(PCINDEX): New macro.
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
7d9884b9 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
8918bce0
PS
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
dd3b648e
RP
4
5This file is part of GDB.
6
99a7de40 7This program is free software; you can redistribute it and/or modify
dd3b648e 8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e 11
99a7de40 12This program is distributed in the hope that it will be useful,
dd3b648e
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40
JG
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e 20
dd3b648e 21#include "defs.h"
d747e0af 22#include <string.h>
dd3b648e 23#include "symtab.h"
1ab3bf1b 24#include "gdbtypes.h"
dd3b648e
RP
25#include "value.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "command.h"
f266e564 29#include "gdbcmd.h"
ac88ca20 30#include "target.h"
acc4efde 31#include "language.h"
8050a57b 32#include "demangle.h"
dd3b648e 33
1ab3bf1b
JG
34/* Local function prototypes. */
35
849d0896
PS
36static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
1ab3bf1b 38
82a2edfb 39static void show_values PARAMS ((char *, int));
1ab3bf1b 40
82a2edfb 41static void show_convenience PARAMS ((char *, int));
71b16efa 42
dd3b648e
RP
43/* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49#define VALUE_HISTORY_CHUNK 60
50
51struct value_history_chunk
52{
53 struct value_history_chunk *next;
82a2edfb 54 value_ptr values[VALUE_HISTORY_CHUNK];
dd3b648e
RP
55};
56
57/* Chain of chunks now in use. */
58
59static struct value_history_chunk *value_history_chain;
60
61static int value_history_count; /* Abs number of last entry stored */
dd3b648e
RP
62\f
63/* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
82a2edfb 67static value_ptr all_values;
dd3b648e
RP
68
69/* Allocate a value that has the correct length for type TYPE. */
70
82a2edfb 71value_ptr
dd3b648e
RP
72allocate_value (type)
73 struct type *type;
74{
82a2edfb 75 register value_ptr val;
dd3b648e
RP
76
77 check_stub_type (type);
78
82a2edfb 79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
dd3b648e
RP
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
30974778 94 val->modifiable = 1;
dd3b648e
RP
95 return val;
96}
97
98/* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
82a2edfb 101value_ptr
dd3b648e
RP
102allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105{
82a2edfb 106 register value_ptr val;
dd3b648e 107
82a2edfb
JK
108 val =
109 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
dd3b648e
RP
110 VALUE_NEXT (val) = all_values;
111 all_values = val;
112 VALUE_TYPE (val) = type;
113 VALUE_LVAL (val) = not_lval;
114 VALUE_ADDRESS (val) = 0;
115 VALUE_FRAME (val) = 0;
116 VALUE_OFFSET (val) = 0;
117 VALUE_BITPOS (val) = 0;
118 VALUE_BITSIZE (val) = 0;
119 VALUE_REPEATED (val) = 1;
120 VALUE_REPETITIONS (val) = count;
121 VALUE_REGNO (val) = -1;
122 VALUE_LAZY (val) = 0;
123 VALUE_OPTIMIZED_OUT (val) = 0;
124 return val;
125}
126
fcb887ff
JK
127/* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
82a2edfb 130value_ptr
fcb887ff
JK
131value_mark ()
132{
133 return all_values;
134}
135
136/* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138void
139value_free_to_mark (mark)
82a2edfb 140 value_ptr mark;
fcb887ff 141{
82a2edfb 142 value_ptr val, next;
fcb887ff
JK
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150}
151
dd3b648e
RP
152/* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155void
156free_all_values ()
157{
82a2edfb 158 register value_ptr val, next;
dd3b648e
RP
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167}
168
169/* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172void
173release_value (val)
82a2edfb 174 register value_ptr val;
dd3b648e 175{
82a2edfb 176 register value_ptr v;
dd3b648e
RP
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192}
193
999dd04b
JL
194/* Release all values up to mark */
195value_ptr
196value_release_to_mark (mark)
197 value_ptr mark;
198{
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210}
211
dd3b648e
RP
212/* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
82a2edfb 216value_ptr
dd3b648e 217value_copy (arg)
82a2edfb 218 value_ptr arg;
dd3b648e 219{
82a2edfb 220 register value_ptr val;
dd3b648e
RP
221 register struct type *type = VALUE_TYPE (arg);
222 if (VALUE_REPEATED (arg))
223 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 else
225 val = allocate_value (type);
226 VALUE_LVAL (val) = VALUE_LVAL (arg);
227 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
228 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
229 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
230 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
231 VALUE_REGNO (val) = VALUE_REGNO (arg);
232 VALUE_LAZY (val) = VALUE_LAZY (arg);
30974778 233 val->modifiable = arg->modifiable;
dd3b648e
RP
234 if (!VALUE_LAZY (val))
235 {
51b57ded
FF
236 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
237 TYPE_LENGTH (VALUE_TYPE (arg))
238 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
dd3b648e
RP
239 }
240 return val;
241}
242\f
243/* Access to the value history. */
244
245/* Record a new value in the value history.
246 Returns the absolute history index of the entry.
247 Result of -1 indicates the value was not saved; otherwise it is the
248 value history index of this new item. */
249
250int
251record_latest_value (val)
82a2edfb 252 value_ptr val;
dd3b648e
RP
253{
254 int i;
255
256 /* Check error now if about to store an invalid float. We return -1
257 to the caller, but allow them to continue, e.g. to print it as "Nan". */
4ed3a9ea
FF
258 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
259 {
260 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
261 if (i) return -1; /* Indicate value not saved in history */
262 }
dd3b648e 263
26a859ec
PS
264 /* We don't want this value to have anything to do with the inferior anymore.
