* infcmd.c (do_registers_info) [INVALID_FLOAT]: Only use if
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
7d9884b9 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
8918bce0
PS
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
dd3b648e
RP
4
5This file is part of GDB.
6
99a7de40 7This program is free software; you can redistribute it and/or modify
dd3b648e 8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e 11
99a7de40 12This program is distributed in the hope that it will be useful,
dd3b648e
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40
JG
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e 20
dd3b648e 21#include "defs.h"
d747e0af 22#include <string.h>
dd3b648e 23#include "symtab.h"
1ab3bf1b 24#include "gdbtypes.h"
dd3b648e
RP
25#include "value.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "command.h"
f266e564 29#include "gdbcmd.h"
ac88ca20 30#include "target.h"
8050a57b 31#include "demangle.h"
dd3b648e 32
1ab3bf1b
JG
33/* Local function prototypes. */
34
849d0896
PS
35static value_ptr value_headof PARAMS ((value_ptr, struct type *,
36 struct type *));
1ab3bf1b 37
82a2edfb 38static void show_values PARAMS ((char *, int));
1ab3bf1b 39
82a2edfb 40static void show_convenience PARAMS ((char *, int));
71b16efa 41
dd3b648e
RP
42/* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
47
48#define VALUE_HISTORY_CHUNK 60
49
50struct value_history_chunk
51{
52 struct value_history_chunk *next;
82a2edfb 53 value_ptr values[VALUE_HISTORY_CHUNK];
dd3b648e
RP
54};
55
56/* Chain of chunks now in use. */
57
58static struct value_history_chunk *value_history_chain;
59
60static int value_history_count; /* Abs number of last entry stored */
dd3b648e
RP
61\f
62/* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
65
82a2edfb 66static value_ptr all_values;
dd3b648e
RP
67
68/* Allocate a value that has the correct length for type TYPE. */
69
82a2edfb 70value_ptr
dd3b648e
RP
71allocate_value (type)
72 struct type *type;
73{
82a2edfb 74 register value_ptr val;
dd3b648e
RP
75
76 check_stub_type (type);
77
82a2edfb 78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
dd3b648e
RP
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
91 VALUE_LAZY (val) = 0;
92 VALUE_OPTIMIZED_OUT (val) = 0;
30974778 93 val->modifiable = 1;
dd3b648e
RP
94 return val;
95}
96
97/* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
82a2edfb 100value_ptr
dd3b648e
RP
101allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104{
82a2edfb 105 register value_ptr val;
dd3b648e 106
82a2edfb
JK
107 val =
108 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
dd3b648e
RP
109 VALUE_NEXT (val) = all_values;
110 all_values = val;
111 VALUE_TYPE (val) = type;
112 VALUE_LVAL (val) = not_lval;
113 VALUE_ADDRESS (val) = 0;
114 VALUE_FRAME (val) = 0;
115 VALUE_OFFSET (val) = 0;
116 VALUE_BITPOS (val) = 0;
117 VALUE_BITSIZE (val) = 0;
118 VALUE_REPEATED (val) = 1;
119 VALUE_REPETITIONS (val) = count;
120 VALUE_REGNO (val) = -1;
121 VALUE_LAZY (val) = 0;
122 VALUE_OPTIMIZED_OUT (val) = 0;
123 return val;
124}
125
fcb887ff
JK
126/* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
82a2edfb 129value_ptr
fcb887ff
JK
130value_mark ()
131{
132 return all_values;
133}
134
135/* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137void
138value_free_to_mark (mark)
82a2edfb 139 value_ptr mark;
fcb887ff 140{
82a2edfb 141 value_ptr val, next;
fcb887ff
JK
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149}
150
dd3b648e
RP
151/* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154void
155free_all_values ()
156{
82a2edfb 157 register value_ptr val, next;
dd3b648e
RP
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166}
167
168/* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171void
172release_value (val)
82a2edfb 173 register value_ptr val;
dd3b648e 174{
82a2edfb 175 register value_ptr v;
dd3b648e
RP
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191}
192
999dd04b
JL
193/* Release all values up to mark */
194value_ptr
195value_release_to_mark (mark)
196 value_ptr mark;
197{
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209}
210
dd3b648e
RP
211/* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
82a2edfb 215value_ptr
dd3b648e 216value_copy (arg)
82a2edfb 217 value_ptr arg;
dd3b648e 218{
82a2edfb 219 register value_ptr val;
dd3b648e
RP
220 register struct type *type = VALUE_TYPE (arg);
221 if (VALUE_REPEATED (arg))
222 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
223 else
224 val = allocate_value (type);
225 VALUE_LVAL (val) = VALUE_LVAL (arg);
226 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
227 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
228 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
229 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
230 VALUE_REGNO (val) = VALUE_REGNO (arg);
231 VALUE_LAZY (val) = VALUE_LAZY (arg);
30974778 232 val->modifiable = arg->modifiable;
dd3b648e
RP
233 if (!VALUE_LAZY (val))
234 {
51b57ded
FF
235 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
236 TYPE_LENGTH (VALUE_TYPE (arg))
237 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
dd3b648e
RP
238 }
239 return val;
240}
241\f
242/* Access to the value history. */
243
244/* Record a new value in the value history.
245 Returns the absolute history index of the entry.
246 Result of -1 indicates the value was not saved; otherwise it is the
247 value history index of this new item. */
248
249int
250record_latest_value (val)
82a2edfb 251 value_ptr val;
dd3b648e
RP
252{
253 int i;
254
255 /* Check error now if about to store an invalid float. We return -1
256 to the caller, but allow them to continue, e.g. to print it as "Nan". */
4ed3a9ea
FF
257 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
258 {
259 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
260 if (i) return -1; /* Indicate value not saved in history */
261 }
dd3b648e 262
26a859ec
PS
263 /* We don't want this value to have anything to do with the inferior anymore.
