* values.c (unpack_long, value_from_longest),
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
7d9884b9
JG
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
dd3b648e
RP
3
4This file is part of GDB.
5
99a7de40 6This program is free software; you can redistribute it and/or modify
dd3b648e 7it under the terms of the GNU General Public License as published by
99a7de40
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
dd3b648e 10
99a7de40 11This program is distributed in the hope that it will be useful,
dd3b648e
RP
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
99a7de40
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e 19
dd3b648e 20#include "defs.h"
d747e0af 21#include <string.h>
dd3b648e 22#include "symtab.h"
1ab3bf1b 23#include "gdbtypes.h"
dd3b648e
RP
24#include "value.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "command.h"
f266e564 28#include "gdbcmd.h"
ac88ca20 29#include "target.h"
8050a57b 30#include "demangle.h"
dd3b648e 31
1ab3bf1b
JG
32/* Local function prototypes. */
33
849d0896
PS
34static value_ptr value_headof PARAMS ((value_ptr, struct type *,
35 struct type *));
1ab3bf1b 36
82a2edfb 37static void show_values PARAMS ((char *, int));
1ab3bf1b 38
82a2edfb 39static void show_convenience PARAMS ((char *, int));
71b16efa 40
dd3b648e
RP
41/* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
46
47#define VALUE_HISTORY_CHUNK 60
48
49struct value_history_chunk
50{
51 struct value_history_chunk *next;
82a2edfb 52 value_ptr values[VALUE_HISTORY_CHUNK];
dd3b648e
RP
53};
54
55/* Chain of chunks now in use. */
56
57static struct value_history_chunk *value_history_chain;
58
59static int value_history_count; /* Abs number of last entry stored */
dd3b648e
RP
60\f
61/* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
64
82a2edfb 65static value_ptr all_values;
dd3b648e
RP
66
67/* Allocate a value that has the correct length for type TYPE. */
68
82a2edfb 69value_ptr
dd3b648e
RP
70allocate_value (type)
71 struct type *type;
72{
82a2edfb 73 register value_ptr val;
dd3b648e
RP
74
75 check_stub_type (type);
76
82a2edfb 77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
dd3b648e
RP
78 VALUE_NEXT (val) = all_values;
79 all_values = val;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
30974778 92 val->modifiable = 1;
dd3b648e
RP
93 return val;
94}
95
96/* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
82a2edfb 99value_ptr
dd3b648e
RP
100allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103{
82a2edfb 104 register value_ptr val;
dd3b648e 105
82a2edfb
JK
106 val =
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
dd3b648e
RP
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123}
124
fcb887ff
JK
125/* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
82a2edfb 128value_ptr
fcb887ff
JK
129value_mark ()
130{
131 return all_values;
132}
133
134/* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136void
137value_free_to_mark (mark)
82a2edfb 138 value_ptr mark;
fcb887ff 139{
82a2edfb 140 value_ptr val, next;
fcb887ff
JK
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148}
149
dd3b648e
RP
150/* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153void
154free_all_values ()
155{
82a2edfb 156 register value_ptr val, next;
dd3b648e
RP
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165}
166
167/* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170void
171release_value (val)
82a2edfb 172 register value_ptr val;
dd3b648e 173{
82a2edfb 174 register value_ptr v;
dd3b648e
RP
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190}
191
192/* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
82a2edfb 196value_ptr
dd3b648e 197value_copy (arg)
82a2edfb 198 value_ptr arg;
dd3b648e 199{
82a2edfb 200 register value_ptr val;
dd3b648e
RP
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
30974778 213 val->modifiable = arg->modifiable;
dd3b648e
RP
214 if (!VALUE_LAZY (val))
215 {
51b57ded
FF
216 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
217 TYPE_LENGTH (VALUE_TYPE (arg))
218 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
dd3b648e
RP
219 }
220 return val;
221}
222\f
223/* Access to the value history. */
224
225/* Record a new value in the value history.
226 Returns the absolute history index of the entry.
227 Result of -1 indicates the value was not saved; otherwise it is the
228 value history index of this new item. */
229
230int
231record_latest_value (val)
82a2edfb 232 value_ptr val;
dd3b648e
RP
233{
234 int i;
235
236 /* Check error now if about to store an invalid float. We return -1
237 to the caller, but allow them to continue, e.g. to print it as "Nan". */
4ed3a9ea
FF
238 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
239 {
240 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
241 if (i) return -1; /* Indicate value not saved in history */
242 }
dd3b648e
RP
243
244 /* Here we treat value_history_count as origin-zero
245 and applying to the value being stored now. */
246
247 i = value_history_count % VALUE_HISTORY_CHUNK;
248 if (i == 0)
249 {
250 register struct value_history_chunk *new
251 = (struct value_history_chunk *)
252 xmalloc (sizeof (struct value_history_chunk));
4ed3a9ea 253 memset (new->values, 0, sizeof new->values);
dd3b648e
RP
254 new->next = value_history_chain;
255 value_history_chain = new;
256 }
257
258 value_history_chain->values[i] = val;
4abc83b9
JK
259
260 /* We don't want this value to have anything to do with the inferior anymore.
