* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
111 /* Frame register value is relative to. This will be described in
112 the lval enum above as "lval_register". */
113 struct frame_id frame_id;
114
115 /* Type of the value. */
116 struct type *type;
117
118 /* If a value represents a C++ object, then the `type' field gives
119 the object's compile-time type. If the object actually belongs
120 to some class derived from `type', perhaps with other base
121 classes and additional members, then `type' is just a subobject
122 of the real thing, and the full object is probably larger than
123 `type' would suggest.
124
125 If `type' is a dynamic class (i.e. one with a vtable), then GDB
126 can actually determine the object's run-time type by looking at
127 the run-time type information in the vtable. When this
128 information is available, we may elect to read in the entire
129 object, for several reasons:
130
131 - When printing the value, the user would probably rather see the
132 full object, not just the limited portion apparent from the
133 compile-time type.
134
135 - If `type' has virtual base classes, then even printing `type'
136 alone may require reaching outside the `type' portion of the
137 object to wherever the virtual base class has been stored.
138
139 When we store the entire object, `enclosing_type' is the run-time
140 type -- the complete object -- and `embedded_offset' is the
141 offset of `type' within that larger type, in bytes. The
142 value_contents() macro takes `embedded_offset' into account, so
143 most GDB code continues to see the `type' portion of the value,
144 just as the inferior would.
145
146 If `type' is a pointer to an object, then `enclosing_type' is a
147 pointer to the object's run-time type, and `pointed_to_offset' is
148 the offset in bytes from the full object to the pointed-to object
149 -- that is, the value `embedded_offset' would have if we followed
150 the pointer and fetched the complete object. (I don't really see
151 the point. Why not just determine the run-time type when you
152 indirect, and avoid the special case? The contents don't matter
153 until you indirect anyway.)
154
155 If we're not doing anything fancy, `enclosing_type' is equal to
156 `type', and `embedded_offset' is zero, so everything works
157 normally. */
158 struct type *enclosing_type;
159 int embedded_offset;
160 int pointed_to_offset;
161
162 /* Values are stored in a chain, so that they can be deleted easily
163 over calls to the inferior. Values assigned to internal
a08702d6
TJB
164 variables, put into the value history or exposed to Python are
165 taken off this list. */
91294c83
AC
166 struct value *next;
167
168 /* Register number if the value is from a register. */
169 short regnum;
170
171 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
172 nonzero, contents are in inferior. If the lval field is lval_memory,
173 the contents are in inferior memory at location.address plus offset.
174 The lval field may also be lval_register.
91294c83
AC
175
176 WARNING: This field is used by the code which handles watchpoints
177 (see breakpoint.c) to decide whether a particular value can be
178 watched by hardware watchpoints. If the lazy flag is set for
179 some member of a value chain, it is assumed that this member of
180 the chain doesn't need to be watched as part of watching the
181 value itself. This is how GDB avoids watching the entire struct
182 or array when the user wants to watch a single struct member or
183 array element. If you ever change the way lazy flag is set and
184 reset, be sure to consider this use as well! */
185 char lazy;
186
187 /* If nonzero, this is the value of a variable which does not
188 actually exist in the program. */
189 char optimized_out;
190
42be36b3
CT
191 /* If value is a variable, is it initialized or not. */
192 int initialized;
193
3e3d7139
JG
194 /* Actual contents of the value. Target byte-order. NULL or not
195 valid if lazy is nonzero. */
196 gdb_byte *contents;
91294c83
AC
197};
198
c906108c
SS
199/* Prototypes for local functions. */
200
a14ed312 201static void show_values (char *, int);
c906108c 202
a14ed312 203static void show_convenience (char *, int);
c906108c 204
c906108c
SS
205
206/* The value-history records all the values printed
207 by print commands during this session. Each chunk
208 records 60 consecutive values. The first chunk on
209 the chain records the most recent values.
210 The total number of values is in value_history_count. */
211
212#define VALUE_HISTORY_CHUNK 60
213
214struct value_history_chunk
c5aa993b
JM
215 {
216 struct value_history_chunk *next;
f23631e4 217 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 218 };
c906108c
SS
219
220/* Chain of chunks now in use. */
221
222static struct value_history_chunk *value_history_chain;
223
224static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 225
c906108c
SS
226\f
227/* List of all value objects currently allocated
228 (except for those released by calls to release_value)
229 This is so they can be freed after each command. */
230
f23631e4 231static struct value *all_values;
c906108c 232
3e3d7139
JG
233/* Allocate a lazy value for type TYPE. Its actual content is
234 "lazily" allocated too: the content field of the return value is
235 NULL; it will be allocated when it is fetched from the target. */
c906108c 236
f23631e4 237struct value *
3e3d7139 238allocate_value_lazy (struct type *type)
c906108c 239{
f23631e4 240 struct value *val;
c906108c
SS
241 struct type *atype = check_typedef (type);
242
3e3d7139
JG
243 val = (struct value *) xzalloc (sizeof (struct value));
244 val->contents = NULL;
df407dfe 245 val->next = all_values;
c906108c 246 all_values = val;
df407dfe 247 val->type = type;
4754a64e 248 val->enclosing_type = type;
c906108c 249 VALUE_LVAL (val) = not_lval;
42ae5230 250 val->location.address = 0;
1df6926e 251 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
252 val->offset = 0;
253 val->bitpos = 0;
254 val->bitsize = 0;
9ee8fc9d 255 VALUE_REGNUM (val) = -1;
3e3d7139 256 val->lazy = 1;
feb13ab0 257 val->optimized_out = 0;
13c3b5f5 258 val->embedded_offset = 0;
b44d461b 259 val->pointed_to_offset = 0;
c906108c 260 val->modifiable = 1;
42be36b3 261 val->initialized = 1; /* Default to initialized. */
c906108c
SS
262 return val;
263}
264
3e3d7139
JG
265/* Allocate the contents of VAL if it has not been allocated yet. */
266
267void
268allocate_value_contents (struct value *val)
269{
270 if (!val->contents)
271 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
272}
273
274/* Allocate a value and its contents for type TYPE. */
275
276struct value *
277allocate_value (struct type *type)
278{
279 struct value *val = allocate_value_lazy (type);
280 allocate_value_contents (val);
281 val->lazy = 0;
282 return val;
283}
284
c906108c 285/* Allocate a value that has the correct length
938f5214 286 for COUNT repetitions of type TYPE. */
c906108c 287
f23631e4 288struct value *
fba45db2 289allocate_repeat_value (struct type *type, int count)
c906108c 290{
c5aa993b 291 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
292 /* FIXME-type-allocation: need a way to free this type when we are
293 done with it. */
e3506a9f
UW
294 struct type *array_type
295 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
296 return allocate_value (array_type);
c906108c
SS
297}
298
a08702d6
TJB
299/* Needed if another module needs to maintain its on list of values. */
300void
301value_prepend_to_list (struct value **head, struct value *val)
302{
303 val->next = *head;
304 *head = val;
305}
306
307/* Needed if another module needs to maintain its on list of values. */
308void
309value_remove_from_list (struct value **head, struct value *val)
310{
311 struct value *prev;
312
313 if (*head == val)
314 *head = (*head)->next;
315 else
316 for (prev = *head; prev->next; prev = prev->next)
317 if (prev->next == val)
318 {
319 prev->next = val->next;
320 break;
321 }
322}
323
5f5233d4
PA
324struct value *
325allocate_computed_value (struct type *type,