264 In particular, "set $1 = 50" should not affect the variable from which
265 the value was taken, and fast watchpoints should be able to assume that
266 a value on the value history never changes. */
267 if (VALUE_LAZY (val))
268 value_fetch_lazy (val);
269 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
270 from. This is a bit dubious, because then *&$1 does not just return $1
271 but the current contents of that location. c'est la vie... */
272 val->modifiable = 0;
273 release_value (val);
274
dd3b648e
RP
275 /* Here we treat value_history_count as origin-zero
276 and applying to the value being stored now. */
277
278 i = value_history_count % VALUE_HISTORY_CHUNK;
279 if (i == 0)
280 {
281 register struct value_history_chunk *new
282 = (struct value_history_chunk *)
283 xmalloc (sizeof (struct value_history_chunk));
4ed3a9ea 284 memset (new->values, 0, sizeof new->values);
dd3b648e
RP
285 new->next = value_history_chain;
286 value_history_chain = new;
287 }
288
289 value_history_chain->values[i] = val;
4abc83b9 290
dd3b648e
RP
291 /* Now we regard value_history_count as origin-one
292 and applying to the value just stored. */
293
294 return ++value_history_count;
295}
296
297/* Return a copy of the value in the history with sequence number NUM. */
298
82a2edfb 299value_ptr
dd3b648e
RP
300access_value_history (num)
301 int num;
302{
303 register struct value_history_chunk *chunk;
304 register int i;
305 register int absnum = num;
306
307 if (absnum <= 0)
308 absnum += value_history_count;
309
310 if (absnum <= 0)
311 {
312 if (num == 0)
313 error ("The history is empty.");
314 else if (num == 1)
315 error ("There is only one value in the history.");
316 else
317 error ("History does not go back to $$%d.", -num);
318 }
319 if (absnum > value_history_count)
320 error ("History has not yet reached $%d.", absnum);
321
322 absnum--;
323
324 /* Now absnum is always absolute and origin zero. */
325
326 chunk = value_history_chain;
327 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
328 i > 0; i--)
329 chunk = chunk->next;
330
331 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
332}
333
334/* Clear the value history entirely.
335 Must be done when new symbol tables are loaded,
336 because the type pointers become invalid. */
337
338void
339clear_value_history ()
340{
341 register struct value_history_chunk *next;
342 register int i;
82a2edfb 343 register value_ptr val;
dd3b648e
RP
344
345 while (value_history_chain)
346 {
347 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
a8a69e63 348 if ((val = value_history_chain->values[i]) != NULL)
be772100 349 free ((PTR)val);
dd3b648e 350 next = value_history_chain->next;
be772100 351 free ((PTR)value_history_chain);
dd3b648e
RP
352 value_history_chain = next;
353 }
354 value_history_count = 0;
355}
356
357static void
f266e564 358show_values (num_exp, from_tty)
dd3b648e
RP
359 char *num_exp;
360 int from_tty;
361{
362 register int i;
82a2edfb 363 register value_ptr val;
dd3b648e
RP
364 static int num = 1;
365
366 if (num_exp)
367 {
46c28185
RP
368 /* "info history +" should print from the stored position.
369 "info history <exp>" should print around value number <exp>. */
370 if (num_exp[0] != '+' || num_exp[1] != '\0')
dd3b648e
RP
371 num = parse_and_eval_address (num_exp) - 5;
372 }
373 else
374 {
375 /* "info history" means print the last 10 values. */
376 num = value_history_count - 9;
377 }
378
379 if (num <= 0)
380 num = 1;
381
382 for (i = num; i < num + 10 && i <= value_history_count; i++)
383 {
384 val = access_value_history (i);
385 printf_filtered ("$%d = ", i);
199b2450 386 value_print (val, gdb_stdout, 0, Val_pretty_default);
dd3b648e
RP
387 printf_filtered ("\n");
388 }
389
390 /* The next "info history +" should start after what we just printed. */
391 num += 10;
392
393 /* Hitting just return after this command should do the same thing as
394 "info history +". If num_exp is null, this is unnecessary, since
395 "info history +" is not useful after "info history". */
396 if (from_tty && num_exp)
397 {
398 num_exp[0] = '+';
399 num_exp[1] = '\0';
400 }
401}
402\f
403/* Internal variables. These are variables within the debugger
404 that hold values assigned by debugger commands.
405 The user refers to them with a '$' prefix
406 that does not appear in the variable names stored internally. */
407
408static struct internalvar *internalvars;
409
410/* Look up an internal variable with name NAME. NAME should not
411 normally include a dollar sign.
412
413 If the specified internal variable does not exist,
414 one is created, with a void value. */
415
416struct internalvar *
417lookup_internalvar (name)
418 char *name;
419{
420 register struct internalvar *var;
421
422 for (var = internalvars; var; var = var->next)
2e4964ad 423 if (STREQ (var->name, name))
dd3b648e
RP
424 return var;
425
426 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
58ae87f6 427 var->name = concat (name, NULL);
dd3b648e
RP
428 var->value = allocate_value (builtin_type_void);
429 release_value (var->value);
430 var->next = internalvars;
431 internalvars = var;
432 return var;
433}
434
82a2edfb 435value_ptr
dd3b648e
RP
436value_of_internalvar (var)
437 struct internalvar *var;
438{
82a2edfb 439 register value_ptr val;
dd3b648e
RP
440
441#ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 return VALUE_OF_TRAPPED_INTERNALVAR (var);
444#endif
445
446 val = value_copy (var->value);
447 if (VALUE_LAZY (val))
448 value_fetch_lazy (val);
449 VALUE_LVAL (val) = lval_internalvar;
450 VALUE_INTERNALVAR (val) = var;
451 return val;
452}
453
454void
455set_internalvar_component (var, offset, bitpos, bitsize, newval)
456 struct internalvar *var;
457 int offset, bitpos, bitsize;
82a2edfb 458 value_ptr newval;
dd3b648e
RP
459{
460 register char *addr = VALUE_CONTENTS (var->value) + offset;
461
462#ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
465#endif
466
467 if (bitsize)
58e49e21 468 modify_field (addr, value_as_long (newval),
dd3b648e
RP
469 bitpos, bitsize);
470 else
4ed3a9ea 471 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
dd3b648e
RP
472}
473
474void
475set_internalvar (var, val)
476 struct internalvar *var;
82a2edfb 477 value_ptr val;
dd3b648e 478{
51f83933
JK
479 value_ptr newval;
480
dd3b648e
RP
481#ifdef IS_TRAPPED_INTERNALVAR
482 if (IS_TRAPPED_INTERNALVAR (var->name))
483 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
484#endif
485
51f83933
JK
486 newval = value_copy (val);
487
6fab5bef
JG
488 /* Force the value to be fetched from the target now, to avoid problems
489 later when this internalvar is referenced and the target is gone or
490 has changed. */
51f83933
JK
491 if (VALUE_LAZY (newval))
492 value_fetch_lazy (newval);
493
494 /* Begin code which must not call error(). If var->value points to
495 something free'd, an error() obviously leaves a dangling pointer.