261 In particular, "set $1 = 50" should not affect the variable from which
262 the value was taken, and fast watchpoints should be able to assume that
263 a value on the value history never changes. */
264 if (VALUE_LAZY (val))
265 value_fetch_lazy (val);
30974778
JK
266 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
267 from. This is a bit dubious, because then *&$1 does not just return $1
268 but the current contents of that location. c'est la vie... */
269 val->modifiable = 0;
dd3b648e
RP
270 release_value (val);
271
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
274
275 return ++value_history_count;
276}
277
278/* Return a copy of the value in the history with sequence number NUM. */
279
82a2edfb 280value_ptr
dd3b648e
RP
281access_value_history (num)
282 int num;
283{
284 register struct value_history_chunk *chunk;
285 register int i;
286 register int absnum = num;
287
288 if (absnum <= 0)
289 absnum += value_history_count;
290
291 if (absnum <= 0)
292 {
293 if (num == 0)
294 error ("The history is empty.");
295 else if (num == 1)
296 error ("There is only one value in the history.");
297 else
298 error ("History does not go back to $$%d.", -num);
299 }
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
302
303 absnum--;
304
305 /* Now absnum is always absolute and origin zero. */
306
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309 i > 0; i--)
310 chunk = chunk->next;
311
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313}
314
315/* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
318
319void
320clear_value_history ()
321{
322 register struct value_history_chunk *next;
323 register int i;
82a2edfb 324 register value_ptr val;
dd3b648e
RP
325
326 while (value_history_chain)
327 {
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
a8a69e63 329 if ((val = value_history_chain->values[i]) != NULL)
be772100 330 free ((PTR)val);
dd3b648e 331 next = value_history_chain->next;
be772100 332 free ((PTR)value_history_chain);
dd3b648e
RP
333 value_history_chain = next;
334 }
335 value_history_count = 0;
336}
337
338static void
f266e564 339show_values (num_exp, from_tty)
dd3b648e
RP
340 char *num_exp;
341 int from_tty;
342{
343 register int i;
82a2edfb 344 register value_ptr val;
dd3b648e
RP
345 static int num = 1;
346
347 if (num_exp)
348 {
46c28185
RP
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
dd3b648e
RP
352 num = parse_and_eval_address (num_exp) - 5;
353 }
354 else
355 {
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
358 }
359
360 if (num <= 0)
361 num = 1;
362
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
364 {
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
199b2450 367 value_print (val, gdb_stdout, 0, Val_pretty_default);
dd3b648e
RP
368 printf_filtered ("\n");
369 }
370
371 /* The next "info history +" should start after what we just printed. */
372 num += 10;
373
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
378 {
379 num_exp[0] = '+';
380 num_exp[1] = '\0';
381 }
382}
383\f
384/* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
388
389static struct internalvar *internalvars;
390
391/* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
393
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
396
397struct internalvar *
398lookup_internalvar (name)
399 char *name;
400{
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
2e4964ad 404 if (STREQ (var->name, name))
dd3b648e
RP
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
58ae87f6 408 var->name = concat (name, NULL);
dd3b648e
RP
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414}
415
82a2edfb 416value_ptr
dd3b648e
RP
417value_of_internalvar (var)
418 struct internalvar *var;
419{
82a2edfb 420 register value_ptr val;
dd3b648e
RP
421
422#ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425#endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433}
434
435void
436set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
82a2edfb 439 value_ptr newval;
dd3b648e
RP
440{
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443#ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446#endif
447
448 if (bitsize)
58e49e21 449 modify_field (addr, value_as_long (newval),
dd3b648e
RP
450 bitpos, bitsize);
451 else
4ed3a9ea 452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
dd3b648e
RP
453}
454
455void
456set_internalvar (var, val)
457 struct internalvar *var;
82a2edfb 458 value_ptr val;
dd3b648e 459{
51f83933
JK
460 value_ptr newval;
461
dd3b648e
RP
462#ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465#endif
466
51f83933
JK
467 newval = value_copy (val);
468
6fab5bef
JG
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
471 has changed. */
51f83933
JK
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
474
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
480 long. */
481 free ((PTR)var->value);
482 var->value = newval;
483 release_value (newval);
484 /* End code which must not call error(). */
dd3b648e
RP
485}
486
487char *
488internalvar_name (var)
489 struct internalvar *var;
490{
491 return var->name;
492}
493
494/* Free all internalvars. Done when new symtabs are loaded,
495 because that makes the values invalid. */
496
497void
498clear_internalvars ()
499{
500 register struct internalvar *var;
501
502 while (internalvars)
503 {
504 var = internalvars;
505 internalvars = var->next;
be772100
JG
506 free ((PTR)var->name);
507 free ((PTR)var->value);
508 free ((PTR)var);
dd3b648e
RP
509 }
510}
511
512static void
ac88ca20
JG
513show_convenience (ignore, from_tty)
514 char *ignore;
515 int from_tty;
dd3b648e
RP
516{
517 register struct internalvar *var;
518 int varseen = 0;
519
520 for (var = internalvars; var; var = var->next)
521 {
522#ifdef IS_TRAPPED_INTERNALVAR
523 if (IS_TRAPPED_INTERNALVAR (var->name))
524 continue;
525#endif
526 if (!varseen)
527 {
dd3b648e
RP
528 varseen = 1;
529 }
afe4ca15 530 printf_filtered ("$%s = ", var->name);
199b2450 531 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
afe4ca15 532 printf_filtered ("\n");
dd3b648e
RP
533 }
534 if (!varseen)
199b2450 535 printf_unfiltered ("No debugger convenience variables now defined.\n\
dd3b648e
RP
536Convenience variables have names starting with \"$\";\n\
537use \"set\" as in \"set $foo = 5\" to define them.\n");
538}
539\f
540/* Extract a value as a C number (either long or double).
541 Knows how to convert fixed values to double, or
542 floating values to long.
