* scm-valprint.c (scm_isymnames): Remove "#@" prefix.
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
7d9884b9 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
080868b4 2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
8918bce0 3 Free Software Foundation, Inc.
dd3b648e
RP
4
5This file is part of GDB.
6
99a7de40 7This program is free software; you can redistribute it and/or modify
dd3b648e 8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e 11
99a7de40 12This program is distributed in the hope that it will be useful,
dd3b648e
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40 18along with this program; if not, write to the Free Software
6c9638b4 19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
dd3b648e 20
dd3b648e 21#include "defs.h"
2b576293 22#include "gdb_string.h"
dd3b648e 23#include "symtab.h"
1ab3bf1b 24#include "gdbtypes.h"
dd3b648e
RP
25#include "value.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "command.h"
f266e564 29#include "gdbcmd.h"
ac88ca20 30#include "target.h"
acc4efde 31#include "language.h"
8050a57b 32#include "demangle.h"
dd3b648e 33
1ab3bf1b
JG
34/* Local function prototypes. */
35
849d0896
PS
36static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
1ab3bf1b 38
82a2edfb 39static void show_values PARAMS ((char *, int));
1ab3bf1b 40
82a2edfb 41static void show_convenience PARAMS ((char *, int));
71b16efa 42
dd3b648e
RP
43/* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49#define VALUE_HISTORY_CHUNK 60
50
51struct value_history_chunk
52{
53 struct value_history_chunk *next;
82a2edfb 54 value_ptr values[VALUE_HISTORY_CHUNK];
dd3b648e
RP
55};
56
57/* Chain of chunks now in use. */
58
59static struct value_history_chunk *value_history_chain;
60
61static int value_history_count; /* Abs number of last entry stored */
dd3b648e
RP
62\f
63/* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
82a2edfb 67static value_ptr all_values;
dd3b648e
RP
68
69/* Allocate a value that has the correct length for type TYPE. */
70
82a2edfb 71value_ptr
dd3b648e
RP
72allocate_value (type)
73 struct type *type;
74{
82a2edfb 75 register value_ptr val;
dd3b648e
RP
76
77 check_stub_type (type);
78
82a2edfb 79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
dd3b648e
RP
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
dd3b648e
RP
89 VALUE_REGNO (val) = -1;
90 VALUE_LAZY (val) = 0;
91 VALUE_OPTIMIZED_OUT (val) = 0;
30974778 92 val->modifiable = 1;
dd3b648e
RP
93 return val;
94}
95
96/* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
98
82a2edfb 99value_ptr
dd3b648e
RP
100allocate_repeat_value (type, count)
101 struct type *type;
102 int count;
103{
398f584f
PB
104 struct type *element_type = type;
105 int low_bound = current_language->string_lower_bound; /* ??? */
106 /* FIXME-type-allocation: need a way to free this type when we are
107 done with it. */
108 struct type *range_type
109 = create_range_type ((struct type *) NULL, builtin_type_int,
110 low_bound, count + low_bound - 1);
111 /* FIXME-type-allocation: need a way to free this type when we are
112 done with it. */
113 return allocate_value (create_array_type ((struct type *) NULL,
114 type, range_type));
dd3b648e
RP
115}
116
fcb887ff
JK
117/* Return a mark in the value chain. All values allocated after the
118 mark is obtained (except for those released) are subject to being freed
119 if a subsequent value_free_to_mark is passed the mark. */
82a2edfb 120value_ptr
fcb887ff
JK
121value_mark ()
122{
123 return all_values;
124}
125
126/* Free all values allocated since MARK was obtained by value_mark
127 (except for those released). */
128void
129value_free_to_mark (mark)
82a2edfb 130 value_ptr mark;
fcb887ff 131{
82a2edfb 132 value_ptr val, next;
fcb887ff
JK
133
134 for (val = all_values; val && val != mark; val = next)
135 {
136 next = VALUE_NEXT (val);
137 value_free (val);
138 }
139 all_values = val;
140}
141
dd3b648e
RP
142/* Free all the values that have been allocated (except for those released).
143 Called after each command, successful or not. */
144
145void
146free_all_values ()
147{
82a2edfb 148 register value_ptr val, next;
dd3b648e
RP
149
150 for (val = all_values; val; val = next)
151 {
152 next = VALUE_NEXT (val);
153 value_free (val);
154 }
155
156 all_values = 0;
157}
158
159/* Remove VAL from the chain all_values
160 so it will not be freed automatically. */
161
162void
163release_value (val)
82a2edfb 164 register value_ptr val;
dd3b648e 165{
82a2edfb 166 register value_ptr v;
dd3b648e
RP
167
168 if (all_values == val)
169 {
170 all_values = val->next;
171 return;
172 }
173
174 for (v = all_values; v; v = v->next)
175 {
176 if (v->next == val)
177 {
178 v->next = val->next;
179 break;
180 }
181 }
182}
183
999dd04b
JL
184/* Release all values up to mark */
185value_ptr
186value_release_to_mark (mark)
187 value_ptr mark;
188{
189 value_ptr val, next;
190
191 for (val = next = all_values; next; next = VALUE_NEXT (next))
192 if (VALUE_NEXT (next) == mark)
193 {
194 all_values = VALUE_NEXT (next);
195 VALUE_NEXT (next) = 0;
196 return val;
197 }
198 all_values = 0;
199 return val;
200}
201
dd3b648e
RP
202/* Return a copy of the value ARG.