326 struct lval_funcs *funcs,
327 void *closure)
328{
329 struct value *v = allocate_value (type);
330 VALUE_LVAL (v) = lval_computed;
331 v->location.computed.funcs = funcs;
332 v->location.computed.closure = closure;
333 set_value_lazy (v, 1);
334
335 return v;
336}
337
df407dfe
AC
338/* Accessor methods. */
339
17cf0ecd
AC
340struct value *
341value_next (struct value *value)
342{
343 return value->next;
344}
345
df407dfe
AC
346struct type *
347value_type (struct value *value)
348{
349 return value->type;
350}
04624583
AC
351void
352deprecated_set_value_type (struct value *value, struct type *type)
353{
354 value->type = type;
355}
df407dfe
AC
356
357int
358value_offset (struct value *value)
359{
360 return value->offset;
361}
f5cf64a7
AC
362void
363set_value_offset (struct value *value, int offset)
364{
365 value->offset = offset;
366}
df407dfe
AC
367
368int
369value_bitpos (struct value *value)
370{
371 return value->bitpos;
372}
9bbda503
AC
373void
374set_value_bitpos (struct value *value, int bit)
375{
376 value->bitpos = bit;
377}
df407dfe
AC
378
379int
380value_bitsize (struct value *value)
381{
382 return value->bitsize;
383}
9bbda503
AC
384void
385set_value_bitsize (struct value *value, int bit)
386{
387 value->bitsize = bit;
388}
df407dfe 389
fc1a4b47 390gdb_byte *
990a07ab
AC
391value_contents_raw (struct value *value)
392{
3e3d7139
JG
393 allocate_value_contents (value);
394 return value->contents + value->embedded_offset;
990a07ab
AC
395}
396
fc1a4b47 397gdb_byte *
990a07ab
AC
398value_contents_all_raw (struct value *value)
399{
3e3d7139
JG
400 allocate_value_contents (value);
401 return value->contents;
990a07ab
AC
402}
403
4754a64e
AC
404struct type *
405value_enclosing_type (struct value *value)
406{
407 return value->enclosing_type;
408}
409
fc1a4b47 410const gdb_byte *
46615f07
AC
411value_contents_all (struct value *value)
412{
413 if (value->lazy)
414 value_fetch_lazy (value);
3e3d7139 415 return value->contents;
46615f07
AC
416}
417
d69fe07e
AC
418int
419value_lazy (struct value *value)
420{
421 return value->lazy;
422}
423
dfa52d88
AC
424void
425set_value_lazy (struct value *value, int val)
426{
427 value->lazy = val;
428}
429
fc1a4b47 430const gdb_byte *
0fd88904
AC
431value_contents (struct value *value)
432{
433 return value_contents_writeable (value);
434}
435
fc1a4b47 436gdb_byte *
0fd88904
AC
437value_contents_writeable (struct value *value)
438{
439 if (value->lazy)
440 value_fetch_lazy (value);
fc0c53a0 441 return value_contents_raw (value);
0fd88904
AC
442}
443
a6c442d8
MK
444/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
445 this function is different from value_equal; in C the operator ==
446 can return 0 even if the two values being compared are equal. */
447
448int
449value_contents_equal (struct value *val1, struct value *val2)
450{
451 struct type *type1;
452 struct type *type2;
453 int len;
454
455 type1 = check_typedef (value_type (val1));
456 type2 = check_typedef (value_type (val2));
457 len = TYPE_LENGTH (type1);
458 if (len != TYPE_LENGTH (type2))
459 return 0;
460
461 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
462}
463
feb13ab0
AC
464int
465value_optimized_out (struct value *value)
466{
467 return value->optimized_out;
468}
469
470void
471set_value_optimized_out (struct value *value, int val)
472{
473 value->optimized_out = val;
474}
13c3b5f5
AC
475
476int
477value_embedded_offset (struct value *value)
478{
479 return value->embedded_offset;
480}
481
482void
483set_value_embedded_offset (struct value *value, int val)
484{
485 value->embedded_offset = val;
486}
b44d461b
AC
487
488int
489value_pointed_to_offset (struct value *value)
490{
491 return value->pointed_to_offset;
492}
493
494void
495set_value_pointed_to_offset (struct value *value, int val)
496{
497 value->pointed_to_offset = val;
498}
13bb5560 499
5f5233d4
PA
500struct lval_funcs *
501value_computed_funcs (struct value *v)
502{
503 gdb_assert (VALUE_LVAL (v) == lval_computed);
504
505 return v->location.computed.funcs;
506}
507
508void *
509value_computed_closure (struct value *v)
510{
511 gdb_assert (VALUE_LVAL (v) == lval_computed);
512
513 return v->location.computed.closure;
514}
515
13bb5560
AC
516enum lval_type *
517deprecated_value_lval_hack (struct value *value)
518{
519 return &value->lval;
520}
521
42ae5230
TT
522CORE_ADDR
523value_address (struct value *value)
524{
525 if (value->lval == lval_internalvar
526 || value->lval == lval_internalvar_component)
527 return 0;
528 return value->location.address + value->offset;
529}
530
531CORE_ADDR
532value_raw_address (struct value *value)
533{
534 if (value->lval == lval_internalvar
535 || value->lval == lval_internalvar_component)
536 return 0;
537 return value->location.address;
538}
539
540void
541set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 542{
42ae5230
TT
543 gdb_assert (value->lval != lval_internalvar
544 && value->lval != lval_internalvar_component);
545 value->location.address = addr;
13bb5560
AC
546}
547
548struct internalvar **
549deprecated_value_internalvar_hack (struct value *value)
550{
551 return &value->location.internalvar;
552}
553
554struct frame_id *
555deprecated_value_frame_id_hack (struct value *value)
556{
557 return &value->frame_id;
558}
559
560short *
561deprecated_value_regnum_hack (struct value *value)
562{
563 return &value->regnum;
564}
88e3b34b
AC
565
566int
567deprecated_value_modifiable (struct value *value)
568{
569 return value->modifiable;
570}
571void
572deprecated_set_value_modifiable (struct value *value, int modifiable)
573{
574 value->modifiable = modifiable;
575}
990a07ab 576\f
c906108c
SS
577/* Return a mark in the value chain. All values allocated after the
578 mark is obtained (except for those released) are subject to being freed
579 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 580struct value *
fba45db2 581value_mark (void)
c906108c
SS
582{
583 return all_values;
584}
585
3e3d7139
JG
586void
587value_free (struct value *val)
588{
589 if (val)
5f5233d4
PA
590 {
591 if (VALUE_LVAL (val) == lval_computed)
592 {
593 struct lval_funcs *funcs = val->location.computed.funcs;
594
595 if (funcs->free_closure)
596 funcs->free_closure (val);
597 }
598
599 xfree (val->contents);
600 }
3e3d7139
JG
601 xfree (val);
602}
603
c906108c
SS
604/* Free all values allocated since MARK was obtained by value_mark
605 (except for those released). */
606void
f23631e4 607value_free_to_mark (struct value *mark)
c906108c 608{
f23631e4
AC
609 struct value *val;
610 struct value *next;
c906108c
SS
611
612 for (val = all_values; val && val != mark; val = next)
613 {
df407dfe 614 next = val->next;
c906108c
SS
615 value_free (val);
616 }
617 all_values = val;
618}
619
620/* Free all the values that have been allocated (except for those released).
621 Called after each command, successful or not. */
622
623void
fba45db2 624free_all_values (void)
c906108c 625{
f23631e4
AC
626 struct value *val;
627 struct value *next;
c906108c
SS
628
629 for (val = all_values; val; val = next)
630 {
df407dfe 631 next = val->next;
c906108c
SS
632 value_free (val);
633 }
634
635 all_values = 0;
636}
637
638/* Remove VAL from the chain all_values
639 so it will not be freed automatically. */
640
641void
f23631e4 642release_value (struct value *val)
c906108c 643{
f23631e4 644 struct value *v;
c906108c
SS
645
646 if (all_values == val)
647 {
648 all_values = val->next;
649 return;
650 }
651
652 for (v = all_values; v; v = v->next)
653 {
654 if (v->next == val)
655 {
656 v->next = val->next;
657 break;
658 }
659 }
660}
661
662/* Release all values up to mark */
f23631e4
AC
663struct value *
664value_release_to_mark (struct value *mark)
c906108c 665{
f23631e4
AC
666 struct value *val;
667 struct value *next;
c906108c 668
df407dfe
AC
669 for (val = next = all_values; next; next = next->next)
670 if (next->next == mark)
c906108c 671 {
df407dfe
AC
672 all_values = next->next;
673 next->next = NULL;
c906108c
SS
674 return val;
675 }
676 all_values = 0;
677 return val;
678}
679
680/* Return a copy of the value ARG.