543 Does not deallocate the value. */
544
545LONGEST
546value_as_long (val)
82a2edfb 547 register value_ptr val;
dd3b648e
RP
548{
549 /* This coerces arrays and functions, which is necessary (e.g.
550 in disassemble_command). It also dereferences references, which
551 I suspect is the most logical thing to do. */
552 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
553 COERCE_ARRAY (val);
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555}
556
557double
558value_as_double (val)
82a2edfb 559 register value_ptr val;
dd3b648e
RP
560{
561 double foo;
562 int inv;
563
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565 if (inv)
566 error ("Invalid floating value found in program.");
567 return foo;
568}
e1ce8aa5
JK
569/* Extract a value as a C pointer.
570 Does not deallocate the value. */
571CORE_ADDR
572value_as_pointer (val)
82a2edfb 573 value_ptr val;
e1ce8aa5 574{
2bff8e38
JK
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
b2ccb6a4
JK
577#if 0
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
ae0ea72e 581 return ADDR_BITS_REMOVE(value_as_long (val));
b2ccb6a4
JK
582#else
583 return value_as_long (val);
584#endif
e1ce8aa5 585}
dd3b648e
RP
586\f
587/* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
592
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
595
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
600
35505d07
JG
601/* FIXME: This should be rewritten as a switch statement for speed and
602 ease of comprehension. */
603
dd3b648e
RP
604LONGEST
605unpack_long (type, valaddr)
606 struct type *type;
607 char *valaddr;
608{
609 register enum type_code code = TYPE_CODE (type);
610 register int len = TYPE_LENGTH (type);
611 register int nosign = TYPE_UNSIGNED (type);
612
bf5c0d64 613 switch (code)
dd3b648e 614 {
bf5c0d64
JK
615 case TYPE_CODE_ENUM:
616 case TYPE_CODE_BOOL:
617 case TYPE_CODE_INT:
618 case TYPE_CODE_CHAR:
b96bc1e4 619 case TYPE_CODE_RANGE:
bf5c0d64
JK
620 if (nosign)
621 return extract_unsigned_integer (valaddr, len);
dd3b648e 622 else
bf5c0d64
JK
623 return extract_signed_integer (valaddr, len);
624
625 case TYPE_CODE_FLT:
626 return extract_floating (valaddr, len);
627
628 case TYPE_CODE_PTR:
629 case TYPE_CODE_REF:
630 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
631 whether we want this to be true eventually. */
34df79fc 632 return extract_address (valaddr, len);
dd3b648e 633
bf5c0d64
JK
634 case TYPE_CODE_MEMBER:
635 error ("not implemented: member types in unpack_long");
636
637 default:
ca0865db 638 error ("Value can't be converted to integer.");
bf5c0d64
JK
639 }
640 return 0; /* Placate lint. */
dd3b648e
RP
641}
642
643/* Return a double value from the specified type and address.
644 INVP points to an int which is set to 0 for valid value,
645 1 for invalid value (bad float format). In either case,
646 the returned double is OK to use. Argument is in target
647 format, result is in host format. */
648
649double
650unpack_double (type, valaddr, invp)
651 struct type *type;
652 char *valaddr;
653 int *invp;
654{
655 register enum type_code code = TYPE_CODE (type);
656 register int len = TYPE_LENGTH (type);
657 register int nosign = TYPE_UNSIGNED (type);
658
659 *invp = 0; /* Assume valid. */
660 if (code == TYPE_CODE_FLT)
661 {
662 if (INVALID_FLOAT (valaddr, len))
663 {
664 *invp = 1;
665 return 1.234567891011121314;
666 }
89ce0c8f
JK
667 return extract_floating (valaddr, len);
668 }
669 else if (nosign)
670 {
671 /* Unsigned -- be sure we compensate for signed LONGEST. */
672 return (unsigned LONGEST) unpack_long (type, valaddr);
673 }
674 else
675 {
676 /* Signed -- we are OK with unpack_long. */
677 return unpack_long (type, valaddr);
dd3b648e 678 }
dd3b648e 679}
e1ce8aa5
JK
680
681/* Unpack raw data (copied from debugee, target byte order) at VALADDR
682 as a CORE_ADDR, assuming the raw data is described by type TYPE.
683 We don't assume any alignment for the raw data. Return value is in
684 host byte order.
685
686 If you want functions and arrays to be coerced to pointers, and
687 references to be dereferenced, call value_as_pointer() instead.
688
689 C++: It is assumed that the front-end has taken care of
690 all matters concerning pointers to members. A pointer
691 to member which reaches here is considered to be equivalent
692 to an INT (or some size). After all, it is only an offset. */
693
694CORE_ADDR
695unpack_pointer (type, valaddr)
696 struct type *type;
697 char *valaddr;
698{
2bff8e38
JK
699 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
700 whether we want this to be true eventually. */
701 return unpack_long (type, valaddr);
e1ce8aa5 702}
dd3b648e
RP
703\f
704/* Given a value ARG1 (offset by OFFSET bytes)
705 of a struct or union type ARG_TYPE,
706 extract and return the value of one of its fields.