203 It contains the same contents, for same memory address,
204 but it's a different block of storage. */
205
82a2edfb 206value_ptr
dd3b648e 207value_copy (arg)
82a2edfb 208 value_ptr arg;
dd3b648e 209{
dd3b648e 210 register struct type *type = VALUE_TYPE (arg);
398f584f 211 register value_ptr val = allocate_value (type);
dd3b648e
RP
212 VALUE_LVAL (val) = VALUE_LVAL (arg);
213 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
214 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
215 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
216 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
5e711e7f 217 VALUE_FRAME (val) = VALUE_FRAME (arg);
dd3b648e
RP
218 VALUE_REGNO (val) = VALUE_REGNO (arg);
219 VALUE_LAZY (val) = VALUE_LAZY (arg);
5e711e7f 220 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
30974778 221 val->modifiable = arg->modifiable;
dd3b648e
RP
222 if (!VALUE_LAZY (val))
223 {
51b57ded 224 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
398f584f 225 TYPE_LENGTH (VALUE_TYPE (arg)));
dd3b648e
RP
226 }
227 return val;
228}
229\f
230/* Access to the value history. */
231
232/* Record a new value in the value history.
233 Returns the absolute history index of the entry.
234 Result of -1 indicates the value was not saved; otherwise it is the
235 value history index of this new item. */
236
237int
238record_latest_value (val)
82a2edfb 239 value_ptr val;
dd3b648e
RP
240{
241 int i;
242
243 /* Check error now if about to store an invalid float. We return -1
244 to the caller, but allow them to continue, e.g. to print it as "Nan". */
4ed3a9ea
FF
245 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
246 {
247 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
248 if (i) return -1; /* Indicate value not saved in history */
249 }
dd3b648e 250
26a859ec
PS
251 /* We don't want this value to have anything to do with the inferior anymore.
252 In particular, "set $1 = 50" should not affect the variable from which
253 the value was taken, and fast watchpoints should be able to assume that
254 a value on the value history never changes. */
255 if (VALUE_LAZY (val))
256 value_fetch_lazy (val);
257 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
258 from. This is a bit dubious, because then *&$1 does not just return $1
259 but the current contents of that location. c'est la vie... */
260 val->modifiable = 0;
261 release_value (val);
262
dd3b648e
RP
263 /* Here we treat value_history_count as origin-zero
264 and applying to the value being stored now. */
265
266 i = value_history_count % VALUE_HISTORY_CHUNK;
267 if (i == 0)
268 {
269 register struct value_history_chunk *new
270 = (struct value_history_chunk *)
271 xmalloc (sizeof (struct value_history_chunk));
4ed3a9ea 272 memset (new->values, 0, sizeof new->values);
dd3b648e
RP
273 new->next = value_history_chain;
274 value_history_chain = new;
275 }
276
277 value_history_chain->values[i] = val;
4abc83b9 278
dd3b648e
RP
279 /* Now we regard value_history_count as origin-one
280 and applying to the value just stored. */
281
282 return ++value_history_count;
283}
284
285/* Return a copy of the value in the history with sequence number NUM. */
286
82a2edfb 287value_ptr
dd3b648e
RP
288access_value_history (num)
289 int num;
290{
291 register struct value_history_chunk *chunk;
292 register int i;
293 register int absnum = num;
294
295 if (absnum <= 0)
296 absnum += value_history_count;
297
298 if (absnum <= 0)
299 {
300 if (num == 0)
301 error ("The history is empty.");
302 else if (num == 1)
303 error ("There is only one value in the history.");
304 else
305 error ("History does not go back to $$%d.", -num);
306 }
307 if (absnum > value_history_count)
308 error ("History has not yet reached $%d.", absnum);
309
310 absnum--;
311
312 /* Now absnum is always absolute and origin zero. */
313
314 chunk = value_history_chain;
315 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
316 i > 0; i--)
317 chunk = chunk->next;
318
319 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
320}
321
322/* Clear the value history entirely.
323 Must be done when new symbol tables are loaded,
324 because the type pointers become invalid. */
325
326void
327clear_value_history ()
328{
329 register struct value_history_chunk *next;
330 register int i;
82a2edfb 331 register value_ptr val;
dd3b648e
RP
332
333 while (value_history_chain)
334 {
335 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
a8a69e63 336 if ((val = value_history_chain->values[i]) != NULL)
be772100 337 free ((PTR)val);
dd3b648e 338 next = value_history_chain->next;
be772100 339 free ((PTR)value_history_chain);
dd3b648e
RP
340 value_history_chain = next;
341 }
342 value_history_count = 0;
343}
344
345static void
f266e564 346show_values (num_exp, from_tty)
dd3b648e
RP
347 char *num_exp;
348 int from_tty;
349{
350 register int i;
82a2edfb 351 register value_ptr val;
dd3b648e
RP
352 static int num = 1;
353
354 if (num_exp)
355 {
46c28185
RP
356 /* "info history +" should print from the stored position.
357 "info history <exp>" should print around value number <exp>. */
358 if (num_exp[0] != '+' || num_exp[1] != '\0')
dd3b648e
RP
359 num = parse_and_eval_address (num_exp) - 5;
360 }
361 else
362 {
363 /* "info history" means print the last 10 values. */
364 num = value_history_count - 9;
365 }
366
367 if (num <= 0)
368 num = 1;
369
370 for (i = num; i < num + 10 && i <= value_history_count; i++)
371 {
372 val = access_value_history (i);
373 printf_filtered ("$%d = ", i);
199b2450 374 value_print (val, gdb_stdout, 0, Val_pretty_default);
dd3b648e
RP
375 printf_filtered ("\n");
376 }
377
378 /* The next "info history +" should start after what we just printed. */
379 num += 10;
380
381 /* Hitting just return after this command should do the same thing as
382 "info history +". If num_exp is null, this is unnecessary, since
383 "info history +" is not useful after "info history". */
384 if (from_tty && num_exp)
385 {
386 num_exp[0] = '+';
387 num_exp[1] = '\0';
388 }
389}
390\f
391/* Internal variables. These are variables within the debugger
392 that hold values assigned by debugger commands.
393 The user refers to them with a '$' prefix
394 that does not appear in the variable names stored internally. */
395
396static struct internalvar *internalvars;
397
398/* Look up an internal variable with name NAME. NAME should not
399 normally include a dollar sign.
