* configure.in: Call AC_CONFIG_HEADER. Don't try to use
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
7d9884b9 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
080868b4 2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
8918bce0 3 Free Software Foundation, Inc.
dd3b648e
RP
4
5This file is part of GDB.
6
99a7de40 7This program is free software; you can redistribute it and/or modify
dd3b648e 8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e 11
99a7de40 12This program is distributed in the hope that it will be useful,
dd3b648e
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40 18along with this program; if not, write to the Free Software
6c9638b4 19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
dd3b648e 20
dd3b648e 21#include "defs.h"
2b576293 22#include "gdb_string.h"
dd3b648e 23#include "symtab.h"
1ab3bf1b 24#include "gdbtypes.h"
dd3b648e
RP
25#include "value.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "command.h"
f266e564 29#include "gdbcmd.h"
ac88ca20 30#include "target.h"
acc4efde 31#include "language.h"
8050a57b 32#include "demangle.h"
dd3b648e 33
1ab3bf1b
JG
34/* Local function prototypes. */
35
849d0896
PS
36static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
1ab3bf1b 38
82a2edfb 39static void show_values PARAMS ((char *, int));
1ab3bf1b 40
82a2edfb 41static void show_convenience PARAMS ((char *, int));
71b16efa 42
dd3b648e
RP
43/* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49#define VALUE_HISTORY_CHUNK 60
50
51struct value_history_chunk
52{
53 struct value_history_chunk *next;
82a2edfb 54 value_ptr values[VALUE_HISTORY_CHUNK];
dd3b648e
RP
55};
56
57/* Chain of chunks now in use. */
58
59static struct value_history_chunk *value_history_chain;
60
61static int value_history_count; /* Abs number of last entry stored */
dd3b648e
RP
62\f
63/* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
82a2edfb 67static value_ptr all_values;
dd3b648e
RP
68
69/* Allocate a value that has the correct length for type TYPE. */
70
82a2edfb 71value_ptr
dd3b648e
RP
72allocate_value (type)
73 struct type *type;
74{
82a2edfb 75 register value_ptr val;
dd3b648e
RP
76
77 check_stub_type (type);
78
82a2edfb 79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
dd3b648e
RP
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
30974778 94 val->modifiable = 1;
dd3b648e
RP
95 return val;
96}
97
98/* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
82a2edfb 101value_ptr
dd3b648e
RP
102allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105{
82a2edfb 106 register value_ptr val;
dd3b648e 107
82a2edfb
JK
108 val =
109 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
dd3b648e
RP
110 VALUE_NEXT (val) = all_values;
111 all_values = val;
112 VALUE_TYPE (val) = type;
113 VALUE_LVAL (val) = not_lval;
114 VALUE_ADDRESS (val) = 0;
115 VALUE_FRAME (val) = 0;
116 VALUE_OFFSET (val) = 0;
117 VALUE_BITPOS (val) = 0;
118 VALUE_BITSIZE (val) = 0;
119 VALUE_REPEATED (val) = 1;
120 VALUE_REPETITIONS (val) = count;
121 VALUE_REGNO (val) = -1;
122 VALUE_LAZY (val) = 0;
123 VALUE_OPTIMIZED_OUT (val) = 0;
124 return val;
125}
126
fcb887ff
JK
127/* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
82a2edfb 130value_ptr
fcb887ff
JK
131value_mark ()
132{
133 return all_values;
134}
135
136/* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138void
139value_free_to_mark (mark)
82a2edfb 140 value_ptr mark;
fcb887ff 141{
82a2edfb 142 value_ptr val, next;
fcb887ff
JK
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150}
151
dd3b648e
RP
152/* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155void
156free_all_values ()
157{
82a2edfb 158 register value_ptr val, next;
dd3b648e
RP
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167}
168
169/* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172void
173release_value (val)
82a2edfb 174 register value_ptr val;
dd3b648e 175{
82a2edfb 176 register value_ptr v;
dd3b648e
RP
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192}
193
999dd04b
JL
194/* Release all values up to mark */
195value_ptr
196value_release_to_mark (mark)
197 value_ptr mark;
198{
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210}
211
dd3b648e
RP
212/* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
82a2edfb 216value_ptr
dd3b648e 217value_copy (arg)
82a2edfb 218 value_ptr arg;
dd3b648e 219{
82a2edfb 220 register value_ptr val;
dd3b648e
RP
221 register struct type *type = VALUE_TYPE (arg);
222 if (VALUE_REPEATED (arg))
223 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 else
225 val = allocate_value (type);
226 VALUE_LVAL (val) = VALUE_LVAL (arg);
227 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
228 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
229 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
230 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
5e711e7f 231 VALUE_FRAME (val) = VALUE_FRAME (arg);
dd3b648e
RP
232 VALUE_REGNO (val) = VALUE_REGNO (arg);
233 VALUE_LAZY (val) = VALUE_LAZY (arg);
5e711e7f 234 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
30974778 235 val->modifiable = arg->modifiable;
dd3b648e
RP
236 if (!VALUE_LAZY (val))
237 {
51b57ded
FF
238 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
239 TYPE_LENGTH (VALUE_TYPE (arg))
240 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
dd3b648e
RP
241 }
242 return val;
243}
244\f
245/* Access to the value history. */
246
247/* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252int
253record_latest_value (val)
82a2edfb 254 value_ptr val;
dd3b648e
RP
255{
256 int i;
257
258 /* Check error now if about to store an invalid float. We return -1
259 to the caller, but allow them to continue, e.g. to print it as "Nan". */
4ed3a9ea
FF
260 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
261 {
262 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
263 if (i) return -1; /* Indicate value not saved in history */
264 }
dd3b648e 265
26a859ec
PS
266 /* We don't want this value to have anything to do with the inferior anymore.