496 But we also get a danling pointer if var->value points to
497 something in the value chain (i.e., before release_value is
498 called), because after the error free_all_values will get called before
499 long. */
500 free ((PTR)var->value);
501 var->value = newval;
502 release_value (newval);
503 /* End code which must not call error(). */
dd3b648e
RP
504}
505
506char *
507internalvar_name (var)
508 struct internalvar *var;
509{
510 return var->name;
511}
512
513/* Free all internalvars. Done when new symtabs are loaded,
514 because that makes the values invalid. */
515
516void
517clear_internalvars ()
518{
519 register struct internalvar *var;
520
521 while (internalvars)
522 {
523 var = internalvars;
524 internalvars = var->next;
be772100
JG
525 free ((PTR)var->name);
526 free ((PTR)var->value);
527 free ((PTR)var);
dd3b648e
RP
528 }
529}
530
531static void
ac88ca20
JG
532show_convenience (ignore, from_tty)
533 char *ignore;
534 int from_tty;
dd3b648e
RP
535{
536 register struct internalvar *var;
537 int varseen = 0;
538
539 for (var = internalvars; var; var = var->next)
540 {
541#ifdef IS_TRAPPED_INTERNALVAR
542 if (IS_TRAPPED_INTERNALVAR (var->name))
543 continue;
544#endif
545 if (!varseen)
546 {
dd3b648e
RP
547 varseen = 1;
548 }
afe4ca15 549 printf_filtered ("$%s = ", var->name);
199b2450 550 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
afe4ca15 551 printf_filtered ("\n");
dd3b648e
RP
552 }
553 if (!varseen)
199b2450 554 printf_unfiltered ("No debugger convenience variables now defined.\n\
dd3b648e
RP
555Convenience variables have names starting with \"$\";\n\
556use \"set\" as in \"set $foo = 5\" to define them.\n");
557}
558\f
559/* Extract a value as a C number (either long or double).
560 Knows how to convert fixed values to double, or
561 floating values to long.
562 Does not deallocate the value. */
563
564LONGEST
565value_as_long (val)
82a2edfb 566 register value_ptr val;
dd3b648e
RP
567{
568 /* This coerces arrays and functions, which is necessary (e.g.
569 in disassemble_command). It also dereferences references, which
570 I suspect is the most logical thing to do. */
571 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
572 COERCE_ARRAY (val);
573 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
574}
575
576double
577value_as_double (val)
82a2edfb 578 register value_ptr val;
dd3b648e
RP
579{
580 double foo;
581 int inv;
582
583 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
584 if (inv)
585 error ("Invalid floating value found in program.");
586 return foo;
587}
e1ce8aa5
JK
588/* Extract a value as a C pointer.
589 Does not deallocate the value. */
590CORE_ADDR
591value_as_pointer (val)
82a2edfb 592 value_ptr val;
e1ce8aa5 593{
2bff8e38
JK
594 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
595 whether we want this to be true eventually. */
b2ccb6a4
JK
596#if 0
597 /* ADDR_BITS_REMOVE is wrong if we are being called for a
598 non-address (e.g. argument to "signal", "info break", etc.), or
599 for pointers to char, in which the low bits *are* significant. */
ae0ea72e 600 return ADDR_BITS_REMOVE(value_as_long (val));
b2ccb6a4
JK
601#else
602 return value_as_long (val);
603#endif
e1ce8aa5 604}
dd3b648e
RP
605\f
606/* Unpack raw data (copied from debugee, target byte order) at VALADDR
607 as a long, or as a double, assuming the raw data is described
608 by type TYPE. Knows how to convert different sizes of values
609 and can convert between fixed and floating point. We don't assume
610 any alignment for the raw data. Return value is in host byte order.
611
612 If you want functions and arrays to be coerced to pointers, and
613 references to be dereferenced, call value_as_long() instead.
614
615 C++: It is assumed that the front-end has taken care of
616 all matters concerning pointers to members. A pointer
617 to member which reaches here is considered to be equivalent
618 to an INT (or some size). After all, it is only an offset. */
619
620LONGEST
621unpack_long (type, valaddr)
622 struct type *type;
623 char *valaddr;
624{
625 register enum type_code code = TYPE_CODE (type);
626 register int len = TYPE_LENGTH (type);
627 register int nosign = TYPE_UNSIGNED (type);
628
bf5c0d64 629 switch (code)
dd3b648e 630 {
bf5c0d64
JK
631 case TYPE_CODE_ENUM:
632 case TYPE_CODE_BOOL:
633 case TYPE_CODE_INT:
634 case TYPE_CODE_CHAR:
b96bc1e4 635 case TYPE_CODE_RANGE:
bf5c0d64
JK
636 if (nosign)
637 return extract_unsigned_integer (valaddr, len);
dd3b648e 638 else
bf5c0d64
JK
639 return extract_signed_integer (valaddr, len);
640
641 case TYPE_CODE_FLT:
642 return extract_floating (valaddr, len);
643
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_REF:
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
34df79fc 648 return extract_address (valaddr, len);
dd3b648e 649
bf5c0d64
JK
650 case TYPE_CODE_MEMBER:
651 error ("not implemented: member types in unpack_long");
652
653 default:
ca0865db 654 error ("Value can't be converted to integer.");
bf5c0d64
JK
655 }
656 return 0; /* Placate lint. */
dd3b648e
RP
657}
658
659/* Return a double value from the specified type and address.