681 It contains the same contents, for same memory address,
682 but it's a different block of storage. */
683
f23631e4
AC
684struct value *
685value_copy (struct value *arg)
c906108c 686{
4754a64e 687 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
688 struct value *val;
689
690 if (value_lazy (arg))
691 val = allocate_value_lazy (encl_type);
692 else
693 val = allocate_value (encl_type);
df407dfe 694 val->type = arg->type;
c906108c 695 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 696 val->location = arg->location;
df407dfe
AC
697 val->offset = arg->offset;
698 val->bitpos = arg->bitpos;
699 val->bitsize = arg->bitsize;
1df6926e 700 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 701 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 702 val->lazy = arg->lazy;
feb13ab0 703 val->optimized_out = arg->optimized_out;
13c3b5f5 704 val->embedded_offset = value_embedded_offset (arg);
b44d461b 705 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 706 val->modifiable = arg->modifiable;
d69fe07e 707 if (!value_lazy (val))
c906108c 708 {
990a07ab 709 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 710 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
711
712 }
5f5233d4
PA
713 if (VALUE_LVAL (val) == lval_computed)
714 {
715 struct lval_funcs *funcs = val->location.computed.funcs;
716
717 if (funcs->copy_closure)
718 val->location.computed.closure = funcs->copy_closure (val);
719 }
c906108c
SS
720 return val;
721}
74bcbdf3
PA
722
723void
724set_value_component_location (struct value *component, struct value *whole)
725{
726 if (VALUE_LVAL (whole) == lval_internalvar)
727 VALUE_LVAL (component) = lval_internalvar_component;
728 else
729 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 730
74bcbdf3 731 component->location = whole->location;
5f5233d4
PA
732 if (VALUE_LVAL (whole) == lval_computed)
733 {
734 struct lval_funcs *funcs = whole->location.computed.funcs;
735
736 if (funcs->copy_closure)
737 component->location.computed.closure = funcs->copy_closure (whole);
738 }
74bcbdf3
PA
739}
740
c906108c
SS
741\f
742/* Access to the value history. */
743
744/* Record a new value in the value history.
745 Returns the absolute history index of the entry.
746 Result of -1 indicates the value was not saved; otherwise it is the
747 value history index of this new item. */
748
749int
f23631e4 750record_latest_value (struct value *val)
c906108c
SS
751{
752 int i;
753
754 /* We don't want this value to have anything to do with the inferior anymore.
755 In particular, "set $1 = 50" should not affect the variable from which
756 the value was taken, and fast watchpoints should be able to assume that
757 a value on the value history never changes. */
d69fe07e 758 if (value_lazy (val))
c906108c
SS
759 value_fetch_lazy (val);
760 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
761 from. This is a bit dubious, because then *&$1 does not just return $1
762 but the current contents of that location. c'est la vie... */
763 val->modifiable = 0;
764 release_value (val);
765
766 /* Here we treat value_history_count as origin-zero
767 and applying to the value being stored now. */
768
769 i = value_history_count % VALUE_HISTORY_CHUNK;
770 if (i == 0)
771 {
f23631e4 772 struct value_history_chunk *new
c5aa993b
JM
773 = (struct value_history_chunk *)
774 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
775 memset (new->values, 0, sizeof new->values);
776 new->next = value_history_chain;
777 value_history_chain = new;
778 }
779
780 value_history_chain->values[i] = val;
781
782 /* Now we regard value_history_count as origin-one
783 and applying to the value just stored. */
784
785 return ++value_history_count;
786}
787
788/* Return a copy of the value in the history with sequence number NUM. */
789
f23631e4 790struct value *
fba45db2 791access_value_history (int num)
c906108c 792{
f23631e4 793 struct value_history_chunk *chunk;
52f0bd74
AC
794 int i;
795 int absnum = num;
c906108c
SS
796
797 if (absnum <= 0)
798 absnum += value_history_count;
799
800 if (absnum <= 0)
801 {
802 if (num == 0)
8a3fe4f8 803 error (_("The history is empty."));
c906108c 804 else if (num == 1)
8a3fe4f8 805 error (_("There is only one value in the history."));
c906108c 806 else
8a3fe4f8 807 error (_("History does not go back to $$%d."), -num);
c906108c
SS
808 }
809 if (absnum > value_history_count)
8a3fe4f8 810 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
811
812 absnum--;
813
814 /* Now absnum is always absolute and origin zero. */
815
816 chunk = value_history_chain;
817 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
818 i > 0; i--)
819 chunk = chunk->next;
820
821 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
822}
823
c906108c 824static void
fba45db2 825show_values (char *num_exp, int from_tty)
c906108c 826{
52f0bd74 827 int i;
f23631e4 828 struct value *val;
c906108c
SS
829 static int num = 1;
830
831 if (num_exp)
832 {
f132ba9d
TJB
833 /* "show values +" should print from the stored position.
834 "show values <exp>" should print around value number <exp>. */
c906108c 835 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 836 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
837 }
838 else
839 {
f132ba9d 840 /* "show values" means print the last 10 values. */
c906108c
SS
841 num = value_history_count - 9;
842 }
843
844 if (num <= 0)
845 num = 1;
846
847 for (i = num; i < num + 10 && i <= value_history_count; i++)
848 {
79a45b7d 849 struct value_print_options opts;
c906108c 850 val = access_value_history (i);
a3f17187 851 printf_filtered (("$%d = "), i);
79a45b7d
TT
852 get_user_print_options (&opts);
853 value_print (val, gdb_stdout, &opts);
a3f17187 854 printf_filtered (("\n"));
c906108c
SS
855 }
856
f132ba9d 857 /* The next "show values +" should start after what we just printed. */
c906108c
SS
858 num += 10;
859
860 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
861 "show values +". If num_exp is null, this is unnecessary, since
862 "show values +" is not useful after "show values". */
c906108c
SS
863 if (from_tty && num_exp)
864 {
865 num_exp[0] = '+';
866 num_exp[1] = '\0';
867 }
868}
869\f
870/* Internal variables. These are variables within the debugger
871 that hold values assigned by debugger commands.
872 The user refers to them with a '$' prefix
873 that does not appear in the variable names stored internally. */
874
4fa62494
UW
875struct internalvar
876{
877 struct internalvar *next;
878 char *name;
4fa62494 879
78267919
UW
880 /* We support various different kinds of content of an internal variable.
881 enum internalvar_kind specifies the kind, and union internalvar_data
882 provides the data associated with this particular kind. */
883
884 enum internalvar_kind
885 {
886 /* The internal variable is empty. */
887 INTERNALVAR_VOID,
888
889 /* The value of the internal variable is provided directly as
890 a GDB value object. */
891 INTERNALVAR_VALUE,
892
893 /* A fresh value is computed via a call-back routine on every
894 access to the internal variable. */
895 INTERNALVAR_MAKE_VALUE,
4fa62494 896
78267919
UW
897 /* The internal variable holds a GDB internal convenience function. */
898 INTERNALVAR_FUNCTION,
899
900 /* The variable holds a simple scalar value. */
901 INTERNALVAR_SCALAR,
902
903 /* The variable holds a GDB-provided string. */
904 INTERNALVAR_STRING,
905
906 } kind;
4fa62494 907
4fa62494
UW
908 union internalvar_data
909 {
78267919
UW
910 /* A value object used with INTERNALVAR_VALUE. */
911 struct value *value;
912
913 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
914 internalvar_make_value make_value;
915
916 /* The internal function used with INTERNALVAR_FUNCTION. */
917 struct
918 {
919 struct internal_function *function;
920 /* True if this is the canonical name for the function. */
921 int canonical;
922 } fn;
923
924 /* A scalar value used with INTERNALVAR_SCALAR. */
925 struct
926 {
927 /* If type is non-NULL, it will be used as the type to generate
928 a value for this internal variable. If type is NULL, a default
929 integer type for the architecture is used. */
930 struct type *type;
931 union
932 {
933 LONGEST l; /* Used with TYPE_CODE_INT and NULL types. */
934 CORE_ADDR a; /* Used with TYPE_CODE_PTR types. */
935 } val;
936 } scalar;
937
938 /* A string value used with INTERNALVAR_STRING. */
939 char *string;
4fa62494
UW
940 } u;
941};
942
c906108c
SS
943static struct internalvar *internalvars;
944
53e5f3cf
AS
945/* If the variable does not already exist create it and give it the value given.
946 If no value is given then the default is zero. */
947static void
948init_if_undefined_command (char* args, int from_tty)
949{
950 struct internalvar* intvar;
951
952 /* Parse the expression - this is taken from set_command(). */
953 struct expression *expr = parse_expression (args);
954 register struct cleanup *old_chain =
955 make_cleanup (free_current_contents, &expr);
956
957 /* Validate the expression.
958 Was the expression an assignment?
959 Or even an expression at all? */
960 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
961 error (_("Init-if-undefined requires an assignment expression."));
962
963 /* Extract the variable from the parsed expression.
964 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
965 if (expr->elts[1].opcode != OP_INTERNALVAR)
966 error (_("The first parameter to init-if-undefined should be a GDB variable."));
967 intvar = expr->elts[2].internalvar;
968
969 /* Only evaluate the expression if the lvalue is void.
970 This may still fail if the expresssion is invalid. */
78267919 971 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
972 evaluate_expression (expr);
973
974 do_cleanups (old_chain);
975}
976
977
c906108c
SS
978/* Look up an internal variable with name NAME. NAME should not
979 normally include a dollar sign.