267 In particular, "set $1 = 50" should not affect the variable from which
268 the value was taken, and fast watchpoints should be able to assume that
269 a value on the value history never changes. */
270 if (VALUE_LAZY (val))
271 value_fetch_lazy (val);
272 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
273 from. This is a bit dubious, because then *&$1 does not just return $1
274 but the current contents of that location. c'est la vie... */
275 val->modifiable = 0;
276 release_value (val);
277
dd3b648e
RP
278 /* Here we treat value_history_count as origin-zero
279 and applying to the value being stored now. */
280
281 i = value_history_count % VALUE_HISTORY_CHUNK;
282 if (i == 0)
283 {
284 register struct value_history_chunk *new
285 = (struct value_history_chunk *)
286 xmalloc (sizeof (struct value_history_chunk));
4ed3a9ea 287 memset (new->values, 0, sizeof new->values);
dd3b648e
RP
288 new->next = value_history_chain;
289 value_history_chain = new;
290 }
291
292 value_history_chain->values[i] = val;
4abc83b9 293
dd3b648e
RP
294 /* Now we regard value_history_count as origin-one
295 and applying to the value just stored. */
296
297 return ++value_history_count;
298}
299
300/* Return a copy of the value in the history with sequence number NUM. */
301
82a2edfb 302value_ptr
dd3b648e
RP
303access_value_history (num)
304 int num;
305{
306 register struct value_history_chunk *chunk;
307 register int i;
308 register int absnum = num;
309
310 if (absnum <= 0)
311 absnum += value_history_count;
312
313 if (absnum <= 0)
314 {
315 if (num == 0)
316 error ("The history is empty.");
317 else if (num == 1)
318 error ("There is only one value in the history.");
319 else
320 error ("History does not go back to $$%d.", -num);
321 }
322 if (absnum > value_history_count)
323 error ("History has not yet reached $%d.", absnum);
324
325 absnum--;
326
327 /* Now absnum is always absolute and origin zero. */
328
329 chunk = value_history_chain;
330 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
331 i > 0; i--)
332 chunk = chunk->next;
333
334 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
335}
336
337/* Clear the value history entirely.
338 Must be done when new symbol tables are loaded,
339 because the type pointers become invalid. */
340
341void
342clear_value_history ()
343{
344 register struct value_history_chunk *next;
345 register int i;
82a2edfb 346 register value_ptr val;
dd3b648e
RP
347
348 while (value_history_chain)
349 {
350 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
a8a69e63 351 if ((val = value_history_chain->values[i]) != NULL)
be772100 352 free ((PTR)val);
dd3b648e 353 next = value_history_chain->next;
be772100 354 free ((PTR)value_history_chain);
dd3b648e
RP
355 value_history_chain = next;
356 }
357 value_history_count = 0;
358}
359
360static void
f266e564 361show_values (num_exp, from_tty)
dd3b648e
RP
362 char *num_exp;
363 int from_tty;
364{
365 register int i;
82a2edfb 366 register value_ptr val;
dd3b648e
RP
367 static int num = 1;
368
369 if (num_exp)
370 {
46c28185
RP
371 /* "info history +" should print from the stored position.
372 "info history <exp>" should print around value number <exp>. */
373 if (num_exp[0] != '+' || num_exp[1] != '\0')
dd3b648e
RP
374 num = parse_and_eval_address (num_exp) - 5;
375 }
376 else
377 {
378 /* "info history" means print the last 10 values. */
379 num = value_history_count - 9;
380 }
381
382 if (num <= 0)
383 num = 1;
384
385 for (i = num; i < num + 10 && i <= value_history_count; i++)
386 {
387 val = access_value_history (i);
388 printf_filtered ("$%d = ", i);
199b2450 389 value_print (val, gdb_stdout, 0, Val_pretty_default);
dd3b648e
RP
390 printf_filtered ("\n");
391 }
392
393 /* The next "info history +" should start after what we just printed. */
394 num += 10;
395
396 /* Hitting just return after this command should do the same thing as
397 "info history +". If num_exp is null, this is unnecessary, since
398 "info history +" is not useful after "info history". */
399 if (from_tty && num_exp)
400 {
401 num_exp[0] = '+';
402 num_exp[1] = '\0';
403 }
404}
405\f
406/* Internal variables. These are variables within the debugger
407 that hold values assigned by debugger commands.
408 The user refers to them with a '$' prefix
409 that does not appear in the variable names stored internally. */
410
411static struct internalvar *internalvars;
412
413/* Look up an internal variable with name NAME. NAME should not
414 normally include a dollar sign.
415
416 If the specified internal variable does not exist,
417 one is created, with a void value. */
418
419struct internalvar *
420lookup_internalvar (name)
421 char *name;
422{
423 register struct internalvar *var;
424
425 for (var = internalvars; var; var = var->next)
2e4964ad 426 if (STREQ (var->name, name))
dd3b648e
RP
427 return var;
428
429 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
58ae87f6 430 var->name = concat (name, NULL);
dd3b648e
RP
431 var->value = allocate_value (builtin_type_void);
432 release_value (var->value);
433 var->next = internalvars;
434 internalvars = var;
435 return var;
436}
437
82a2edfb 438value_ptr
dd3b648e
RP
439value_of_internalvar (var)
440 struct internalvar *var;
441{
82a2edfb 442 register value_ptr val;
dd3b648e
RP
443
444#ifdef IS_TRAPPED_INTERNALVAR
445 if (IS_TRAPPED_INTERNALVAR (var->name))
446 return VALUE_OF_TRAPPED_INTERNALVAR (var);
447#endif
448
449 val = value_copy (var->value);
450 if (VALUE_LAZY (val))
451 value_fetch_lazy (val);
452 VALUE_LVAL (val) = lval_internalvar;
453 VALUE_INTERNALVAR (val) = var;
454 return val;
455}
456
457void
458set_internalvar_component (var, offset, bitpos, bitsize, newval)
459 struct internalvar *var;
460 int offset, bitpos, bitsize;
82a2edfb 461 value_ptr newval;
dd3b648e
RP
462{
463 register char *addr = VALUE_CONTENTS (var->value) + offset;
464
465#ifdef IS_TRAPPED_INTERNALVAR
466 if (IS_TRAPPED_INTERNALVAR (var->name))
467 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
468#endif
469
470 if (bitsize)
58e49e21 471 modify_field (addr, value_as_long (newval),
dd3b648e
RP
472 bitpos, bitsize);
473 else
4ed3a9ea 474 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
dd3b648e
RP
475}
476
477void
478set_internalvar (var, val)
479 struct internalvar *var;
82a2edfb 480 value_ptr val;
dd3b648e 481{
51f83933
JK
482 value_ptr newval;
483
dd3b648e
RP
484#ifdef IS_TRAPPED_INTERNALVAR
485 if (IS_TRAPPED_INTERNALVAR (var->name))
486 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
487#endif
488
51f83933 489 newval = value_copy (val);
ade01652 490 newval->modifiable = 1;
51f83933 491
6fab5bef
JG
492 /* Force the value to be fetched from the target now, to avoid problems
493 later when this internalvar is referenced and the target is gone or
494 has changed. */
51f83933
JK
495 if (VALUE_LAZY (newval))
496 value_fetch_lazy (newval);
497
498 /* Begin code which must not call error(). If var->value points to
499 something free'd, an error() obviously leaves a dangling pointer.