265 In particular, "set $1 = 50" should not affect the variable from which
266 the value was taken, and fast watchpoints should be able to assume that
267 a value on the value history never changes. */
268 if (VALUE_LAZY (val))
269 value_fetch_lazy (val);
270 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
271 from. This is a bit dubious, because then *&$1 does not just return $1
272 but the current contents of that location. c'est la vie... */
273 val->modifiable = 0;
274 release_value (val);
275
dd3b648e
RP
276 /* Here we treat value_history_count as origin-zero
277 and applying to the value being stored now. */
278
279 i = value_history_count % VALUE_HISTORY_CHUNK;
280 if (i == 0)
281 {
282 register struct value_history_chunk *new
283 = (struct value_history_chunk *)
284 xmalloc (sizeof (struct value_history_chunk));
4ed3a9ea 285 memset (new->values, 0, sizeof new->values);
dd3b648e
RP
286 new->next = value_history_chain;
287 value_history_chain = new;
288 }
289
290 value_history_chain->values[i] = val;
4abc83b9 291
dd3b648e
RP
292 /* Now we regard value_history_count as origin-one
293 and applying to the value just stored. */
294
295 return ++value_history_count;
296}
297
298/* Return a copy of the value in the history with sequence number NUM. */
299
82a2edfb 300value_ptr
dd3b648e
RP
301access_value_history (num)
302 int num;
303{
304 register struct value_history_chunk *chunk;
305 register int i;
306 register int absnum = num;
307
308 if (absnum <= 0)
309 absnum += value_history_count;
310
311 if (absnum <= 0)
312 {
313 if (num == 0)
314 error ("The history is empty.");
315 else if (num == 1)
316 error ("There is only one value in the history.");
317 else
318 error ("History does not go back to $$%d.", -num);
319 }
320 if (absnum > value_history_count)
321 error ("History has not yet reached $%d.", absnum);
322
323 absnum--;
324
325 /* Now absnum is always absolute and origin zero. */
326
327 chunk = value_history_chain;
328 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
329 i > 0; i--)
330 chunk = chunk->next;
331
332 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
333}
334
335/* Clear the value history entirely.
336 Must be done when new symbol tables are loaded,
337 because the type pointers become invalid. */
338
339void
340clear_value_history ()
341{
342 register struct value_history_chunk *next;
343 register int i;
82a2edfb 344 register value_ptr val;
dd3b648e
RP
345
346 while (value_history_chain)
347 {
348 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
a8a69e63 349 if ((val = value_history_chain->values[i]) != NULL)
be772100 350 free ((PTR)val);
dd3b648e 351 next = value_history_chain->next;
be772100 352 free ((PTR)value_history_chain);
dd3b648e
RP
353 value_history_chain = next;
354 }
355 value_history_count = 0;
356}
357
358static void
f266e564 359show_values (num_exp, from_tty)
dd3b648e
RP
360 char *num_exp;
361 int from_tty;
362{
363 register int i;
82a2edfb 364 register value_ptr val;
dd3b648e
RP
365 static int num = 1;
366
367 if (num_exp)
368 {
46c28185
RP
369 /* "info history +" should print from the stored position.
370 "info history <exp>" should print around value number <exp>. */
371 if (num_exp[0] != '+' || num_exp[1] != '\0')
dd3b648e
RP
372 num = parse_and_eval_address (num_exp) - 5;
373 }
374 else
375 {
376 /* "info history" means print the last 10 values. */
377 num = value_history_count - 9;
378 }
379
380 if (num <= 0)
381 num = 1;
382
383 for (i = num; i < num + 10 && i <= value_history_count; i++)
384 {
385 val = access_value_history (i);
386 printf_filtered ("$%d = ", i);
199b2450 387 value_print (val, gdb_stdout, 0, Val_pretty_default);
dd3b648e
RP
388 printf_filtered ("\n");
389 }
390
391 /* The next "info history +" should start after what we just printed. */
392 num += 10;
393
394 /* Hitting just return after this command should do the same thing as
395 "info history +". If num_exp is null, this is unnecessary, since
396 "info history +" is not useful after "info history". */
397 if (from_tty && num_exp)
398 {
399 num_exp[0] = '+';
400 num_exp[1] = '\0';
401 }
402}
403\f
404/* Internal variables. These are variables within the debugger
405 that hold values assigned by debugger commands.
406 The user refers to them with a '$' prefix
407 that does not appear in the variable names stored internally. */
408
409static struct internalvar *internalvars;
410
411/* Look up an internal variable with name NAME. NAME should not
412 normally include a dollar sign.
413
414 If the specified internal variable does not exist,
415 one is created, with a void value. */
416
417struct internalvar *
418lookup_internalvar (name)
419 char *name;
420{
421 register struct internalvar *var;
422
423 for (var = internalvars; var; var = var->next)
2e4964ad 424 if (STREQ (var->name, name))
dd3b648e
RP
425 return var;
426
427 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
58ae87f6 428 var->name = concat (name, NULL);
dd3b648e
RP
429 var->value = allocate_value (builtin_type_void);
430 release_value (var->value);
431 var->next = internalvars;
432 internalvars = var;
433 return var;
434}
435
82a2edfb 436value_ptr
dd3b648e
RP
437value_of_internalvar (var)
438 struct internalvar *var;
439{
82a2edfb 440 register value_ptr val;
dd3b648e
RP
441
442#ifdef IS_TRAPPED_INTERNALVAR
443 if (IS_TRAPPED_INTERNALVAR (var->name))
444 return VALUE_OF_TRAPPED_INTERNALVAR (var);
445#endif
446
447 val = value_copy (var->value);
448 if (VALUE_LAZY (val))
449 value_fetch_lazy (val);
450 VALUE_LVAL (val) = lval_internalvar;
451 VALUE_INTERNALVAR (val) = var;
452 return val;
453}
454
455void
456set_internalvar_component (var, offset, bitpos, bitsize, newval)
457 struct internalvar *var;
458 int offset, bitpos, bitsize;
82a2edfb 459 value_ptr newval;
dd3b648e
RP
460{
461 register char *addr = VALUE_CONTENTS (var->value) + offset;
462
463#ifdef IS_TRAPPED_INTERNALVAR
464 if (IS_TRAPPED_INTERNALVAR (var->name))
465 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
466#endif
467
468 if (bitsize)
58e49e21 469 modify_field (addr, value_as_long (newval),
dd3b648e
RP
470 bitpos, bitsize);
471 else
4ed3a9ea 472 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
dd3b648e
RP
473}
474
475void
476set_internalvar (var, val)
477 struct internalvar *var;
82a2edfb 478 value_ptr val;
dd3b648e 479{
51f83933
JK
480 value_ptr newval;
481
dd3b648e
RP
482#ifdef IS_TRAPPED_INTERNALVAR
483 if (IS_TRAPPED_INTERNALVAR (var->name))
484 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
485#endif
486
51f83933
JK
487 newval = value_copy (val);
488
6fab5bef
JG
489 /* Force the value to be fetched from the target now, to avoid problems
490 later when this internalvar is referenced and the target is gone or
491 has changed. */
51f83933
JK
492 if (VALUE_LAZY (newval))
493 value_fetch_lazy (newval);
494
495 /* Begin code which must not call error(). If var->value points to
496 something free'd, an error() obviously leaves a dangling pointer.