980
981 If the specified internal variable does not exist,
c4a3d09a 982 the return value is NULL. */
c906108c
SS
983
984struct internalvar *
bc3b79fd 985lookup_only_internalvar (const char *name)
c906108c 986{
52f0bd74 987 struct internalvar *var;
c906108c
SS
988
989 for (var = internalvars; var; var = var->next)
5cb316ef 990 if (strcmp (var->name, name) == 0)
c906108c
SS
991 return var;
992
c4a3d09a
MF
993 return NULL;
994}
995
996
997/* Create an internal variable with name NAME and with a void value.
998 NAME should not normally include a dollar sign. */
999
1000struct internalvar *
bc3b79fd 1001create_internalvar (const char *name)
c4a3d09a
MF
1002{
1003 struct internalvar *var;
c906108c 1004 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1005 var->name = concat (name, (char *)NULL);
78267919 1006 var->kind = INTERNALVAR_VOID;
c906108c
SS
1007 var->next = internalvars;
1008 internalvars = var;
1009 return var;
1010}
1011
4aa995e1
PA
1012/* Create an internal variable with name NAME and register FUN as the
1013 function that value_of_internalvar uses to create a value whenever
1014 this variable is referenced. NAME should not normally include a
1015 dollar sign. */
1016
1017struct internalvar *
1018create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1019{
4fa62494 1020 struct internalvar *var = create_internalvar (name);
78267919
UW
1021 var->kind = INTERNALVAR_MAKE_VALUE;
1022 var->u.make_value = fun;
4aa995e1
PA
1023 return var;
1024}
c4a3d09a
MF
1025
1026/* Look up an internal variable with name NAME. NAME should not
1027 normally include a dollar sign.
1028
1029 If the specified internal variable does not exist,
1030 one is created, with a void value. */
1031
1032struct internalvar *
bc3b79fd 1033lookup_internalvar (const char *name)
c4a3d09a
MF
1034{
1035 struct internalvar *var;
1036
1037 var = lookup_only_internalvar (name);
1038 if (var)
1039 return var;
1040
1041 return create_internalvar (name);
1042}
1043
78267919
UW
1044/* Return current value of internal variable VAR. For variables that
1045 are not inherently typed, use a value type appropriate for GDBARCH. */
1046
f23631e4 1047struct value *
78267919 1048value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1049{
f23631e4 1050 struct value *val;
c906108c 1051
78267919 1052 switch (var->kind)
5f5233d4 1053 {
78267919
UW
1054 case INTERNALVAR_VOID:
1055 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1056 break;
4fa62494 1057
78267919
UW
1058 case INTERNALVAR_FUNCTION:
1059 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1060 break;
4fa62494 1061
78267919
UW
1062 case INTERNALVAR_SCALAR:
1063 if (!var->u.scalar.type)
1064 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1065 var->u.scalar.val.l);
1066 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1067 val = value_from_longest (var->u.scalar.type, var->u.scalar.val.l);
1068 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_PTR)
1069 val = value_from_pointer (var->u.scalar.type, var->u.scalar.val.a);
1070 else
1071 internal_error (__FILE__, __LINE__, "bad type");
1072 break;
4fa62494 1073
78267919
UW
1074 case INTERNALVAR_STRING:
1075 val = value_cstring (var->u.string, strlen (var->u.string),
1076 builtin_type (gdbarch)->builtin_char);
1077 break;
4fa62494 1078
78267919
UW
1079 case INTERNALVAR_VALUE:
1080 val = value_copy (var->u.value);
4aa995e1
PA
1081 if (value_lazy (val))
1082 value_fetch_lazy (val);
78267919 1083 break;
4aa995e1 1084
78267919
UW
1085 case INTERNALVAR_MAKE_VALUE:
1086 val = (*var->u.make_value) (gdbarch, var);
1087 break;
1088
1089 default:
1090 internal_error (__FILE__, __LINE__, "bad kind");
1091 }
1092
1093 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1094 on this value go back to affect the original internal variable.
1095
1096 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1097 no underlying modifyable state in the internal variable.
1098
1099 Likewise, if the variable's value is a computed lvalue, we want
1100 references to it to produce another computed lvalue, where
1101 references and assignments actually operate through the
1102 computed value's functions.
1103
1104 This means that internal variables with computed values
1105 behave a little differently from other internal variables:
1106 assignments to them don't just replace the previous value
1107 altogether. At the moment, this seems like the behavior we
1108 want. */
1109
1110 if (var->kind != INTERNALVAR_MAKE_VALUE
1111 && val->lval != lval_computed)
1112 {
1113 VALUE_LVAL (val) = lval_internalvar;
1114 VALUE_INTERNALVAR (val) = var;
5f5233d4 1115 }
d3c139e9 1116
4fa62494
UW
1117 return val;
1118}
d3c139e9 1119
4fa62494
UW
1120int
1121get_internalvar_integer (struct internalvar *var, LONGEST *result)
1122{
78267919 1123 switch (var->kind)
4fa62494 1124 {
78267919
UW
1125 case INTERNALVAR_SCALAR:
1126 if (var->u.scalar.type == NULL
1127 || TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1128 {
1129 *result = var->u.scalar.val.l;
1130 return 1;
1131 }
1132 /* Fall through. */
d3c139e9 1133
4fa62494
UW
1134 default:
1135 return 0;
1136 }
1137}
d3c139e9 1138
4fa62494
UW
1139static int
1140get_internalvar_function (struct internalvar *var,
1141 struct internal_function **result)
1142{
78267919 1143 switch (var->kind)
d3c139e9 1144 {
78267919
UW
1145 case INTERNALVAR_FUNCTION:
1146 *result = var->u.fn.function;
4fa62494 1147 return 1;
d3c139e9 1148
4fa62494
UW
1149 default:
1150 return 0;
1151 }
c906108c
SS
1152}
1153
1154void
fba45db2 1155set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1156 int bitsize, struct value *newval)
c906108c 1157{
4fa62494 1158 gdb_byte *addr;
c906108c 1159
78267919 1160 switch (var->kind)
4fa62494 1161 {
78267919
UW
1162 case INTERNALVAR_VALUE:
1163 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1164
1165 if (bitsize)
50810684 1166 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1167 value_as_long (newval), bitpos, bitsize);
1168 else
1169 memcpy (addr + offset, value_contents (newval),
1170 TYPE_LENGTH (value_type (newval)));
1171 break;
78267919
UW
1172
1173 default:
1174 /* We can never get a component of any other kind. */
1175 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1176 }
c906108c
SS
1177}
1178
1179void
f23631e4 1180set_internalvar (struct internalvar *var, struct value *val)
c906108c 1181{
78267919 1182 enum internalvar_kind new_kind;
4fa62494 1183 union internalvar_data new_data = { 0 };
c906108c 1184
78267919 1185 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1186 error (_("Cannot overwrite convenience function %s"), var->name);
1187
4fa62494 1188 /* Prepare new contents. */
78267919 1189 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1190 {
1191 case TYPE_CODE_VOID:
78267919 1192 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1193 break;
1194
1195 case TYPE_CODE_INTERNAL_FUNCTION:
1196 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1197 new_kind = INTERNALVAR_FUNCTION;
1198 get_internalvar_function (VALUE_INTERNALVAR (val),
1199 &new_data.fn.function);
1200 /* Copies created here are never canonical. */
4fa62494
UW
1201 break;
1202
1203 case TYPE_CODE_INT:
78267919
UW
1204 new_kind = INTERNALVAR_SCALAR;
1205 new_data.scalar.type = value_type (val);
1206 new_data.scalar.val.l = value_as_long (val);
4fa62494
UW
1207 break;
1208
1209 case TYPE_CODE_PTR:
78267919
UW
1210 new_kind = INTERNALVAR_SCALAR;
1211 new_data.scalar.type = value_type (val);
1212 new_data.scalar.val.a = value_as_address (val);
4fa62494
UW
1213 break;
1214
1215 default:
78267919
UW
1216 new_kind = INTERNALVAR_VALUE;
1217 new_data.value = value_copy (val);
1218 new_data.value->modifiable = 1;
4fa62494
UW
1219
1220 /* Force the value to be fetched from the target now, to avoid problems
1221 later when this internalvar is referenced and the target is gone or
1222 has changed. */
78267919
UW
1223 if (value_lazy (new_data.value))
1224 value_fetch_lazy (new_data.value);
4fa62494
UW
1225
1226 /* Release the value from the value chain to prevent it from being
1227 deleted by free_all_values. From here on this function should not
1228 call error () until new_data is installed into the var->u to avoid