500 But we also get a danling pointer if var->value points to
501 something in the value chain (i.e., before release_value is
502 called), because after the error free_all_values will get called before
503 long. */
504 free ((PTR)var->value);
505 var->value = newval;
506 release_value (newval);
507 /* End code which must not call error(). */
dd3b648e
RP
508}
509
510char *
511internalvar_name (var)
512 struct internalvar *var;
513{
514 return var->name;
515}
516
517/* Free all internalvars. Done when new symtabs are loaded,
518 because that makes the values invalid. */
519
520void
521clear_internalvars ()
522{
523 register struct internalvar *var;
524
525 while (internalvars)
526 {
527 var = internalvars;
528 internalvars = var->next;
be772100
JG
529 free ((PTR)var->name);
530 free ((PTR)var->value);
531 free ((PTR)var);
dd3b648e
RP
532 }
533}
534
535static void
ac88ca20
JG
536show_convenience (ignore, from_tty)
537 char *ignore;
538 int from_tty;
dd3b648e
RP
539{
540 register struct internalvar *var;
541 int varseen = 0;
542
543 for (var = internalvars; var; var = var->next)
544 {
545#ifdef IS_TRAPPED_INTERNALVAR
546 if (IS_TRAPPED_INTERNALVAR (var->name))
547 continue;
548#endif
549 if (!varseen)
550 {
dd3b648e
RP
551 varseen = 1;
552 }
afe4ca15 553 printf_filtered ("$%s = ", var->name);
199b2450 554 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
afe4ca15 555 printf_filtered ("\n");
dd3b648e
RP
556 }
557 if (!varseen)
199b2450 558 printf_unfiltered ("No debugger convenience variables now defined.\n\
dd3b648e
RP
559Convenience variables have names starting with \"$\";\n\
560use \"set\" as in \"set $foo = 5\" to define them.\n");
561}
562\f
563/* Extract a value as a C number (either long or double).
564 Knows how to convert fixed values to double, or
565 floating values to long.
566 Does not deallocate the value. */
567
568LONGEST
569value_as_long (val)
82a2edfb 570 register value_ptr val;
dd3b648e
RP
571{
572 /* This coerces arrays and functions, which is necessary (e.g.
573 in disassemble_command). It also dereferences references, which
574 I suspect is the most logical thing to do. */
575 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
576 COERCE_ARRAY (val);
577 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
578}
579
580double
581value_as_double (val)
82a2edfb 582 register value_ptr val;
dd3b648e
RP
583{
584 double foo;
585 int inv;
586
587 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
588 if (inv)
589 error ("Invalid floating value found in program.");
590 return foo;
591}
e1ce8aa5
JK
592/* Extract a value as a C pointer.
593 Does not deallocate the value. */
594CORE_ADDR
595value_as_pointer (val)
82a2edfb 596 value_ptr val;
e1ce8aa5 597{
2bff8e38
JK
598 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
599 whether we want this to be true eventually. */
b2ccb6a4
JK
600#if 0
601 /* ADDR_BITS_REMOVE is wrong if we are being called for a
602 non-address (e.g. argument to "signal", "info break", etc.), or
603 for pointers to char, in which the low bits *are* significant. */
ae0ea72e 604 return ADDR_BITS_REMOVE(value_as_long (val));
b2ccb6a4
JK
605#else
606 return value_as_long (val);
607#endif
e1ce8aa5 608}
dd3b648e
RP
609\f
610/* Unpack raw data (copied from debugee, target byte order) at VALADDR
611 as a long, or as a double, assuming the raw data is described
612 by type TYPE. Knows how to convert different sizes of values
613 and can convert between fixed and floating point. We don't assume
614 any alignment for the raw data. Return value is in host byte order.
615
616 If you want functions and arrays to be coerced to pointers, and
617 references to be dereferenced, call value_as_long() instead.
618
619 C++: It is assumed that the front-end has taken care of
620 all matters concerning pointers to members. A pointer
621 to member which reaches here is considered to be equivalent
622 to an INT (or some size). After all, it is only an offset. */
623
624LONGEST
625unpack_long (type, valaddr)
626 struct type *type;
627 char *valaddr;
628{
629 register enum type_code code = TYPE_CODE (type);
630 register int len = TYPE_LENGTH (type);
631 register int nosign = TYPE_UNSIGNED (type);
632
bf5c0d64 633 switch (code)
dd3b648e 634 {
bf5c0d64
JK
635 case TYPE_CODE_ENUM:
636 case TYPE_CODE_BOOL:
637 case TYPE_CODE_INT:
638 case TYPE_CODE_CHAR:
b96bc1e4 639 case TYPE_CODE_RANGE:
bf5c0d64
JK
640 if (nosign)
641 return extract_unsigned_integer (valaddr, len);
dd3b648e 642 else
bf5c0d64
JK
643 return extract_signed_integer (valaddr, len);
644
645 case TYPE_CODE_FLT:
646 return extract_floating (valaddr, len);
647
648 case TYPE_CODE_PTR:
649 case TYPE_CODE_REF:
650 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
651 whether we want this to be true eventually. */
34df79fc 652 return extract_address (valaddr, len);
dd3b648e 653
bf5c0d64
JK
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
ca0865db 658 error ("Value can't be converted to integer.");
bf5c0d64
JK
659 }
660 return 0; /* Placate lint. */
dd3b648e
RP
661}
662
663/* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669double
670unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674{
675 register enum type_code code = TYPE_CODE (type);
676 register int len = TYPE_LENGTH (type);
677 register int nosign = TYPE_UNSIGNED (type);
678
679 *invp = 0; /* Assume valid. */
680 if (code == TYPE_CODE_FLT)
681 {
ac57e5ad 682#ifdef INVALID_FLOAT
dd3b648e
RP
683 if (INVALID_FLOAT (valaddr, len))
684 {
685 *invp = 1;
686 return 1.234567891011121314;
687 }
ac57e5ad 688#endif
89ce0c8f
JK
689 return extract_floating (valaddr, len);
690 }
691 else if (nosign)
692 {
693 /* Unsigned -- be sure we compensate for signed LONGEST. */
694 return (unsigned LONGEST) unpack_long (type, valaddr);
695 }
696 else
697 {
698 /* Signed -- we are OK with unpack_long. */
699 return unpack_long (type, valaddr);
dd3b648e 700 }
dd3b648e 701}
e1ce8aa5
JK
702
703/* Unpack raw data (copied from debugee, target byte order) at VALADDR
704 as a CORE_ADDR, assuming the raw data is described by type TYPE.
