {
990a07ab 1780 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1781 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1782
1783 }
4e07d55f 1784 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1785 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1786 set_value_parent (val, arg->parent);
5f5233d4
PA
1787 if (VALUE_LVAL (val) == lval_computed)
1788 {
c8f2448a 1789 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1790
1791 if (funcs->copy_closure)
1792 val->location.computed.closure = funcs->copy_closure (val);
1793 }
c906108c
SS
1794 return val;
1795}
74bcbdf3 1796
4c082a81
SC
1797/* Return a "const" and/or "volatile" qualified version of the value V.
1798 If CNST is true, then the returned value will be qualified with
1799 "const".
1800 if VOLTL is true, then the returned value will be qualified with
1801 "volatile". */
1802
1803struct value *
1804make_cv_value (int cnst, int voltl, struct value *v)
1805{
1806 struct type *val_type = value_type (v);
1807 struct type *enclosing_type = value_enclosing_type (v);
1808 struct value *cv_val = value_copy (v);
1809
1810 deprecated_set_value_type (cv_val,
1811 make_cv_type (cnst, voltl, val_type, NULL));
1812 set_value_enclosing_type (cv_val,
1813 make_cv_type (cnst, voltl, enclosing_type, NULL));
1814
1815 return cv_val;
1816}
1817
c37f7098
KW
1818/* Return a version of ARG that is non-lvalue. */
1819
1820struct value *
1821value_non_lval (struct value *arg)
1822{
1823 if (VALUE_LVAL (arg) != not_lval)
1824 {
1825 struct type *enc_type = value_enclosing_type (arg);
1826 struct value *val = allocate_value (enc_type);
1827
1828 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1829 TYPE_LENGTH (enc_type));
1830 val->type = arg->type;
1831 set_value_embedded_offset (val, value_embedded_offset (arg));
1832 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1833 return val;
1834 }
1835 return arg;
1836}
1837
6c659fc2
SC
1838/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1839
1840void
1841value_force_lval (struct value *v, CORE_ADDR addr)
1842{
1843 gdb_assert (VALUE_LVAL (v) == not_lval);
1844
1845 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1846 v->lval = lval_memory;
1847 v->location.address = addr;
1848}
1849
74bcbdf3 1850void
0e03807e
TT
1851set_value_component_location (struct value *component,
1852 const struct value *whole)
74bcbdf3 1853{
9920b434
BH
1854 struct type *type;
1855
e81e7f5e
SC
1856 gdb_assert (whole->lval != lval_xcallable);
1857
0e03807e 1858 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1859 VALUE_LVAL (component) = lval_internalvar_component;
1860 else
0e03807e 1861 VALUE_LVAL (component) = whole->lval;
5f5233d4 1862
74bcbdf3 1863 component->location = whole->location;
0e03807e 1864 if (whole->lval == lval_computed)
5f5233d4 1865 {
c8f2448a 1866 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1867
1868 if (funcs->copy_closure)
1869 component->location.computed.closure = funcs->copy_closure (whole);
1870 }
9920b434
BH
1871
1872 /* If type has a dynamic resolved location property
1873 update it's value address. */
1874 type = value_type (whole);
1875 if (NULL != TYPE_DATA_LOCATION (type)
1876 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1877 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1878}
1879
c906108c
SS
1880/* Access to the value history. */
1881
1882/* Record a new value in the value history.
eddf0bae 1883 Returns the absolute history index of the entry. */
c906108c
SS
1884
1885int
f23631e4 1886record_latest_value (struct value *val)
c906108c
SS
1887{
1888 int i;
1889
1890 /* We don't want this value to have anything to do with the inferior anymore.
1891 In particular, "set $1 = 50" should not affect the variable from which
1892 the value was taken, and fast watchpoints should be able to assume that
1893 a value on the value history never changes. */
d69fe07e 1894 if (value_lazy (val))
c906108c
SS
1895 value_fetch_lazy (val);
1896 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1897 from. This is a bit dubious, because then *&$1 does not just return $1
1898 but the current contents of that location. c'est la vie... */
1899 val->modifiable = 0;
350e1a76 1900
c906108c
SS
1901 /* Here we treat value_history_count as origin-zero
1902 and applying to the value being stored now. */
1903
1904 i = value_history_count % VALUE_HISTORY_CHUNK;
1905 if (i == 0)
1906 {
8d749320 1907 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1908
fe978cb0
PA
1909 newobj->next = value_history_chain;
1910 value_history_chain = newobj;
c906108c
SS
1911 }
1912
22bc8444 1913 value_history_chain->values[i] = release_value (val).release ();
c906108c
SS
1914
1915 /* Now we regard value_history_count as origin-one
1916 and applying to the value just stored. */
1917
1918 return ++value_history_count;
1919}
1920
1921/* Return a copy of the value in the history with sequence number NUM. */
1922
f23631e4 1923struct value *
fba45db2 1924access_value_history (int num)
c906108c 1925{
f23631e4 1926 struct value_history_chunk *chunk;
52f0bd74
AC
1927 int i;
1928 int absnum = num;
c906108c
SS
1929
1930 if (absnum <= 0)
1931 absnum += value_history_count;
1932
1933 if (absnum <= 0)
1934 {
1935 if (num == 0)
8a3fe4f8 1936 error (_("The history is empty."));
c906108c 1937 else if (num == 1)
8a3fe4f8 1938 error (_("There is only one value in the history."));
c906108c 1939 else
8a3fe4f8 1940 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1941 }
1942 if (absnum > value_history_count)
8a3fe4f8 1943 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1944
1945 absnum--;
1946
1947 /* Now absnum is always absolute and origin zero. */
1948
1949 chunk = value_history_chain;
3e43a32a
MS
1950 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1951 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1952 i > 0; i--)
1953 chunk = chunk->next;
1954
1955 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1956}
1957
c906108c 1958static void
5fed81ff 1959show_values (const char *num_exp, int from_tty)
c906108c 1960{
52f0bd74 1961 int i;
f23631e4 1962 struct value *val;
c906108c
SS
1963 static int num = 1;
1964
1965 if (num_exp)
1966 {
f132ba9d
TJB
1967 /* "show values +" should print from the stored position.
1968 "show values <exp>" should print around value number <exp>. */
c906108c 1969 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1970 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1971 }
1972 else
1973 {
f132ba9d 1974 /* "show values" means print the last 10 values. */
c906108c
SS
1975 num = value_history_count - 9;
1976 }
1977
1978 if (num <= 0)
1979 num = 1;
1980
1981 for (i = num; i < num + 10 && i <= value_history_count; i++)
1982 {
79a45b7d 1983 struct value_print_options opts;
a109c7c1 1984
c906108c 1985 val = access_value_history (i);
a3f17187 1986 printf_filtered (("$%d = "), i);
79a45b7d
TT
1987 get_user_print_options (&opts);
1988 value_print (val, gdb_stdout, &opts);
a3f17187 1989 printf_filtered (("\n"));
c906108c
SS
1990 }
1991
f132ba9d 1992 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1993 num += 10;
1994
1995 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1996 "show values +". If num_exp is null, this is unnecessary, since
1997 "show values +" is not useful after "show values". */
c906108c 1998 if (from_tty && num_exp)
85c4be7c 1999 set_repeat_arguments ("+");
c906108c
SS
2000}
2001\f
52059ffd
TT
2002enum internalvar_kind
2003{
2004 /* The internal variable is empty. */
2005 INTERNALVAR_VOID,
2006
2007 /* The value of the internal variable is provided directly as
2008 a GDB value object. */
2009 INTERNALVAR_VALUE,
2010
2011 /* A fresh value is computed via a call-back routine on every
2012 access to the internal variable. */
2013 INTERNALVAR_MAKE_VALUE,
2014
2015 /* The internal variable holds a GDB internal convenience function. */
2016 INTERNALVAR_FUNCTION,
2017
2018 /* The variable holds an integer value. */
2019 INTERNALVAR_INTEGER,
2020
2021 /* The variable holds a GDB-provided string. */
2022 INTERNALVAR_STRING,
2023};
2024
2025union internalvar_data
2026{
2027 /* A value object used with INTERNALVAR_VALUE. */
2028 struct value *value;
2029
2030 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2031 struct
2032 {
2033 /* The functions to call. */
2034 const struct internalvar_funcs *functions;
2035
2036 /* The function's user-data. */
2037 void *data;
2038 } make_value;
2039
2040 /* The internal function used with INTERNALVAR_FUNCTION. */
2041 struct
2042 {
2043 struct internal_function *function;
2044 /* True if this is the canonical name for the function. */
2045 int canonical;
2046 } fn;
2047
2048 /* An integer value used with INTERNALVAR_INTEGER. */
2049 struct
2050 {
2051 /* If type is non-NULL, it will be used as the type to generate
2052 a value for this internal variable. If type is NULL, a default
2053 integer type for the architecture is used. */
2054 struct type *type;
2055 LONGEST val;
2056 } integer;
2057
2058 /* A string value used with INTERNALVAR_STRING. */
2059 char *string;
2060};
2061
c906108c
SS
2062/* Internal variables. These are variables within the debugger
2063 that hold values assigned by debugger commands.
2064 The user refers to them with a '$' prefix
2065 that does not appear in the variable names stored internally. */
2066
4fa62494
UW
2067struct internalvar
2068{
2069 struct internalvar *next;
2070 char *name;
4fa62494 2071
78267919
UW
2072 /* We support various different kinds of content of an internal variable.