707 FIELDNO says which field.
708
709 For C++, must also be able to return values from static fields */
710
82a2edfb 711value_ptr
dd3b648e 712value_primitive_field (arg1, offset, fieldno, arg_type)
82a2edfb 713 register value_ptr arg1;
dd3b648e
RP
714 int offset;
715 register int fieldno;
716 register struct type *arg_type;
717{
82a2edfb 718 register value_ptr v;
dd3b648e
RP
719 register struct type *type;
720
721 check_stub_type (arg_type);
722 type = TYPE_FIELD_TYPE (arg_type, fieldno);
723
724 /* Handle packed fields */
725
726 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
727 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
728 {
96b2f51c 729 v = value_from_longest (type,
dd3b648e
RP
730 unpack_field_as_long (arg_type,
731 VALUE_CONTENTS (arg1),
732 fieldno));
733 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
734 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
735 }
736 else
737 {
738 v = allocate_value (type);
739 if (VALUE_LAZY (arg1))
740 VALUE_LAZY (v) = 1;
741 else
4ed3a9ea
FF
742 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
743 TYPE_LENGTH (type));
dd3b648e
RP
744 }
745 VALUE_LVAL (v) = VALUE_LVAL (arg1);
746 if (VALUE_LVAL (arg1) == lval_internalvar)
747 VALUE_LVAL (v) = lval_internalvar_component;
748 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
749 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
750 return v;
751}
752
753/* Given a value ARG1 of a struct or union type,
754 extract and return the value of one of its fields.
755 FIELDNO says which field.
756
757 For C++, must also be able to return values from static fields */
758
82a2edfb 759value_ptr
dd3b648e 760value_field (arg1, fieldno)
82a2edfb 761 register value_ptr arg1;
dd3b648e
RP
762 register int fieldno;
763{
764 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
765}
766
545af6ce
PB
767/* Return a non-virtual function as a value.
768 F is the list of member functions which contains the desired method.
769 J is an index into F which provides the desired method. */
770
82a2edfb 771value_ptr
94603999 772value_fn_field (arg1p, f, j, type, offset)
82a2edfb 773 value_ptr *arg1p;
545af6ce
PB
774 struct fn_field *f;
775 int j;
94603999
JG
776 struct type *type;
777 int offset;
dd3b648e 778{
82a2edfb 779 register value_ptr v;
94603999 780 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
dd3b648e
RP
781 struct symbol *sym;
782
545af6ce 783 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
dd3b648e 784 0, VAR_NAMESPACE, 0, NULL);
f1c6dbf6 785 if (! sym)
82a2edfb 786 return NULL;
f1c6dbf6
KH
787/*
788 error ("Internal error: could not find physical method named %s",
545af6ce 789 TYPE_FN_FIELD_PHYSNAME (f, j));
f1c6dbf6 790*/
dd3b648e 791
94603999 792 v = allocate_value (ftype);
dd3b648e 793 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
94603999
JG
794 VALUE_TYPE (v) = ftype;
795
796 if (arg1p)
797 {
798 if (type != VALUE_TYPE (*arg1p))
799 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
800 value_addr (*arg1p)));
801
dcd8fd8c 802 /* Move the `this' pointer according to the offset.
94603999 803 VALUE_OFFSET (*arg1p) += offset;
dcd8fd8c 804 */
94603999
JG
805 }
806
dd3b648e
RP
807 return v;
808}
809
810/* Return a virtual function as a value.
811 ARG1 is the object which provides the virtual function
94603999 812 table pointer. *ARG1P is side-effected in calling this function.
dd3b648e
RP
813 F is the list of member functions which contains the desired virtual
814 function.
e532974c
JK
815 J is an index into F which provides the desired virtual function.
816
817 TYPE is the type in which F is located. */
82a2edfb 818value_ptr
94603999 819value_virtual_fn_field (arg1p, f, j, type, offset)
82a2edfb 820 value_ptr *arg1p;
dd3b648e
RP
821 struct fn_field *f;
822 int j;
e532974c 823 struct type *type;
94603999 824 int offset;
dd3b648e 825{
82a2edfb 826 value_ptr arg1 = *arg1p;
dd3b648e
RP
827 /* First, get the virtual function table pointer. That comes
828 with a strange type, so cast it to type `pointer to long' (which
829 should serve just fine as a function type). Then, index into
830 the table, and convert final value to appropriate function type. */
82a2edfb
JK
831 value_ptr entry, vfn, vtbl;
832 value_ptr vi = value_from_longest (builtin_type_int,
833 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
e532974c
JK
834 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
835 struct type *context;
836 if (fcontext == NULL)
837 /* We don't have an fcontext (e.g. the program was compiled with
838 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
839 This won't work right for multiple inheritance, but at least we
840 should do as well as GDB 3.x did. */
841 fcontext = TYPE_VPTR_BASETYPE (type);
842 context = lookup_pointer_type (fcontext);
843 /* Now context is a pointer to the basetype containing the vtbl. */
dd3b648e
RP
844 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
845 arg1 = value_ind (value_cast (context, value_addr (arg1)));
846
847 context = VALUE_TYPE (arg1);
e532974c 848 /* Now context is the basetype containing the vtbl. */
dd3b648e
RP
849
850 /* This type may have been defined before its virtual function table
851 was. If so, fill in the virtual function table entry for the
852 type now. */
853 if (TYPE_VPTR_FIELDNO (context) < 0)
71b16efa 854 fill_in_vptr_fieldno (context);
dd3b648e
RP
855
856 /* The virtual function table is now an array of structures
857 which have the form { int16 offset, delta; void *pfn; }. */
94603999
JG
858 vtbl = value_ind (value_primitive_field (arg1, 0,
859 TYPE_VPTR_FIELDNO (context),
860 TYPE_VPTR_BASETYPE (context)));
dd3b648e
RP
861
862 /* Index into the virtual function table. This is hard-coded because
863 looking up a field is not cheap, and it may be important to save
864 time, e.g. if the user has set a conditional breakpoint calling
865 a virtual function. */
866 entry = value_subscript (vtbl, vi);
867
dcd8fd8c
KH
868 /* Move the `this' pointer according to the virtual function table. */
869 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
870
dd3b648e
RP
871 if (! VALUE_LAZY (arg1))
872 {
873 VALUE_LAZY (arg1) = 1;
874 value_fetch_lazy (arg1);
875 }
876
877 vfn = value_field (entry, 2);
878 /* Reinstantiate the function pointer with the correct type. */
879 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
880
94603999 881 *arg1p = arg1;
dd3b648e
RP
882 return vfn;
883}
884
71b16efa
JK
885/* ARG is a pointer to an object we know to be at least
886 a DTYPE. BTYPE is the most derived basetype that has
887 already been searched (and need not be searched again).