705 We don't assume any alignment for the raw data. Return value is in
706 host byte order.
707
708 If you want functions and arrays to be coerced to pointers, and
709 references to be dereferenced, call value_as_pointer() instead.
710
711 C++: It is assumed that the front-end has taken care of
712 all matters concerning pointers to members. A pointer
713 to member which reaches here is considered to be equivalent
714 to an INT (or some size). After all, it is only an offset. */
715
716CORE_ADDR
717unpack_pointer (type, valaddr)
718 struct type *type;
719 char *valaddr;
720{
2bff8e38
JK
721 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
722 whether we want this to be true eventually. */
723 return unpack_long (type, valaddr);
e1ce8aa5 724}
dd3b648e
RP
725\f
726/* Given a value ARG1 (offset by OFFSET bytes)
727 of a struct or union type ARG_TYPE,
728 extract and return the value of one of its fields.
729 FIELDNO says which field.
730
731 For C++, must also be able to return values from static fields */
732
82a2edfb 733value_ptr
dd3b648e 734value_primitive_field (arg1, offset, fieldno, arg_type)
82a2edfb 735 register value_ptr arg1;
dd3b648e
RP
736 int offset;
737 register int fieldno;
738 register struct type *arg_type;
739{
82a2edfb 740 register value_ptr v;
dd3b648e
RP
741 register struct type *type;
742
743 check_stub_type (arg_type);
744 type = TYPE_FIELD_TYPE (arg_type, fieldno);
745
746 /* Handle packed fields */
747
748 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
749 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
750 {
96b2f51c 751 v = value_from_longest (type,
dd3b648e
RP
752 unpack_field_as_long (arg_type,
753 VALUE_CONTENTS (arg1),
754 fieldno));
755 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
756 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
757 }
758 else
759 {
760 v = allocate_value (type);
761 if (VALUE_LAZY (arg1))
762 VALUE_LAZY (v) = 1;
763 else
4ed3a9ea
FF
764 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
765 TYPE_LENGTH (type));
dd3b648e
RP
766 }
767 VALUE_LVAL (v) = VALUE_LVAL (arg1);
768 if (VALUE_LVAL (arg1) == lval_internalvar)
769 VALUE_LVAL (v) = lval_internalvar_component;
770 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
771 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
772 return v;
773}
774
775/* Given a value ARG1 of a struct or union type,
776 extract and return the value of one of its fields.
777 FIELDNO says which field.
778
779 For C++, must also be able to return values from static fields */
780
82a2edfb 781value_ptr
dd3b648e 782value_field (arg1, fieldno)
82a2edfb 783 register value_ptr arg1;
dd3b648e
RP
784 register int fieldno;
785{
786 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
787}
788
545af6ce
PB
789/* Return a non-virtual function as a value.
790 F is the list of member functions which contains the desired method.
791 J is an index into F which provides the desired method. */
792
82a2edfb 793value_ptr
94603999 794value_fn_field (arg1p, f, j, type, offset)
82a2edfb 795 value_ptr *arg1p;
545af6ce
PB
796 struct fn_field *f;
797 int j;
94603999
JG
798 struct type *type;
799 int offset;
dd3b648e 800{
82a2edfb 801 register value_ptr v;
94603999 802 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
dd3b648e
RP
803 struct symbol *sym;
804
545af6ce 805 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
dd3b648e 806 0, VAR_NAMESPACE, 0, NULL);
f1c6dbf6 807 if (! sym)
82a2edfb 808 return NULL;
f1c6dbf6
KH
809/*
810 error ("Internal error: could not find physical method named %s",
545af6ce 811 TYPE_FN_FIELD_PHYSNAME (f, j));
f1c6dbf6 812*/
dd3b648e 813
94603999 814 v = allocate_value (ftype);
dd3b648e 815 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
94603999
JG
816 VALUE_TYPE (v) = ftype;
817
818 if (arg1p)
819 {
820 if (type != VALUE_TYPE (*arg1p))
821 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
822 value_addr (*arg1p)));
823
dcd8fd8c 824 /* Move the `this' pointer according to the offset.
94603999 825 VALUE_OFFSET (*arg1p) += offset;
dcd8fd8c 826 */
94603999
JG
827 }
828
dd3b648e
RP
829 return v;
830}
831
832/* Return a virtual function as a value.