660 INVP points to an int which is set to 0 for valid value,
661 1 for invalid value (bad float format). In either case,
662 the returned double is OK to use. Argument is in target
663 format, result is in host format. */
664
665double
666unpack_double (type, valaddr, invp)
667 struct type *type;
668 char *valaddr;
669 int *invp;
670{
671 register enum type_code code = TYPE_CODE (type);
672 register int len = TYPE_LENGTH (type);
673 register int nosign = TYPE_UNSIGNED (type);
674
675 *invp = 0; /* Assume valid. */
676 if (code == TYPE_CODE_FLT)
677 {
ac57e5ad 678#ifdef INVALID_FLOAT
dd3b648e
RP
679 if (INVALID_FLOAT (valaddr, len))
680 {
681 *invp = 1;
682 return 1.234567891011121314;
683 }
ac57e5ad 684#endif
89ce0c8f
JK
685 return extract_floating (valaddr, len);
686 }
687 else if (nosign)
688 {
689 /* Unsigned -- be sure we compensate for signed LONGEST. */
690 return (unsigned LONGEST) unpack_long (type, valaddr);
691 }
692 else
693 {
694 /* Signed -- we are OK with unpack_long. */
695 return unpack_long (type, valaddr);
dd3b648e 696 }
dd3b648e 697}
e1ce8aa5
JK
698
699/* Unpack raw data (copied from debugee, target byte order) at VALADDR
700 as a CORE_ADDR, assuming the raw data is described by type TYPE.
701 We don't assume any alignment for the raw data. Return value is in
702 host byte order.
703
704 If you want functions and arrays to be coerced to pointers, and
705 references to be dereferenced, call value_as_pointer() instead.
706
707 C++: It is assumed that the front-end has taken care of
708 all matters concerning pointers to members. A pointer
709 to member which reaches here is considered to be equivalent
710 to an INT (or some size). After all, it is only an offset. */
711
712CORE_ADDR
713unpack_pointer (type, valaddr)
714 struct type *type;
715 char *valaddr;
716{
2bff8e38
JK
717 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
718 whether we want this to be true eventually. */
719 return unpack_long (type, valaddr);
e1ce8aa5 720}
dd3b648e
RP
721\f
722/* Given a value ARG1 (offset by OFFSET bytes)
723 of a struct or union type ARG_TYPE,
724 extract and return the value of one of its fields.
725 FIELDNO says which field.
726
727 For C++, must also be able to return values from static fields */
728
82a2edfb 729value_ptr
dd3b648e 730value_primitive_field (arg1, offset, fieldno, arg_type)
82a2edfb 731 register value_ptr arg1;
dd3b648e
RP
732 int offset;
733 register int fieldno;
734 register struct type *arg_type;
735{
82a2edfb 736 register value_ptr v;
dd3b648e
RP
737 register struct type *type;
738
739 check_stub_type (arg_type);
740 type = TYPE_FIELD_TYPE (arg_type, fieldno);
741
742 /* Handle packed fields */
743
744 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
745 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
746 {
96b2f51c 747 v = value_from_longest (type,
dd3b648e
RP
748 unpack_field_as_long (arg_type,
749 VALUE_CONTENTS (arg1),
750 fieldno));
751 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
752 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
753 }
754 else
755 {
756 v = allocate_value (type);
757 if (VALUE_LAZY (arg1))
758 VALUE_LAZY (v) = 1;
759 else
4ed3a9ea
FF
760 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
761 TYPE_LENGTH (type));
dd3b648e
RP
762 }
763 VALUE_LVAL (v) = VALUE_LVAL (arg1);
764 if (VALUE_LVAL (arg1) == lval_internalvar)
765 VALUE_LVAL (v) = lval_internalvar_component;
766 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
767 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
768 return v;
769}
770
771/* Given a value ARG1 of a struct or union type,
772 extract and return the value of one of its fields.
773 FIELDNO says which field.
774
775 For C++, must also be able to return values from static fields */
776
82a2edfb 777value_ptr
dd3b648e 778value_field (arg1, fieldno)
82a2edfb 779 register value_ptr arg1;
dd3b648e
RP
780 register int fieldno;
781{
782 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
783}
784
545af6ce
PB
785/* Return a non-virtual function as a value.
786 F is the list of member functions which contains the desired method.
787 J is an index into F which provides the desired method. */
788
82a2edfb 789value_ptr
94603999 790value_fn_field (arg1p, f, j, type, offset)
82a2edfb 791 value_ptr *arg1p;
545af6ce
PB
792 struct fn_field *f;
793 int j;
94603999
JG
794 struct type *type;
795 int offset;
dd3b648e 796{
82a2edfb 797 register value_ptr v;
94603999 798 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
dd3b648e
RP
799 struct symbol *sym;
800
545af6ce 801 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
dd3b648e 802 0, VAR_NAMESPACE, 0, NULL);
f1c6dbf6 803 if (! sym)
82a2edfb 804 return NULL;
f1c6dbf6
KH
805/*
806 error ("Internal error: could not find physical method named %s",
545af6ce 807 TYPE_FN_FIELD_PHYSNAME (f, j));
f1c6dbf6 808*/
dd3b648e 809
94603999 810 v = allocate_value (ftype);
dd3b648e 811 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
94603999
JG
812 VALUE_TYPE (v) = ftype;
813
814 if (arg1p)
815 {
816 if (type != VALUE_TYPE (*arg1p))
817 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
818 value_addr (*arg1p)));
819
dcd8fd8c 820 /* Move the `this' pointer according to the offset.
94603999 821 VALUE_OFFSET (*arg1p) += offset;
dcd8fd8c 822 */
94603999
JG
823 }
824
dd3b648e
RP
825 return v;
826}
827
828/* Return a virtual function as a value.