497 But we also get a danling pointer if var->value points to
498 something in the value chain (i.e., before release_value is
499 called), because after the error free_all_values will get called before
500 long. */
501 free ((PTR)var->value);
502 var->value = newval;
503 release_value (newval);
504 /* End code which must not call error(). */
dd3b648e
RP
505}
506
507char *
508internalvar_name (var)
509 struct internalvar *var;
510{
511 return var->name;
512}
513
514/* Free all internalvars. Done when new symtabs are loaded,
515 because that makes the values invalid. */
516
517void
518clear_internalvars ()
519{
520 register struct internalvar *var;
521
522 while (internalvars)
523 {
524 var = internalvars;
525 internalvars = var->next;
be772100
JG
526 free ((PTR)var->name);
527 free ((PTR)var->value);
528 free ((PTR)var);
dd3b648e
RP
529 }
530}
531
532static void
ac88ca20
JG
533show_convenience (ignore, from_tty)
534 char *ignore;
535 int from_tty;
dd3b648e
RP
536{
537 register struct internalvar *var;
538 int varseen = 0;
539
540 for (var = internalvars; var; var = var->next)
541 {
542#ifdef IS_TRAPPED_INTERNALVAR
543 if (IS_TRAPPED_INTERNALVAR (var->name))
544 continue;
545#endif
546 if (!varseen)
547 {
dd3b648e
RP
548 varseen = 1;
549 }
afe4ca15 550 printf_filtered ("$%s = ", var->name);
199b2450 551 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
afe4ca15 552 printf_filtered ("\n");
dd3b648e
RP
553 }
554 if (!varseen)
199b2450 555 printf_unfiltered ("No debugger convenience variables now defined.\n\
dd3b648e
RP
556Convenience variables have names starting with \"$\";\n\
557use \"set\" as in \"set $foo = 5\" to define them.\n");
558}
559\f
560/* Extract a value as a C number (either long or double).
561 Knows how to convert fixed values to double, or
562 floating values to long.
563 Does not deallocate the value. */
564
565LONGEST
566value_as_long (val)
82a2edfb 567 register value_ptr val;
dd3b648e
RP
568{
569 /* This coerces arrays and functions, which is necessary (e.g.
570 in disassemble_command). It also dereferences references, which
571 I suspect is the most logical thing to do. */
572 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
573 COERCE_ARRAY (val);
574 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
575}
576
577double
578value_as_double (val)
82a2edfb 579 register value_ptr val;
dd3b648e
RP
580{
581 double foo;
582 int inv;
583
584 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
585 if (inv)
586 error ("Invalid floating value found in program.");
587 return foo;
588}
e1ce8aa5
JK
589/* Extract a value as a C pointer.
590 Does not deallocate the value. */
591CORE_ADDR
592value_as_pointer (val)
82a2edfb 593 value_ptr val;
e1ce8aa5 594{
2bff8e38
JK
595 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
596 whether we want this to be true eventually. */
b2ccb6a4
JK
597#if 0
598 /* ADDR_BITS_REMOVE is wrong if we are being called for a
599 non-address (e.g. argument to "signal", "info break", etc.), or
600 for pointers to char, in which the low bits *are* significant. */
ae0ea72e 601 return ADDR_BITS_REMOVE(value_as_long (val));
b2ccb6a4
JK
602#else
603 return value_as_long (val);
604#endif
e1ce8aa5 605}
dd3b648e
RP
606\f
607/* Unpack raw data (copied from debugee, target byte order) at VALADDR
608 as a long, or as a double, assuming the raw data is described
609 by type TYPE. Knows how to convert different sizes of values
610 and can convert between fixed and floating point. We don't assume
611 any alignment for the raw data. Return value is in host byte order.
612
613 If you want functions and arrays to be coerced to pointers, and
614 references to be dereferenced, call value_as_long() instead.
615
616 C++: It is assumed that the front-end has taken care of
617 all matters concerning pointers to members. A pointer
618 to member which reaches here is considered to be equivalent
619 to an INT (or some size). After all, it is only an offset. */
620
621LONGEST
622unpack_long (type, valaddr)
623 struct type *type;
624 char *valaddr;
625{
626 register enum type_code code = TYPE_CODE (type);
627 register int len = TYPE_LENGTH (type);
628 register int nosign = TYPE_UNSIGNED (type);
629
bf5c0d64 630 switch (code)
dd3b648e 631 {
bf5c0d64
JK
632 case TYPE_CODE_ENUM:
633 case TYPE_CODE_BOOL:
634 case TYPE_CODE_INT:
635 case TYPE_CODE_CHAR:
b96bc1e4 636 case TYPE_CODE_RANGE:
bf5c0d64
JK
637 if (nosign)
638 return extract_unsigned_integer (valaddr, len);
dd3b648e 639 else
bf5c0d64
JK
640 return extract_signed_integer (valaddr, len);
641
642 case TYPE_CODE_FLT:
643 return extract_floating (valaddr, len);
644
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_REF:
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
648 whether we want this to be true eventually. */
34df79fc 649 return extract_address (valaddr, len);
dd3b648e 650
bf5c0d64
JK
651 case TYPE_CODE_MEMBER:
652 error ("not implemented: member types in unpack_long");
653
654 default:
ca0865db 655 error ("Value can't be converted to integer.");
bf5c0d64
JK
656 }
657 return 0; /* Placate lint. */
dd3b648e
RP
658}
659
660/* Return a double value from the specified type and address.