2073 enum internalvar_kind specifies the kind, and union internalvar_data
2074 provides the data associated with this particular kind. */
2075
52059ffd 2076 enum internalvar_kind kind;
4fa62494 2077
52059ffd 2078 union internalvar_data u;
4fa62494
UW
2079};
2080
c906108c
SS
2081static struct internalvar *internalvars;
2082
3e43a32a
MS
2083/* If the variable does not already exist create it and give it the
2084 value given. If no value is given then the default is zero. */
53e5f3cf 2085static void
0b39b52e 2086init_if_undefined_command (const char* args, int from_tty)
53e5f3cf
AS
2087{
2088 struct internalvar* intvar;
2089
2090 /* Parse the expression - this is taken from set_command(). */
4d01a485 2091 expression_up expr = parse_expression (args);
53e5f3cf
AS
2092
2093 /* Validate the expression.
2094 Was the expression an assignment?
2095 Or even an expression at all? */
2096 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2097 error (_("Init-if-undefined requires an assignment expression."));
2098
2099 /* Extract the variable from the parsed expression.
2100 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2101 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2102 error (_("The first parameter to init-if-undefined "
2103 "should be a GDB variable."));
53e5f3cf
AS
2104 intvar = expr->elts[2].internalvar;
2105
2106 /* Only evaluate the expression if the lvalue is void.
2107 This may still fail if the expresssion is invalid. */
78267919 2108 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2109 evaluate_expression (expr.get ());
53e5f3cf
AS
2110}
2111
2112
c906108c
SS
2113/* Look up an internal variable with name NAME. NAME should not
2114 normally include a dollar sign.
2115
2116 If the specified internal variable does not exist,
c4a3d09a 2117 the return value is NULL. */
c906108c
SS
2118
2119struct internalvar *
bc3b79fd 2120lookup_only_internalvar (const char *name)
c906108c 2121{
52f0bd74 2122 struct internalvar *var;
c906108c
SS
2123
2124 for (var = internalvars; var; var = var->next)
5cb316ef 2125 if (strcmp (var->name, name) == 0)
c906108c
SS
2126 return var;
2127
c4a3d09a
MF
2128 return NULL;
2129}
2130
eb3ff9a5
PA
2131/* Complete NAME by comparing it to the names of internal
2132 variables. */
d55637df 2133
eb3ff9a5
PA
2134void
2135complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2136{
d55637df
TT
2137 struct internalvar *var;
2138 int len;
2139
2140 len = strlen (name);
2141
2142 for (var = internalvars; var; var = var->next)
2143 if (strncmp (var->name, name, len) == 0)
2144 {
eb3ff9a5 2145 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2146
eb3ff9a5 2147 tracker.add_completion (std::move (copy));
d55637df 2148 }
d55637df 2149}
c4a3d09a
MF
2150
2151/* Create an internal variable with name NAME and with a void value.
2152 NAME should not normally include a dollar sign. */
2153
2154struct internalvar *
bc3b79fd 2155create_internalvar (const char *name)
c4a3d09a 2156{
8d749320 2157 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2158
1754f103 2159 var->name = concat (name, (char *)NULL);
78267919 2160 var->kind = INTERNALVAR_VOID;
c906108c
SS
2161 var->next = internalvars;
2162 internalvars = var;
2163 return var;
2164}
2165
4aa995e1
PA
2166/* Create an internal variable with name NAME and register FUN as the
2167 function that value_of_internalvar uses to create a value whenever
2168 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2169 dollar sign. DATA is passed uninterpreted to FUN when it is
2170 called. CLEANUP, if not NULL, is called when the internal variable
2171 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2172
2173struct internalvar *
22d2b532
SDJ
2174create_internalvar_type_lazy (const char *name,
2175 const struct internalvar_funcs *funcs,
2176 void *data)
4aa995e1 2177{
4fa62494 2178 struct internalvar *var = create_internalvar (name);
a109c7c1 2179
78267919 2180 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2181 var->u.make_value.functions = funcs;
2182 var->u.make_value.data = data;
4aa995e1
PA
2183 return var;
2184}
c4a3d09a 2185
22d2b532
SDJ
2186/* See documentation in value.h. */
2187
2188int
2189compile_internalvar_to_ax (struct internalvar *var,
2190 struct agent_expr *expr,
2191 struct axs_value *value)
2192{
2193 if (var->kind != INTERNALVAR_MAKE_VALUE
2194 || var->u.make_value.functions->compile_to_ax == NULL)
2195 return 0;
2196
2197 var->u.make_value.functions->compile_to_ax (var, expr, value,
2198 var->u.make_value.data);
2199 return 1;
2200}
2201
c4a3d09a
MF
2202/* Look up an internal variable with name NAME. NAME should not
2203 normally include a dollar sign.
2204
2205 If the specified internal variable does not exist,
2206 one is created, with a void value. */
2207
2208struct internalvar *
bc3b79fd 2209lookup_internalvar (const char *name)
c4a3d09a
MF
2210{
2211 struct internalvar *var;
2212
2213 var = lookup_only_internalvar (name);
2214 if (var)
2215 return var;
2216
2217 return create_internalvar (name);
2218}
2219
78267919
UW
2220/* Return current value of internal variable VAR. For variables that
2221 are not inherently typed, use a value type appropriate for GDBARCH. */
2222
f23631e4 2223struct value *
78267919 2224value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2225{
f23631e4 2226 struct value *val;
0914bcdb
SS
2227 struct trace_state_variable *tsv;
2228
2229 /* If there is a trace state variable of the same name, assume that
2230 is what we really want to see. */
2231 tsv = find_trace_state_variable (var->name);
2232 if (tsv)
2233 {
2234 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2235 &(tsv->value));
2236 if (tsv->value_known)
2237 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2238 tsv->value);
2239 else
2240 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2241 return val;
2242 }
c906108c 2243
78267919 2244 switch (var->kind)
5f5233d4 2245 {
78267919
UW
2246 case INTERNALVAR_VOID:
2247 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2248 break;
4fa62494 2249
78267919
UW
2250 case INTERNALVAR_FUNCTION:
2251 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2252 break;
4fa62494 2253
cab0c772
UW
2254 case INTERNALVAR_INTEGER:
2255 if (!var->u.integer.type)
78267919 2256 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2257 var->u.integer.val);
78267919 2258 else
cab0c772
UW
2259 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2260 break;
2261
78267919
UW
2262 case INTERNALVAR_STRING:
2263 val = value_cstring (var->u.string, strlen (var->u.string),
2264 builtin_type (gdbarch)->builtin_char);
2265 break;
4fa62494 2266
78267919
UW
2267 case INTERNALVAR_VALUE:
2268 val = value_copy (var->u.value);
4aa995e1
PA
2269 if (value_lazy (val))
2270 value_fetch_lazy (val);
78267919 2271 break;
4aa995e1 2272
78267919 2273 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2274 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2275 var->u.make_value.data);
78267919
UW
2276 break;
2277
2278 default:
9b20d036 2279 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2280 }
2281
2282 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2283 on this value go back to affect the original internal variable.
2284
2285 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2286 no underlying modifyable state in the internal variable.
2287
2288 Likewise, if the variable's value is a computed lvalue, we want
2289 references to it to produce another computed lvalue, where
2290 references and assignments actually operate through the
2291 computed value's functions.
2292
2293 This means that internal variables with computed values
2294 behave a little differently from other internal variables:
2295 assignments to them don't just replace the previous value
2296 altogether. At the moment, this seems like the behavior we
2297 want. */
2298
2299 if (var->kind != INTERNALVAR_MAKE_VALUE
2300 && val->lval != lval_computed)
2301 {
2302 VALUE_LVAL (val) = lval_internalvar;
2303 VALUE_INTERNALVAR (val) = var;
5f5233d4 2304 }
d3c139e9 2305
4fa62494
UW
2306 return val;
2307}
d3c139e9 2308
4fa62494
UW
2309int
2310get_internalvar_integer (struct internalvar *var, LONGEST *result)
2311{
3158c6ed 2312 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2313 {
cab0c772
UW
2314 *result = var->u.integer.val;
2315 return 1;
3158c6ed 2316 }
d3c139e9 2317
3158c6ed
PA
2318 if (var->kind == INTERNALVAR_VALUE)
2319 {
2320 struct type *type = check_typedef (value_type (var->u.value));
2321
2322 if (TYPE_CODE (type) == TYPE_CODE_INT)
2323 {
2324 *result = value_as_long (var->u.value);
2325 return 1;
2326 }
4fa62494 2327 }
3158c6ed
PA
2328
2329 return 0;
4fa62494 2330}
d3c139e9 2331
4fa62494
UW
2332static int
2333get_internalvar_function (struct internalvar *var,
2334 struct internal_function **result)
2335{
78267919 2336 switch (var->kind)
d3c139e9 2337 {
78267919
UW
2338 case INTERNALVAR_FUNCTION:
2339 *result = var->u.fn.function;
4fa62494 2340 return 1;
d3c139e9 2341
4fa62494
UW
2342 default:
2343 return 0;
2344 }
c906108c
SS
2345}
2346
2347void
6b850546
DT
2348set_internalvar_component (struct internalvar *var,
2349 LONGEST offset, LONGEST bitpos,
2350 LONGEST bitsize, struct value *newval)
c906108c 2351{
4fa62494 2352 gdb_byte *addr;
3ae385af
SM
2353 struct gdbarch *arch;
2354 int unit_size;
c906108c 2355
78267919 2356 switch (var->kind)
4fa62494 2357 {
78267919
UW
2358 case INTERNALVAR_VALUE:
2359 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2360 arch = get_value_arch (var->u.value);
2361 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2362
2363 if (bitsize)
50810684 2364 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2365 value_as_long (newval), bitpos, bitsize);
2366 else
3ae385af 2367 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2368 TYPE_LENGTH (value_type (newval)));
2369 break;
78267919
UW
2370
2371 default:
2372 /* We can never get a component of any other kind. */
9b20d036 2373 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2374 }
c906108c
SS
2375}
2376
2377void
f23631e4 2378set_internalvar (struct internalvar *var, struct value *val)
c906108c 2379{
78267919 2380 enum internalvar_kind new_kind;
4fa62494 2381 union internalvar_data new_data = { 0 };
c906108c 2382
78267919 2383 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2384 error (_("Cannot overwrite convenience function %s"), var->name);
2385
4fa62494 2386 /* Prepare new contents. */
78267919 2387 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2388 {
2389 case TYPE_CODE_VOID:
78267919 2390 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2391 break;
2392
2393 case TYPE_CODE_INTERNAL_FUNCTION:
2394 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2395 new_kind = INTERNALVAR_FUNCTION;
2396 get_internalvar_function (VALUE_INTERNALVAR (val),
2397 &new_data.fn.function);
2398 /* Copies created here are never canonical. */
4fa62494
UW
2399 break;
2400
4fa62494 2401 default:
78267919
UW
2402 new_kind = INTERNALVAR_VALUE;
2403 new_data.value = value_copy (val);
2404 new_data.value->modifiable = 1;
4fa62494
UW
2405
2406 /* Force the value to be fetched from the target now, to avoid problems
2407 later when this internalvar is referenced and the target is gone or
2408 has changed. */
78267919
UW
2409 if (value_lazy (new_data.value))
2410 value_fetch_lazy (new_data.value);
4fa62494
UW
2411
2412 /* Release the value from the value chain to prevent it from being
2413 deleted by free_all_values. From here on this function should not
2414 call error () until new_data is installed into the var->u to avoid
2415 leaking memory. */
22bc8444 2416 release_value (new_data.value).release ();
9920b434
BH
2417
2418 /* Internal variables which are created from values with a dynamic
2419 location don't need the location property of the origin anymore.