888 After looking at the vtables between BTYPE and DTYPE,
889 return the most derived type we find. The caller must
890 be satisfied when the return value == DTYPE.
891
892 FIXME-tiemann: should work with dossier entries as well. */
893
82a2edfb 894static value_ptr
7cb0f870 895value_headof (in_arg, btype, dtype)
82a2edfb 896 value_ptr in_arg;
71b16efa
JK
897 struct type *btype, *dtype;
898{
899 /* First collect the vtables we must look at for this object. */
900 /* FIXME-tiemann: right now, just look at top-most vtable. */
82a2edfb 901 value_ptr arg, vtbl, entry, best_entry = 0;
71b16efa
JK
902 int i, nelems;
903 int offset, best_offset = 0;
904 struct symbol *sym;
905 CORE_ADDR pc_for_sym;
906 char *demangled_name;
1ab3bf1b
JG
907 struct minimal_symbol *msymbol;
908
aec4cb91
MT
909 btype = TYPE_VPTR_BASETYPE (dtype);
910 check_stub_type (btype);
7cb0f870 911 arg = in_arg;
aec4cb91 912 if (btype != dtype)
7cb0f870
MT
913 arg = value_cast (lookup_pointer_type (btype), arg);
914 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
71b16efa
JK
915
916 /* Check that VTBL looks like it points to a virtual function table. */
1ab3bf1b
JG
917 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
918 if (msymbol == NULL
2e4964ad 919 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
71b16efa
JK
920 {
921 /* If we expected to find a vtable, but did not, let the user
922 know that we aren't happy, but don't throw an error.
923 FIXME: there has to be a better way to do this. */
924 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
7cb0f870 925 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
71b16efa 926 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
7cb0f870
MT
927 VALUE_TYPE (in_arg) = error_type;
928 return in_arg;
71b16efa
JK
929 }
930
931 /* Now search through the virtual function table. */
932 entry = value_ind (vtbl);
e1ce8aa5 933 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
71b16efa
JK
934 for (i = 1; i <= nelems; i++)
935 {
96b2f51c
JG
936 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
937 (LONGEST) i));
e1ce8aa5 938 offset = longest_to_int (value_as_long (value_field (entry, 0)));
bcccec8c
PB
939 /* If we use '<=' we can handle single inheritance
940 * where all offsets are zero - just use the first entry found. */
941 if (offset <= best_offset)
71b16efa
JK
942 {
943 best_offset = offset;
944 best_entry = entry;
945 }
946 }
71b16efa
JK
947 /* Move the pointer according to BEST_ENTRY's offset, and figure
948 out what type we should return as the new pointer. */
bcccec8c
PB
949 if (best_entry == 0)
950 {
951 /* An alternative method (which should no longer be necessary).
952 * But we leave it in for future use, when we will hopefully
953 * have optimizes the vtable to use thunks instead of offsets. */
954 /* Use the name of vtable itself to extract a base type. */
f1c6dbf6 955 demangled_name += 4; /* Skip _vt$ prefix. */
bcccec8c
PB
956 }
957 else
958 {
959 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
960 sym = find_pc_function (pc_for_sym);
8050a57b 961 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
bcccec8c
PB
962 *(strchr (demangled_name, ':')) = '\0';
963 }
71b16efa 964 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
2e4964ad
FF
965 if (sym == NULL)
966 error ("could not find type declaration for `%s'", demangled_name);
bcccec8c
PB
967 if (best_entry)
968 {
969 free (demangled_name);
970 arg = value_add (value_cast (builtin_type_int, arg),
971 value_field (best_entry, 0));
972 }
7cb0f870 973 else arg = in_arg;
71b16efa
JK
974 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
975 return arg;
976}
977
978/* ARG is a pointer object of type TYPE. If TYPE has virtual
979 function tables, probe ARG's tables (including the vtables
980 of its baseclasses) to figure out the most derived type that ARG
981 could actually be a pointer to. */
982
82a2edfb 983value_ptr
71b16efa 984value_from_vtable_info (arg, type)
82a2edfb 985 value_ptr arg;
71b16efa
JK
986 struct type *type;
987{
988 /* Take care of preliminaries. */
989 if (TYPE_VPTR_FIELDNO (type) < 0)
990 fill_in_vptr_fieldno (type);
991 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
992 return 0;
993
994 return value_headof (arg, 0, type);
995}
996
1410f5f1
JK
997/* Return true if the INDEXth field of TYPE is a virtual baseclass
998 pointer which is for the base class whose type is BASECLASS. */
999
1000static int
1001vb_match (type, index, basetype)
1002 struct type *type;
1003 int index;
1004 struct type *basetype;
1005{
1006 struct type *fieldtype;
1410f5f1
JK
1007 char *name = TYPE_FIELD_NAME (type, index);
1008 char *field_class_name = NULL;
1009
1010 if (*name != '_')
1011 return 0;
f1c6dbf6 1012 /* gcc 2.4 uses _vb$. */
1410f5f1
JK
1013 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1014 field_class_name = name + 4;
f1c6dbf6 1015 /* gcc 2.5 will use __vb_. */
1410f5f1
JK
1016 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1017 field_class_name = name + 5;
1018
1019 if (field_class_name == NULL)
1020 /* This field is not a virtual base class pointer. */
1021 return 0;
1022
1023 /* It's a virtual baseclass pointer, now we just need to find out whether
1024 it is for this baseclass. */
1025 fieldtype = TYPE_FIELD_TYPE (type, index);
1026 if (fieldtype == NULL
1027 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1028 /* "Can't happen". */
1029 return 0;
1030
1031 /* What we check for is that either the types are equal (needed for
1032 nameless types) or have the same name. This is ugly, and a more
1033 elegant solution should be devised (which would probably just push
1034 the ugliness into symbol reading unless we change the stabs format). */
1035 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1036 return 1;
1037
1038 if (TYPE_NAME (basetype) != NULL
1039 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1040 && STREQ (TYPE_NAME (basetype),
1041 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1042 return 1;
1043 return 0;
1044}
1045
94603999
JG
1046/* Compute the offset of the baseclass which is
1047 the INDEXth baseclass of class TYPE, for a value ARG,
1048 wih extra offset of OFFSET.