833 ARG1 is the object which provides the virtual function
94603999 834 table pointer. *ARG1P is side-effected in calling this function.
dd3b648e
RP
835 F is the list of member functions which contains the desired virtual
836 function.
e532974c
JK
837 J is an index into F which provides the desired virtual function.
838
839 TYPE is the type in which F is located. */
82a2edfb 840value_ptr
94603999 841value_virtual_fn_field (arg1p, f, j, type, offset)
82a2edfb 842 value_ptr *arg1p;
dd3b648e
RP
843 struct fn_field *f;
844 int j;
e532974c 845 struct type *type;
94603999 846 int offset;
dd3b648e 847{
82a2edfb 848 value_ptr arg1 = *arg1p;
dd3b648e
RP
849 /* First, get the virtual function table pointer. That comes
850 with a strange type, so cast it to type `pointer to long' (which
851 should serve just fine as a function type). Then, index into
852 the table, and convert final value to appropriate function type. */
82a2edfb
JK
853 value_ptr entry, vfn, vtbl;
854 value_ptr vi = value_from_longest (builtin_type_int,
855 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
e532974c
JK
856 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
857 struct type *context;
858 if (fcontext == NULL)
859 /* We don't have an fcontext (e.g. the program was compiled with
860 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
861 This won't work right for multiple inheritance, but at least we
862 should do as well as GDB 3.x did. */
863 fcontext = TYPE_VPTR_BASETYPE (type);
864 context = lookup_pointer_type (fcontext);
865 /* Now context is a pointer to the basetype containing the vtbl. */
dd3b648e
RP
866 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
867 arg1 = value_ind (value_cast (context, value_addr (arg1)));
868
869 context = VALUE_TYPE (arg1);
e532974c 870 /* Now context is the basetype containing the vtbl. */
dd3b648e
RP
871
872 /* This type may have been defined before its virtual function table
873 was. If so, fill in the virtual function table entry for the
874 type now. */
875 if (TYPE_VPTR_FIELDNO (context) < 0)
71b16efa 876 fill_in_vptr_fieldno (context);
dd3b648e
RP
877
878 /* The virtual function table is now an array of structures
879 which have the form { int16 offset, delta; void *pfn; }. */
94603999
JG
880 vtbl = value_ind (value_primitive_field (arg1, 0,
881 TYPE_VPTR_FIELDNO (context),
882 TYPE_VPTR_BASETYPE (context)));
dd3b648e
RP
883
884 /* Index into the virtual function table. This is hard-coded because
885 looking up a field is not cheap, and it may be important to save
886 time, e.g. if the user has set a conditional breakpoint calling
887 a virtual function. */
888 entry = value_subscript (vtbl, vi);
889
36a2283d 890 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
dd3b648e 891 {
36a2283d
PB
892 /* Move the `this' pointer according to the virtual function table. */
893 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
894
895 if (! VALUE_LAZY (arg1))
896 {
897 VALUE_LAZY (arg1) = 1;
898 value_fetch_lazy (arg1);
899 }
dd3b648e 900
36a2283d
PB
901 vfn = value_field (entry, 2);
902 }
903 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
904 vfn = entry;
905 else
906 error ("I'm confused: virtual function table has bad type");
dd3b648e
RP
907 /* Reinstantiate the function pointer with the correct type. */
908 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
909
94603999 910 *arg1p = arg1;
dd3b648e
RP
911 return vfn;
912}
913
71b16efa
JK
914/* ARG is a pointer to an object we know to be at least
915 a DTYPE. BTYPE is the most derived basetype that has
916 already been searched (and need not be searched again).
917 After looking at the vtables between BTYPE and DTYPE,
918 return the most derived type we find. The caller must
919 be satisfied when the return value == DTYPE.
920
921 FIXME-tiemann: should work with dossier entries as well. */
922
82a2edfb 923static value_ptr
7cb0f870 924value_headof (in_arg, btype, dtype)
82a2edfb 925 value_ptr in_arg;
71b16efa
JK
926 struct type *btype, *dtype;
927{
928 /* First collect the vtables we must look at for this object. */
929 /* FIXME-tiemann: right now, just look at top-most vtable. */
82a2edfb 930 value_ptr arg, vtbl, entry, best_entry = 0;
71b16efa
JK
931 int i, nelems;
932 int offset, best_offset = 0;
933 struct symbol *sym;
934 CORE_ADDR pc_for_sym;
935 char *demangled_name;
1ab3bf1b
JG
936 struct minimal_symbol *msymbol;
937
aec4cb91
MT
938 btype = TYPE_VPTR_BASETYPE (dtype);
939 check_stub_type (btype);
7cb0f870 940 arg = in_arg;
aec4cb91 941 if (btype != dtype)
7cb0f870
MT
942 arg = value_cast (lookup_pointer_type (btype), arg);
943 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
71b16efa
JK
944
945 /* Check that VTBL looks like it points to a virtual function table. */
1ab3bf1b
JG
946 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
947 if (msymbol == NULL
36a2283d
PB
948 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
949 || !VTBL_PREFIX_P (demangled_name))
71b16efa
JK
950 {
951 /* If we expected to find a vtable, but did not, let the user
952 know that we aren't happy, but don't throw an error.
953 FIXME: there has to be a better way to do this. */
954 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
7cb0f870 955 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
71b16efa 956 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
7cb0f870
MT
957 VALUE_TYPE (in_arg) = error_type;
958 return in_arg;
71b16efa
JK
959 }
960
961 /* Now search through the virtual function table. */
962 entry = value_ind (vtbl);
e1ce8aa5 963 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
71b16efa
JK
964 for (i = 1; i <= nelems; i++)
965 {
96b2f51c
JG
966 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
967 (LONGEST) i));
36a2283d
PB
968 /* This won't work if we're using thunks. */
969 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
970 break;
e1ce8aa5 971 offset = longest_to_int (value_as_long (value_field (entry, 0)));
bcccec8c
PB
972 /* If we use '<=' we can handle single inheritance
973 * where all offsets are zero - just use the first entry found. */
974 if (offset <= best_offset)
71b16efa
JK
975 {
976 best_offset = offset;
977 best_entry = entry;
978 }
979 }
71b16efa
JK
980 /* Move the pointer according to BEST_ENTRY's offset, and figure
981 out what type we should return as the new pointer. */
bcccec8c
PB
982 if (best_entry == 0)
983 {
984 /* An alternative method (which should no longer be necessary).