2420 The resolved dynamic location is used prior then any other address
2421 when accessing the value.
2422 If we keep it, we would still refer to the origin value.
2423 Remove the location property in case it exist. */
2424 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2425
4fa62494
UW
2426 break;
2427 }
2428
2429 /* Clean up old contents. */
2430 clear_internalvar (var);
2431
2432 /* Switch over. */
78267919 2433 var->kind = new_kind;
4fa62494 2434 var->u = new_data;
c906108c
SS
2435 /* End code which must not call error(). */
2436}
2437
4fa62494
UW
2438void
2439set_internalvar_integer (struct internalvar *var, LONGEST l)
2440{
2441 /* Clean up old contents. */
2442 clear_internalvar (var);
2443
cab0c772
UW
2444 var->kind = INTERNALVAR_INTEGER;
2445 var->u.integer.type = NULL;
2446 var->u.integer.val = l;
78267919
UW
2447}
2448
2449void
2450set_internalvar_string (struct internalvar *var, const char *string)
2451{
2452 /* Clean up old contents. */
2453 clear_internalvar (var);
2454
2455 var->kind = INTERNALVAR_STRING;
2456 var->u.string = xstrdup (string);
4fa62494
UW
2457}
2458
2459static void
2460set_internalvar_function (struct internalvar *var, struct internal_function *f)
2461{
2462 /* Clean up old contents. */
2463 clear_internalvar (var);
2464
78267919
UW
2465 var->kind = INTERNALVAR_FUNCTION;
2466 var->u.fn.function = f;
2467 var->u.fn.canonical = 1;
2468 /* Variables installed here are always the canonical version. */
4fa62494
UW
2469}
2470
2471void
2472clear_internalvar (struct internalvar *var)
2473{
2474 /* Clean up old contents. */
78267919 2475 switch (var->kind)
4fa62494 2476 {
78267919 2477 case INTERNALVAR_VALUE:
22bc8444 2478 value_decref (var->u.value);
78267919
UW
2479 break;
2480
2481 case INTERNALVAR_STRING:
2482 xfree (var->u.string);
4fa62494
UW
2483 break;
2484
22d2b532
SDJ
2485 case INTERNALVAR_MAKE_VALUE:
2486 if (var->u.make_value.functions->destroy != NULL)
2487 var->u.make_value.functions->destroy (var->u.make_value.data);
2488 break;
2489
4fa62494 2490 default:
4fa62494
UW
2491 break;
2492 }
2493
78267919
UW
2494 /* Reset to void kind. */
2495 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2496}
2497
c906108c 2498char *
4bf7b526 2499internalvar_name (const struct internalvar *var)
c906108c
SS
2500{
2501 return var->name;
2502}
2503
4fa62494
UW
2504static struct internal_function *
2505create_internal_function (const char *name,
2506 internal_function_fn handler, void *cookie)
bc3b79fd 2507{
bc3b79fd 2508 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2509
bc3b79fd
TJB
2510 ifn->name = xstrdup (name);
2511 ifn->handler = handler;
2512 ifn->cookie = cookie;
4fa62494 2513 return ifn;
bc3b79fd
TJB
2514}
2515
2516char *
2517value_internal_function_name (struct value *val)
2518{
4fa62494
UW
2519 struct internal_function *ifn;
2520 int result;
2521
2522 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2523 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2524 gdb_assert (result);
2525
bc3b79fd
TJB
2526 return ifn->name;
2527}
2528
2529struct value *
d452c4bc
UW
2530call_internal_function (struct gdbarch *gdbarch,
2531 const struct language_defn *language,
2532 struct value *func, int argc, struct value **argv)
bc3b79fd 2533{
4fa62494
UW
2534 struct internal_function *ifn;
2535 int result;
2536
2537 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2538 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2539 gdb_assert (result);
2540
d452c4bc 2541 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2542}
2543
2544/* The 'function' command. This does nothing -- it is just a
2545 placeholder to let "help function NAME" work. This is also used as
2546 the implementation of the sub-command that is created when
2547 registering an internal function. */
2548static void
981a3fb3 2549function_command (const char *command, int from_tty)
bc3b79fd
TJB
2550{
2551 /* Do nothing. */
2552}
2553
2554/* Clean up if an internal function's command is destroyed. */
2555static void
2556function_destroyer (struct cmd_list_element *self, void *ignore)
2557{
6f937416 2558 xfree ((char *) self->name);
1947513d 2559 xfree ((char *) self->doc);
bc3b79fd
TJB
2560}
2561
2562/* Add a new internal function. NAME is the name of the function; DOC
2563 is a documentation string describing the function. HANDLER is
2564 called when the function is invoked. COOKIE is an arbitrary
2565 pointer which is passed to HANDLER and is intended for "user
2566 data". */
2567void
2568add_internal_function (const char *name, const char *doc,
2569 internal_function_fn handler, void *cookie)
2570{
2571 struct cmd_list_element *cmd;
4fa62494 2572 struct internal_function *ifn;
bc3b79fd 2573 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2574
2575 ifn = create_internal_function (name, handler, cookie);
2576 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2577
2578 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2579 &functionlist);
2580 cmd->destroyer = function_destroyer;
2581}
2582
ae5a43e0
DJ
2583/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2584 prevent cycles / duplicates. */
2585
4e7a5ef5 2586void
ae5a43e0
DJ
2587preserve_one_value (struct value *value, struct objfile *objfile,
2588 htab_t copied_types)
2589{
2590 if (TYPE_OBJFILE (value->type) == objfile)
2591 value->type = copy_type_recursive (objfile, value->type, copied_types);
2592
2593 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2594 value->enclosing_type = copy_type_recursive (objfile,
2595 value->enclosing_type,
2596 copied_types);
2597}
2598
78267919
UW
2599/* Likewise for internal variable VAR. */
2600
2601static void
2602preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2603 htab_t copied_types)
2604{
2605 switch (var->kind)
2606 {
cab0c772
UW
2607 case INTERNALVAR_INTEGER:
2608 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2609 var->u.integer.type
2610 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2611 break;
2612
78267919
UW
2613 case INTERNALVAR_VALUE:
2614 preserve_one_value (var->u.value, objfile, copied_types);
2615 break;
2616 }
2617}
2618
ae5a43e0
DJ
2619/* Update the internal variables and value history when OBJFILE is
2620 discarded; we must copy the types out of the objfile. New global types
2621 will be created for every convenience variable which currently points to
2622 this objfile's types, and the convenience variables will be adjusted to
2623 use the new global types. */
c906108c
SS
2624
2625void
ae5a43e0 2626preserve_values (struct objfile *objfile)
c906108c 2627{
ae5a43e0
DJ
2628 htab_t copied_types;
2629 struct value_history_chunk *cur;
52f0bd74 2630 struct internalvar *var;
ae5a43e0 2631 int i;
c906108c 2632
ae5a43e0
DJ
2633 /* Create the hash table. We allocate on the objfile's obstack, since
2634 it is soon to be deleted. */
2635 copied_types = create_copied_types_hash (objfile);
2636
2637 for (cur = value_history_chain; cur; cur = cur->next)
2638 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2639 if (cur->values[i])
2640 preserve_one_value (cur->values[i], objfile, copied_types);
2641
2642 for (var = internalvars; var; var = var->next)
78267919 2643 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2644
6dddc817 2645 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2646
ae5a43e0 2647 htab_delete (copied_types);
c906108c
SS
2648}
2649
2650static void
ad25e423 2651show_convenience (const char *ignore, int from_tty)
c906108c 2652{
e17c207e 2653 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2654 struct internalvar *var;
c906108c 2655 int varseen = 0;
79a45b7d 2656 struct value_print_options opts;
c906108c 2657
79a45b7d 2658 get_user_print_options (&opts);
c906108c
SS
2659 for (var = internalvars; var; var = var->next)
2660 {
c709acd1 2661
c906108c
SS
2662 if (!varseen)
2663 {
2664 varseen = 1;
2665 }
a3f17187 2666 printf_filtered (("$%s = "), var->name);
c709acd1 2667
492d29ea 2668 TRY
c709acd1
PA
2669 {
2670 struct value *val;
2671
2672 val = value_of_internalvar (gdbarch, var);
2673 value_print (val, gdb_stdout, &opts);
2674 }
492d29ea
PA
2675 CATCH (ex, RETURN_MASK_ERROR)
2676 {
2677 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2678 }
2679 END_CATCH
2680
a3f17187 2681 printf_filtered (("\n"));
c906108c
SS
2682 }
2683 if (!varseen)
f47f77df
DE
2684 {
2685 /* This text does not mention convenience functions on purpose.