829 ARG1 is the object which provides the virtual function
94603999 830 table pointer. *ARG1P is side-effected in calling this function.
dd3b648e
RP
831 F is the list of member functions which contains the desired virtual
832 function.
e532974c
JK
833 J is an index into F which provides the desired virtual function.
834
835 TYPE is the type in which F is located. */
82a2edfb 836value_ptr
94603999 837value_virtual_fn_field (arg1p, f, j, type, offset)
82a2edfb 838 value_ptr *arg1p;
dd3b648e
RP
839 struct fn_field *f;
840 int j;
e532974c 841 struct type *type;
94603999 842 int offset;
dd3b648e 843{
82a2edfb 844 value_ptr arg1 = *arg1p;
dd3b648e
RP
845 /* First, get the virtual function table pointer. That comes
846 with a strange type, so cast it to type `pointer to long' (which
847 should serve just fine as a function type). Then, index into
848 the table, and convert final value to appropriate function type. */
82a2edfb
JK
849 value_ptr entry, vfn, vtbl;
850 value_ptr vi = value_from_longest (builtin_type_int,
851 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
e532974c
JK
852 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
853 struct type *context;
854 if (fcontext == NULL)
855 /* We don't have an fcontext (e.g. the program was compiled with
856 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
857 This won't work right for multiple inheritance, but at least we
858 should do as well as GDB 3.x did. */
859 fcontext = TYPE_VPTR_BASETYPE (type);
860 context = lookup_pointer_type (fcontext);
861 /* Now context is a pointer to the basetype containing the vtbl. */
dd3b648e
RP
862 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
863 arg1 = value_ind (value_cast (context, value_addr (arg1)));
864
865 context = VALUE_TYPE (arg1);
e532974c 866 /* Now context is the basetype containing the vtbl. */
dd3b648e
RP
867
868 /* This type may have been defined before its virtual function table
869 was. If so, fill in the virtual function table entry for the
870 type now. */
871 if (TYPE_VPTR_FIELDNO (context) < 0)
71b16efa 872 fill_in_vptr_fieldno (context);
dd3b648e
RP
873
874 /* The virtual function table is now an array of structures
875 which have the form { int16 offset, delta; void *pfn; }. */
94603999
JG
876 vtbl = value_ind (value_primitive_field (arg1, 0,
877 TYPE_VPTR_FIELDNO (context),
878 TYPE_VPTR_BASETYPE (context)));
dd3b648e
RP
879
880 /* Index into the virtual function table. This is hard-coded because
881 looking up a field is not cheap, and it may be important to save
882 time, e.g. if the user has set a conditional breakpoint calling
883 a virtual function. */
884 entry = value_subscript (vtbl, vi);
885
36a2283d 886 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
dd3b648e 887 {
36a2283d
PB
888 /* Move the `this' pointer according to the virtual function table. */
889 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
890
891 if (! VALUE_LAZY (arg1))
892 {
893 VALUE_LAZY (arg1) = 1;
894 value_fetch_lazy (arg1);
895 }
dd3b648e 896
36a2283d
PB
897 vfn = value_field (entry, 2);
898 }
899 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
900 vfn = entry;
901 else
902 error ("I'm confused: virtual function table has bad type");
dd3b648e
RP
903 /* Reinstantiate the function pointer with the correct type. */
904 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
905
94603999 906 *arg1p = arg1;
dd3b648e
RP
907 return vfn;
908}
909
71b16efa
JK
910/* ARG is a pointer to an object we know to be at least
911 a DTYPE. BTYPE is the most derived basetype that has
912 already been searched (and need not be searched again).
913 After looking at the vtables between BTYPE and DTYPE,
914 return the most derived type we find. The caller must
915 be satisfied when the return value == DTYPE.
916
917 FIXME-tiemann: should work with dossier entries as well. */
918
82a2edfb 919static value_ptr
7cb0f870 920value_headof (in_arg, btype, dtype)
82a2edfb 921 value_ptr in_arg;
71b16efa
JK
922 struct type *btype, *dtype;
923{
924 /* First collect the vtables we must look at for this object. */
925 /* FIXME-tiemann: right now, just look at top-most vtable. */
82a2edfb 926 value_ptr arg, vtbl, entry, best_entry = 0;
71b16efa
JK
927 int i, nelems;
928 int offset, best_offset = 0;
929 struct symbol *sym;
930 CORE_ADDR pc_for_sym;
931 char *demangled_name;
1ab3bf1b
JG
932 struct minimal_symbol *msymbol;
933
aec4cb91
MT
934 btype = TYPE_VPTR_BASETYPE (dtype);
935 check_stub_type (btype);
7cb0f870 936 arg = in_arg;
aec4cb91 937 if (btype != dtype)
7cb0f870
MT
938 arg = value_cast (lookup_pointer_type (btype), arg);
939 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
71b16efa
JK
940
941 /* Check that VTBL looks like it points to a virtual function table. */
1ab3bf1b
JG
942 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
943 if (msymbol == NULL
36a2283d
PB
944 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
945 || !VTBL_PREFIX_P (demangled_name))
71b16efa
JK
946 {
947 /* If we expected to find a vtable, but did not, let the user
948 know that we aren't happy, but don't throw an error.
949 FIXME: there has to be a better way to do this. */
950 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
7cb0f870 951 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
71b16efa 952 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
7cb0f870
MT
953 VALUE_TYPE (in_arg) = error_type;
954 return in_arg;
71b16efa
JK
955 }
956
957 /* Now search through the virtual function table. */
958 entry = value_ind (vtbl);
e1ce8aa5 959 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
71b16efa
JK
960 for (i = 1; i <= nelems; i++)
961 {
96b2f51c
JG
962 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
963 (LONGEST) i));
36a2283d
PB
964 /* This won't work if we're using thunks. */
965 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
966 break;
e1ce8aa5 967 offset = longest_to_int (value_as_long (value_field (entry, 0)));
bcccec8c
PB
968 /* If we use '<=' we can handle single inheritance
969 * where all offsets are zero - just use the first entry found. */
970 if (offset <= best_offset)
71b16efa
JK
971 {
972 best_offset = offset;
973 best_entry = entry;
974 }
975 }
71b16efa
JK
976 /* Move the pointer according to BEST_ENTRY's offset, and figure
977 out what type we should return as the new pointer. */
bcccec8c
PB
978 if (best_entry == 0)
979 {
980 /* An alternative method (which should no longer be necessary).