1229 leaking memory. */
78267919 1230 release_value (new_data.value);
4fa62494
UW
1231 break;
1232 }
1233
1234 /* Clean up old contents. */
1235 clear_internalvar (var);
1236
1237 /* Switch over. */
78267919 1238 var->kind = new_kind;
4fa62494 1239 var->u = new_data;
c906108c
SS
1240 /* End code which must not call error(). */
1241}
1242
4fa62494
UW
1243void
1244set_internalvar_integer (struct internalvar *var, LONGEST l)
1245{
1246 /* Clean up old contents. */
1247 clear_internalvar (var);
1248
78267919
UW
1249 var->kind = INTERNALVAR_SCALAR;
1250 var->u.scalar.type = NULL;
1251 var->u.scalar.val.l = l;
1252}
1253
1254void
1255set_internalvar_string (struct internalvar *var, const char *string)
1256{
1257 /* Clean up old contents. */
1258 clear_internalvar (var);
1259
1260 var->kind = INTERNALVAR_STRING;
1261 var->u.string = xstrdup (string);
4fa62494
UW
1262}
1263
1264static void
1265set_internalvar_function (struct internalvar *var, struct internal_function *f)
1266{
1267 /* Clean up old contents. */
1268 clear_internalvar (var);
1269
78267919
UW
1270 var->kind = INTERNALVAR_FUNCTION;
1271 var->u.fn.function = f;
1272 var->u.fn.canonical = 1;
1273 /* Variables installed here are always the canonical version. */
4fa62494
UW
1274}
1275
1276void
1277clear_internalvar (struct internalvar *var)
1278{
1279 /* Clean up old contents. */
78267919 1280 switch (var->kind)
4fa62494 1281 {
78267919
UW
1282 case INTERNALVAR_VALUE:
1283 value_free (var->u.value);
1284 break;
1285
1286 case INTERNALVAR_STRING:
1287 xfree (var->u.string);
4fa62494
UW
1288 break;
1289
1290 default:
4fa62494
UW
1291 break;
1292 }
1293
78267919
UW
1294 /* Reset to void kind. */
1295 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1296}
1297
c906108c 1298char *
fba45db2 1299internalvar_name (struct internalvar *var)
c906108c
SS
1300{
1301 return var->name;
1302}
1303
4fa62494
UW
1304static struct internal_function *
1305create_internal_function (const char *name,
1306 internal_function_fn handler, void *cookie)
bc3b79fd 1307{
bc3b79fd
TJB
1308 struct internal_function *ifn = XNEW (struct internal_function);
1309 ifn->name = xstrdup (name);
1310 ifn->handler = handler;
1311 ifn->cookie = cookie;
4fa62494 1312 return ifn;
bc3b79fd
TJB
1313}
1314
1315char *
1316value_internal_function_name (struct value *val)
1317{
4fa62494
UW
1318 struct internal_function *ifn;
1319 int result;
1320
1321 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1322 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1323 gdb_assert (result);
1324
bc3b79fd
TJB
1325 return ifn->name;
1326}
1327
1328struct value *
d452c4bc
UW
1329call_internal_function (struct gdbarch *gdbarch,
1330 const struct language_defn *language,
1331 struct value *func, int argc, struct value **argv)
bc3b79fd 1332{
4fa62494
UW
1333 struct internal_function *ifn;
1334 int result;
1335
1336 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1337 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1338 gdb_assert (result);
1339
d452c4bc 1340 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1341}
1342
1343/* The 'function' command. This does nothing -- it is just a
1344 placeholder to let "help function NAME" work. This is also used as
1345 the implementation of the sub-command that is created when
1346 registering an internal function. */
1347static void
1348function_command (char *command, int from_tty)
1349{
1350 /* Do nothing. */
1351}
1352
1353/* Clean up if an internal function's command is destroyed. */
1354static void
1355function_destroyer (struct cmd_list_element *self, void *ignore)
1356{
1357 xfree (self->name);
1358 xfree (self->doc);
1359}
1360
1361/* Add a new internal function. NAME is the name of the function; DOC
1362 is a documentation string describing the function. HANDLER is
1363 called when the function is invoked. COOKIE is an arbitrary
1364 pointer which is passed to HANDLER and is intended for "user
1365 data". */
1366void
1367add_internal_function (const char *name, const char *doc,
1368 internal_function_fn handler, void *cookie)
1369{
1370 struct cmd_list_element *cmd;
4fa62494 1371 struct internal_function *ifn;
bc3b79fd 1372 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1373
1374 ifn = create_internal_function (name, handler, cookie);
1375 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1376
1377 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1378 &functionlist);
1379 cmd->destroyer = function_destroyer;
1380}
1381
ae5a43e0
DJ
1382/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1383 prevent cycles / duplicates. */
1384
1385static void
1386preserve_one_value (struct value *value, struct objfile *objfile,
1387 htab_t copied_types)
1388{
1389 if (TYPE_OBJFILE (value->type) == objfile)
1390 value->type = copy_type_recursive (objfile, value->type, copied_types);
1391
1392 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1393 value->enclosing_type = copy_type_recursive (objfile,
1394 value->enclosing_type,
1395 copied_types);
1396}
1397
78267919
UW
1398/* Likewise for internal variable VAR. */
1399
1400static void
1401preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1402 htab_t copied_types)
1403{
1404 switch (var->kind)
1405 {
1406 case INTERNALVAR_SCALAR:
1407 if (var->u.scalar.type && TYPE_OBJFILE (var->u.scalar.type) == objfile)
1408 var->u.scalar.type
1409 = copy_type_recursive (objfile, var->u.scalar.type, copied_types);
1410 break;
1411
1412 case INTERNALVAR_VALUE:
1413 preserve_one_value (var->u.value, objfile, copied_types);
1414 break;
1415 }
1416}
1417
ae5a43e0
DJ
1418/* Update the internal variables and value history when OBJFILE is
1419 discarded; we must copy the types out of the objfile. New global types
1420 will be created for every convenience variable which currently points to
1421 this objfile's types, and the convenience variables will be adjusted to
1422 use the new global types. */
c906108c
SS
1423
1424void
ae5a43e0 1425preserve_values (struct objfile *objfile)
c906108c 1426{
ae5a43e0
DJ
1427 htab_t copied_types;
1428 struct value_history_chunk *cur;
52f0bd74 1429 struct internalvar *var;
a08702d6 1430 struct value *val;
ae5a43e0 1431 int i;
c906108c 1432
ae5a43e0
DJ
1433 /* Create the hash table. We allocate on the objfile's obstack, since
1434 it is soon to be deleted. */
1435 copied_types = create_copied_types_hash (objfile);
1436
1437 for (cur = value_history_chain; cur; cur = cur->next)
1438 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1439 if (cur->values[i])
1440 preserve_one_value (cur->values[i], objfile, copied_types);
1441
1442 for (var = internalvars; var; var = var->next)
78267919 1443 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1444
a08702d6
TJB
1445 for (val = values_in_python; val; val = val->next)
1446 preserve_one_value (val, objfile, copied_types);
1447
ae5a43e0 1448 htab_delete (copied_types);
c906108c
SS
1449}
1450
1451static void
fba45db2 1452show_convenience (char *ignore, int from_tty)
c906108c 1453{
e17c207e 1454 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1455 struct internalvar *var;
c906108c 1456 int varseen = 0;
79a45b7d 1457 struct value_print_options opts;
c906108c 1458
79a45b7d 1459 get_user_print_options (&opts);
c906108c
SS
1460 for (var = internalvars; var; var = var->next)
1461 {
c906108c
SS
1462 if (!varseen)
1463 {
1464 varseen = 1;
1465 }
a3f17187 1466 printf_filtered (("$%s = "), var->name);
78267919 1467 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1468 &opts);
a3f17187 1469 printf_filtered (("\n"));
c906108c
SS
1470 }
1471 if (!varseen)
a3f17187
AC
1472 printf_unfiltered (_("\
1473No debugger convenience variables now defined.\n\
c906108c 1474Convenience variables have names starting with \"$\";\n\
a3f17187 1475use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1476}
1477\f
1478/* Extract a value as a C number (either long or double).
1479 Knows how to convert fixed values to double, or
1480 floating values to long.
1481 Does not deallocate the value. */
1482
1483LONGEST
f23631e4 1484value_as_long (struct value *val)
c906108c
SS
1485{
1486 /* This coerces arrays and functions, which is necessary (e.g.