985 * But we leave it in for future use, when we will hopefully
986 * have optimizes the vtable to use thunks instead of offsets. */
987 /* Use the name of vtable itself to extract a base type. */
f1c6dbf6 988 demangled_name += 4; /* Skip _vt$ prefix. */
bcccec8c
PB
989 }
990 else
991 {
992 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
993 sym = find_pc_function (pc_for_sym);
8050a57b 994 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
bcccec8c
PB
995 *(strchr (demangled_name, ':')) = '\0';
996 }
71b16efa 997 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
2e4964ad
FF
998 if (sym == NULL)
999 error ("could not find type declaration for `%s'", demangled_name);
bcccec8c
PB
1000 if (best_entry)
1001 {
1002 free (demangled_name);
1003 arg = value_add (value_cast (builtin_type_int, arg),
1004 value_field (best_entry, 0));
1005 }
7cb0f870 1006 else arg = in_arg;
71b16efa
JK
1007 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1008 return arg;
1009}
1010
1011/* ARG is a pointer object of type TYPE. If TYPE has virtual
1012 function tables, probe ARG's tables (including the vtables
1013 of its baseclasses) to figure out the most derived type that ARG
1014 could actually be a pointer to. */
1015
82a2edfb 1016value_ptr
71b16efa 1017value_from_vtable_info (arg, type)
82a2edfb 1018 value_ptr arg;
71b16efa
JK
1019 struct type *type;
1020{
1021 /* Take care of preliminaries. */
1022 if (TYPE_VPTR_FIELDNO (type) < 0)
1023 fill_in_vptr_fieldno (type);
1024 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1025 return 0;
1026
1027 return value_headof (arg, 0, type);
1028}
1029
1410f5f1
JK
1030/* Return true if the INDEXth field of TYPE is a virtual baseclass
1031 pointer which is for the base class whose type is BASECLASS. */
1032
1033static int
1034vb_match (type, index, basetype)
1035 struct type *type;
1036 int index;
1037 struct type *basetype;
1038{
1039 struct type *fieldtype;
1410f5f1
JK
1040 char *name = TYPE_FIELD_NAME (type, index);
1041 char *field_class_name = NULL;
1042
1043 if (*name != '_')
1044 return 0;
f1c6dbf6 1045 /* gcc 2.4 uses _vb$. */
1410f5f1
JK
1046 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1047 field_class_name = name + 4;
f1c6dbf6 1048 /* gcc 2.5 will use __vb_. */
1410f5f1
JK
1049 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1050 field_class_name = name + 5;
1051
1052 if (field_class_name == NULL)
1053 /* This field is not a virtual base class pointer. */
1054 return 0;
1055
1056 /* It's a virtual baseclass pointer, now we just need to find out whether
1057 it is for this baseclass. */
1058 fieldtype = TYPE_FIELD_TYPE (type, index);
1059 if (fieldtype == NULL
1060 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1061 /* "Can't happen". */
1062 return 0;
1063
1064 /* What we check for is that either the types are equal (needed for
1065 nameless types) or have the same name. This is ugly, and a more
1066 elegant solution should be devised (which would probably just push
1067 the ugliness into symbol reading unless we change the stabs format). */
1068 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1069 return 1;
1070
1071 if (TYPE_NAME (basetype) != NULL
1072 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1073 && STREQ (TYPE_NAME (basetype),
1074 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1075 return 1;
1076 return 0;
1077}
1078
94603999
JG
1079/* Compute the offset of the baseclass which is
1080 the INDEXth baseclass of class TYPE, for a value ARG,
1081 wih extra offset of OFFSET.
1082 The result is the offste of the baseclass value relative
1083 to (the address of)(ARG) + OFFSET.
1084
1085 -1 is returned on error. */
1086
1087int
1088baseclass_offset (type, index, arg, offset)
1089 struct type *type;
1090 int index;
82a2edfb 1091 value_ptr arg;
94603999
JG
1092 int offset;
1093{
1094 struct type *basetype = TYPE_BASECLASS (type, index);
1095
1096 if (BASETYPE_VIA_VIRTUAL (type, index))
1097 {
1098 /* Must hunt for the pointer to this virtual baseclass. */
1099 register int i, len = TYPE_NFIELDS (type);
1100 register int n_baseclasses = TYPE_N_BASECLASSES (type);
94603999 1101
94603999
JG
1102 /* First look for the virtual baseclass pointer
1103 in the fields. */
1104 for (i = n_baseclasses; i < len; i++)
1105 {
1410f5f1 1106 if (vb_match (type, i, basetype))
94603999
JG
1107 {
1108 CORE_ADDR addr
1109 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1110 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1111 + offset
1112 + (TYPE_FIELD_BITPOS (type, i) / 8));
1113
1114 if (VALUE_LVAL (arg) != lval_memory)
1115 return -1;
1116
1117 return addr -
1118 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1119 }
1120 }
1121 /* Not in the fields, so try looking through the baseclasses. */
1122 for (i = index+1; i < n_baseclasses; i++)
1123 {
1124 int boffset =
1125 baseclass_offset (type, i, arg, offset);
1126 if (boffset)
1127 return boffset;
1128 }
1129 /* Not found. */
1130 return -1;
1131 }
1132
1133 /* Baseclass is easily computed. */
1134 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1135}
1136
dd3b648e 1137/* Compute the address of the baseclass which is
f1d77e90 1138 the INDEXth baseclass of class TYPE. The TYPE base
71b16efa
JK
1139 of the object is at VALADDR.