400
401 If the specified internal variable does not exist,
402 one is created, with a void value. */
403
404struct internalvar *
405lookup_internalvar (name)
406 char *name;
407{
408 register struct internalvar *var;
409
410 for (var = internalvars; var; var = var->next)
2e4964ad 411 if (STREQ (var->name, name))
dd3b648e
RP
412 return var;
413
414 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
58ae87f6 415 var->name = concat (name, NULL);
dd3b648e
RP
416 var->value = allocate_value (builtin_type_void);
417 release_value (var->value);
418 var->next = internalvars;
419 internalvars = var;
420 return var;
421}
422
82a2edfb 423value_ptr
dd3b648e
RP
424value_of_internalvar (var)
425 struct internalvar *var;
426{
82a2edfb 427 register value_ptr val;
dd3b648e
RP
428
429#ifdef IS_TRAPPED_INTERNALVAR
430 if (IS_TRAPPED_INTERNALVAR (var->name))
431 return VALUE_OF_TRAPPED_INTERNALVAR (var);
432#endif
433
434 val = value_copy (var->value);
435 if (VALUE_LAZY (val))
436 value_fetch_lazy (val);
437 VALUE_LVAL (val) = lval_internalvar;
438 VALUE_INTERNALVAR (val) = var;
439 return val;
440}
441
442void
443set_internalvar_component (var, offset, bitpos, bitsize, newval)
444 struct internalvar *var;
445 int offset, bitpos, bitsize;
82a2edfb 446 value_ptr newval;
dd3b648e
RP
447{
448 register char *addr = VALUE_CONTENTS (var->value) + offset;
449
450#ifdef IS_TRAPPED_INTERNALVAR
451 if (IS_TRAPPED_INTERNALVAR (var->name))
452 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
453#endif
454
455 if (bitsize)
58e49e21 456 modify_field (addr, value_as_long (newval),
dd3b648e
RP
457 bitpos, bitsize);
458 else
4ed3a9ea 459 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
dd3b648e
RP
460}
461
462void
463set_internalvar (var, val)
464 struct internalvar *var;
82a2edfb 465 value_ptr val;
dd3b648e 466{
51f83933
JK
467 value_ptr newval;
468
dd3b648e
RP
469#ifdef IS_TRAPPED_INTERNALVAR
470 if (IS_TRAPPED_INTERNALVAR (var->name))
471 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
472#endif
473
51f83933 474 newval = value_copy (val);
ade01652 475 newval->modifiable = 1;
51f83933 476
6fab5bef
JG
477 /* Force the value to be fetched from the target now, to avoid problems
478 later when this internalvar is referenced and the target is gone or
479 has changed. */
51f83933
JK
480 if (VALUE_LAZY (newval))
481 value_fetch_lazy (newval);
482
483 /* Begin code which must not call error(). If var->value points to
484 something free'd, an error() obviously leaves a dangling pointer.
485 But we also get a danling pointer if var->value points to
486 something in the value chain (i.e., before release_value is
487 called), because after the error free_all_values will get called before
488 long. */
489 free ((PTR)var->value);
490 var->value = newval;
491 release_value (newval);
492 /* End code which must not call error(). */
dd3b648e
RP
493}
494
495char *
496internalvar_name (var)
497 struct internalvar *var;
498{
499 return var->name;
500}
501
502/* Free all internalvars. Done when new symtabs are loaded,
503 because that makes the values invalid. */
504
505void
506clear_internalvars ()
507{
508 register struct internalvar *var;
509
510 while (internalvars)
511 {
512 var = internalvars;
513 internalvars = var->next;
be772100
JG
514 free ((PTR)var->name);
515 free ((PTR)var->value);
516 free ((PTR)var);
dd3b648e
RP
517 }
518}
519
520static void
ac88ca20
JG
521show_convenience (ignore, from_tty)
522 char *ignore;
523 int from_tty;
dd3b648e
RP
524{
525 register struct internalvar *var;
526 int varseen = 0;
527
528 for (var = internalvars; var; var = var->next)
529 {
530#ifdef IS_TRAPPED_INTERNALVAR
531 if (IS_TRAPPED_INTERNALVAR (var->name))
532 continue;
533#endif
534 if (!varseen)
535 {
dd3b648e
RP
536 varseen = 1;
537 }
afe4ca15 538 printf_filtered ("$%s = ", var->name);
199b2450 539 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
afe4ca15 540 printf_filtered ("\n");
dd3b648e
RP
541 }
542 if (!varseen)
199b2450 543 printf_unfiltered ("No debugger convenience variables now defined.\n\
dd3b648e
RP
544Convenience variables have names starting with \"$\";\n\
545use \"set\" as in \"set $foo = 5\" to define them.\n");
546}
547\f
548/* Extract a value as a C number (either long or double).
549 Knows how to convert fixed values to double, or
550 floating values to long.
551 Does not deallocate the value. */
552
553LONGEST
554value_as_long (val)
82a2edfb 555 register value_ptr val;
dd3b648e
RP
556{
557 /* This coerces arrays and functions, which is necessary (e.g.
558 in disassemble_command). It also dereferences references, which
559 I suspect is the most logical thing to do. */
560 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
561 COERCE_ARRAY (val);
562 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
563}
564
565double
566value_as_double (val)
82a2edfb 567 register value_ptr val;
dd3b648e
RP
568{
569 double foo;
570 int inv;
571
572 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
573 if (inv)
574 error ("Invalid floating value found in program.");
575 return foo;
576}
e1ce8aa5
JK
577/* Extract a value as a C pointer.
578 Does not deallocate the value. */
579CORE_ADDR
580value_as_pointer (val)
82a2edfb 581 value_ptr val;
e1ce8aa5 582{
2bff8e38
JK
583 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
584 whether we want this to be true eventually. */
b2ccb6a4
JK
585#if 0
586 /* ADDR_BITS_REMOVE is wrong if we are being called for a
587 non-address (e.g. argument to "signal", "info break", etc.), or
588 for pointers to char, in which the low bits *are* significant. */
ae0ea72e 589 return ADDR_BITS_REMOVE(value_as_long (val));
b2ccb6a4
JK
590#else
591 return value_as_long (val);
592#endif
e1ce8aa5 593}
dd3b648e
RP
594\f
595/* Unpack raw data (copied from debugee, target byte order) at VALADDR
596 as a long, or as a double, assuming the raw data is described
597 by type TYPE. Knows how to convert different sizes of values
598 and can convert between fixed and floating point. We don't assume
599 any alignment for the raw data. Return value is in host byte order.