981 * But we leave it in for future use, when we will hopefully
982 * have optimizes the vtable to use thunks instead of offsets. */
983 /* Use the name of vtable itself to extract a base type. */
f1c6dbf6 984 demangled_name += 4; /* Skip _vt$ prefix. */
bcccec8c
PB
985 }
986 else
987 {
988 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
989 sym = find_pc_function (pc_for_sym);
8050a57b 990 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
bcccec8c
PB
991 *(strchr (demangled_name, ':')) = '\0';
992 }
71b16efa 993 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
2e4964ad
FF
994 if (sym == NULL)
995 error ("could not find type declaration for `%s'", demangled_name);
bcccec8c
PB
996 if (best_entry)
997 {
998 free (demangled_name);
999 arg = value_add (value_cast (builtin_type_int, arg),
1000 value_field (best_entry, 0));
1001 }
7cb0f870 1002 else arg = in_arg;
71b16efa
JK
1003 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1004 return arg;
1005}
1006
1007/* ARG is a pointer object of type TYPE. If TYPE has virtual
1008 function tables, probe ARG's tables (including the vtables
1009 of its baseclasses) to figure out the most derived type that ARG
1010 could actually be a pointer to. */
1011
82a2edfb 1012value_ptr
71b16efa 1013value_from_vtable_info (arg, type)
82a2edfb 1014 value_ptr arg;
71b16efa
JK
1015 struct type *type;
1016{
1017 /* Take care of preliminaries. */
1018 if (TYPE_VPTR_FIELDNO (type) < 0)
1019 fill_in_vptr_fieldno (type);
1020 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1021 return 0;
1022
1023 return value_headof (arg, 0, type);
1024}
1025
1410f5f1
JK
1026/* Return true if the INDEXth field of TYPE is a virtual baseclass
1027 pointer which is for the base class whose type is BASECLASS. */
1028
1029static int
1030vb_match (type, index, basetype)
1031 struct type *type;
1032 int index;
1033 struct type *basetype;
1034{
1035 struct type *fieldtype;
1410f5f1
JK
1036 char *name = TYPE_FIELD_NAME (type, index);
1037 char *field_class_name = NULL;
1038
1039 if (*name != '_')
1040 return 0;
f1c6dbf6 1041 /* gcc 2.4 uses _vb$. */
1410f5f1
JK
1042 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1043 field_class_name = name + 4;
f1c6dbf6 1044 /* gcc 2.5 will use __vb_. */
1410f5f1
JK
1045 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1046 field_class_name = name + 5;
1047
1048 if (field_class_name == NULL)
1049 /* This field is not a virtual base class pointer. */
1050 return 0;
1051
1052 /* It's a virtual baseclass pointer, now we just need to find out whether
1053 it is for this baseclass. */
1054 fieldtype = TYPE_FIELD_TYPE (type, index);
1055 if (fieldtype == NULL
1056 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1057 /* "Can't happen". */
1058 return 0;
1059
1060 /* What we check for is that either the types are equal (needed for
1061 nameless types) or have the same name. This is ugly, and a more
1062 elegant solution should be devised (which would probably just push
1063 the ugliness into symbol reading unless we change the stabs format). */
1064 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1065 return 1;
1066
1067 if (TYPE_NAME (basetype) != NULL
1068 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1069 && STREQ (TYPE_NAME (basetype),
1070 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1071 return 1;
1072 return 0;
1073}
1074
94603999
JG
1075/* Compute the offset of the baseclass which is
1076 the INDEXth baseclass of class TYPE, for a value ARG,
1077 wih extra offset of OFFSET.
1078 The result is the offste of the baseclass value relative
1079 to (the address of)(ARG) + OFFSET.
1080
1081 -1 is returned on error. */
1082
1083int
1084baseclass_offset (type, index, arg, offset)
1085 struct type *type;
1086 int index;
82a2edfb 1087 value_ptr arg;
94603999
JG
1088 int offset;
1089{
1090 struct type *basetype = TYPE_BASECLASS (type, index);
1091
1092 if (BASETYPE_VIA_VIRTUAL (type, index))
1093 {
1094 /* Must hunt for the pointer to this virtual baseclass. */
1095 register int i, len = TYPE_NFIELDS (type);
1096 register int n_baseclasses = TYPE_N_BASECLASSES (type);
94603999 1097
94603999
JG
1098 /* First look for the virtual baseclass pointer
1099 in the fields. */
1100 for (i = n_baseclasses; i < len; i++)
1101 {
1410f5f1 1102 if (vb_match (type, i, basetype))
94603999
JG
1103 {
1104 CORE_ADDR addr
1105 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1106 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1107 + offset
1108 + (TYPE_FIELD_BITPOS (type, i) / 8));
1109
1110 if (VALUE_LVAL (arg) != lval_memory)
1111 return -1;
1112
1113 return addr -
1114 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1115 }
1116 }
1117 /* Not in the fields, so try looking through the baseclasses. */
1118 for (i = index+1; i < n_baseclasses; i++)
1119 {
1120 int boffset =
1121 baseclass_offset (type, i, arg, offset);
1122 if (boffset)
1123 return boffset;
1124 }
1125 /* Not found. */
1126 return -1;
1127 }
1128
1129 /* Baseclass is easily computed. */
1130 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1131}
1132
dd3b648e 1133/* Compute the address of the baseclass which is
f1d77e90 1134 the INDEXth baseclass of class TYPE. The TYPE base
71b16efa
JK
1135 of the object is at VALADDR.