661 INVP points to an int which is set to 0 for valid value,
662 1 for invalid value (bad float format). In either case,
663 the returned double is OK to use. Argument is in target
664 format, result is in host format. */
665
666double
667unpack_double (type, valaddr, invp)
668 struct type *type;
669 char *valaddr;
670 int *invp;
671{
672 register enum type_code code = TYPE_CODE (type);
673 register int len = TYPE_LENGTH (type);
674 register int nosign = TYPE_UNSIGNED (type);
675
676 *invp = 0; /* Assume valid. */
677 if (code == TYPE_CODE_FLT)
678 {
ac57e5ad 679#ifdef INVALID_FLOAT
dd3b648e
RP
680 if (INVALID_FLOAT (valaddr, len))
681 {
682 *invp = 1;
683 return 1.234567891011121314;
684 }
ac57e5ad 685#endif
89ce0c8f
JK
686 return extract_floating (valaddr, len);
687 }
688 else if (nosign)
689 {
690 /* Unsigned -- be sure we compensate for signed LONGEST. */
691 return (unsigned LONGEST) unpack_long (type, valaddr);
692 }
693 else
694 {
695 /* Signed -- we are OK with unpack_long. */
696 return unpack_long (type, valaddr);
dd3b648e 697 }
dd3b648e 698}
e1ce8aa5
JK
699
700/* Unpack raw data (copied from debugee, target byte order) at VALADDR
701 as a CORE_ADDR, assuming the raw data is described by type TYPE.
702 We don't assume any alignment for the raw data. Return value is in
703 host byte order.
704
705 If you want functions and arrays to be coerced to pointers, and
706 references to be dereferenced, call value_as_pointer() instead.
707
708 C++: It is assumed that the front-end has taken care of
709 all matters concerning pointers to members. A pointer
710 to member which reaches here is considered to be equivalent
711 to an INT (or some size). After all, it is only an offset. */
712
713CORE_ADDR
714unpack_pointer (type, valaddr)
715 struct type *type;
716 char *valaddr;
717{
2bff8e38
JK
718 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
719 whether we want this to be true eventually. */
720 return unpack_long (type, valaddr);
e1ce8aa5 721}
dd3b648e
RP
722\f
723/* Given a value ARG1 (offset by OFFSET bytes)
724 of a struct or union type ARG_TYPE,
725 extract and return the value of one of its fields.
726 FIELDNO says which field.
727
728 For C++, must also be able to return values from static fields */
729
82a2edfb 730value_ptr
dd3b648e 731value_primitive_field (arg1, offset, fieldno, arg_type)
82a2edfb 732 register value_ptr arg1;
dd3b648e
RP
733 int offset;
734 register int fieldno;
735 register struct type *arg_type;
736{
82a2edfb 737 register value_ptr v;
dd3b648e
RP
738 register struct type *type;
739
740 check_stub_type (arg_type);
741 type = TYPE_FIELD_TYPE (arg_type, fieldno);
742
743 /* Handle packed fields */
744
745 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
746 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
747 {
96b2f51c 748 v = value_from_longest (type,
dd3b648e
RP
749 unpack_field_as_long (arg_type,
750 VALUE_CONTENTS (arg1),
751 fieldno));
752 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
753 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
754 }
755 else
756 {
757 v = allocate_value (type);
758 if (VALUE_LAZY (arg1))
759 VALUE_LAZY (v) = 1;
760 else
4ed3a9ea
FF
761 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
762 TYPE_LENGTH (type));
dd3b648e
RP
763 }
764 VALUE_LVAL (v) = VALUE_LVAL (arg1);
765 if (VALUE_LVAL (arg1) == lval_internalvar)
766 VALUE_LVAL (v) = lval_internalvar_component;
767 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
768 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
769 return v;
770}
771
772/* Given a value ARG1 of a struct or union type,
773 extract and return the value of one of its fields.
774 FIELDNO says which field.
775
776 For C++, must also be able to return values from static fields */
777
82a2edfb 778value_ptr
dd3b648e 779value_field (arg1, fieldno)
82a2edfb 780 register value_ptr arg1;
dd3b648e
RP
781 register int fieldno;
782{
783 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
784}
785
545af6ce
PB
786/* Return a non-virtual function as a value.
787 F is the list of member functions which contains the desired method.
788 J is an index into F which provides the desired method. */
789
82a2edfb 790value_ptr
94603999 791value_fn_field (arg1p, f, j, type, offset)
82a2edfb 792 value_ptr *arg1p;
545af6ce
PB
793 struct fn_field *f;
794 int j;
94603999
JG
795 struct type *type;
796 int offset;
dd3b648e 797{
82a2edfb 798 register value_ptr v;
94603999 799 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
dd3b648e
RP
800 struct symbol *sym;
801
545af6ce 802 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
dd3b648e 803 0, VAR_NAMESPACE, 0, NULL);
f1c6dbf6 804 if (! sym)
82a2edfb 805 return NULL;
f1c6dbf6
KH
806/*
807 error ("Internal error: could not find physical method named %s",
545af6ce 808 TYPE_FN_FIELD_PHYSNAME (f, j));
f1c6dbf6 809*/
dd3b648e 810
94603999 811 v = allocate_value (ftype);
dd3b648e 812 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
94603999
JG
813 VALUE_TYPE (v) = ftype;
814
815 if (arg1p)
816 {
817 if (type != VALUE_TYPE (*arg1p))
818 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
819 value_addr (*arg1p)));
820
dcd8fd8c 821 /* Move the `this' pointer according to the offset.
94603999 822 VALUE_OFFSET (*arg1p) += offset;
dcd8fd8c 823 */
94603999
JG
824 }
825
dd3b648e
RP
826 return v;
827}
828
829/* Return a virtual function as a value.