1487 in disassemble_command). It also dereferences references, which
1488 I suspect is the most logical thing to do. */
994b9211 1489 val = coerce_array (val);
0fd88904 1490 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1491}
1492
1493DOUBLEST
f23631e4 1494value_as_double (struct value *val)
c906108c
SS
1495{
1496 DOUBLEST foo;
1497 int inv;
c5aa993b 1498
0fd88904 1499 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1500 if (inv)
8a3fe4f8 1501 error (_("Invalid floating value found in program."));
c906108c
SS
1502 return foo;
1503}
4ef30785 1504
4478b372
JB
1505/* Extract a value as a C pointer. Does not deallocate the value.
1506 Note that val's type may not actually be a pointer; value_as_long
1507 handles all the cases. */
c906108c 1508CORE_ADDR
f23631e4 1509value_as_address (struct value *val)
c906108c 1510{
50810684
UW
1511 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1512
c906108c
SS
1513 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1514 whether we want this to be true eventually. */
1515#if 0
bf6ae464 1516 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1517 non-address (e.g. argument to "signal", "info break", etc.), or
1518 for pointers to char, in which the low bits *are* significant. */
50810684 1519 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1520#else
f312f057
JB
1521
1522 /* There are several targets (IA-64, PowerPC, and others) which
1523 don't represent pointers to functions as simply the address of
1524 the function's entry point. For example, on the IA-64, a
1525 function pointer points to a two-word descriptor, generated by
1526 the linker, which contains the function's entry point, and the
1527 value the IA-64 "global pointer" register should have --- to
1528 support position-independent code. The linker generates
1529 descriptors only for those functions whose addresses are taken.
1530
1531 On such targets, it's difficult for GDB to convert an arbitrary
1532 function address into a function pointer; it has to either find
1533 an existing descriptor for that function, or call malloc and
1534 build its own. On some targets, it is impossible for GDB to
1535 build a descriptor at all: the descriptor must contain a jump
1536 instruction; data memory cannot be executed; and code memory
1537 cannot be modified.
1538
1539 Upon entry to this function, if VAL is a value of type `function'
1540 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1541 value_address (val) is the address of the function. This is what
f312f057
JB
1542 you'll get if you evaluate an expression like `main'. The call
1543 to COERCE_ARRAY below actually does all the usual unary
1544 conversions, which includes converting values of type `function'
1545 to `pointer to function'. This is the challenging conversion
1546 discussed above. Then, `unpack_long' will convert that pointer
1547 back into an address.
1548
1549 So, suppose the user types `disassemble foo' on an architecture
1550 with a strange function pointer representation, on which GDB
1551 cannot build its own descriptors, and suppose further that `foo'
1552 has no linker-built descriptor. The address->pointer conversion
1553 will signal an error and prevent the command from running, even
1554 though the next step would have been to convert the pointer
1555 directly back into the same address.
1556
1557 The following shortcut avoids this whole mess. If VAL is a
1558 function, just return its address directly. */
df407dfe
AC
1559 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1560 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1561 return value_address (val);
f312f057 1562
994b9211 1563 val = coerce_array (val);
fc0c74b1
AC
1564
1565 /* Some architectures (e.g. Harvard), map instruction and data
1566 addresses onto a single large unified address space. For
1567 instance: An architecture may consider a large integer in the
1568 range 0x10000000 .. 0x1000ffff to already represent a data
1569 addresses (hence not need a pointer to address conversion) while
1570 a small integer would still need to be converted integer to
1571 pointer to address. Just assume such architectures handle all
1572 integer conversions in a single function. */
1573
1574 /* JimB writes:
1575
1576 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1577 must admonish GDB hackers to make sure its behavior matches the
1578 compiler's, whenever possible.
1579
1580 In general, I think GDB should evaluate expressions the same way
1581 the compiler does. When the user copies an expression out of
1582 their source code and hands it to a `print' command, they should
1583 get the same value the compiler would have computed. Any
1584 deviation from this rule can cause major confusion and annoyance,
1585 and needs to be justified carefully. In other words, GDB doesn't
1586 really have the freedom to do these conversions in clever and
1587 useful ways.
1588
1589 AndrewC pointed out that users aren't complaining about how GDB
1590 casts integers to pointers; they are complaining that they can't
1591 take an address from a disassembly listing and give it to `x/i'.
1592 This is certainly important.
1593
79dd2d24 1594 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1595 makes it possible for GDB to "get it right" in all circumstances
1596 --- the target has complete control over how things get done, so
1597 people can Do The Right Thing for their target without breaking
1598 anyone else. The standard doesn't specify how integers get
1599 converted to pointers; usually, the ABI doesn't either, but
1600 ABI-specific code is a more reasonable place to handle it. */
1601
df407dfe
AC
1602 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1603 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1604 && gdbarch_integer_to_address_p (gdbarch))
1605 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1606 value_contents (val));
fc0c74b1 1607
0fd88904 1608 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1609#endif
1610}
1611\f
1612/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1613 as a long, or as a double, assuming the raw data is described
1614 by type TYPE. Knows how to convert different sizes of values
1615 and can convert between fixed and floating point. We don't assume
1616 any alignment for the raw data. Return value is in host byte order.
1617
1618 If you want functions and arrays to be coerced to pointers, and
1619 references to be dereferenced, call value_as_long() instead.
1620
1621 C++: It is assumed that the front-end has taken care of
1622 all matters concerning pointers to members. A pointer
1623 to member which reaches here is considered to be equivalent
1624 to an INT (or some size). After all, it is only an offset. */
1625
1626LONGEST
fc1a4b47 1627unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1628{
e17a4113 1629 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1630 enum type_code code = TYPE_CODE (type);
1631 int len = TYPE_LENGTH (type);
1632 int nosign = TYPE_UNSIGNED (type);
c906108c 1633
c906108c
SS
1634 switch (code)
1635 {
1636 case TYPE_CODE_TYPEDEF:
1637 return unpack_long (check_typedef (type), valaddr);
1638 case TYPE_CODE_ENUM:
4f2aea11 1639 case TYPE_CODE_FLAGS:
c906108c
SS
1640 case TYPE_CODE_BOOL:
1641 case TYPE_CODE_INT:
1642 case TYPE_CODE_CHAR:
1643 case TYPE_CODE_RANGE:
0d5de010 1644 case TYPE_CODE_MEMBERPTR:
c906108c 1645 if (nosign)
e17a4113 1646 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1647 else
e17a4113 1648 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1649
1650 case TYPE_CODE_FLT:
96d2f608 1651 return extract_typed_floating (valaddr, type);
c906108c 1652
4ef30785
TJB
1653 case TYPE_CODE_DECFLOAT:
1654 /* libdecnumber has a function to convert from decimal to integer, but
1655 it doesn't work when the decimal number has a fractional part. */
e17a4113 1656 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1657
c906108c
SS
1658 case TYPE_CODE_PTR:
1659 case TYPE_CODE_REF:
1660 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1661 whether we want this to be true eventually. */
4478b372 1662 return extract_typed_address (valaddr, type);
c906108c 1663
c906108c 1664 default:
8a3fe4f8 1665 error (_("Value can't be converted to integer."));
c906108c 1666 }
c5aa993b 1667 return 0; /* Placate lint. */
c906108c
SS
1668}
1669
1670/* Return a double value from the specified type and address.
1671 INVP points to an int which is set to 0 for valid value,
1672 1 for invalid value (bad float format). In either case,
1673 the returned double is OK to use. Argument is in target
1674 format, result is in host format. */
1675
1676DOUBLEST
fc1a4b47 1677unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1678{
e17a4113 1679 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1680 enum type_code code;
1681 int len;
1682 int nosign;
1683
1684 *invp = 0; /* Assume valid. */
1685 CHECK_TYPEDEF (type);
1686 code = TYPE_CODE (type);
1687 len = TYPE_LENGTH (type);
1688 nosign = TYPE_UNSIGNED (type);
1689 if (code == TYPE_CODE_FLT)
1690 {
75bc7ddf
AC
1691 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1692 floating-point value was valid (using the macro
1693 INVALID_FLOAT). That test/macro have been removed.
1694
1695 It turns out that only the VAX defined this macro and then
1696 only in a non-portable way. Fixing the portability problem
1697 wouldn't help since the VAX floating-point code is also badly
1698 bit-rotten. The target needs to add definitions for the
ea06eb3d 1699 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1700 exactly describe the target floating-point format. The
1701 problem here is that the corresponding floatformat_vax_f and
1702 floatformat_vax_d values these methods should be set to are
1703 also not defined either. Oops!