1140
1141 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1142 or 0 if no error. In that case the return value is not the address
1143 of the baseclasss, but the address which could not be read
1144 successfully. */
dd3b648e 1145
94603999
JG
1146/* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1147
dd3b648e 1148char *
71b16efa 1149baseclass_addr (type, index, valaddr, valuep, errp)
dd3b648e
RP
1150 struct type *type;
1151 int index;
1152 char *valaddr;
82a2edfb 1153 value_ptr *valuep;
71b16efa 1154 int *errp;
dd3b648e
RP
1155{
1156 struct type *basetype = TYPE_BASECLASS (type, index);
1157
71b16efa
JK
1158 if (errp)
1159 *errp = 0;
aec4cb91 1160
dd3b648e
RP
1161 if (BASETYPE_VIA_VIRTUAL (type, index))
1162 {
1163 /* Must hunt for the pointer to this virtual baseclass. */
1164 register int i, len = TYPE_NFIELDS (type);
1165 register int n_baseclasses = TYPE_N_BASECLASSES (type);
dd3b648e 1166
dd3b648e
RP
1167 /* First look for the virtual baseclass pointer
1168 in the fields. */
1169 for (i = n_baseclasses; i < len; i++)
1170 {
1410f5f1 1171 if (vb_match (type, i, basetype))
dd3b648e 1172 {
82a2edfb 1173 value_ptr val = allocate_value (basetype);
71b16efa
JK
1174 CORE_ADDR addr;
1175 int status;
1176
e1ce8aa5
JK
1177 addr
1178 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
71b16efa
JK
1179 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1180
1181 status = target_read_memory (addr,
1182 VALUE_CONTENTS_RAW (val),
4f6f12f9 1183 TYPE_LENGTH (basetype));
71b16efa
JK
1184 VALUE_LVAL (val) = lval_memory;
1185 VALUE_ADDRESS (val) = addr;
1186
1187 if (status != 0)
1188 {
1189 if (valuep)
1190 *valuep = NULL;
1191 release_value (val);
1192 value_free (val);
1193 if (errp)
1194 *errp = status;
1195 return (char *)addr;
1196 }
1197 else
1198 {
1199 if (valuep)
1200 *valuep = val;
1201 return (char *) VALUE_CONTENTS (val);
1202 }
dd3b648e
RP
1203 }
1204 }
1205 /* Not in the fields, so try looking through the baseclasses. */
1206 for (i = index+1; i < n_baseclasses; i++)
1207 {
1208 char *baddr;
1209
e1ce8aa5 1210 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
dd3b648e
RP
1211 if (baddr)
1212 return baddr;
1213 }
1214 /* Not found. */
1215 if (valuep)
1216 *valuep = 0;
1217 return 0;
1218 }
1219
1220 /* Baseclass is easily computed. */
1221 if (valuep)
1222 *valuep = 0;
1223 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1224}
dd3b648e 1225\f
4db8e515
FF
1226/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1227 VALADDR.
1228
1229 Extracting bits depends on endianness of the machine. Compute the
1230 number of least significant bits to discard. For big endian machines,
1231 we compute the total number of bits in the anonymous object, subtract
1232 off the bit count from the MSB of the object to the MSB of the
1233 bitfield, then the size of the bitfield, which leaves the LSB discard
1234 count. For little endian machines, the discard count is simply the
1235 number of bits from the LSB of the anonymous object to the LSB of the
1236 bitfield.
1237
1238 If the field is signed, we also do sign extension. */
1239
1240LONGEST
dd3b648e
RP
1241unpack_field_as_long (type, valaddr, fieldno)
1242 struct type *type;
1243 char *valaddr;
1244 int fieldno;
1245{
4db8e515
FF
1246 unsigned LONGEST val;
1247 unsigned LONGEST valmask;
dd3b648e
RP
1248 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1249 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
4db8e515 1250 int lsbcount;
dd3b648e 1251
34df79fc 1252 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
4db8e515
FF
1253
1254 /* Extract bits. See comment above. */
dd3b648e 1255
b8176214
ILT
1256 if (BITS_BIG_ENDIAN)
1257 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1258 else
1259 lsbcount = (bitpos % 8);
4db8e515 1260 val >>= lsbcount;
dd3b648e 1261
4db8e515
FF
1262 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1263 If the field is signed, and is negative, then sign extend. */
1264
1265 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1266 {
1267 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1268 val &= valmask;
1269 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1270 {
1271 if (val & (valmask ^ (valmask >> 1)))
1272 {
1273 val |= ~valmask;
1274 }
1275 }
1276 }
1277 return (val);
dd3b648e
RP
1278}
1279
3f2e006b
JG
1280/* Modify the value of a bitfield. ADDR points to a block of memory in
1281 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1282 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1283 indicate which bits (in target bit order) comprise the bitfield. */
1284
dd3b648e
RP
1285void
1286modify_field (addr, fieldval, bitpos, bitsize)
1287 char *addr;
58e49e21 1288 LONGEST fieldval;
dd3b648e
RP
1289 int bitpos, bitsize;
1290{
58e49e21 1291 LONGEST oword;
dd3b648e 1292
080868b4
PS
1293 /* If a negative fieldval fits in the field in question, chop
1294 off the sign extension bits. */
1295 if (bitsize < (8 * sizeof (fieldval))
1296 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1297 fieldval = fieldval & ((1 << bitsize) - 1);
1298
1299 /* Warn if value is too big to fit in the field in question. */
61a7292f
SG
1300 if (bitsize < (8 * sizeof (fieldval))
1301 && 0 != (fieldval & ~((1<<bitsize)-1)))
58e49e21
JK
1302 {
1303 /* FIXME: would like to include fieldval in the message, but
1304 we don't have a sprintf_longest. */
080868b4
PS
1305 warning ("Value does not fit in %d bits.", bitsize);
1306
1307 /* Truncate it, otherwise adjoining fields may be corrupted. */
1308 fieldval = fieldval & ((1 << bitsize) - 1);
58e49e21 1309 }
34df79fc
JK
1310
1311 oword = extract_signed_integer (addr, sizeof oword);
dd3b648e 1312
3f2e006b 1313 /* Shifting for bit field depends on endianness of the target machine. */
b8176214
ILT
1314 if (BITS_BIG_ENDIAN)
1315 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
dd3b648e 1316
58e49e21 1317 /* Mask out old value, while avoiding shifts >= size of oword */
c3a21801 1318 if (bitsize < 8 * sizeof (oword))
58e49e21 1319 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
c3a21801 1320 else
58e49e21 1321 oword &= ~((~(unsigned LONGEST)0) << bitpos);
dd3b648e 1322 oword |= fieldval << bitpos;
3f2e006b 1323
34df79fc 1324 store_signed_integer (addr, sizeof oword, oword);
dd3b648e
RP
1325}
1326\f
1327/* Convert C numbers into newly allocated values */
1328
82a2edfb 1329value_ptr
96b2f51c 1330value_from_longest (type, num)
dd3b648e
RP
1331 struct type *type;
1332 register LONGEST num;
1333{
82a2edfb 1334 register value_ptr val = allocate_value (type);
dd3b648e
RP
1335 register enum type_code code = TYPE_CODE (type);
1336 register int len = TYPE_LENGTH (type);
1337
34df79fc 1338 switch (code)
dd3b648e 1339 {
34df79fc
JK
1340 case TYPE_CODE_INT:
1341 case TYPE_CODE_CHAR:
1342 case TYPE_CODE_ENUM:
1343 case TYPE_CODE_BOOL:
b96bc1e4 1344 case TYPE_CODE_RANGE:
34df79fc
JK
1345 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1346 break;
1347
1348 case TYPE_CODE_REF:
1349 case TYPE_CODE_PTR:
1350 /* This assumes that all pointers of a given length
1351 have the same form. */
1352 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1353 break;
1354
1355 default:
1356 error ("Unexpected type encountered for integer constant.");
dd3b648e 1357 }
dd3b648e
RP
1358 return val;
1359}
1360
82a2edfb 1361value_ptr
dd3b648e
RP
1362value_from_double (type, num)
1363 struct type *type;
1364 double num;
1365{
82a2edfb 1366 register value_ptr val = allocate_value (type);
dd3b648e
RP
1367 register enum type_code code = TYPE_CODE (type);
1368 register int len = TYPE_LENGTH (type);
1369
1370 if (code == TYPE_CODE_FLT)
1371 {
bf5c0d64 1372 store_floating (VALUE_CONTENTS_RAW (val), len, num);
dd3b648e
RP
1373 }
1374 else
1375 error ("Unexpected type encountered for floating constant.");
1376
dd3b648e
RP
1377 return val;
1378}
1379\f
1380/* Deal with the value that is "about to be returned". */
1381
1382/* Return the value that a function returning now
1383 would be returning to its caller, assuming its type is VALTYPE.