2686 The user can't create them except via Python, and if Python support
2687 is installed this message will never be printed ($_streq will
2688 exist). */
2689 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2690 "Convenience variables have "
2691 "names starting with \"$\";\n"
2692 "use \"set\" as in \"set "
2693 "$foo = 5\" to define them.\n"));
2694 }
c906108c
SS
2695}
2696\f
ba18742c
SM
2697
2698/* See value.h. */
e81e7f5e
SC
2699
2700struct value *
ba18742c 2701value_from_xmethod (xmethod_worker_up &&worker)
e81e7f5e 2702{
ba18742c 2703 struct value *v;
e81e7f5e 2704
ba18742c
SM
2705 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2706 v->lval = lval_xcallable;
2707 v->location.xm_worker = worker.release ();
2708 v->modifiable = 0;
e81e7f5e 2709
ba18742c 2710 return v;
e81e7f5e
SC
2711}
2712
2ce1cdbf
DE
2713/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2714
2715struct type *
2716result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2717{
2718 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2719 && method->lval == lval_xcallable && argc > 0);
2720
ba18742c
SM
2721 return method->location.xm_worker->get_result_type
2722 (argv[0], argv + 1, argc - 1);
2ce1cdbf
DE
2723}
2724
e81e7f5e
SC
2725/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2726
2727struct value *
2728call_xmethod (struct value *method, int argc, struct value **argv)
2729{
2730 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2731 && method->lval == lval_xcallable && argc > 0);
2732
ba18742c 2733 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
e81e7f5e
SC
2734}
2735\f
c906108c
SS
2736/* Extract a value as a C number (either long or double).
2737 Knows how to convert fixed values to double, or
2738 floating values to long.
2739 Does not deallocate the value. */
2740
2741LONGEST
f23631e4 2742value_as_long (struct value *val)
c906108c
SS
2743{
2744 /* This coerces arrays and functions, which is necessary (e.g.
2745 in disassemble_command). It also dereferences references, which
2746 I suspect is the most logical thing to do. */
994b9211 2747 val = coerce_array (val);
0fd88904 2748 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2749}
2750
581e13c1 2751/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2752 Note that val's type may not actually be a pointer; value_as_long
2753 handles all the cases. */
c906108c 2754CORE_ADDR
f23631e4 2755value_as_address (struct value *val)
c906108c 2756{
50810684
UW
2757 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2758
c906108c
SS
2759 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2760 whether we want this to be true eventually. */
2761#if 0
bf6ae464 2762 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2763 non-address (e.g. argument to "signal", "info break", etc.), or
2764 for pointers to char, in which the low bits *are* significant. */
50810684 2765 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2766#else
f312f057
JB
2767
2768 /* There are several targets (IA-64, PowerPC, and others) which
2769 don't represent pointers to functions as simply the address of
2770 the function's entry point. For example, on the IA-64, a
2771 function pointer points to a two-word descriptor, generated by
2772 the linker, which contains the function's entry point, and the
2773 value the IA-64 "global pointer" register should have --- to
2774 support position-independent code. The linker generates
2775 descriptors only for those functions whose addresses are taken.
2776
2777 On such targets, it's difficult for GDB to convert an arbitrary
2778 function address into a function pointer; it has to either find
2779 an existing descriptor for that function, or call malloc and
2780 build its own. On some targets, it is impossible for GDB to
2781 build a descriptor at all: the descriptor must contain a jump
2782 instruction; data memory cannot be executed; and code memory
2783 cannot be modified.
2784
2785 Upon entry to this function, if VAL is a value of type `function'
2786 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2787 value_address (val) is the address of the function. This is what
f312f057
JB
2788 you'll get if you evaluate an expression like `main'. The call
2789 to COERCE_ARRAY below actually does all the usual unary
2790 conversions, which includes converting values of type `function'
2791 to `pointer to function'. This is the challenging conversion
2792 discussed above. Then, `unpack_long' will convert that pointer
2793 back into an address.
2794
2795 So, suppose the user types `disassemble foo' on an architecture
2796 with a strange function pointer representation, on which GDB
2797 cannot build its own descriptors, and suppose further that `foo'
2798 has no linker-built descriptor. The address->pointer conversion
2799 will signal an error and prevent the command from running, even
2800 though the next step would have been to convert the pointer
2801 directly back into the same address.
2802
2803 The following shortcut avoids this whole mess. If VAL is a
2804 function, just return its address directly. */
df407dfe
AC
2805 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2806 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2807 return value_address (val);
f312f057 2808
994b9211 2809 val = coerce_array (val);
fc0c74b1
AC
2810
2811 /* Some architectures (e.g. Harvard), map instruction and data
2812 addresses onto a single large unified address space. For
2813 instance: An architecture may consider a large integer in the
2814 range 0x10000000 .. 0x1000ffff to already represent a data
2815 addresses (hence not need a pointer to address conversion) while
2816 a small integer would still need to be converted integer to
2817 pointer to address. Just assume such architectures handle all
2818 integer conversions in a single function. */
2819
2820 /* JimB writes:
2821
2822 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2823 must admonish GDB hackers to make sure its behavior matches the
2824 compiler's, whenever possible.
2825
2826 In general, I think GDB should evaluate expressions the same way
2827 the compiler does. When the user copies an expression out of
2828 their source code and hands it to a `print' command, they should
2829 get the same value the compiler would have computed. Any
2830 deviation from this rule can cause major confusion and annoyance,
2831 and needs to be justified carefully. In other words, GDB doesn't
2832 really have the freedom to do these conversions in clever and
2833 useful ways.
2834
2835 AndrewC pointed out that users aren't complaining about how GDB
2836 casts integers to pointers; they are complaining that they can't
2837 take an address from a disassembly listing and give it to `x/i'.
2838 This is certainly important.
2839
79dd2d24 2840 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2841 makes it possible for GDB to "get it right" in all circumstances
2842 --- the target has complete control over how things get done, so
2843 people can Do The Right Thing for their target without breaking
2844 anyone else. The standard doesn't specify how integers get
2845 converted to pointers; usually, the ABI doesn't either, but
2846 ABI-specific code is a more reasonable place to handle it. */
2847
df407dfe 2848 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2849 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2850 && gdbarch_integer_to_address_p (gdbarch))
2851 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2852 value_contents (val));
fc0c74b1 2853
0fd88904 2854 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2855#endif
2856}
2857\f
2858/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2859 as a long, or as a double, assuming the raw data is described
2860 by type TYPE. Knows how to convert different sizes of values
2861 and can convert between fixed and floating point. We don't assume
2862 any alignment for the raw data. Return value is in host byte order.
2863
2864 If you want functions and arrays to be coerced to pointers, and
2865 references to be dereferenced, call value_as_long() instead.
2866
2867 C++: It is assumed that the front-end has taken care of
2868 all matters concerning pointers to members. A pointer
2869 to member which reaches here is considered to be equivalent
2870 to an INT (or some size). After all, it is only an offset. */
2871
2872LONGEST
fc1a4b47 2873unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2874{
e17a4113 2875 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2876 enum type_code code = TYPE_CODE (type);
2877 int len = TYPE_LENGTH (type);
2878 int nosign = TYPE_UNSIGNED (type);
c906108c 2879
c906108c
SS
2880 switch (code)
2881 {
2882 case TYPE_CODE_TYPEDEF:
2883 return unpack_long (check_typedef (type), valaddr);
2884 case TYPE_CODE_ENUM:
4f2aea11 2885 case TYPE_CODE_FLAGS:
c906108c
SS
2886 case TYPE_CODE_BOOL:
2887 case TYPE_CODE_INT:
2888 case TYPE_CODE_CHAR:
2889 case TYPE_CODE_RANGE:
0d5de010 2890 case TYPE_CODE_MEMBERPTR:
c906108c 2891 if (nosign)
e17a4113 2892 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2893 else
e17a4113 2894 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2895
2896 case TYPE_CODE_FLT:
4ef30785 2897 case TYPE_CODE_DECFLOAT:
50637b26 2898 return target_float_to_longest (valaddr, type);
4ef30785 2899
c906108c
SS
2900 case TYPE_CODE_PTR:
2901 case TYPE_CODE_REF:
aa006118 2902 case TYPE_CODE_RVALUE_REF:
c906108c 2903 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2904 whether we want this to be true eventually. */
4478b372 2905 return extract_typed_address (valaddr, type);
c906108c 2906
c906108c 2907 default:
8a3fe4f8 2908 error (_("Value can't be converted to integer."));
c906108c 2909 }
c5aa993b 2910 return 0; /* Placate lint. */
c906108c
SS
2911}
2912
c906108c
SS
2913/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2914 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2915 We don't assume any alignment for the raw data. Return value is in
2916 host byte order.