1136
1137 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1138 or 0 if no error. In that case the return value is not the address
1139 of the baseclasss, but the address which could not be read
1140 successfully. */
dd3b648e 1141
94603999
JG
1142/* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1143
dd3b648e 1144char *
71b16efa 1145baseclass_addr (type, index, valaddr, valuep, errp)
dd3b648e
RP
1146 struct type *type;
1147 int index;
1148 char *valaddr;
82a2edfb 1149 value_ptr *valuep;
71b16efa 1150 int *errp;
dd3b648e
RP
1151{
1152 struct type *basetype = TYPE_BASECLASS (type, index);
1153
71b16efa
JK
1154 if (errp)
1155 *errp = 0;
aec4cb91 1156
dd3b648e
RP
1157 if (BASETYPE_VIA_VIRTUAL (type, index))
1158 {
1159 /* Must hunt for the pointer to this virtual baseclass. */
1160 register int i, len = TYPE_NFIELDS (type);
1161 register int n_baseclasses = TYPE_N_BASECLASSES (type);
dd3b648e 1162
dd3b648e
RP
1163 /* First look for the virtual baseclass pointer
1164 in the fields. */
1165 for (i = n_baseclasses; i < len; i++)
1166 {
1410f5f1 1167 if (vb_match (type, i, basetype))
dd3b648e 1168 {
82a2edfb 1169 value_ptr val = allocate_value (basetype);
71b16efa
JK
1170 CORE_ADDR addr;
1171 int status;
1172
e1ce8aa5
JK
1173 addr
1174 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
71b16efa
JK
1175 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1176
1177 status = target_read_memory (addr,
1178 VALUE_CONTENTS_RAW (val),
4f6f12f9 1179 TYPE_LENGTH (basetype));
71b16efa
JK
1180 VALUE_LVAL (val) = lval_memory;
1181 VALUE_ADDRESS (val) = addr;
1182
1183 if (status != 0)
1184 {
1185 if (valuep)
1186 *valuep = NULL;
1187 release_value (val);
1188 value_free (val);
1189 if (errp)
1190 *errp = status;
1191 return (char *)addr;
1192 }
1193 else
1194 {
1195 if (valuep)
1196 *valuep = val;
1197 return (char *) VALUE_CONTENTS (val);
1198 }
dd3b648e
RP
1199 }
1200 }
1201 /* Not in the fields, so try looking through the baseclasses. */
1202 for (i = index+1; i < n_baseclasses; i++)
1203 {
1204 char *baddr;
1205
e1ce8aa5 1206 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
dd3b648e
RP
1207 if (baddr)
1208 return baddr;
1209 }
1210 /* Not found. */
1211 if (valuep)
1212 *valuep = 0;
1213 return 0;
1214 }
1215
1216 /* Baseclass is easily computed. */
1217 if (valuep)
1218 *valuep = 0;
1219 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1220}
dd3b648e 1221\f
4db8e515
FF
1222/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1223 VALADDR.
1224
1225 Extracting bits depends on endianness of the machine. Compute the
1226 number of least significant bits to discard. For big endian machines,
1227 we compute the total number of bits in the anonymous object, subtract
1228 off the bit count from the MSB of the object to the MSB of the
1229 bitfield, then the size of the bitfield, which leaves the LSB discard
1230 count. For little endian machines, the discard count is simply the
1231 number of bits from the LSB of the anonymous object to the LSB of the
1232 bitfield.
1233
1234 If the field is signed, we also do sign extension. */
1235
1236LONGEST
dd3b648e
RP
1237unpack_field_as_long (type, valaddr, fieldno)
1238 struct type *type;
1239 char *valaddr;
1240 int fieldno;
1241{
4db8e515
FF
1242 unsigned LONGEST val;
1243 unsigned LONGEST valmask;
dd3b648e
RP
1244 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1245 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
4db8e515 1246 int lsbcount;
dd3b648e 1247
34df79fc 1248 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
4db8e515
FF
1249
1250 /* Extract bits. See comment above. */
dd3b648e 1251
122ad9ab 1252#if BITS_BIG_ENDIAN
4db8e515 1253 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
dd3b648e 1254#else
4db8e515 1255 lsbcount = (bitpos % 8);
dd3b648e 1256#endif
4db8e515 1257 val >>= lsbcount;
dd3b648e 1258
4db8e515
FF
1259 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1260 If the field is signed, and is negative, then sign extend. */
1261
1262 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1263 {
1264 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1265 val &= valmask;
1266 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1267 {
1268 if (val & (valmask ^ (valmask >> 1)))
1269 {
1270 val |= ~valmask;
1271 }
1272 }
1273 }
1274 return (val);
dd3b648e
RP
1275}
1276
3f2e006b
JG
1277/* Modify the value of a bitfield. ADDR points to a block of memory in
1278 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1279 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1280 indicate which bits (in target bit order) comprise the bitfield. */
1281
dd3b648e
RP
1282void
1283modify_field (addr, fieldval, bitpos, bitsize)
1284 char *addr;
58e49e21 1285 LONGEST fieldval;
dd3b648e
RP
1286 int bitpos, bitsize;
1287{
58e49e21 1288 LONGEST oword;
dd3b648e 1289
c3a21801
JG
1290 /* Reject values too big to fit in the field in question,
1291 otherwise adjoining fields may be corrupted. */
61a7292f
SG
1292 if (bitsize < (8 * sizeof (fieldval))
1293 && 0 != (fieldval & ~((1<<bitsize)-1)))
58e49e21
JK
1294 {
1295 /* FIXME: would like to include fieldval in the message, but
1296 we don't have a sprintf_longest. */
1297 error ("Value does not fit in %d bits.", bitsize);
1298 }
34df79fc
JK
1299
1300 oword = extract_signed_integer (addr, sizeof oword);
dd3b648e 1301
3f2e006b 1302 /* Shifting for bit field depends on endianness of the target machine. */
122ad9ab 1303#if BITS_BIG_ENDIAN
dd3b648e
RP
1304 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1305#endif
1306
58e49e21 1307 /* Mask out old value, while avoiding shifts >= size of oword */
c3a21801 1308 if (bitsize < 8 * sizeof (oword))
58e49e21 1309 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
c3a21801 1310 else
58e49e21 1311 oword &= ~((~(unsigned LONGEST)0) << bitpos);
dd3b648e 1312 oword |= fieldval << bitpos;
3f2e006b 1313
34df79fc 1314 store_signed_integer (addr, sizeof oword, oword);
dd3b648e
RP
1315}
1316\f
1317/* Convert C numbers into newly allocated values */
1318
82a2edfb 1319value_ptr
96b2f51c 1320value_from_longest (type, num)
dd3b648e
RP
1321 struct type *type;
1322 register LONGEST num;
1323{
82a2edfb 1324 register value_ptr val = allocate_value (type);
dd3b648e
RP
1325 register enum type_code code = TYPE_CODE (type);
1326 register int len = TYPE_LENGTH (type);
1327
34df79fc 1328 switch (code)
dd3b648e 1329 {
34df79fc
JK
1330 case TYPE_CODE_INT:
1331 case TYPE_CODE_CHAR:
1332 case TYPE_CODE_ENUM:
1333 case TYPE_CODE_BOOL:
b96bc1e4 1334 case TYPE_CODE_RANGE:
34df79fc
JK
1335 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1336 break;
1337
1338 case TYPE_CODE_REF:
1339 case TYPE_CODE_PTR:
1340 /* This assumes that all pointers of a given length
1341 have the same form. */
1342 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1343 break;
1344
1345 default:
1346 error ("Unexpected type encountered for integer constant.");
dd3b648e 1347 }
dd3b648e
RP
1348 return val;
1349}
1350
82a2edfb 1351value_ptr
dd3b648e
RP
1352value_from_double (type, num)
1353 struct type *type;
1354 double num;
1355{
82a2edfb 1356 register value_ptr val = allocate_value (type);
dd3b648e
RP
1357 register enum type_code code = TYPE_CODE (type);
1358 register int len = TYPE_LENGTH (type);
1359
1360 if (code == TYPE_CODE_FLT)
1361 {
bf5c0d64 1362 store_floating (VALUE_CONTENTS_RAW (val), len, num);
dd3b648e
RP
1363 }
1364 else
1365 error ("Unexpected type encountered for floating constant.");
1366
dd3b648e
RP
1367 return val;
1368}
1369\f
1370/* Deal with the value that is "about to be returned". */
1371
1372/* Return the value that a function returning now
1373 would be returning to its caller, assuming its type is VALTYPE.