600
601 If you want functions and arrays to be coerced to pointers, and
602 references to be dereferenced, call value_as_long() instead.
603
604 C++: It is assumed that the front-end has taken care of
605 all matters concerning pointers to members. A pointer
606 to member which reaches here is considered to be equivalent
607 to an INT (or some size). After all, it is only an offset. */
608
609LONGEST
610unpack_long (type, valaddr)
611 struct type *type;
612 char *valaddr;
613{
614 register enum type_code code = TYPE_CODE (type);
615 register int len = TYPE_LENGTH (type);
616 register int nosign = TYPE_UNSIGNED (type);
617
3c02944a
PB
618 if (current_language->la_language == language_scm
619 && is_scmvalue_type (type))
620 return scm_unpack (type, valaddr, TYPE_CODE_INT);
621
bf5c0d64 622 switch (code)
dd3b648e 623 {
bf5c0d64
JK
624 case TYPE_CODE_ENUM:
625 case TYPE_CODE_BOOL:
626 case TYPE_CODE_INT:
627 case TYPE_CODE_CHAR:
b96bc1e4 628 case TYPE_CODE_RANGE:
bf5c0d64
JK
629 if (nosign)
630 return extract_unsigned_integer (valaddr, len);
dd3b648e 631 else
bf5c0d64
JK
632 return extract_signed_integer (valaddr, len);
633
634 case TYPE_CODE_FLT:
635 return extract_floating (valaddr, len);
636
637 case TYPE_CODE_PTR:
638 case TYPE_CODE_REF:
639 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
640 whether we want this to be true eventually. */
34df79fc 641 return extract_address (valaddr, len);
dd3b648e 642
bf5c0d64
JK
643 case TYPE_CODE_MEMBER:
644 error ("not implemented: member types in unpack_long");
645
646 default:
ca0865db 647 error ("Value can't be converted to integer.");
bf5c0d64
JK
648 }
649 return 0; /* Placate lint. */
dd3b648e
RP
650}
651
652/* Return a double value from the specified type and address.
653 INVP points to an int which is set to 0 for valid value,
654 1 for invalid value (bad float format). In either case,
655 the returned double is OK to use. Argument is in target
656 format, result is in host format. */
657
658double
659unpack_double (type, valaddr, invp)
660 struct type *type;
661 char *valaddr;
662 int *invp;
663{
664 register enum type_code code = TYPE_CODE (type);
665 register int len = TYPE_LENGTH (type);
666 register int nosign = TYPE_UNSIGNED (type);
667
668 *invp = 0; /* Assume valid. */
669 if (code == TYPE_CODE_FLT)
670 {
ac57e5ad 671#ifdef INVALID_FLOAT
dd3b648e
RP
672 if (INVALID_FLOAT (valaddr, len))
673 {
674 *invp = 1;
675 return 1.234567891011121314;
676 }
ac57e5ad 677#endif
89ce0c8f
JK
678 return extract_floating (valaddr, len);
679 }
680 else if (nosign)
681 {
682 /* Unsigned -- be sure we compensate for signed LONGEST. */
683 return (unsigned LONGEST) unpack_long (type, valaddr);
684 }
685 else
686 {
687 /* Signed -- we are OK with unpack_long. */
688 return unpack_long (type, valaddr);
dd3b648e 689 }
dd3b648e 690}
e1ce8aa5
JK
691
692/* Unpack raw data (copied from debugee, target byte order) at VALADDR
693 as a CORE_ADDR, assuming the raw data is described by type TYPE.
694 We don't assume any alignment for the raw data. Return value is in
695 host byte order.
696
697 If you want functions and arrays to be coerced to pointers, and
698 references to be dereferenced, call value_as_pointer() instead.
699
700 C++: It is assumed that the front-end has taken care of
701 all matters concerning pointers to members. A pointer
702 to member which reaches here is considered to be equivalent
703 to an INT (or some size). After all, it is only an offset. */
704
705CORE_ADDR
706unpack_pointer (type, valaddr)
707 struct type *type;
708 char *valaddr;
709{
2bff8e38
JK
710 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
711 whether we want this to be true eventually. */
712 return unpack_long (type, valaddr);
e1ce8aa5 713}
dd3b648e
RP
714\f
715/* Given a value ARG1 (offset by OFFSET bytes)
716 of a struct or union type ARG_TYPE,
717 extract and return the value of one of its fields.
718 FIELDNO says which field.
719
720 For C++, must also be able to return values from static fields */
721
82a2edfb 722value_ptr
dd3b648e 723value_primitive_field (arg1, offset, fieldno, arg_type)
82a2edfb 724 register value_ptr arg1;
dd3b648e
RP
725 int offset;
726 register int fieldno;
727 register struct type *arg_type;
728{
82a2edfb 729 register value_ptr v;
dd3b648e
RP
730 register struct type *type;
731
732 check_stub_type (arg_type);
733 type = TYPE_FIELD_TYPE (arg_type, fieldno);
734
735 /* Handle packed fields */
736
737 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
738 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
739 {
96b2f51c 740 v = value_from_longest (type,
dd3b648e
RP
741 unpack_field_as_long (arg_type,
742 VALUE_CONTENTS (arg1),
743 fieldno));
744 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
745 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
746 }
747 else
748 {
749 v = allocate_value (type);
750 if (VALUE_LAZY (arg1))
751 VALUE_LAZY (v) = 1;
752 else
4ed3a9ea
FF
753 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
754 TYPE_LENGTH (type));
dd3b648e
RP
755 }
756 VALUE_LVAL (v) = VALUE_LVAL (arg1);
757 if (VALUE_LVAL (arg1) == lval_internalvar)
758 VALUE_LVAL (v) = lval_internalvar_component;
759 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
760 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
761 return v;
762}
763
764/* Given a value ARG1 of a struct or union type,
765 extract and return the value of one of its fields.