2917
2918 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2919 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2920
2921 C++: It is assumed that the front-end has taken care of
2922 all matters concerning pointers to members. A pointer
2923 to member which reaches here is considered to be equivalent
2924 to an INT (or some size). After all, it is only an offset. */
2925
2926CORE_ADDR
fc1a4b47 2927unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2928{
2929 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2930 whether we want this to be true eventually. */
2931 return unpack_long (type, valaddr);
2932}
4478b372 2933
70100014
UW
2934bool
2935is_floating_value (struct value *val)
2936{
2937 struct type *type = check_typedef (value_type (val));
2938
2939 if (is_floating_type (type))
2940 {
2941 if (!target_float_is_valid (value_contents (val), type))
2942 error (_("Invalid floating value found in program."));
2943 return true;
2944 }
2945
2946 return false;
2947}
2948
c906108c 2949\f
1596cb5d 2950/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2951 TYPE. */
c906108c 2952
f23631e4 2953struct value *
fba45db2 2954value_static_field (struct type *type, int fieldno)
c906108c 2955{
948e66d9
DJ
2956 struct value *retval;
2957
1596cb5d 2958 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2959 {
1596cb5d 2960 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2961 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2962 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2963 break;
2964 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2965 {
ff355380 2966 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2967 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2968 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2969
d12307c1 2970 if (sym.symbol == NULL)
c906108c 2971 {
a109c7c1 2972 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2973 reported as non-debuggable symbols. */
3b7344d5
TT
2974 struct bound_minimal_symbol msym
2975 = lookup_minimal_symbol (phys_name, NULL, NULL);
c2e0e465 2976 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
a109c7c1 2977
3b7344d5 2978 if (!msym.minsym)
c2e0e465 2979 retval = allocate_optimized_out_value (field_type);
c906108c 2980 else
c2e0e465 2981 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2982 }
2983 else
d12307c1 2984 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2985 break;
c906108c 2986 }
1596cb5d 2987 default:
f3574227 2988 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2989 }
2990
948e66d9 2991 return retval;
c906108c
SS
2992}
2993
4dfea560
DE
2994/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2995 You have to be careful here, since the size of the data area for the value
2996 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2997 than the old enclosing type, you have to allocate more space for the
2998 data. */
2b127877 2999
4dfea560
DE
3000void
3001set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3002{
5fdf6324
AB
3003 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3004 {
3005 check_type_length_before_alloc (new_encl_type);
3006 val->contents
3007 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3008 }
3e3d7139
JG
3009
3010 val->enclosing_type = new_encl_type;
2b127877
DB
3011}
3012
c906108c
SS
3013/* Given a value ARG1 (offset by OFFSET bytes)
3014 of a struct or union type ARG_TYPE,
3015 extract and return the value of one of its (non-static) fields.
581e13c1 3016 FIELDNO says which field. */
c906108c 3017
f23631e4 3018struct value *
6b850546 3019value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3020 int fieldno, struct type *arg_type)
c906108c 3021{
f23631e4 3022 struct value *v;
52f0bd74 3023 struct type *type;
3ae385af
SM
3024 struct gdbarch *arch = get_value_arch (arg1);
3025 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3026
f168693b 3027 arg_type = check_typedef (arg_type);
c906108c 3028 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3029
3030 /* Call check_typedef on our type to make sure that, if TYPE
3031 is a TYPE_CODE_TYPEDEF, its length is set to the length
3032 of the target type instead of zero. However, we do not
3033 replace the typedef type by the target type, because we want
3034 to keep the typedef in order to be able to print the type
3035 description correctly. */
3036 check_typedef (type);
c906108c 3037
691a26f5 3038 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3039 {
22c05d8a
JK
3040 /* Handle packed fields.
3041
3042 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3043 set. If possible, arrange offset and bitpos so that we can
3044 do a single aligned read of the size of the containing type.
3045 Otherwise, adjust offset to the byte containing the first
3046 bit. Assume that the address, offset, and embedded offset
3047 are sufficiently aligned. */
22c05d8a 3048
6b850546
DT
3049 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3050 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3051
9a0dc9e3
PA
3052 v = allocate_value_lazy (type);
3053 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3054 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3055 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3056 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3057 else
9a0dc9e3
PA
3058 v->bitpos = bitpos % 8;
3059 v->offset = (value_embedded_offset (arg1)
3060 + offset
3061 + (bitpos - v->bitpos) / 8);
3062 set_value_parent (v, arg1);
3063 if (!value_lazy (arg1))
3064 value_fetch_lazy (v);
c906108c
SS
3065 }
3066 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3067 {
3068 /* This field is actually a base subobject, so preserve the
39d37385
PA
3069 entire object's contents for later references to virtual
3070 bases, etc. */
6b850546 3071 LONGEST boffset;
a4e2ee12
DJ
3072
3073 /* Lazy register values with offsets are not supported. */
3074 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3075 value_fetch_lazy (arg1);
3076
9a0dc9e3
PA
3077 /* We special case virtual inheritance here because this
3078 requires access to the contents, which we would rather avoid
3079 for references to ordinary fields of unavailable values. */
3080 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3081 boffset = baseclass_offset (arg_type, fieldno,
3082 value_contents (arg1),
3083 value_embedded_offset (arg1),
3084 value_address (arg1),
3085 arg1);
c906108c 3086 else
9a0dc9e3 3087 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3088
9a0dc9e3
PA
3089 if (value_lazy (arg1))
3090 v = allocate_value_lazy (value_enclosing_type (arg1));
3091 else
3092 {
3093 v = allocate_value (value_enclosing_type (arg1));
3094 value_contents_copy_raw (v, 0, arg1, 0,
3095 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3096 }
9a0dc9e3
PA
3097 v->type = type;
3098 v->offset = value_offset (arg1);
3099 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3100 }
9920b434
BH
3101 else if (NULL != TYPE_DATA_LOCATION (type))
3102 {
3103 /* Field is a dynamic data member. */
3104
3105 gdb_assert (0 == offset);
3106 /* We expect an already resolved data location. */
3107 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3108 /* For dynamic data types defer memory allocation
3109 until we actual access the value. */
3110 v = allocate_value_lazy (type);
3111 }
c906108c
SS
3112 else
3113 {
3114 /* Plain old data member */
3ae385af
SM
3115 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3116 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3117
3118 /* Lazy register values with offsets are not supported. */
3119 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3120 value_fetch_lazy (arg1);
3121
9a0dc9e3 3122 if (value_lazy (arg1))
3e3d7139 3123 v = allocate_value_lazy (type);
c906108c 3124 else
3e3d7139
JG
3125 {
3126 v = allocate_value (type);
39d37385
PA
3127 value_contents_copy_raw (v, value_embedded_offset (v),
3128 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3129 type_length_units (type));
3e3d7139 3130 }
df407dfe 3131 v->offset = (value_offset (arg1) + offset
13c3b5f5 3132 + value_embedded_offset (arg1));
c906108c 3133 }
74bcbdf3 3134 set_value_component_location (v, arg1);
c906108c
SS
3135 return v;
3136}
3137
3138/* Given a value ARG1 of a struct or union type,
3139 extract and return the value of one of its (non-static) fields.
581e13c1 3140 FIELDNO says which field. */
c906108c 3141
f23631e4 3142struct value *
aa1ee363 3143value_field (struct value *arg1, int fieldno)
c906108c 3144{
df407dfe 3145 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3146}
3147
3148/* Return a non-virtual function as a value.
3149 F is the list of member functions which contains the desired method.
0478d61c
FF
3150 J is an index into F which provides the desired method.
3151
3152 We only use the symbol for its address, so be happy with either a
581e13c1 3153 full symbol or a minimal symbol. */
c906108c 3154
f23631e4 3155struct value *
3e43a32a
MS
3156value_fn_field (struct value **arg1p, struct fn_field *f,
3157 int j, struct type *type,
6b850546 3158 LONGEST offset)
c906108c 3159{
f23631e4 3160 struct value *v;
52f0bd74 3161 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3162 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3163 struct symbol *sym;
7c7b6655 3164 struct bound_minimal_symbol msym;
c906108c 3165
d12307c1 3166 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3167 if (sym != NULL)
0478d61c 3168 {
7c7b6655 3169 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3170 }
3171 else
3172 {
3173 gdb_assert (sym == NULL);
7c7b6655
TT
3174 msym = lookup_bound_minimal_symbol (physname);
3175 if (msym.minsym == NULL)
5ae326fa 3176 return NULL;
0478d61c
FF
3177 }
3178
c906108c 3179 v = allocate_value (ftype);
1a088441 3180 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3181 if (sym)
3182 {
42ae5230 3183 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3184 }
3185 else
3186 {
bccdca4a
UW
3187 /* The minimal symbol might point to a function descriptor;
3188 resolve it to the actual code address instead. */
7c7b6655 3189 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3191
42ae5230
TT
3192 set_value_address (v,
3193 gdbarch_convert_from_func_ptr_addr
77e371c0 3194 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3195 }
c906108c
SS
3196
3197 if (arg1p)
c5aa993b 3198 {
df407dfe 3199 if (type != value_type (*arg1p))
c5aa993b
JM
3200 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3201 value_addr (*arg1p)));
3202
070ad9f0 3203 /* Move the `this' pointer according to the offset.
581e13c1 3204 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3205 }
3206
3207 return v;
3208}
3209
c906108c 3210\f
c906108c 3211
4875ffdb
PA
3212/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3213 VALADDR, and store the result in *RESULT.