1049 The result is the offste of the baseclass value relative
1050 to (the address of)(ARG) + OFFSET.
1051
1052 -1 is returned on error. */
1053
1054int
1055baseclass_offset (type, index, arg, offset)
1056 struct type *type;
1057 int index;
82a2edfb 1058 value_ptr arg;
94603999
JG
1059 int offset;
1060{
1061 struct type *basetype = TYPE_BASECLASS (type, index);
1062
1063 if (BASETYPE_VIA_VIRTUAL (type, index))
1064 {
1065 /* Must hunt for the pointer to this virtual baseclass. */
1066 register int i, len = TYPE_NFIELDS (type);
1067 register int n_baseclasses = TYPE_N_BASECLASSES (type);
94603999 1068
94603999
JG
1069 /* First look for the virtual baseclass pointer
1070 in the fields. */
1071 for (i = n_baseclasses; i < len; i++)
1072 {
1410f5f1 1073 if (vb_match (type, i, basetype))
94603999
JG
1074 {
1075 CORE_ADDR addr
1076 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1077 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1078 + offset
1079 + (TYPE_FIELD_BITPOS (type, i) / 8));
1080
1081 if (VALUE_LVAL (arg) != lval_memory)
1082 return -1;
1083
1084 return addr -
1085 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1086 }
1087 }
1088 /* Not in the fields, so try looking through the baseclasses. */
1089 for (i = index+1; i < n_baseclasses; i++)
1090 {
1091 int boffset =
1092 baseclass_offset (type, i, arg, offset);
1093 if (boffset)
1094 return boffset;
1095 }
1096 /* Not found. */
1097 return -1;
1098 }
1099
1100 /* Baseclass is easily computed. */
1101 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1102}
1103
dd3b648e 1104/* Compute the address of the baseclass which is
f1d77e90 1105 the INDEXth baseclass of class TYPE. The TYPE base
71b16efa
JK
1106 of the object is at VALADDR.
1107
1108 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1109 or 0 if no error. In that case the return value is not the address
1110 of the baseclasss, but the address which could not be read
1111 successfully. */
dd3b648e 1112
94603999
JG
1113/* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1114
dd3b648e 1115char *
71b16efa 1116baseclass_addr (type, index, valaddr, valuep, errp)
dd3b648e
RP
1117 struct type *type;
1118 int index;
1119 char *valaddr;
82a2edfb 1120 value_ptr *valuep;
71b16efa 1121 int *errp;
dd3b648e
RP
1122{
1123 struct type *basetype = TYPE_BASECLASS (type, index);
1124
71b16efa
JK
1125 if (errp)
1126 *errp = 0;
aec4cb91 1127
dd3b648e
RP
1128 if (BASETYPE_VIA_VIRTUAL (type, index))
1129 {
1130 /* Must hunt for the pointer to this virtual baseclass. */
1131 register int i, len = TYPE_NFIELDS (type);
1132 register int n_baseclasses = TYPE_N_BASECLASSES (type);
dd3b648e 1133
dd3b648e
RP
1134 /* First look for the virtual baseclass pointer
1135 in the fields. */
1136 for (i = n_baseclasses; i < len; i++)
1137 {
1410f5f1 1138 if (vb_match (type, i, basetype))
dd3b648e 1139 {
82a2edfb 1140 value_ptr val = allocate_value (basetype);
71b16efa
JK
1141 CORE_ADDR addr;
1142 int status;
1143
e1ce8aa5
JK
1144 addr
1145 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
71b16efa
JK
1146 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1147
1148 status = target_read_memory (addr,
1149 VALUE_CONTENTS_RAW (val),
4f6f12f9 1150 TYPE_LENGTH (basetype));
71b16efa
JK
1151 VALUE_LVAL (val) = lval_memory;
1152 VALUE_ADDRESS (val) = addr;
1153
1154 if (status != 0)
1155 {
1156 if (valuep)
1157 *valuep = NULL;
1158 release_value (val);
1159 value_free (val);
1160 if (errp)
1161 *errp = status;
1162 return (char *)addr;
1163 }
1164 else
1165 {
1166 if (valuep)
1167 *valuep = val;
1168 return (char *) VALUE_CONTENTS (val);
1169 }
dd3b648e
RP
1170 }
1171 }
1172 /* Not in the fields, so try looking through the baseclasses. */
1173 for (i = index+1; i < n_baseclasses; i++)
1174 {
1175 char *baddr;
1176
e1ce8aa5 1177 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
dd3b648e
RP
1178 if (baddr)
1179 return baddr;
1180 }
1181 /* Not found. */
1182 if (valuep)
1183 *valuep = 0;
1184 return 0;
1185 }
1186
1187 /* Baseclass is easily computed. */
1188 if (valuep)
1189 *valuep = 0;
1190 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1191}
dd3b648e 1192\f
4db8e515
FF
1193/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1194 VALADDR.