830 ARG1 is the object which provides the virtual function
94603999 831 table pointer. *ARG1P is side-effected in calling this function.
dd3b648e
RP
832 F is the list of member functions which contains the desired virtual
833 function.
e532974c
JK
834 J is an index into F which provides the desired virtual function.
835
836 TYPE is the type in which F is located. */
82a2edfb 837value_ptr
94603999 838value_virtual_fn_field (arg1p, f, j, type, offset)
82a2edfb 839 value_ptr *arg1p;
dd3b648e
RP
840 struct fn_field *f;
841 int j;
e532974c 842 struct type *type;
94603999 843 int offset;
dd3b648e 844{
82a2edfb 845 value_ptr arg1 = *arg1p;
dd3b648e
RP
846 /* First, get the virtual function table pointer. That comes
847 with a strange type, so cast it to type `pointer to long' (which
848 should serve just fine as a function type). Then, index into
849 the table, and convert final value to appropriate function type. */
82a2edfb
JK
850 value_ptr entry, vfn, vtbl;
851 value_ptr vi = value_from_longest (builtin_type_int,
852 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
e532974c
JK
853 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
854 struct type *context;
855 if (fcontext == NULL)
856 /* We don't have an fcontext (e.g. the program was compiled with
857 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
858 This won't work right for multiple inheritance, but at least we
859 should do as well as GDB 3.x did. */
860 fcontext = TYPE_VPTR_BASETYPE (type);
861 context = lookup_pointer_type (fcontext);
862 /* Now context is a pointer to the basetype containing the vtbl. */
dd3b648e
RP
863 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
864 arg1 = value_ind (value_cast (context, value_addr (arg1)));
865
866 context = VALUE_TYPE (arg1);
e532974c 867 /* Now context is the basetype containing the vtbl. */
dd3b648e
RP
868
869 /* This type may have been defined before its virtual function table
870 was. If so, fill in the virtual function table entry for the
871 type now. */
872 if (TYPE_VPTR_FIELDNO (context) < 0)
71b16efa 873 fill_in_vptr_fieldno (context);
dd3b648e
RP
874
875 /* The virtual function table is now an array of structures
876 which have the form { int16 offset, delta; void *pfn; }. */
94603999
JG
877 vtbl = value_ind (value_primitive_field (arg1, 0,
878 TYPE_VPTR_FIELDNO (context),
879 TYPE_VPTR_BASETYPE (context)));
dd3b648e
RP
880
881 /* Index into the virtual function table. This is hard-coded because
882 looking up a field is not cheap, and it may be important to save
883 time, e.g. if the user has set a conditional breakpoint calling
884 a virtual function. */
885 entry = value_subscript (vtbl, vi);
886
36a2283d 887 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
dd3b648e 888 {
36a2283d
PB
889 /* Move the `this' pointer according to the virtual function table. */
890 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
891
892 if (! VALUE_LAZY (arg1))
893 {
894 VALUE_LAZY (arg1) = 1;
895 value_fetch_lazy (arg1);
896 }
dd3b648e 897
36a2283d
PB
898 vfn = value_field (entry, 2);
899 }
900 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
901 vfn = entry;
902 else
903 error ("I'm confused: virtual function table has bad type");
dd3b648e
RP
904 /* Reinstantiate the function pointer with the correct type. */
905 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
906
94603999 907 *arg1p = arg1;
dd3b648e
RP
908 return vfn;
909}
910
71b16efa
JK
911/* ARG is a pointer to an object we know to be at least
912 a DTYPE. BTYPE is the most derived basetype that has
913 already been searched (and need not be searched again).
914 After looking at the vtables between BTYPE and DTYPE,
915 return the most derived type we find. The caller must
916 be satisfied when the return value == DTYPE.
917
918 FIXME-tiemann: should work with dossier entries as well. */
919
82a2edfb 920static value_ptr
7cb0f870 921value_headof (in_arg, btype, dtype)
82a2edfb 922 value_ptr in_arg;
71b16efa
JK
923 struct type *btype, *dtype;
924{
925 /* First collect the vtables we must look at for this object. */
926 /* FIXME-tiemann: right now, just look at top-most vtable. */
82a2edfb 927 value_ptr arg, vtbl, entry, best_entry = 0;
71b16efa
JK
928 int i, nelems;
929 int offset, best_offset = 0;
930 struct symbol *sym;
931 CORE_ADDR pc_for_sym;
932 char *demangled_name;
1ab3bf1b
JG
933 struct minimal_symbol *msymbol;
934
aec4cb91
MT
935 btype = TYPE_VPTR_BASETYPE (dtype);
936 check_stub_type (btype);
7cb0f870 937 arg = in_arg;
aec4cb91 938 if (btype != dtype)
7cb0f870
MT
939 arg = value_cast (lookup_pointer_type (btype), arg);
940 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
71b16efa
JK
941
942 /* Check that VTBL looks like it points to a virtual function table. */
1ab3bf1b
JG
943 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
944 if (msymbol == NULL
36a2283d
PB
945 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
946 || !VTBL_PREFIX_P (demangled_name))
71b16efa
JK
947 {
948 /* If we expected to find a vtable, but did not, let the user
949 know that we aren't happy, but don't throw an error.
950 FIXME: there has to be a better way to do this. */
951 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
7cb0f870 952 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
71b16efa 953 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
7cb0f870
MT
954 VALUE_TYPE (in_arg) = error_type;
955 return in_arg;
71b16efa
JK
956 }
957
958 /* Now search through the virtual function table. */
959 entry = value_ind (vtbl);
e1ce8aa5 960 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
71b16efa
JK
961 for (i = 1; i <= nelems; i++)
962 {
96b2f51c
JG
963 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
964 (LONGEST) i));
36a2283d
PB
965 /* This won't work if we're using thunks. */
966 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
967 break;
e1ce8aa5 968 offset = longest_to_int (value_as_long (value_field (entry, 0)));
bcccec8c
PB
969 /* If we use '<=' we can handle single inheritance
970 * where all offsets are zero - just use the first entry found. */
971 if (offset <= best_offset)
71b16efa
JK
972 {
973 best_offset = offset;
974 best_entry = entry;
975 }
976 }
71b16efa
JK
977 /* Move the pointer according to BEST_ENTRY's offset, and figure
978 out what type we should return as the new pointer. */
bcccec8c
PB
979 if (best_entry == 0)
980 {
981 /* An alternative method (which should no longer be necessary).