766 FIELDNO says which field.
767
768 For C++, must also be able to return values from static fields */
769
82a2edfb 770value_ptr
dd3b648e 771value_field (arg1, fieldno)
82a2edfb 772 register value_ptr arg1;
dd3b648e
RP
773 register int fieldno;
774{
775 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
776}
777
545af6ce
PB
778/* Return a non-virtual function as a value.
779 F is the list of member functions which contains the desired method.
780 J is an index into F which provides the desired method. */
781
82a2edfb 782value_ptr
94603999 783value_fn_field (arg1p, f, j, type, offset)
82a2edfb 784 value_ptr *arg1p;
545af6ce
PB
785 struct fn_field *f;
786 int j;
94603999
JG
787 struct type *type;
788 int offset;
dd3b648e 789{
82a2edfb 790 register value_ptr v;
94603999 791 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
dd3b648e
RP
792 struct symbol *sym;
793
545af6ce 794 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
dd3b648e 795 0, VAR_NAMESPACE, 0, NULL);
f1c6dbf6 796 if (! sym)
82a2edfb 797 return NULL;
f1c6dbf6
KH
798/*
799 error ("Internal error: could not find physical method named %s",
545af6ce 800 TYPE_FN_FIELD_PHYSNAME (f, j));
f1c6dbf6 801*/
dd3b648e 802
94603999 803 v = allocate_value (ftype);
dd3b648e 804 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
94603999
JG
805 VALUE_TYPE (v) = ftype;
806
807 if (arg1p)
808 {
809 if (type != VALUE_TYPE (*arg1p))
810 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
811 value_addr (*arg1p)));
812
dcd8fd8c 813 /* Move the `this' pointer according to the offset.
94603999 814 VALUE_OFFSET (*arg1p) += offset;
dcd8fd8c 815 */
94603999
JG
816 }
817
dd3b648e
RP
818 return v;
819}
820
821/* Return a virtual function as a value.
822 ARG1 is the object which provides the virtual function
94603999 823 table pointer. *ARG1P is side-effected in calling this function.
dd3b648e
RP
824 F is the list of member functions which contains the desired virtual
825 function.
e532974c
JK
826 J is an index into F which provides the desired virtual function.
827
828 TYPE is the type in which F is located. */
82a2edfb 829value_ptr
94603999 830value_virtual_fn_field (arg1p, f, j, type, offset)
82a2edfb 831 value_ptr *arg1p;
dd3b648e
RP
832 struct fn_field *f;
833 int j;
e532974c 834 struct type *type;
94603999 835 int offset;
dd3b648e 836{
82a2edfb 837 value_ptr arg1 = *arg1p;
dd3b648e
RP
838 /* First, get the virtual function table pointer. That comes
839 with a strange type, so cast it to type `pointer to long' (which
840 should serve just fine as a function type). Then, index into
841 the table, and convert final value to appropriate function type. */
82a2edfb
JK
842 value_ptr entry, vfn, vtbl;
843 value_ptr vi = value_from_longest (builtin_type_int,
844 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
e532974c
JK
845 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
846 struct type *context;
847 if (fcontext == NULL)
848 /* We don't have an fcontext (e.g. the program was compiled with
849 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
850 This won't work right for multiple inheritance, but at least we
851 should do as well as GDB 3.x did. */
852 fcontext = TYPE_VPTR_BASETYPE (type);
853 context = lookup_pointer_type (fcontext);
854 /* Now context is a pointer to the basetype containing the vtbl. */
dd3b648e
RP
855 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
856 arg1 = value_ind (value_cast (context, value_addr (arg1)));
857
858 context = VALUE_TYPE (arg1);
e532974c 859 /* Now context is the basetype containing the vtbl. */
dd3b648e
RP
860
861 /* This type may have been defined before its virtual function table
862 was. If so, fill in the virtual function table entry for the
863 type now. */
864 if (TYPE_VPTR_FIELDNO (context) < 0)
71b16efa 865 fill_in_vptr_fieldno (context);
dd3b648e
RP
866
867 /* The virtual function table is now an array of structures
868 which have the form { int16 offset, delta; void *pfn; }. */
94603999
JG
869 vtbl = value_ind (value_primitive_field (arg1, 0,
870 TYPE_VPTR_FIELDNO (context),
871 TYPE_VPTR_BASETYPE (context)));
dd3b648e
RP
872
873 /* Index into the virtual function table. This is hard-coded because
874 looking up a field is not cheap, and it may be important to save
875 time, e.g. if the user has set a conditional breakpoint calling
876 a virtual function. */
877 entry = value_subscript (vtbl, vi);
878
36a2283d 879 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
dd3b648e 880 {
36a2283d
PB
881 /* Move the `this' pointer according to the virtual function table. */
882 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
883
884 if (! VALUE_LAZY (arg1))
885 {
886 VALUE_LAZY (arg1) = 1;
887 value_fetch_lazy (arg1);
888 }
dd3b648e 889
36a2283d
PB
890 vfn = value_field (entry, 2);
891 }
892 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
893 vfn = entry;
894 else
895 error ("I'm confused: virtual function table has bad type");
dd3b648e
RP
896 /* Reinstantiate the function pointer with the correct type. */
897 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
898
94603999 899 *arg1p = arg1;
dd3b648e
RP
900 return vfn;
901}
902
71b16efa
JK
903/* ARG is a pointer to an object we know to be at least
904 a DTYPE. BTYPE is the most derived basetype that has
905 already been searched (and need not be searched again).
906 After looking at the vtables between BTYPE and DTYPE,
907 return the most derived type we find. The caller must
908 be satisfied when the return value == DTYPE.