1195
1196 Extracting bits depends on endianness of the machine. Compute the
1197 number of least significant bits to discard. For big endian machines,
1198 we compute the total number of bits in the anonymous object, subtract
1199 off the bit count from the MSB of the object to the MSB of the
1200 bitfield, then the size of the bitfield, which leaves the LSB discard
1201 count. For little endian machines, the discard count is simply the
1202 number of bits from the LSB of the anonymous object to the LSB of the
1203 bitfield.
1204
1205 If the field is signed, we also do sign extension. */
1206
1207LONGEST
dd3b648e
RP
1208unpack_field_as_long (type, valaddr, fieldno)
1209 struct type *type;
1210 char *valaddr;
1211 int fieldno;
1212{
4db8e515
FF
1213 unsigned LONGEST val;
1214 unsigned LONGEST valmask;
dd3b648e
RP
1215 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1216 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
4db8e515 1217 int lsbcount;
dd3b648e 1218
34df79fc 1219 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
4db8e515
FF
1220
1221 /* Extract bits. See comment above. */
dd3b648e 1222
122ad9ab 1223#if BITS_BIG_ENDIAN
4db8e515 1224 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
dd3b648e 1225#else
4db8e515 1226 lsbcount = (bitpos % 8);
dd3b648e 1227#endif
4db8e515 1228 val >>= lsbcount;
dd3b648e 1229
4db8e515
FF
1230 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1231 If the field is signed, and is negative, then sign extend. */
1232
1233 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1234 {
1235 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1236 val &= valmask;
1237 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1238 {
1239 if (val & (valmask ^ (valmask >> 1)))
1240 {
1241 val |= ~valmask;
1242 }
1243 }
1244 }
1245 return (val);
dd3b648e
RP
1246}
1247
3f2e006b
JG
1248/* Modify the value of a bitfield. ADDR points to a block of memory in
1249 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1250 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1251 indicate which bits (in target bit order) comprise the bitfield. */
1252
dd3b648e
RP
1253void
1254modify_field (addr, fieldval, bitpos, bitsize)
1255 char *addr;
58e49e21 1256 LONGEST fieldval;
dd3b648e
RP
1257 int bitpos, bitsize;
1258{
58e49e21 1259 LONGEST oword;
dd3b648e 1260
c3a21801
JG
1261 /* Reject values too big to fit in the field in question,
1262 otherwise adjoining fields may be corrupted. */
61a7292f
SG
1263 if (bitsize < (8 * sizeof (fieldval))
1264 && 0 != (fieldval & ~((1<<bitsize)-1)))
58e49e21
JK
1265 {
1266 /* FIXME: would like to include fieldval in the message, but
1267 we don't have a sprintf_longest. */
1268 error ("Value does not fit in %d bits.", bitsize);
1269 }
34df79fc
JK
1270
1271 oword = extract_signed_integer (addr, sizeof oword);
dd3b648e 1272
3f2e006b 1273 /* Shifting for bit field depends on endianness of the target machine. */
122ad9ab 1274#if BITS_BIG_ENDIAN
dd3b648e
RP
1275 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1276#endif
1277
58e49e21 1278 /* Mask out old value, while avoiding shifts >= size of oword */
c3a21801 1279 if (bitsize < 8 * sizeof (oword))
58e49e21 1280 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
c3a21801 1281 else
58e49e21 1282 oword &= ~((~(unsigned LONGEST)0) << bitpos);
dd3b648e 1283 oword |= fieldval << bitpos;
3f2e006b 1284
34df79fc 1285 store_signed_integer (addr, sizeof oword, oword);
dd3b648e
RP
1286}
1287\f
1288/* Convert C numbers into newly allocated values */
1289
82a2edfb 1290value_ptr
96b2f51c 1291value_from_longest (type, num)
dd3b648e
RP
1292 struct type *type;
1293 register LONGEST num;
1294{
82a2edfb 1295 register value_ptr val = allocate_value (type);
dd3b648e
RP
1296 register enum type_code code = TYPE_CODE (type);
1297 register int len = TYPE_LENGTH (type);
1298
34df79fc 1299 switch (code)
dd3b648e 1300 {
34df79fc
JK
1301 case TYPE_CODE_INT:
1302 case TYPE_CODE_CHAR:
1303 case TYPE_CODE_ENUM:
1304 case TYPE_CODE_BOOL:
b96bc1e4 1305 case TYPE_CODE_RANGE:
34df79fc
JK
1306 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1307 break;
1308
1309 case TYPE_CODE_REF:
1310 case TYPE_CODE_PTR:
1311 /* This assumes that all pointers of a given length
1312 have the same form. */
1313 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1314 break;
1315
1316 default:
1317 error ("Unexpected type encountered for integer constant.");
dd3b648e 1318 }
dd3b648e
RP
1319 return val;
1320}
1321
82a2edfb 1322value_ptr
dd3b648e
RP
1323value_from_double (type, num)
1324 struct type *type;
1325 double num;
1326{
82a2edfb 1327 register value_ptr val = allocate_value (type);
dd3b648e
RP
1328 register enum type_code code = TYPE_CODE (type);
1329 register int len = TYPE_LENGTH (type);
1330
1331 if (code == TYPE_CODE_FLT)
1332 {
bf5c0d64 1333 store_floating (VALUE_CONTENTS_RAW (val), len, num);
dd3b648e
RP
1334 }
1335 else
1336 error ("Unexpected type encountered for floating constant.");
1337
dd3b648e
RP
1338 return val;
1339}
1340\f
1341/* Deal with the value that is "about to be returned". */
1342
1343/* Return the value that a function returning now
1344 would be returning to its caller, assuming its type is VALTYPE.