1704
1705 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1706 definitions and the new cases for floatformat_is_valid (). */
1707
1708 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1709 {
1710 *invp = 1;
1711 return 0.0;
1712 }
1713
96d2f608 1714 return extract_typed_floating (valaddr, type);
c906108c 1715 }
4ef30785 1716 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1717 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1718 else if (nosign)
1719 {
1720 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1721 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1722 }
1723 else
1724 {
1725 /* Signed -- we are OK with unpack_long. */
1726 return unpack_long (type, valaddr);
1727 }
1728}
1729
1730/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1731 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1732 We don't assume any alignment for the raw data. Return value is in
1733 host byte order.
1734
1735 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1736 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1737
1738 C++: It is assumed that the front-end has taken care of
1739 all matters concerning pointers to members. A pointer
1740 to member which reaches here is considered to be equivalent
1741 to an INT (or some size). After all, it is only an offset. */
1742
1743CORE_ADDR
fc1a4b47 1744unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1745{
1746 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1747 whether we want this to be true eventually. */
1748 return unpack_long (type, valaddr);
1749}
4478b372 1750
c906108c 1751\f
2c2738a0
DC
1752/* Get the value of the FIELDN'th field (which must be static) of
1753 TYPE. Return NULL if the field doesn't exist or has been
1754 optimized out. */
c906108c 1755
f23631e4 1756struct value *
fba45db2 1757value_static_field (struct type *type, int fieldno)
c906108c 1758{
948e66d9
DJ
1759 struct value *retval;
1760
d6a843b5 1761 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1762 {
948e66d9 1763 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1764 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1765 }
1766 else
1767 {
1768 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1769 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1770 if (sym == NULL)
c906108c
SS
1771 {
1772 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1773 as non-debuggable symbols */
1774 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1775 if (!msym)
1776 return NULL;
1777 else
c5aa993b 1778 {
948e66d9 1779 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1780 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1781 }
1782 }
1783 else
1784 {
948e66d9
DJ
1785 /* SYM should never have a SYMBOL_CLASS which will require
1786 read_var_value to use the FRAME parameter. */
1787 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1788 warning (_("static field's value depends on the current "
1789 "frame - bad debug info?"));
948e66d9 1790 retval = read_var_value (sym, NULL);
2b127877 1791 }
948e66d9
DJ
1792 if (retval && VALUE_LVAL (retval) == lval_memory)
1793 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1794 value_address (retval));
c906108c 1795 }
948e66d9 1796 return retval;
c906108c
SS
1797}
1798
2b127877
DB
1799/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1800 You have to be careful here, since the size of the data area for the value
1801 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1802 than the old enclosing type, you have to allocate more space for the data.
1803 The return value is a pointer to the new version of this value structure. */
1804
f23631e4
AC
1805struct value *
1806value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1807{
3e3d7139
JG
1808 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1809 val->contents =
1810 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1811
1812 val->enclosing_type = new_encl_type;
1813 return val;
2b127877
DB
1814}
1815
c906108c
SS
1816/* Given a value ARG1 (offset by OFFSET bytes)
1817 of a struct or union type ARG_TYPE,
1818 extract and return the value of one of its (non-static) fields.
1819 FIELDNO says which field. */
1820
f23631e4
AC
1821struct value *
1822value_primitive_field (struct value *arg1, int offset,
aa1ee363 1823 int fieldno, struct type *arg_type)
c906108c 1824{
f23631e4 1825 struct value *v;
52f0bd74 1826 struct type *type;
c906108c
SS
1827
1828 CHECK_TYPEDEF (arg_type);
1829 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1830
1831 /* Handle packed fields */
1832
1833 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1834 {
1835 v = value_from_longest (type,
1836 unpack_field_as_long (arg_type,
0fd88904 1837 value_contents (arg1)
c5aa993b 1838 + offset,
c906108c 1839 fieldno));
df407dfe
AC
1840 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1841 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1842 v->offset = value_offset (arg1) + offset
2e70b7b9 1843 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1844 }
1845 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1846 {
1847 /* This field is actually a base subobject, so preserve the
1848 entire object's contents for later references to virtual
1849 bases, etc. */
a4e2ee12
DJ
1850
1851 /* Lazy register values with offsets are not supported. */
1852 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1853 value_fetch_lazy (arg1);
1854
1855 if (value_lazy (arg1))
3e3d7139 1856 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1857 else
3e3d7139
JG
1858 {
1859 v = allocate_value (value_enclosing_type (arg1));
1860 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1861 TYPE_LENGTH (value_enclosing_type (arg1)));
1862 }
1863 v->type = type;
df407dfe 1864 v->offset = value_offset (arg1);
13c3b5f5
AC
1865 v->embedded_offset = (offset + value_embedded_offset (arg1)
1866 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1867 }
1868 else
1869 {
1870 /* Plain old data member */
1871 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1872
1873 /* Lazy register values with offsets are not supported. */
1874 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1875 value_fetch_lazy (arg1);
1876
1877 if (value_lazy (arg1))
3e3d7139 1878 v = allocate_value_lazy (type);
c906108c 1879 else
3e3d7139
JG
1880 {
1881 v = allocate_value (type);
1882 memcpy (value_contents_raw (v),
1883 value_contents_raw (arg1) + offset,
1884 TYPE_LENGTH (type));
1885 }
df407dfe 1886 v->offset = (value_offset (arg1) + offset
13c3b5f5 1887 + value_embedded_offset (arg1));
c906108c 1888 }
74bcbdf3 1889 set_value_component_location (v, arg1);
9ee8fc9d 1890 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1891 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1892 return v;
1893}
1894
1895/* Given a value ARG1 of a struct or union type,
1896 extract and return the value of one of its (non-static) fields.
1897 FIELDNO says which field. */
1898
f23631e4 1899struct value *
aa1ee363 1900value_field (struct value *arg1, int fieldno)
c906108c 1901{
df407dfe 1902 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1903}
1904
1905/* Return a non-virtual function as a value.
1906 F is the list of member functions which contains the desired method.
0478d61c
FF
1907 J is an index into F which provides the desired method.
1908
1909 We only use the symbol for its address, so be happy with either a
1910 full symbol or a minimal symbol.
1911 */
c906108c 1912
f23631e4
AC
1913struct value *
1914value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1915 int offset)
c906108c 1916{
f23631e4 1917 struct value *v;
52f0bd74 1918 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1919 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1920 struct symbol *sym;
0478d61c 1921 struct minimal_symbol *msym;
c906108c 1922
2570f2b7 1923 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1924 if (sym != NULL)
0478d61c 1925 {
5ae326fa
AC
1926 msym = NULL;
1927 }
1928 else
1929 {
1930 gdb_assert (sym == NULL);
0478d61c 1931 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1932 if (msym == NULL)
1933 return NULL;
0478d61c
FF
1934 }
1935
c906108c 1936 v = allocate_value (ftype);
0478d61c
FF
1937 if (sym)
1938 {
42ae5230 1939 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
1940 }
1941 else
1942 {
bccdca4a
UW
1943 /* The minimal symbol might point to a function descriptor;
1944 resolve it to the actual code address instead. */
1945 struct objfile *objfile = msymbol_objfile (msym);
1946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1947
42ae5230
TT
1948 set_value_address (v,
1949 gdbarch_convert_from_func_ptr_addr
1950 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 1951 }
c906108c
SS
1952
1953 if (arg1p)
c5aa993b 1954 {
df407dfe 1955 if (type != value_type (*arg1p))
c5aa993b
JM
1956 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1957 value_addr (*arg1p)));
1958
070ad9f0 1959 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1960 VALUE_OFFSET (*arg1p) += offset;
1961 */
c906108c
SS
1962 }
1963
1964 return v;
1965}
1966
c906108c
SS
1967\f
1968/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1969 VALADDR.
1970
1971 Extracting bits depends on endianness of the machine. Compute the
1972 number of least significant bits to discard. For big endian machines,
1973 we compute the total number of bits in the anonymous object, subtract
1974 off the bit count from the MSB of the object to the MSB of the
1975 bitfield, then the size of the bitfield, which leaves the LSB discard
1976 count. For little endian machines, the discard count is simply the
1977 number of bits from the LSB of the anonymous object to the LSB of the
1978 bitfield.