1384 RETBUF is where we look for what ought to be the contents
1385 of the registers (in raw form). This is because it is often
1386 desirable to restore old values to those registers
1387 after saving the contents of interest, and then call
1388 this function using the saved values.
1389 struct_return is non-zero when the function in question is
1390 using the structure return conventions on the machine in question;
1391 0 when it is using the value returning conventions (this often
1392 means returning pointer to where structure is vs. returning value). */
1393
82a2edfb 1394value_ptr
dd3b648e
RP
1395value_being_returned (valtype, retbuf, struct_return)
1396 register struct type *valtype;
1397 char retbuf[REGISTER_BYTES];
1398 int struct_return;
1399 /*ARGSUSED*/
1400{
82a2edfb 1401 register value_ptr val;
dd3b648e
RP
1402 CORE_ADDR addr;
1403
1404#if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1405 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1406 if (struct_return) {
1407 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1408 if (!addr)
1409 error ("Function return value unknown");
1410 return value_at (valtype, addr);
1411 }
1412#endif
1413
1414 val = allocate_value (valtype);
1415 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1416
1417 return val;
1418}
1419
1420/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1421 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1422 and TYPE is the type (which is known to be struct, union or array).
1423
1424 On most machines, the struct convention is used unless we are
1425 using gcc and the type is of a special size. */
9925b928
JK
1426/* As of about 31 Mar 93, GCC was changed to be compatible with the
1427 native compiler. GCC 2.3.3 was the last release that did it the
1428 old way. Since gcc2_compiled was not changed, we have no
1429 way to correctly win in all cases, so we just do the right thing
1430 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1431 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1432 would cause more chaos than dealing with some struct returns being
1433 handled wrong. */
dd3b648e
RP
1434#if !defined (USE_STRUCT_CONVENTION)
1435#define USE_STRUCT_CONVENTION(gcc_p, type)\
9925b928
JK
1436 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1437 || TYPE_LENGTH (value_type) == 2 \
1438 || TYPE_LENGTH (value_type) == 4 \
1439 || TYPE_LENGTH (value_type) == 8 \
1440 ) \
dd3b648e
RP
1441 ))
1442#endif
1443
1444/* Return true if the function specified is using the structure returning
1445 convention on this machine to return arguments, or 0 if it is using
1446 the value returning convention. FUNCTION is the value representing
1447 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1448 is the type returned by the function. GCC_P is nonzero if compiled
1449 with GCC. */
1450
1451int
1452using_struct_return (function, funcaddr, value_type, gcc_p)
82a2edfb 1453 value_ptr function;
dd3b648e
RP
1454 CORE_ADDR funcaddr;
1455 struct type *value_type;
1456 int gcc_p;
1457 /*ARGSUSED*/
1458{
1459 register enum type_code code = TYPE_CODE (value_type);
1460
1461 if (code == TYPE_CODE_ERROR)
1462 error ("Function return type unknown.");
1463
1464 if (code == TYPE_CODE_STRUCT ||
1465 code == TYPE_CODE_UNION ||
1466 code == TYPE_CODE_ARRAY)
1467 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1468
1469 return 0;
1470}
1471
1472/* Store VAL so it will be returned if a function returns now.
1473 Does not verify that VAL's type matches what the current
1474 function wants to return. */
1475
1476void
1477set_return_value (val)
82a2edfb 1478 value_ptr val;
dd3b648e
RP
1479{
1480 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
dd3b648e
RP
1481
1482 if (code == TYPE_CODE_ERROR)
1483 error ("Function return type unknown.");
1484
f1d77e90
JG
1485 if ( code == TYPE_CODE_STRUCT
1486 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1487 error ("GDB does not support specifying a struct or union return value.");
dd3b648e 1488
07aa9fdc 1489 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
dd3b648e
RP
1490}
1491\f
1492void
1493_initialize_values ()
1494{
f266e564 1495 add_cmd ("convenience", no_class, show_convenience,
dd3b648e
RP
1496 "Debugger convenience (\"$foo\") variables.\n\
1497These variables are created when you assign them values;\n\
1498thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1499A few convenience variables are given values automatically:\n\
1500\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f266e564
JK
1501\"$__\" holds the contents of the last address examined with \"x\".",
1502 &showlist);
dd3b648e 1503
f266e564
JK
1504 add_cmd ("values", no_class, show_values,
1505 "Elements of value history around item number IDX (or last ten).",
1506 &showlist);
dd3b648e 1507}
This page took 0.374785 seconds and 4 git commands to generate.