982 * But we leave it in for future use, when we will hopefully
983 * have optimizes the vtable to use thunks instead of offsets. */
984 /* Use the name of vtable itself to extract a base type. */
f1c6dbf6 985 demangled_name += 4; /* Skip _vt$ prefix. */
bcccec8c
PB
986 }
987 else
988 {
989 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
990 sym = find_pc_function (pc_for_sym);
8050a57b 991 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
bcccec8c
PB
992 *(strchr (demangled_name, ':')) = '\0';
993 }
71b16efa 994 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
2e4964ad
FF
995 if (sym == NULL)
996 error ("could not find type declaration for `%s'", demangled_name);
bcccec8c
PB
997 if (best_entry)
998 {
999 free (demangled_name);
1000 arg = value_add (value_cast (builtin_type_int, arg),
1001 value_field (best_entry, 0));
1002 }
7cb0f870 1003 else arg = in_arg;
71b16efa
JK
1004 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1005 return arg;
1006}
1007
1008/* ARG is a pointer object of type TYPE. If TYPE has virtual
1009 function tables, probe ARG's tables (including the vtables
1010 of its baseclasses) to figure out the most derived type that ARG
1011 could actually be a pointer to. */
1012
82a2edfb 1013value_ptr
71b16efa 1014value_from_vtable_info (arg, type)
82a2edfb 1015 value_ptr arg;
71b16efa
JK
1016 struct type *type;
1017{
1018 /* Take care of preliminaries. */
1019 if (TYPE_VPTR_FIELDNO (type) < 0)
1020 fill_in_vptr_fieldno (type);
1021 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1022 return 0;
1023
1024 return value_headof (arg, 0, type);
1025}
1026
1410f5f1
JK
1027/* Return true if the INDEXth field of TYPE is a virtual baseclass
1028 pointer which is for the base class whose type is BASECLASS. */
1029
1030static int
1031vb_match (type, index, basetype)
1032 struct type *type;
1033 int index;
1034 struct type *basetype;
1035{
1036 struct type *fieldtype;
1410f5f1
JK
1037 char *name = TYPE_FIELD_NAME (type, index);
1038 char *field_class_name = NULL;
1039
1040 if (*name != '_')
1041 return 0;
f1c6dbf6 1042 /* gcc 2.4 uses _vb$. */
1410f5f1
JK
1043 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1044 field_class_name = name + 4;
f1c6dbf6 1045 /* gcc 2.5 will use __vb_. */
1410f5f1
JK
1046 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1047 field_class_name = name + 5;
1048
1049 if (field_class_name == NULL)
1050 /* This field is not a virtual base class pointer. */
1051 return 0;
1052
1053 /* It's a virtual baseclass pointer, now we just need to find out whether
1054 it is for this baseclass. */
1055 fieldtype = TYPE_FIELD_TYPE (type, index);
1056 if (fieldtype == NULL
1057 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1058 /* "Can't happen". */
1059 return 0;
1060
1061 /* What we check for is that either the types are equal (needed for
1062 nameless types) or have the same name. This is ugly, and a more
1063 elegant solution should be devised (which would probably just push
1064 the ugliness into symbol reading unless we change the stabs format). */
1065 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1066 return 1;
1067
1068 if (TYPE_NAME (basetype) != NULL
1069 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1070 && STREQ (TYPE_NAME (basetype),
1071 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1072 return 1;
1073 return 0;
1074}
1075
94603999
JG
1076/* Compute the offset of the baseclass which is
1077 the INDEXth baseclass of class TYPE, for a value ARG,
1078 wih extra offset of OFFSET.
1079 The result is the offste of the baseclass value relative
1080 to (the address of)(ARG) + OFFSET.
1081
1082 -1 is returned on error. */
1083
1084int
1085baseclass_offset (type, index, arg, offset)
1086 struct type *type;
1087 int index;
82a2edfb 1088 value_ptr arg;
94603999
JG
1089 int offset;
1090{
1091 struct type *basetype = TYPE_BASECLASS (type, index);
1092
1093 if (BASETYPE_VIA_VIRTUAL (type, index))
1094 {
1095 /* Must hunt for the pointer to this virtual baseclass. */
1096 register int i, len = TYPE_NFIELDS (type);
1097 register int n_baseclasses = TYPE_N_BASECLASSES (type);
94603999 1098
94603999
JG
1099 /* First look for the virtual baseclass pointer
1100 in the fields. */
1101 for (i = n_baseclasses; i < len; i++)
1102 {
1410f5f1 1103 if (vb_match (type, i, basetype))
94603999
JG
1104 {
1105 CORE_ADDR addr
1106 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1107 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1108 + offset
1109 + (TYPE_FIELD_BITPOS (type, i) / 8));
1110
1111 if (VALUE_LVAL (arg) != lval_memory)
1112 return -1;
1113
1114 return addr -
1115 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1116 }
1117 }
1118 /* Not in the fields, so try looking through the baseclasses. */
1119 for (i = index+1; i < n_baseclasses; i++)
1120 {
1121 int boffset =
1122 baseclass_offset (type, i, arg, offset);
1123 if (boffset)
1124 return boffset;
1125 }
1126 /* Not found. */
1127 return -1;
1128 }
1129
1130 /* Baseclass is easily computed. */
1131 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1132}
1133
dd3b648e 1134/* Compute the address of the baseclass which is
f1d77e90 1135 the INDEXth baseclass of class TYPE. The TYPE base
71b16efa
JK
1136 of the object is at VALADDR.