1374 RETBUF is where we look for what ought to be the contents
1375 of the registers (in raw form). This is because it is often
1376 desirable to restore old values to those registers
1377 after saving the contents of interest, and then call
1378 this function using the saved values.
1379 struct_return is non-zero when the function in question is
1380 using the structure return conventions on the machine in question;
1381 0 when it is using the value returning conventions (this often
1382 means returning pointer to where structure is vs. returning value). */
1383
82a2edfb 1384value_ptr
dd3b648e
RP
1385value_being_returned (valtype, retbuf, struct_return)
1386 register struct type *valtype;
1387 char retbuf[REGISTER_BYTES];
1388 int struct_return;
1389 /*ARGSUSED*/
1390{
82a2edfb 1391 register value_ptr val;
dd3b648e
RP
1392 CORE_ADDR addr;
1393
1394#if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1395 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1396 if (struct_return) {
1397 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1398 if (!addr)
1399 error ("Function return value unknown");
1400 return value_at (valtype, addr);
1401 }
1402#endif
1403
1404 val = allocate_value (valtype);
1405 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1406
1407 return val;
1408}
1409
1410/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1411 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1412 and TYPE is the type (which is known to be struct, union or array).
1413
1414 On most machines, the struct convention is used unless we are
1415 using gcc and the type is of a special size. */
9925b928
JK
1416/* As of about 31 Mar 93, GCC was changed to be compatible with the
1417 native compiler. GCC 2.3.3 was the last release that did it the
1418 old way. Since gcc2_compiled was not changed, we have no
1419 way to correctly win in all cases, so we just do the right thing
1420 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1421 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1422 would cause more chaos than dealing with some struct returns being
1423 handled wrong. */
dd3b648e
RP
1424#if !defined (USE_STRUCT_CONVENTION)
1425#define USE_STRUCT_CONVENTION(gcc_p, type)\
9925b928
JK
1426 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1427 || TYPE_LENGTH (value_type) == 2 \
1428 || TYPE_LENGTH (value_type) == 4 \
1429 || TYPE_LENGTH (value_type) == 8 \
1430 ) \
dd3b648e
RP
1431 ))
1432#endif
1433
1434/* Return true if the function specified is using the structure returning
1435 convention on this machine to return arguments, or 0 if it is using
1436 the value returning convention. FUNCTION is the value representing
1437 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1438 is the type returned by the function. GCC_P is nonzero if compiled
1439 with GCC. */
1440
1441int
1442using_struct_return (function, funcaddr, value_type, gcc_p)
82a2edfb 1443 value_ptr function;
dd3b648e
RP
1444 CORE_ADDR funcaddr;
1445 struct type *value_type;
1446 int gcc_p;
1447 /*ARGSUSED*/
1448{
1449 register enum type_code code = TYPE_CODE (value_type);
1450
1451 if (code == TYPE_CODE_ERROR)
1452 error ("Function return type unknown.");
1453
1454 if (code == TYPE_CODE_STRUCT ||
1455 code == TYPE_CODE_UNION ||
1456 code == TYPE_CODE_ARRAY)
1457 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1458
1459 return 0;
1460}
1461
1462/* Store VAL so it will be returned if a function returns now.
1463 Does not verify that VAL's type matches what the current
1464 function wants to return. */
1465
1466void
1467set_return_value (val)
82a2edfb 1468 value_ptr val;
dd3b648e
RP
1469{
1470 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1471 double dbuf;
1472 LONGEST lbuf;
1473
1474 if (code == TYPE_CODE_ERROR)
1475 error ("Function return type unknown.");
1476
f1d77e90
JG
1477 if ( code == TYPE_CODE_STRUCT
1478 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1479 error ("GDB does not support specifying a struct or union return value.");
dd3b648e
RP
1480
1481 /* FIXME, this is bogus. We don't know what the return conventions
1482 are, or how values should be promoted.... */
1483 if (code == TYPE_CODE_FLT)
1484 {
1485 dbuf = value_as_double (val);
1486
1487 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1488 }
1489 else
1490 {
1491 lbuf = value_as_long (val);
1492 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1493 }
1494}
1495\f
1496void
1497_initialize_values ()
1498{
f266e564 1499 add_cmd ("convenience", no_class, show_convenience,
dd3b648e
RP
1500 "Debugger convenience (\"$foo\") variables.\n\
1501These variables are created when you assign them values;\n\
1502thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1503A few convenience variables are given values automatically:\n\
1504\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f266e564
JK
1505\"$__\" holds the contents of the last address examined with \"x\".",
1506 &showlist);
dd3b648e 1507
f266e564
JK
1508 add_cmd ("values", no_class, show_values,
1509 "Elements of value history around item number IDX (or last ten).",
1510 &showlist);
dd3b648e 1511}
This page took 0.518226 seconds and 4 git commands to generate.