909
910 FIXME-tiemann: should work with dossier entries as well. */
911
82a2edfb 912static value_ptr
7cb0f870 913value_headof (in_arg, btype, dtype)
82a2edfb 914 value_ptr in_arg;
71b16efa
JK
915 struct type *btype, *dtype;
916{
917 /* First collect the vtables we must look at for this object. */
918 /* FIXME-tiemann: right now, just look at top-most vtable. */
82a2edfb 919 value_ptr arg, vtbl, entry, best_entry = 0;
71b16efa
JK
920 int i, nelems;
921 int offset, best_offset = 0;
922 struct symbol *sym;
923 CORE_ADDR pc_for_sym;
924 char *demangled_name;
1ab3bf1b
JG
925 struct minimal_symbol *msymbol;
926
aec4cb91
MT
927 btype = TYPE_VPTR_BASETYPE (dtype);
928 check_stub_type (btype);
7cb0f870 929 arg = in_arg;
aec4cb91 930 if (btype != dtype)
7cb0f870
MT
931 arg = value_cast (lookup_pointer_type (btype), arg);
932 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
71b16efa
JK
933
934 /* Check that VTBL looks like it points to a virtual function table. */
1ab3bf1b
JG
935 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
936 if (msymbol == NULL
36a2283d
PB
937 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
938 || !VTBL_PREFIX_P (demangled_name))
71b16efa
JK
939 {
940 /* If we expected to find a vtable, but did not, let the user
941 know that we aren't happy, but don't throw an error.
942 FIXME: there has to be a better way to do this. */
943 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
7cb0f870 944 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
71b16efa 945 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
7cb0f870
MT
946 VALUE_TYPE (in_arg) = error_type;
947 return in_arg;
71b16efa
JK
948 }
949
950 /* Now search through the virtual function table. */
951 entry = value_ind (vtbl);
e1ce8aa5 952 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
71b16efa
JK
953 for (i = 1; i <= nelems; i++)
954 {
96b2f51c
JG
955 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
956 (LONGEST) i));
36a2283d
PB
957 /* This won't work if we're using thunks. */
958 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
959 break;
e1ce8aa5 960 offset = longest_to_int (value_as_long (value_field (entry, 0)));
bcccec8c
PB
961 /* If we use '<=' we can handle single inheritance
962 * where all offsets are zero - just use the first entry found. */
963 if (offset <= best_offset)
71b16efa
JK
964 {
965 best_offset = offset;
966 best_entry = entry;
967 }
968 }
71b16efa
JK
969 /* Move the pointer according to BEST_ENTRY's offset, and figure
970 out what type we should return as the new pointer. */
bcccec8c
PB
971 if (best_entry == 0)
972 {
973 /* An alternative method (which should no longer be necessary).
974 * But we leave it in for future use, when we will hopefully
975 * have optimizes the vtable to use thunks instead of offsets. */
976 /* Use the name of vtable itself to extract a base type. */
f1c6dbf6 977 demangled_name += 4; /* Skip _vt$ prefix. */
bcccec8c
PB
978 }
979 else
980 {
981 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
982 sym = find_pc_function (pc_for_sym);
8050a57b 983 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
bcccec8c
PB
984 *(strchr (demangled_name, ':')) = '\0';
985 }
71b16efa 986 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
2e4964ad
FF
987 if (sym == NULL)
988 error ("could not find type declaration for `%s'", demangled_name);
bcccec8c
PB
989 if (best_entry)
990 {
991 free (demangled_name);
992 arg = value_add (value_cast (builtin_type_int, arg),
993 value_field (best_entry, 0));
994 }
7cb0f870 995 else arg = in_arg;
71b16efa
JK
996 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
997 return arg;
998}
999
1000/* ARG is a pointer object of type TYPE. If TYPE has virtual
1001 function tables, probe ARG's tables (including the vtables
1002 of its baseclasses) to figure out the most derived type that ARG
1003 could actually be a pointer to. */
1004
82a2edfb 1005value_ptr
71b16efa 1006value_from_vtable_info (arg, type)
82a2edfb 1007 value_ptr arg;
71b16efa
JK
1008 struct type *type;
1009{
1010 /* Take care of preliminaries. */
1011 if (TYPE_VPTR_FIELDNO (type) < 0)
1012 fill_in_vptr_fieldno (type);
398f584f 1013 if (TYPE_VPTR_FIELDNO (type) < 0)
71b16efa
JK
1014 return 0;
1015
1016 return value_headof (arg, 0, type);
1017}
1018
1410f5f1
JK
1019/* Return true if the INDEXth field of TYPE is a virtual baseclass
1020 pointer which is for the base class whose type is BASECLASS. */
1021
1022static int
1023vb_match (type, index, basetype)
1024 struct type *type;
1025 int index;
1026 struct type *basetype;
1027{
1028 struct type *fieldtype;
1410f5f1
JK
1029 char *name = TYPE_FIELD_NAME (type, index);
1030 char *field_class_name = NULL;
1031
1032 if (*name != '_')
1033 return 0;
f1c6dbf6 1034 /* gcc 2.4 uses _vb$. */
1410f5f1
JK
1035 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1036 field_class_name = name + 4;
f1c6dbf6 1037 /* gcc 2.5 will use __vb_. */
1410f5f1
JK
1038 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1039 field_class_name = name + 5;
1040
1041 if (field_class_name == NULL)
1042 /* This field is not a virtual base class pointer. */
1043 return 0;
1044
1045 /* It's a virtual baseclass pointer, now we just need to find out whether
1046 it is for this baseclass. */
1047 fieldtype = TYPE_FIELD_TYPE (type, index);
1048 if (fieldtype == NULL
1049 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1050 /* "Can't happen". */
1051 return 0;
1052
1053 /* What we check for is that either the types are equal (needed for
1054 nameless types) or have the same name. This is ugly, and a more
1055 elegant solution should be devised (which would probably just push
1056 the ugliness into symbol reading unless we change the stabs format). */
1057 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1058 return 1;
1059
1060 if (TYPE_NAME (basetype) != NULL
1061 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1062 && STREQ (TYPE_NAME (basetype),
1063 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1064 return 1;
1065 return 0;
1066}
1067
94603999
JG
1068/* Compute the offset of the baseclass which is
1069 the INDEXth baseclass of class TYPE, for a value ARG,
1070 wih extra offset of OFFSET.