15ce8941
TT
3214 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3215 BITSIZE is zero, then the length is taken from FIELD_TYPE.
c906108c 3216
4875ffdb
PA
3217 Extracting bits depends on endianness of the machine. Compute the
3218 number of least significant bits to discard. For big endian machines,
3219 we compute the total number of bits in the anonymous object, subtract
3220 off the bit count from the MSB of the object to the MSB of the
3221 bitfield, then the size of the bitfield, which leaves the LSB discard
3222 count. For little endian machines, the discard count is simply the
3223 number of bits from the LSB of the anonymous object to the LSB of the
3224 bitfield.
3225
3226 If the field is signed, we also do sign extension. */
3227
3228static LONGEST
3229unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3230 LONGEST bitpos, LONGEST bitsize)
c906108c 3231{
4ea48cc1 3232 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3233 ULONGEST val;
3234 ULONGEST valmask;
c906108c 3235 int lsbcount;
6b850546
DT
3236 LONGEST bytes_read;
3237 LONGEST read_offset;
c906108c 3238
4a76eae5
DJ
3239 /* Read the minimum number of bytes required; there may not be
3240 enough bytes to read an entire ULONGEST. */
f168693b 3241 field_type = check_typedef (field_type);
4a76eae5
DJ
3242 if (bitsize)
3243 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3244 else
15ce8941
TT
3245 {
3246 bytes_read = TYPE_LENGTH (field_type);
3247 bitsize = 8 * bytes_read;
3248 }
4a76eae5 3249
5467c6c8
PA
3250 read_offset = bitpos / 8;
3251
4875ffdb 3252 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3253 bytes_read, byte_order);
c906108c 3254
581e13c1 3255 /* Extract bits. See comment above. */
c906108c 3256
4ea48cc1 3257 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3258 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3259 else
3260 lsbcount = (bitpos % 8);
3261 val >>= lsbcount;
3262
3263 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3264 If the field is signed, and is negative, then sign extend. */
c906108c 3265
15ce8941 3266 if (bitsize < 8 * (int) sizeof (val))
c906108c
SS
3267 {
3268 valmask = (((ULONGEST) 1) << bitsize) - 1;
3269 val &= valmask;
3270 if (!TYPE_UNSIGNED (field_type))
3271 {
3272 if (val & (valmask ^ (valmask >> 1)))
3273 {
3274 val |= ~valmask;
3275 }
3276 }
3277 }
5467c6c8 3278
4875ffdb 3279 return val;
5467c6c8
PA
3280}
3281
3282/* Unpack a field FIELDNO of the specified TYPE, from the object at
3283 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3284 ORIGINAL_VALUE, which must not be NULL. See
3285 unpack_value_bits_as_long for more details. */
3286
3287int
3288unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3289 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3290 const struct value *val, LONGEST *result)
3291{
4875ffdb
PA
3292 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3293 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3294 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3295 int bit_offset;
3296
5467c6c8
PA
3297 gdb_assert (val != NULL);
3298
4875ffdb
PA
3299 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3300 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3301 || !value_bits_available (val, bit_offset, bitsize))
3302 return 0;
3303
3304 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3305 bitpos, bitsize);
3306 return 1;
5467c6c8
PA
3307}
3308
3309/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3310 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3311
3312LONGEST
3313unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3314{
4875ffdb
PA
3315 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3316 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3317 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3318
4875ffdb
PA
3319 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3320}
3321
3322/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3323 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3324 the contents in DEST_VAL, zero or sign extending if the type of
3325 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3326 VAL. If the VAL's contents required to extract the bitfield from
3327 are unavailable/optimized out, DEST_VAL is correspondingly
3328 marked unavailable/optimized out. */
3329
bb9d5f81 3330void
4875ffdb 3331unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3332 LONGEST bitpos, LONGEST bitsize,
3333 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3334 const struct value *val)
3335{
3336 enum bfd_endian byte_order;
3337 int src_bit_offset;
3338 int dst_bit_offset;
4875ffdb
PA
3339 struct type *field_type = value_type (dest_val);
3340
4875ffdb 3341 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3342
3343 /* First, unpack and sign extend the bitfield as if it was wholly
3344 valid. Optimized out/unavailable bits are read as zero, but
3345 that's OK, as they'll end up marked below. If the VAL is
3346 wholly-invalid we may have skipped allocating its contents,
3347 though. See allocate_optimized_out_value. */
3348 if (valaddr != NULL)
3349 {
3350 LONGEST num;
3351
3352 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3353 bitpos, bitsize);
3354 store_signed_integer (value_contents_raw (dest_val),
3355 TYPE_LENGTH (field_type), byte_order, num);
3356 }
4875ffdb
PA
3357
3358 /* Now copy the optimized out / unavailability ranges to the right
3359 bits. */
3360 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3361 if (byte_order == BFD_ENDIAN_BIG)
3362 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3363 else
3364 dst_bit_offset = 0;
3365 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3366 val, src_bit_offset, bitsize);
5467c6c8
PA
3367}
3368
3369/* Return a new value with type TYPE, which is FIELDNO field of the
3370 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3371 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3372 from are unavailable/optimized out, the new value is
3373 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3374
3375struct value *
3376value_field_bitfield (struct type *type, int fieldno,
3377 const gdb_byte *valaddr,
6b850546 3378 LONGEST embedded_offset, const struct value *val)
5467c6c8 3379{
4875ffdb
PA
3380 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3381 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3382 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3383
4875ffdb
PA
3384 unpack_value_bitfield (res_val, bitpos, bitsize,
3385 valaddr, embedded_offset, val);
3386
3387 return res_val;
4ea48cc1
DJ
3388}
3389
c906108c
SS
3390/* Modify the value of a bitfield. ADDR points to a block of memory in
3391 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3392 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3393 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3394 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3395 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3396
3397void
50810684 3398modify_field (struct type *type, gdb_byte *addr,
6b850546 3399 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3400{
e17a4113 3401 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3402 ULONGEST oword;
3403 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3404 LONGEST bytesize;
19f220c3
JK
3405
3406 /* Normalize BITPOS. */
3407 addr += bitpos / 8;
3408 bitpos %= 8;
c906108c
SS
3409
3410 /* If a negative fieldval fits in the field in question, chop
3411 off the sign extension bits. */
f4e88c8e
PH
3412 if ((~fieldval & ~(mask >> 1)) == 0)
3413 fieldval &= mask;
c906108c
SS
3414
3415 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3416 if (0 != (fieldval & ~mask))
c906108c
SS
3417 {
3418 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3419 we don't have a sprintf_longest. */
6b850546 3420 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3421
3422 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3423 fieldval &= mask;
c906108c
SS
3424 }
3425
19f220c3
JK
3426 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3427 false valgrind reports. */
3428
3429 bytesize = (bitpos + bitsize + 7) / 8;
3430 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3431
3432 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3433 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3434 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3435
f4e88c8e 3436 oword &= ~(mask << bitpos);
c906108c
SS
3437 oword |= fieldval << bitpos;
3438
19f220c3 3439 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3440}
3441\f
14d06750 3442/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3443
14d06750
DJ
3444void
3445pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3446{
e17a4113 3447 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3448 LONGEST len;
14d06750
DJ
3449
3450 type = check_typedef (type);
c906108c
SS
3451 len = TYPE_LENGTH (type);
3452
14d06750 3453 switch (TYPE_CODE (type))
c906108c 3454 {
c906108c
SS
3455 case TYPE_CODE_INT:
3456 case TYPE_CODE_CHAR:
3457 case TYPE_CODE_ENUM:
4f2aea11 3458 case TYPE_CODE_FLAGS:
c906108c
SS
3459 case TYPE_CODE_BOOL:
3460 case TYPE_CODE_RANGE:
0d5de010 3461 case TYPE_CODE_MEMBERPTR:
e17a4113 3462 store_signed_integer (buf, len, byte_order, num);
c906108c 3463 break;
c5aa993b 3464
c906108c 3465 case TYPE_CODE_REF:
aa006118 3466 case TYPE_CODE_RVALUE_REF:
c906108c 3467 case TYPE_CODE_PTR:
14d06750 3468 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3469 break;
c5aa993b 3470
50637b26
UW
3471 case TYPE_CODE_FLT:
3472 case TYPE_CODE_DECFLOAT:
3473 target_float_from_longest (buf, type, num);
3474 break;
3475
c906108c 3476 default:
14d06750
DJ
3477 error (_("Unexpected type (%d) encountered for integer constant."),
3478 TYPE_CODE (type));
c906108c 3479 }
14d06750
DJ
3480}
3481
3482
595939de
PM
3483/* Pack NUM into BUF using a target format of TYPE. */
3484
70221824 3485static void
595939de
PM
3486pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3487{
6b850546 3488 LONGEST len;
595939de
PM
3489 enum bfd_endian byte_order;
3490
3491 type = check_typedef (type);
3492 len = TYPE_LENGTH (type);
3493 byte_order = gdbarch_byte_order (get_type_arch (type));
3494
3495 switch (TYPE_CODE (type))
3496 {
3497 case TYPE_CODE_INT:
3498 case TYPE_CODE_CHAR:
3499 case TYPE_CODE_ENUM:
3500 case TYPE_CODE_FLAGS:
3501 case TYPE_CODE_BOOL:
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_MEMBERPTR:
3504 store_unsigned_integer (buf, len, byte_order, num);
3505 break;
3506
3507 case TYPE_CODE_REF:
aa006118 3508 case TYPE_CODE_RVALUE_REF:
595939de
PM
3509 case TYPE_CODE_PTR:
3510 store_typed_address (buf, type, (CORE_ADDR) num);
3511 break;
3512
50637b26
UW
3513 case TYPE_CODE_FLT:
3514 case TYPE_CODE_DECFLOAT:
3515 target_float_from_ulongest (buf, type, num);
3516 break;
3517
595939de 3518 default:
3e43a32a
MS
3519 error (_("Unexpected type (%d) encountered "
3520 "for unsigned integer constant."),
595939de
PM
3521 TYPE_CODE (type));
3522 }
3523}
3524
3525
14d06750
DJ
3526/* Convert C numbers into newly allocated values. */
3527
3528struct value *
3529value_from_longest (struct type *type, LONGEST num)
3530{
3531 struct value *val = allocate_value (type);
3532
3533 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3534 return val;
3535}
3536
4478b372 3537
595939de
PM
3538/* Convert C unsigned numbers into newly allocated values. */
3539
3540struct value *
3541value_from_ulongest (struct type *type, ULONGEST num)
3542{
3543 struct value *val = allocate_value (type);
3544
3545 pack_unsigned_long (value_contents_raw (val), type, num);
3546
3547 return val;
3548}
3549
3550
4478b372 3551/* Create a value representing a pointer of type TYPE to the address
cb417230 3552 ADDR. */
80180f79 3553
f23631e4 3554struct value *
4478b372
JB
3555value_from_pointer (struct type *type, CORE_ADDR addr)
3556{
cb417230 3557 struct value *val = allocate_value (type);
a109c7c1 3558
80180f79 3559 store_typed_address (value_contents_raw (val),
cb417230 3560 check_typedef (type), addr);
4478b372
JB
3561 return val;
3562}
3563
3564
012370f6
TT
3565/* Create a value of type TYPE whose contents come from VALADDR, if it
3566 is non-null, and whose memory address (in the inferior) is
3567 ADDRESS. The type of the created value may differ from the passed
3568 type TYPE. Make sure to retrieve values new type after this call.