1345 RETBUF is where we look for what ought to be the contents
1346 of the registers (in raw form). This is because it is often
1347 desirable to restore old values to those registers
1348 after saving the contents of interest, and then call
1349 this function using the saved values.
1350 struct_return is non-zero when the function in question is
1351 using the structure return conventions on the machine in question;
1352 0 when it is using the value returning conventions (this often
1353 means returning pointer to where structure is vs. returning value). */
1354
82a2edfb 1355value_ptr
dd3b648e
RP
1356value_being_returned (valtype, retbuf, struct_return)
1357 register struct type *valtype;
1358 char retbuf[REGISTER_BYTES];
1359 int struct_return;
1360 /*ARGSUSED*/
1361{
82a2edfb 1362 register value_ptr val;
dd3b648e
RP
1363 CORE_ADDR addr;
1364
1365#if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1366 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1367 if (struct_return) {
1368 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1369 if (!addr)
1370 error ("Function return value unknown");
1371 return value_at (valtype, addr);
1372 }
1373#endif
1374
1375 val = allocate_value (valtype);
1376 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1377
1378 return val;
1379}
1380
1381/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1382 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1383 and TYPE is the type (which is known to be struct, union or array).
1384
1385 On most machines, the struct convention is used unless we are
1386 using gcc and the type is of a special size. */
9925b928
JK
1387/* As of about 31 Mar 93, GCC was changed to be compatible with the
1388 native compiler. GCC 2.3.3 was the last release that did it the
1389 old way. Since gcc2_compiled was not changed, we have no
1390 way to correctly win in all cases, so we just do the right thing
1391 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1392 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1393 would cause more chaos than dealing with some struct returns being
1394 handled wrong. */
dd3b648e
RP
1395#if !defined (USE_STRUCT_CONVENTION)
1396#define USE_STRUCT_CONVENTION(gcc_p, type)\
9925b928
JK
1397 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1398 || TYPE_LENGTH (value_type) == 2 \
1399 || TYPE_LENGTH (value_type) == 4 \
1400 || TYPE_LENGTH (value_type) == 8 \
1401 ) \
dd3b648e
RP
1402 ))
1403#endif
1404
1405/* Return true if the function specified is using the structure returning
1406 convention on this machine to return arguments, or 0 if it is using
1407 the value returning convention. FUNCTION is the value representing
1408 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1409 is the type returned by the function. GCC_P is nonzero if compiled
1410 with GCC. */
1411
1412int
1413using_struct_return (function, funcaddr, value_type, gcc_p)
82a2edfb 1414 value_ptr function;
dd3b648e
RP
1415 CORE_ADDR funcaddr;
1416 struct type *value_type;
1417 int gcc_p;
1418 /*ARGSUSED*/
1419{
1420 register enum type_code code = TYPE_CODE (value_type);
1421
1422 if (code == TYPE_CODE_ERROR)
1423 error ("Function return type unknown.");
1424
1425 if (code == TYPE_CODE_STRUCT ||
1426 code == TYPE_CODE_UNION ||
1427 code == TYPE_CODE_ARRAY)
1428 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1429
1430 return 0;
1431}
1432
1433/* Store VAL so it will be returned if a function returns now.
1434 Does not verify that VAL's type matches what the current
1435 function wants to return. */
1436
1437void
1438set_return_value (val)
82a2edfb 1439 value_ptr val;
dd3b648e
RP
1440{
1441 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1442 double dbuf;
1443 LONGEST lbuf;
1444
1445 if (code == TYPE_CODE_ERROR)
1446 error ("Function return type unknown.");
1447
f1d77e90
JG
1448 if ( code == TYPE_CODE_STRUCT
1449 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1450 error ("GDB does not support specifying a struct or union return value.");
dd3b648e
RP
1451
1452 /* FIXME, this is bogus. We don't know what the return conventions
1453 are, or how values should be promoted.... */
1454 if (code == TYPE_CODE_FLT)
1455 {
1456 dbuf = value_as_double (val);
1457
1458 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1459 }
1460 else
1461 {
1462 lbuf = value_as_long (val);
1463 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1464 }
1465}
1466\f
1467void
1468_initialize_values ()
1469{
f266e564 1470 add_cmd ("convenience", no_class, show_convenience,
dd3b648e
RP
1471 "Debugger convenience (\"$foo\") variables.\n\
1472These variables are created when you assign them values;\n\
1473thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1474A few convenience variables are given values automatically:\n\
1475\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f266e564
JK
1476\"$__\" holds the contents of the last address examined with \"x\".",
1477 &showlist);
dd3b648e 1478
f266e564
JK
1479 add_cmd ("values", no_class, show_values,
1480 "Elements of value history around item number IDX (or last ten).",
1481 &showlist);
dd3b648e 1482}
This page took 0.250626 seconds and 4 git commands to generate.