1071 The result is the offste of the baseclass value relative
1072 to (the address of)(ARG) + OFFSET.
1073
1074 -1 is returned on error. */
1075
1076int
1077baseclass_offset (type, index, arg, offset)
1078 struct type *type;
1079 int index;
82a2edfb 1080 value_ptr arg;
94603999
JG
1081 int offset;
1082{
1083 struct type *basetype = TYPE_BASECLASS (type, index);
1084
1085 if (BASETYPE_VIA_VIRTUAL (type, index))
1086 {
1087 /* Must hunt for the pointer to this virtual baseclass. */
1088 register int i, len = TYPE_NFIELDS (type);
1089 register int n_baseclasses = TYPE_N_BASECLASSES (type);
94603999 1090
94603999
JG
1091 /* First look for the virtual baseclass pointer
1092 in the fields. */
1093 for (i = n_baseclasses; i < len; i++)
1094 {
1410f5f1 1095 if (vb_match (type, i, basetype))
94603999
JG
1096 {
1097 CORE_ADDR addr
1098 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1099 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1100 + offset
1101 + (TYPE_FIELD_BITPOS (type, i) / 8));
1102
1103 if (VALUE_LVAL (arg) != lval_memory)
1104 return -1;
1105
1106 return addr -
1107 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1108 }
1109 }
1110 /* Not in the fields, so try looking through the baseclasses. */
1111 for (i = index+1; i < n_baseclasses; i++)
1112 {
1113 int boffset =
1114 baseclass_offset (type, i, arg, offset);
1115 if (boffset)
1116 return boffset;
1117 }
1118 /* Not found. */
1119 return -1;
1120 }
1121
1122 /* Baseclass is easily computed. */
1123 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1124}
1125
dd3b648e 1126/* Compute the address of the baseclass which is
f1d77e90 1127 the INDEXth baseclass of class TYPE. The TYPE base
71b16efa
JK
1128 of the object is at VALADDR.
1129
1130 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1131 or 0 if no error. In that case the return value is not the address
1132 of the baseclasss, but the address which could not be read
1133 successfully. */
dd3b648e 1134
94603999
JG
1135/* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1136
dd3b648e 1137char *
71b16efa 1138baseclass_addr (type, index, valaddr, valuep, errp)
dd3b648e
RP
1139 struct type *type;
1140 int index;
1141 char *valaddr;
82a2edfb 1142 value_ptr *valuep;
71b16efa 1143 int *errp;
dd3b648e
RP
1144{
1145 struct type *basetype = TYPE_BASECLASS (type, index);
1146
71b16efa
JK
1147 if (errp)
1148 *errp = 0;
aec4cb91 1149
dd3b648e
RP
1150 if (BASETYPE_VIA_VIRTUAL (type, index))
1151 {
1152 /* Must hunt for the pointer to this virtual baseclass. */
1153 register int i, len = TYPE_NFIELDS (type);
1154 register int n_baseclasses = TYPE_N_BASECLASSES (type);
dd3b648e 1155
dd3b648e
RP
1156 /* First look for the virtual baseclass pointer
1157 in the fields. */
1158 for (i = n_baseclasses; i < len; i++)
1159 {
1410f5f1 1160 if (vb_match (type, i, basetype))
dd3b648e 1161 {
82a2edfb 1162 value_ptr val = allocate_value (basetype);
71b16efa
JK
1163 CORE_ADDR addr;
1164 int status;
1165
e1ce8aa5
JK
1166 addr
1167 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
71b16efa
JK
1168 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1169
1170 status = target_read_memory (addr,
1171 VALUE_CONTENTS_RAW (val),
4f6f12f9 1172 TYPE_LENGTH (basetype));
71b16efa
JK
1173 VALUE_LVAL (val) = lval_memory;
1174 VALUE_ADDRESS (val) = addr;
1175
1176 if (status != 0)
1177 {
1178 if (valuep)
1179 *valuep = NULL;
1180 release_value (val);
1181 value_free (val);
1182 if (errp)
1183 *errp = status;
1184 return (char *)addr;
1185 }
1186 else
1187 {
1188 if (valuep)
1189 *valuep = val;
1190 return (char *) VALUE_CONTENTS (val);
1191 }
dd3b648e
RP
1192 }
1193 }
1194 /* Not in the fields, so try looking through the baseclasses. */
1195 for (i = index+1; i < n_baseclasses; i++)
1196 {
1197 char *baddr;
1198
e1ce8aa5 1199 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
dd3b648e
RP
1200 if (baddr)
1201 return baddr;
1202 }
1203 /* Not found. */
1204 if (valuep)
1205 *valuep = 0;
1206 return 0;
1207 }
1208
1209 /* Baseclass is easily computed. */
1210 if (valuep)
1211 *valuep = 0;
1212 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1213}
dd3b648e 1214\f
4db8e515
FF
1215/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1216 VALADDR.
1217
1218 Extracting bits depends on endianness of the machine. Compute the
1219 number of least significant bits to discard. For big endian machines,
1220 we compute the total number of bits in the anonymous object, subtract
1221 off the bit count from the MSB of the object to the MSB of the
1222 bitfield, then the size of the bitfield, which leaves the LSB discard
1223 count. For little endian machines, the discard count is simply the
1224 number of bits from the LSB of the anonymous object to the LSB of the
1225 bitfield.