3569 Note that TYPE is not passed through resolve_dynamic_type; this is
3570 a special API intended for use only by Ada. */
3571
3572struct value *
3573value_from_contents_and_address_unresolved (struct type *type,
3574 const gdb_byte *valaddr,
3575 CORE_ADDR address)
3576{
3577 struct value *v;
3578
3579 if (valaddr == NULL)
3580 v = allocate_value_lazy (type);
3581 else
3582 v = value_from_contents (type, valaddr);
012370f6 3583 VALUE_LVAL (v) = lval_memory;
1a088441 3584 set_value_address (v, address);
012370f6
TT
3585 return v;
3586}
3587
8acb6b92
TT
3588/* Create a value of type TYPE whose contents come from VALADDR, if it
3589 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3590 ADDRESS. The type of the created value may differ from the passed
3591 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3592
3593struct value *
3594value_from_contents_and_address (struct type *type,
3595 const gdb_byte *valaddr,
3596 CORE_ADDR address)
3597{
c3345124 3598 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3599 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3600 struct value *v;
a109c7c1 3601
8acb6b92 3602 if (valaddr == NULL)
80180f79 3603 v = allocate_value_lazy (resolved_type);
8acb6b92 3604 else
80180f79 3605 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3606 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3607 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3608 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3609 VALUE_LVAL (v) = lval_memory;
1a088441 3610 set_value_address (v, address);
8acb6b92
TT
3611 return v;
3612}
3613
8a9b8146
TT
3614/* Create a value of type TYPE holding the contents CONTENTS.
3615 The new value is `not_lval'. */
3616
3617struct value *
3618value_from_contents (struct type *type, const gdb_byte *contents)
3619{
3620 struct value *result;
3621
3622 result = allocate_value (type);
3623 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3624 return result;
3625}
3626
3bd0f5ef
MS
3627/* Extract a value from the history file. Input will be of the form
3628 $digits or $$digits. See block comment above 'write_dollar_variable'
3629 for details. */
3630
3631struct value *
e799154c 3632value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3633{
3634 int index, len;
3635
3636 if (h[0] == '$')
3637 len = 1;
3638 else
3639 return NULL;
3640
3641 if (h[1] == '$')
3642 len = 2;
3643
3644 /* Find length of numeral string. */
3645 for (; isdigit (h[len]); len++)
3646 ;
3647
3648 /* Make sure numeral string is not part of an identifier. */
3649 if (h[len] == '_' || isalpha (h[len]))
3650 return NULL;
3651
3652 /* Now collect the index value. */
3653 if (h[1] == '$')
3654 {
3655 if (len == 2)
3656 {
3657 /* For some bizarre reason, "$$" is equivalent to "$$1",
3658 rather than to "$$0" as it ought to be! */
3659 index = -1;
3660 *endp += len;
3661 }
3662 else
e799154c
TT
3663 {
3664 char *local_end;
3665
3666 index = -strtol (&h[2], &local_end, 10);
3667 *endp = local_end;
3668 }
3bd0f5ef
MS
3669 }
3670 else
3671 {
3672 if (len == 1)
3673 {
3674 /* "$" is equivalent to "$0". */
3675 index = 0;
3676 *endp += len;
3677 }
3678 else
e799154c
TT
3679 {
3680 char *local_end;
3681
3682 index = strtol (&h[1], &local_end, 10);
3683 *endp = local_end;
3684 }
3bd0f5ef
MS
3685 }
3686
3687 return access_value_history (index);
3688}
3689
3fff9862
YQ
3690/* Get the component value (offset by OFFSET bytes) of a struct or
3691 union WHOLE. Component's type is TYPE. */
3692
3693struct value *
3694value_from_component (struct value *whole, struct type *type, LONGEST offset)
3695{
3696 struct value *v;
3697
3698 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3699 v = allocate_value_lazy (type);
3700 else
3701 {
3702 v = allocate_value (type);
3703 value_contents_copy (v, value_embedded_offset (v),
3704 whole, value_embedded_offset (whole) + offset,
3705 type_length_units (type));
3706 }
3707 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3708 set_value_component_location (v, whole);
3fff9862
YQ
3709
3710 return v;
3711}
3712
a471c594
JK
3713struct value *
3714coerce_ref_if_computed (const struct value *arg)
3715{
3716 const struct lval_funcs *funcs;
3717
aa006118 3718 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3719 return NULL;
3720
3721 if (value_lval_const (arg) != lval_computed)
3722 return NULL;
3723
3724 funcs = value_computed_funcs (arg);
3725 if (funcs->coerce_ref == NULL)
3726 return NULL;
3727
3728 return funcs->coerce_ref (arg);
3729}
3730
dfcee124
AG
3731/* Look at value.h for description. */
3732
3733struct value *
3734readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3735 const struct type *original_type,
3736 const struct value *original_value)
dfcee124
AG
3737{
3738 /* Re-adjust type. */
3739 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3740
3741 /* Add embedding info. */
3742 set_value_enclosing_type (value, enc_type);
3743 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3744
3745 /* We may be pointing to an object of some derived type. */
3746 return value_full_object (value, NULL, 0, 0, 0);
3747}
3748
994b9211
AC
3749struct value *
3750coerce_ref (struct value *arg)
3751{
df407dfe 3752 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3753 struct value *retval;
dfcee124 3754 struct type *enc_type;
a109c7c1 3755
a471c594
JK
3756 retval = coerce_ref_if_computed (arg);
3757 if (retval)
3758 return retval;
3759
aa006118 3760 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3761 return arg;
3762
dfcee124
AG
3763 enc_type = check_typedef (value_enclosing_type (arg));
3764 enc_type = TYPE_TARGET_TYPE (enc_type);
3765
3766 retval = value_at_lazy (enc_type,
3767 unpack_pointer (value_type (arg),
3768 value_contents (arg)));
9f1f738a 3769 enc_type = value_type (retval);
dfcee124
AG
3770 return readjust_indirect_value_type (retval, enc_type,
3771 value_type_arg_tmp, arg);
994b9211
AC
3772}
3773
3774struct value *
3775coerce_array (struct value *arg)
3776{
f3134b88
TT
3777 struct type *type;
3778
994b9211 3779 arg = coerce_ref (arg);
f3134b88
TT
3780 type = check_typedef (value_type (arg));
3781
3782 switch (TYPE_CODE (type))
3783 {
3784 case TYPE_CODE_ARRAY:
7346b668 3785 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3786 arg = value_coerce_array (arg);
3787 break;
3788 case TYPE_CODE_FUNC:
3789 arg = value_coerce_function (arg);
3790 break;
3791 }
994b9211
AC
3792 return arg;
3793}
c906108c 3794\f
c906108c 3795
bbfdfe1c
DM
3796/* Return the return value convention that will be used for the
3797 specified type. */
3798
3799enum return_value_convention
3800struct_return_convention (struct gdbarch *gdbarch,
3801 struct value *function, struct type *value_type)
3802{
3803 enum type_code code = TYPE_CODE (value_type);
3804
3805 if (code == TYPE_CODE_ERROR)
3806 error (_("Function return type unknown."));
3807
3808 /* Probe the architecture for the return-value convention. */
3809 return gdbarch_return_value (gdbarch, function, value_type,
3810 NULL, NULL, NULL);
3811}
3812
48436ce6
AC
3813/* Return true if the function returning the specified type is using
3814 the convention of returning structures in memory (passing in the
82585c72 3815 address as a hidden first parameter). */
c906108c
SS
3816
3817int
d80b854b 3818using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3819 struct value *function, struct type *value_type)
c906108c 3820{
bbfdfe1c 3821 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3822 /* A void return value is never in memory. See also corresponding
44e5158b 3823 code in "print_return_value". */
667e784f
AC
3824 return 0;
3825
bbfdfe1c 3826 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3827 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3828}
3829
42be36b3
CT
3830/* Set the initialized field in a value struct. */
3831
3832void
3833set_value_initialized (struct value *val, int status)
3834{
3835 val->initialized = status;
3836}
3837
3838/* Return the initialized field in a value struct. */
3839
3840int
4bf7b526 3841value_initialized (const struct value *val)
42be36b3
CT
3842{
3843 return val->initialized;
3844}
3845
a844296a
SM
3846/* Load the actual content of a lazy value. Fetch the data from the
3847 user's process and clear the lazy flag to indicate that the data in
3848 the buffer is valid.