1979
1980 If the field is signed, we also do sign extension. */
1981
1982LONGEST
fc1a4b47 1983unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c 1984{
e17a4113 1985 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1986 ULONGEST val;
1987 ULONGEST valmask;
1988 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1989 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1990 int lsbcount;
1991 struct type *field_type;
1992
e17a4113
UW
1993 val = extract_unsigned_integer (valaddr + bitpos / 8,
1994 sizeof (val), byte_order);
c906108c
SS
1995 field_type = TYPE_FIELD_TYPE (type, fieldno);
1996 CHECK_TYPEDEF (field_type);
1997
1998 /* Extract bits. See comment above. */
1999
50810684 2000 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2001 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
2002 else
2003 lsbcount = (bitpos % 8);
2004 val >>= lsbcount;
2005
2006 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2007 If the field is signed, and is negative, then sign extend. */
2008
2009 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2010 {
2011 valmask = (((ULONGEST) 1) << bitsize) - 1;
2012 val &= valmask;
2013 if (!TYPE_UNSIGNED (field_type))
2014 {
2015 if (val & (valmask ^ (valmask >> 1)))
2016 {
2017 val |= ~valmask;
2018 }
2019 }
2020 }
2021 return (val);
2022}
2023
2024/* Modify the value of a bitfield. ADDR points to a block of memory in
2025 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2026 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2027 indicate which bits (in target bit order) comprise the bitfield.
2028 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2029 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2030
2031void
50810684
UW
2032modify_field (struct type *type, gdb_byte *addr,
2033 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2034{
e17a4113 2035 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2036 ULONGEST oword;
2037 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2038
2039 /* If a negative fieldval fits in the field in question, chop
2040 off the sign extension bits. */
f4e88c8e
PH
2041 if ((~fieldval & ~(mask >> 1)) == 0)
2042 fieldval &= mask;
c906108c
SS
2043
2044 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2045 if (0 != (fieldval & ~mask))
c906108c
SS
2046 {
2047 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2048 we don't have a sprintf_longest. */
8a3fe4f8 2049 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2050
2051 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2052 fieldval &= mask;
c906108c
SS
2053 }
2054
e17a4113 2055 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2056
2057 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2058 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2059 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2060
f4e88c8e 2061 oword &= ~(mask << bitpos);
c906108c
SS
2062 oword |= fieldval << bitpos;
2063
e17a4113 2064 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2065}
2066\f
14d06750 2067/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2068
14d06750
DJ
2069void
2070pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2071{
e17a4113 2072 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2073 int len;
14d06750
DJ
2074
2075 type = check_typedef (type);
c906108c
SS
2076 len = TYPE_LENGTH (type);
2077
14d06750 2078 switch (TYPE_CODE (type))
c906108c 2079 {
c906108c
SS
2080 case TYPE_CODE_INT:
2081 case TYPE_CODE_CHAR:
2082 case TYPE_CODE_ENUM:
4f2aea11 2083 case TYPE_CODE_FLAGS:
c906108c
SS
2084 case TYPE_CODE_BOOL:
2085 case TYPE_CODE_RANGE:
0d5de010 2086 case TYPE_CODE_MEMBERPTR:
e17a4113 2087 store_signed_integer (buf, len, byte_order, num);
c906108c 2088 break;
c5aa993b 2089
c906108c
SS
2090 case TYPE_CODE_REF:
2091 case TYPE_CODE_PTR:
14d06750 2092 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2093 break;
c5aa993b 2094
c906108c 2095 default:
14d06750
DJ
2096 error (_("Unexpected type (%d) encountered for integer constant."),
2097 TYPE_CODE (type));
c906108c 2098 }
14d06750
DJ
2099}
2100
2101
2102/* Convert C numbers into newly allocated values. */
2103
2104struct value *
2105value_from_longest (struct type *type, LONGEST num)
2106{
2107 struct value *val = allocate_value (type);
2108
2109 pack_long (value_contents_raw (val), type, num);
2110
c906108c
SS
2111 return val;
2112}
2113
4478b372
JB
2114
2115/* Create a value representing a pointer of type TYPE to the address
2116 ADDR. */
f23631e4 2117struct value *
4478b372
JB
2118value_from_pointer (struct type *type, CORE_ADDR addr)
2119{
f23631e4 2120 struct value *val = allocate_value (type);
990a07ab 2121 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
2122 return val;
2123}
2124
2125
8acb6b92
TT
2126/* Create a value of type TYPE whose contents come from VALADDR, if it
2127 is non-null, and whose memory address (in the inferior) is
2128 ADDRESS. */
2129
2130struct value *
2131value_from_contents_and_address (struct type *type,
2132 const gdb_byte *valaddr,
2133 CORE_ADDR address)
2134{
2135 struct value *v = allocate_value (type);
2136 if (valaddr == NULL)
2137 set_value_lazy (v, 1);
2138 else
2139 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2140 set_value_address (v, address);
33d502b4 2141 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2142 return v;
2143}
2144
f23631e4 2145struct value *
fba45db2 2146value_from_double (struct type *type, DOUBLEST num)
c906108c 2147{
f23631e4 2148 struct value *val = allocate_value (type);
c906108c 2149 struct type *base_type = check_typedef (type);
52f0bd74
AC
2150 enum type_code code = TYPE_CODE (base_type);
2151 int len = TYPE_LENGTH (base_type);
c906108c
SS
2152
2153 if (code == TYPE_CODE_FLT)
2154 {
990a07ab 2155 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2156 }
2157 else
8a3fe4f8 2158 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2159
2160 return val;
2161}
994b9211 2162
27bc4d80 2163struct value *
4ef30785 2164value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2165{
2166 struct value *val = allocate_value (type);
27bc4d80 2167
4ef30785 2168 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 2169
27bc4d80
TJB
2170 return val;
2171}
2172
994b9211
AC
2173struct value *
2174coerce_ref (struct value *arg)
2175{
df407dfe 2176 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
2177 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2178 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2179 unpack_pointer (value_type (arg),
0fd88904 2180 value_contents (arg)));
994b9211
AC
2181 return arg;
2182}
2183
2184struct value *
2185coerce_array (struct value *arg)
2186{
f3134b88
TT
2187 struct type *type;
2188
994b9211 2189 arg = coerce_ref (arg);
f3134b88
TT
2190 type = check_typedef (value_type (arg));
2191
2192 switch (TYPE_CODE (type))
2193 {
2194 case TYPE_CODE_ARRAY:
2195 if (current_language->c_style_arrays)
2196 arg = value_coerce_array (arg);
2197 break;
2198 case TYPE_CODE_FUNC:
2199 arg = value_coerce_function (arg);
2200 break;
2201 }
994b9211
AC
2202 return arg;
2203}
c906108c 2204\f
c906108c 2205
48436ce6
AC
2206/* Return true if the function returning the specified type is using
2207 the convention of returning structures in memory (passing in the
82585c72 2208 address as a hidden first parameter). */
c906108c
SS
2209
2210int
d80b854b
UW
2211using_struct_return (struct gdbarch *gdbarch,
2212 struct type *func_type, struct type *value_type)
c906108c 2213{
52f0bd74 2214 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2215
2216 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2217 error (_("Function return type unknown."));
c906108c 2218
667e784f
AC
2219 if (code == TYPE_CODE_VOID)
2220 /* A void return value is never in memory. See also corresponding
44e5158b 2221 code in "print_return_value". */
667e784f
AC
2222 return 0;
2223
92ad9cd9 2224 /* Probe the architecture for the return-value convention. */
d80b854b 2225 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2226 NULL, NULL, NULL)
31db7b6c 2227 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2228}
2229
42be36b3
CT
2230/* Set the initialized field in a value struct. */
2231
2232void
2233set_value_initialized (struct value *val, int status)
2234{
2235 val->initialized = status;
2236}
2237
2238/* Return the initialized field in a value struct. */
2239
2240int
2241value_initialized (struct value *val)
2242{
2243 return val->initialized;
2244}
2245
c906108c 2246void
fba45db2 2247_initialize_values (void)
c906108c 2248{
1a966eab
AC
2249 add_cmd ("convenience", no_class, show_convenience, _("\
2250Debugger convenience (\"$foo\") variables.\n\
c906108c 2251These variables are created when you assign them values;\n\
1a966eab
AC
2252thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2253\n\
c906108c
SS
2254A few convenience variables are given values automatically:\n\
2255\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2256\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2257 &showlist);
2258
2259 add_cmd ("values", no_class, show_values,
1a966eab 2260 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2261 &showlist);
53e5f3cf
AS
2262
2263 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2264Initialize a convenience variable if necessary.\n\
2265init-if-undefined VARIABLE = EXPRESSION\n\
2266Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2267exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2268VARIABLE is already initialized."));
bc3b79fd
TJB
2269
2270 add_prefix_cmd ("function", no_class, function_command, _("\
2271Placeholder command for showing help on convenience functions."),
2272 &functionlist, "function ", 0, &cmdlist);
c906108c 2273}
This page took 1.017885 seconds and 4 git commands to generate.