1137
1138 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1139 or 0 if no error. In that case the return value is not the address
1140 of the baseclasss, but the address which could not be read
1141 successfully. */
dd3b648e 1142
94603999
JG
1143/* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1144
dd3b648e 1145char *
71b16efa 1146baseclass_addr (type, index, valaddr, valuep, errp)
dd3b648e
RP
1147 struct type *type;
1148 int index;
1149 char *valaddr;
82a2edfb 1150 value_ptr *valuep;
71b16efa 1151 int *errp;
dd3b648e
RP
1152{
1153 struct type *basetype = TYPE_BASECLASS (type, index);
1154
71b16efa
JK
1155 if (errp)
1156 *errp = 0;
aec4cb91 1157
dd3b648e
RP
1158 if (BASETYPE_VIA_VIRTUAL (type, index))
1159 {
1160 /* Must hunt for the pointer to this virtual baseclass. */
1161 register int i, len = TYPE_NFIELDS (type);
1162 register int n_baseclasses = TYPE_N_BASECLASSES (type);
dd3b648e 1163
dd3b648e
RP
1164 /* First look for the virtual baseclass pointer
1165 in the fields. */
1166 for (i = n_baseclasses; i < len; i++)
1167 {
1410f5f1 1168 if (vb_match (type, i, basetype))
dd3b648e 1169 {
82a2edfb 1170 value_ptr val = allocate_value (basetype);
71b16efa
JK
1171 CORE_ADDR addr;
1172 int status;
1173
e1ce8aa5
JK
1174 addr
1175 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
71b16efa
JK
1176 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1177
1178 status = target_read_memory (addr,
1179 VALUE_CONTENTS_RAW (val),
4f6f12f9 1180 TYPE_LENGTH (basetype));
71b16efa
JK
1181 VALUE_LVAL (val) = lval_memory;
1182 VALUE_ADDRESS (val) = addr;
1183
1184 if (status != 0)
1185 {
1186 if (valuep)
1187 *valuep = NULL;
1188 release_value (val);
1189 value_free (val);
1190 if (errp)
1191 *errp = status;
1192 return (char *)addr;
1193 }
1194 else
1195 {
1196 if (valuep)
1197 *valuep = val;
1198 return (char *) VALUE_CONTENTS (val);
1199 }
dd3b648e
RP
1200 }
1201 }
1202 /* Not in the fields, so try looking through the baseclasses. */
1203 for (i = index+1; i < n_baseclasses; i++)
1204 {
1205 char *baddr;
1206
e1ce8aa5 1207 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
dd3b648e
RP
1208 if (baddr)
1209 return baddr;
1210 }
1211 /* Not found. */
1212 if (valuep)
1213 *valuep = 0;
1214 return 0;
1215 }
1216
1217 /* Baseclass is easily computed. */
1218 if (valuep)
1219 *valuep = 0;
1220 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1221}
dd3b648e 1222\f
4db8e515
FF
1223/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1224 VALADDR.
1225
1226 Extracting bits depends on endianness of the machine. Compute the
1227 number of least significant bits to discard. For big endian machines,
1228 we compute the total number of bits in the anonymous object, subtract
1229 off the bit count from the MSB of the object to the MSB of the
1230 bitfield, then the size of the bitfield, which leaves the LSB discard
1231 count. For little endian machines, the discard count is simply the
1232 number of bits from the LSB of the anonymous object to the LSB of the
1233 bitfield.
1234
1235 If the field is signed, we also do sign extension. */
1236
1237LONGEST
dd3b648e
RP
1238unpack_field_as_long (type, valaddr, fieldno)
1239 struct type *type;
1240 char *valaddr;
1241 int fieldno;
1242{
4db8e515
FF
1243 unsigned LONGEST val;
1244 unsigned LONGEST valmask;
dd3b648e
RP
1245 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1246 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
4db8e515 1247 int lsbcount;
dd3b648e 1248
34df79fc 1249 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
4db8e515
FF
1250
1251 /* Extract bits. See comment above. */
dd3b648e 1252
b8176214
ILT
1253 if (BITS_BIG_ENDIAN)
1254 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1255 else
1256 lsbcount = (bitpos % 8);
4db8e515 1257 val >>= lsbcount;
dd3b648e 1258
4db8e515
FF
1259 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1260 If the field is signed, and is negative, then sign extend. */
1261
1262 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1263 {
1264 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1265 val &= valmask;
1266 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1267 {
1268 if (val & (valmask ^ (valmask >> 1)))
1269 {
1270 val |= ~valmask;
1271 }
1272 }
1273 }
1274 return (val);
dd3b648e
RP
1275}
1276
3f2e006b
JG
1277/* Modify the value of a bitfield. ADDR points to a block of memory in
1278 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1279 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1280 indicate which bits (in target bit order) comprise the bitfield. */
1281
dd3b648e
RP
1282void
1283modify_field (addr, fieldval, bitpos, bitsize)
1284 char *addr;
58e49e21 1285 LONGEST fieldval;
dd3b648e
RP
1286 int bitpos, bitsize;
1287{
58e49e21 1288 LONGEST oword;
dd3b648e 1289
c3a21801
JG
1290 /* Reject values too big to fit in the field in question,
1291 otherwise adjoining fields may be corrupted. */
61a7292f
SG
1292 if (bitsize < (8 * sizeof (fieldval))
1293 && 0 != (fieldval & ~((1<<bitsize)-1)))
58e49e21
JK
1294 {
1295 /* FIXME: would like to include fieldval in the message, but
1296 we don't have a sprintf_longest. */
1297 error ("Value does not fit in %d bits.", bitsize);
1298 }
34df79fc
JK
1299
1300 oword = extract_signed_integer (addr, sizeof oword);
dd3b648e 1301
3f2e006b 1302 /* Shifting for bit field depends on endianness of the target machine. */
b8176214
ILT
1303 if (BITS_BIG_ENDIAN)
1304 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
dd3b648e 1305
58e49e21 1306 /* Mask out old value, while avoiding shifts >= size of oword */
c3a21801 1307 if (bitsize < 8 * sizeof (oword))
58e49e21 1308 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
c3a21801 1309 else
58e49e21 1310 oword &= ~((~(unsigned LONGEST)0) << bitpos);
dd3b648e 1311 oword |= fieldval << bitpos;
3f2e006b 1312
34df79fc 1313 store_signed_integer (addr, sizeof oword, oword);
dd3b648e
RP
1314}
1315\f
1316/* Convert C numbers into newly allocated values */
1317
82a2edfb 1318value_ptr
96b2f51c 1319value_from_longest (type, num)
dd3b648e
RP
1320 struct type *type;
1321 register LONGEST num;
1322{
82a2edfb 1323 register value_ptr val = allocate_value (type);
dd3b648e
RP
1324 register enum type_code code = TYPE_CODE (type);
1325 register int len = TYPE_LENGTH (type);
1326
34df79fc 1327 switch (code)
dd3b648e 1328 {
34df79fc
JK
1329 case TYPE_CODE_INT:
1330 case TYPE_CODE_CHAR:
1331 case TYPE_CODE_ENUM:
1332 case TYPE_CODE_BOOL:
b96bc1e4 1333 case TYPE_CODE_RANGE:
34df79fc
JK
1334 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1335 break;
1336
1337 case TYPE_CODE_REF:
1338 case TYPE_CODE_PTR:
1339 /* This assumes that all pointers of a given length
1340 have the same form. */
1341 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1342 break;
1343
1344 default:
1345 error ("Unexpected type encountered for integer constant.");
dd3b648e 1346 }
dd3b648e
RP
1347 return val;
1348}
1349
82a2edfb 1350value_ptr
dd3b648e
RP
1351value_from_double (type, num)
1352 struct type *type;
1353 double num;
1354{
82a2edfb 1355 register value_ptr val = allocate_value (type);
dd3b648e
RP
1356 register enum type_code code = TYPE_CODE (type);
1357 register int len = TYPE_LENGTH (type);
1358
1359 if (code == TYPE_CODE_FLT)
1360 {
bf5c0d64 1361 store_floating (VALUE_CONTENTS_RAW (val), len, num);
dd3b648e
RP
1362 }
1363 else
1364 error ("Unexpected type encountered for floating constant.");
1365
dd3b648e
RP
1366 return val;
1367}
1368\f
1369/* Deal with the value that is "about to be returned". */
1370
1371/* Return the value that a function returning now
1372 would be returning to its caller, assuming its type is VALTYPE.