a58e2656
AB
3849
3850 If the value is zero-length, we avoid calling read_memory, which
3851 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3852 it. */
a58e2656 3853
a844296a 3854void
a58e2656
AB
3855value_fetch_lazy (struct value *val)
3856{
3857 gdb_assert (value_lazy (val));
3858 allocate_value_contents (val);
9a0dc9e3
PA
3859 /* A value is either lazy, or fully fetched. The
3860 availability/validity is only established as we try to fetch a
3861 value. */
3862 gdb_assert (VEC_empty (range_s, val->optimized_out));
3863 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3864 if (value_bitsize (val))
3865 {
3866 /* To read a lazy bitfield, read the entire enclosing value. This
3867 prevents reading the same block of (possibly volatile) memory once
3868 per bitfield. It would be even better to read only the containing
3869 word, but we have no way to record that just specific bits of a
3870 value have been fetched. */
3871 struct type *type = check_typedef (value_type (val));
a58e2656 3872 struct value *parent = value_parent (val);
a58e2656 3873
b0c54aa5
AB
3874 if (value_lazy (parent))
3875 value_fetch_lazy (parent);
3876
4875ffdb
PA
3877 unpack_value_bitfield (val,
3878 value_bitpos (val), value_bitsize (val),
3879 value_contents_for_printing (parent),
3880 value_offset (val), parent);
a58e2656
AB
3881 }
3882 else if (VALUE_LVAL (val) == lval_memory)
3883 {
3884 CORE_ADDR addr = value_address (val);
3885 struct type *type = check_typedef (value_enclosing_type (val));
3886
3887 if (TYPE_LENGTH (type))
3888 read_value_memory (val, 0, value_stack (val),
3889 addr, value_contents_all_raw (val),
3ae385af 3890 type_length_units (type));
a58e2656
AB
3891 }
3892 else if (VALUE_LVAL (val) == lval_register)
3893 {
41b56feb 3894 struct frame_info *next_frame;
a58e2656
AB
3895 int regnum;
3896 struct type *type = check_typedef (value_type (val));
3897 struct value *new_val = val, *mark = value_mark ();
3898
3899 /* Offsets are not supported here; lazy register values must
3900 refer to the entire register. */
3901 gdb_assert (value_offset (val) == 0);
3902
3903 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3904 {
41b56feb 3905 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3906
41b56feb 3907 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3908 regnum = VALUE_REGNUM (new_val);
3909
41b56feb 3910 gdb_assert (next_frame != NULL);
a58e2656
AB
3911
3912 /* Convertible register routines are used for multi-register
3913 values and for interpretation in different types
3914 (e.g. float or int from a double register). Lazy
3915 register values should have the register's natural type,
3916 so they do not apply. */
41b56feb 3917 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
3918 regnum, type));
3919
41b56feb
KB
3920 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3921 Since a "->next" operation was performed when setting
3922 this field, we do not need to perform a "next" operation
3923 again when unwinding the register. That's why
3924 frame_unwind_register_value() is called here instead of
3925 get_frame_register_value(). */
3926 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
3927
3928 /* If we get another lazy lval_register value, it means the
41b56feb
KB
3929 register is found by reading it from NEXT_FRAME's next frame.
3930 frame_unwind_register_value should never return a value with
3931 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
3932 either have two consecutive frames with the same frame id
3933 in the frame chain, or some code is trying to unwind
3934 behind get_prev_frame's back (e.g., a frame unwind
3935 sniffer trying to unwind), bypassing its validations. In
3936 any case, it should always be an internal error to end up
3937 in this situation. */
3938 if (VALUE_LVAL (new_val) == lval_register
3939 && value_lazy (new_val)
41b56feb 3940 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
3941 internal_error (__FILE__, __LINE__,
3942 _("infinite loop while fetching a register"));
a58e2656
AB
3943 }
3944
3945 /* If it's still lazy (for instance, a saved register on the
3946 stack), fetch it. */
3947 if (value_lazy (new_val))
3948 value_fetch_lazy (new_val);
3949
9a0dc9e3
PA
3950 /* Copy the contents and the unavailability/optimized-out
3951 meta-data from NEW_VAL to VAL. */
3952 set_value_lazy (val, 0);
3953 value_contents_copy (val, value_embedded_offset (val),
3954 new_val, value_embedded_offset (new_val),
3ae385af 3955 type_length_units (type));
a58e2656
AB
3956
3957 if (frame_debug)
3958 {
3959 struct gdbarch *gdbarch;
41b56feb
KB
3960 struct frame_info *frame;
3961 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3962 so that the frame level will be shown correctly. */
a58e2656
AB
3963 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3964 regnum = VALUE_REGNUM (val);
3965 gdbarch = get_frame_arch (frame);
3966
3967 fprintf_unfiltered (gdb_stdlog,
3968 "{ value_fetch_lazy "
3969 "(frame=%d,regnum=%d(%s),...) ",
3970 frame_relative_level (frame), regnum,
3971 user_reg_map_regnum_to_name (gdbarch, regnum));
3972
3973 fprintf_unfiltered (gdb_stdlog, "->");
3974 if (value_optimized_out (new_val))
f6c01fc5
AB
3975 {
3976 fprintf_unfiltered (gdb_stdlog, " ");
3977 val_print_optimized_out (new_val, gdb_stdlog);
3978 }
a58e2656
AB
3979 else
3980 {
3981 int i;
3982 const gdb_byte *buf = value_contents (new_val);
3983
3984 if (VALUE_LVAL (new_val) == lval_register)
3985 fprintf_unfiltered (gdb_stdlog, " register=%d",
3986 VALUE_REGNUM (new_val));
3987 else if (VALUE_LVAL (new_val) == lval_memory)
3988 fprintf_unfiltered (gdb_stdlog, " address=%s",
3989 paddress (gdbarch,
3990 value_address (new_val)));
3991 else
3992 fprintf_unfiltered (gdb_stdlog, " computed");
3993
3994 fprintf_unfiltered (gdb_stdlog, " bytes=");
3995 fprintf_unfiltered (gdb_stdlog, "[");
3996 for (i = 0; i < register_size (gdbarch, regnum); i++)
3997 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3998 fprintf_unfiltered (gdb_stdlog, "]");
3999 }
4000
4001 fprintf_unfiltered (gdb_stdlog, " }\n");
4002 }
4003
4004 /* Dispose of the intermediate values. This prevents
4005 watchpoints from trying to watch the saved frame pointer. */
4006 value_free_to_mark (mark);
4007 }
4008 else if (VALUE_LVAL (val) == lval_computed
4009 && value_computed_funcs (val)->read != NULL)
4010 value_computed_funcs (val)->read (val);
a58e2656
AB
4011 else
4012 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4013
4014 set_value_lazy (val, 0);
a58e2656
AB
4015}
4016
a280dbd1
SDJ
4017/* Implementation of the convenience function $_isvoid. */
4018
4019static struct value *
4020isvoid_internal_fn (struct gdbarch *gdbarch,
4021 const struct language_defn *language,
4022 void *cookie, int argc, struct value **argv)
4023{
4024 int ret;
4025
4026 if (argc != 1)
6bc305f5 4027 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4028
4029 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4030
4031 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4032}
4033
c906108c 4034void
fba45db2 4035_initialize_values (void)
c906108c 4036{
1a966eab 4037 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4038Debugger convenience (\"$foo\") variables and functions.\n\
4039Convenience variables are created when you assign them values;\n\
4040thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4041\n\
c906108c
SS
4042A few convenience variables are given values automatically:\n\
4043\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4044\"$__\" holds the contents of the last address examined with \"x\"."
4045#ifdef HAVE_PYTHON
4046"\n\n\
4047Convenience functions are defined via the Python API."
4048#endif
4049 ), &showlist);
7e20dfcd 4050 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4051
db5f229b 4052 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4053Elements of value history around item number IDX (or last ten)."),
c906108c 4054 &showlist);
53e5f3cf
AS
4055
4056 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4057Initialize a convenience variable if necessary.\n\
4058init-if-undefined VARIABLE = EXPRESSION\n\
4059Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4060exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4061VARIABLE is already initialized."));
bc3b79fd
TJB
4062
4063 add_prefix_cmd ("function", no_class, function_command, _("\
4064Placeholder command for showing help on convenience functions."),
4065 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4066
4067 add_internal_function ("_isvoid", _("\
4068Check whether an expression is void.\n\
4069Usage: $_isvoid (expression)\n\
4070Return 1 if the expression is void, zero otherwise."),
4071 isvoid_internal_fn, NULL);
5fdf6324
AB
4072
4073 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4074 class_support, &max_value_size, _("\
4075Set maximum sized value gdb will load from the inferior."), _("\
4076Show maximum sized value gdb will load from the inferior."), _("\
4077Use this to control the maximum size, in bytes, of a value that gdb\n\
4078will load from the inferior. Setting this value to 'unlimited'\n\
4079disables checking.\n\
4080Setting this does not invalidate already allocated values, it only\n\
4081prevents future values, larger than this size, from being allocated."),
4082 set_max_value_size,
4083 show_max_value_size,
4084 &setlist, &showlist);
c906108c 4085}
This page took 2.201861 seconds and 4 git commands to generate.