1373 RETBUF is where we look for what ought to be the contents
1374 of the registers (in raw form). This is because it is often
1375 desirable to restore old values to those registers
1376 after saving the contents of interest, and then call
1377 this function using the saved values.
1378 struct_return is non-zero when the function in question is
1379 using the structure return conventions on the machine in question;
1380 0 when it is using the value returning conventions (this often
1381 means returning pointer to where structure is vs. returning value). */
1382
82a2edfb 1383value_ptr
dd3b648e
RP
1384value_being_returned (valtype, retbuf, struct_return)
1385 register struct type *valtype;
1386 char retbuf[REGISTER_BYTES];
1387 int struct_return;
1388 /*ARGSUSED*/
1389{
82a2edfb 1390 register value_ptr val;
dd3b648e
RP
1391 CORE_ADDR addr;
1392
1393#if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1394 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1395 if (struct_return) {
1396 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1397 if (!addr)
1398 error ("Function return value unknown");
1399 return value_at (valtype, addr);
1400 }
1401#endif
1402
1403 val = allocate_value (valtype);
1404 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1405
1406 return val;
1407}
1408
1409/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1410 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1411 and TYPE is the type (which is known to be struct, union or array).
1412
1413 On most machines, the struct convention is used unless we are
1414 using gcc and the type is of a special size. */
9925b928
JK
1415/* As of about 31 Mar 93, GCC was changed to be compatible with the
1416 native compiler. GCC 2.3.3 was the last release that did it the
1417 old way. Since gcc2_compiled was not changed, we have no
1418 way to correctly win in all cases, so we just do the right thing
1419 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1420 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1421 would cause more chaos than dealing with some struct returns being
1422 handled wrong. */
dd3b648e
RP
1423#if !defined (USE_STRUCT_CONVENTION)
1424#define USE_STRUCT_CONVENTION(gcc_p, type)\
9925b928
JK
1425 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1426 || TYPE_LENGTH (value_type) == 2 \
1427 || TYPE_LENGTH (value_type) == 4 \
1428 || TYPE_LENGTH (value_type) == 8 \
1429 ) \
dd3b648e
RP
1430 ))
1431#endif
1432
1433/* Return true if the function specified is using the structure returning
1434 convention on this machine to return arguments, or 0 if it is using
1435 the value returning convention. FUNCTION is the value representing
1436 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1437 is the type returned by the function. GCC_P is nonzero if compiled
1438 with GCC. */
1439
1440int
1441using_struct_return (function, funcaddr, value_type, gcc_p)
82a2edfb 1442 value_ptr function;
dd3b648e
RP
1443 CORE_ADDR funcaddr;
1444 struct type *value_type;
1445 int gcc_p;
1446 /*ARGSUSED*/
1447{
1448 register enum type_code code = TYPE_CODE (value_type);
1449
1450 if (code == TYPE_CODE_ERROR)
1451 error ("Function return type unknown.");
1452
1453 if (code == TYPE_CODE_STRUCT ||
1454 code == TYPE_CODE_UNION ||
1455 code == TYPE_CODE_ARRAY)
1456 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1457
1458 return 0;
1459}
1460
1461/* Store VAL so it will be returned if a function returns now.
1462 Does not verify that VAL's type matches what the current
1463 function wants to return. */
1464
1465void
1466set_return_value (val)
82a2edfb 1467 value_ptr val;
dd3b648e
RP
1468{
1469 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
dd3b648e
RP
1470
1471 if (code == TYPE_CODE_ERROR)
1472 error ("Function return type unknown.");
1473
f1d77e90
JG
1474 if ( code == TYPE_CODE_STRUCT
1475 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1476 error ("GDB does not support specifying a struct or union return value.");
dd3b648e 1477
07aa9fdc 1478 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
dd3b648e
RP
1479}
1480\f
1481void
1482_initialize_values ()
1483{
f266e564 1484 add_cmd ("convenience", no_class, show_convenience,
dd3b648e
RP
1485 "Debugger convenience (\"$foo\") variables.\n\
1486These variables are created when you assign them values;\n\
1487thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1488A few convenience variables are given values automatically:\n\
1489\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f266e564
JK
1490\"$__\" holds the contents of the last address examined with \"x\".",
1491 &showlist);
dd3b648e 1492
f266e564
JK
1493 add_cmd ("values", no_class, show_values,
1494 "Elements of value history around item number IDX (or last ten).",
1495 &showlist);
dd3b648e 1496}
This page took 0.305281 seconds and 4 git commands to generate.