1226
1227 If the field is signed, we also do sign extension. */
1228
1229LONGEST
dd3b648e
RP
1230unpack_field_as_long (type, valaddr, fieldno)
1231 struct type *type;
1232 char *valaddr;
1233 int fieldno;
1234{
4db8e515
FF
1235 unsigned LONGEST val;
1236 unsigned LONGEST valmask;
dd3b648e
RP
1237 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1238 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
4db8e515 1239 int lsbcount;
dd3b648e 1240
34df79fc 1241 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
4db8e515
FF
1242
1243 /* Extract bits. See comment above. */
dd3b648e 1244
b8176214
ILT
1245 if (BITS_BIG_ENDIAN)
1246 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1247 else
1248 lsbcount = (bitpos % 8);
4db8e515 1249 val >>= lsbcount;
dd3b648e 1250
4db8e515
FF
1251 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1252 If the field is signed, and is negative, then sign extend. */
1253
1254 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1255 {
1256 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1257 val &= valmask;
1258 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1259 {
1260 if (val & (valmask ^ (valmask >> 1)))
1261 {
1262 val |= ~valmask;
1263 }
1264 }
1265 }
1266 return (val);
dd3b648e
RP
1267}
1268
3f2e006b
JG
1269/* Modify the value of a bitfield. ADDR points to a block of memory in
1270 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1271 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1272 indicate which bits (in target bit order) comprise the bitfield. */
1273
dd3b648e
RP
1274void
1275modify_field (addr, fieldval, bitpos, bitsize)
1276 char *addr;
58e49e21 1277 LONGEST fieldval;
dd3b648e
RP
1278 int bitpos, bitsize;
1279{
58e49e21 1280 LONGEST oword;
dd3b648e 1281
080868b4
PS
1282 /* If a negative fieldval fits in the field in question, chop
1283 off the sign extension bits. */
1284 if (bitsize < (8 * sizeof (fieldval))
1285 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1286 fieldval = fieldval & ((1 << bitsize) - 1);
1287
1288 /* Warn if value is too big to fit in the field in question. */
61a7292f
SG
1289 if (bitsize < (8 * sizeof (fieldval))
1290 && 0 != (fieldval & ~((1<<bitsize)-1)))
58e49e21
JK
1291 {
1292 /* FIXME: would like to include fieldval in the message, but
1293 we don't have a sprintf_longest. */
080868b4
PS
1294 warning ("Value does not fit in %d bits.", bitsize);
1295
1296 /* Truncate it, otherwise adjoining fields may be corrupted. */
1297 fieldval = fieldval & ((1 << bitsize) - 1);
58e49e21 1298 }
34df79fc
JK
1299
1300 oword = extract_signed_integer (addr, sizeof oword);
dd3b648e 1301
3f2e006b 1302 /* Shifting for bit field depends on endianness of the target machine. */
b8176214
ILT
1303 if (BITS_BIG_ENDIAN)
1304 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
dd3b648e 1305
58e49e21 1306 /* Mask out old value, while avoiding shifts >= size of oword */
c3a21801 1307 if (bitsize < 8 * sizeof (oword))
58e49e21 1308 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
c3a21801 1309 else
58e49e21 1310 oword &= ~((~(unsigned LONGEST)0) << bitpos);
dd3b648e 1311 oword |= fieldval << bitpos;
3f2e006b 1312
34df79fc 1313 store_signed_integer (addr, sizeof oword, oword);
dd3b648e
RP
1314}
1315\f
1316/* Convert C numbers into newly allocated values */
1317
82a2edfb 1318value_ptr
96b2f51c 1319value_from_longest (type, num)
dd3b648e
RP
1320 struct type *type;
1321 register LONGEST num;
1322{
82a2edfb 1323 register value_ptr val = allocate_value (type);
dd3b648e
RP
1324 register enum type_code code = TYPE_CODE (type);
1325 register int len = TYPE_LENGTH (type);
1326
34df79fc 1327 switch (code)
dd3b648e 1328 {
34df79fc
JK
1329 case TYPE_CODE_INT:
1330 case TYPE_CODE_CHAR:
1331 case TYPE_CODE_ENUM:
1332 case TYPE_CODE_BOOL:
b96bc1e4 1333 case TYPE_CODE_RANGE:
34df79fc
JK
1334 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1335 break;
1336
1337 case TYPE_CODE_REF:
1338 case TYPE_CODE_PTR:
1339 /* This assumes that all pointers of a given length
1340 have the same form. */
1341 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1342 break;
1343
1344 default:
1345 error ("Unexpected type encountered for integer constant.");
dd3b648e 1346 }
dd3b648e
RP
1347 return val;
1348}
1349
82a2edfb 1350value_ptr
dd3b648e
RP
1351value_from_double (type, num)
1352 struct type *type;
1353 double num;
1354{
82a2edfb 1355 register value_ptr val = allocate_value (type);
dd3b648e
RP
1356 register enum type_code code = TYPE_CODE (type);
1357 register int len = TYPE_LENGTH (type);
1358
1359 if (code == TYPE_CODE_FLT)
1360 {
bf5c0d64 1361 store_floating (VALUE_CONTENTS_RAW (val), len, num);
dd3b648e
RP
1362 }
1363 else
1364 error ("Unexpected type encountered for floating constant.");
1365
dd3b648e
RP
1366 return val;
1367}
1368\f
1369/* Deal with the value that is "about to be returned". */
1370
1371/* Return the value that a function returning now
1372 would be returning to its caller, assuming its type is VALTYPE.
1373 RETBUF is where we look for what ought to be the contents
1374 of the registers (in raw form). This is because it is often
1375 desirable to restore old values to those registers
1376 after saving the contents of interest, and then call
1377 this function using the saved values.
1378 struct_return is non-zero when the function in question is
1379 using the structure return conventions on the machine in question;
1380 0 when it is using the value returning conventions (this often
1381 means returning pointer to where structure is vs. returning value). */
1382
82a2edfb 1383value_ptr
dd3b648e
RP
1384value_being_returned (valtype, retbuf, struct_return)
1385 register struct type *valtype;
1386 char retbuf[REGISTER_BYTES];
1387 int struct_return;
1388 /*ARGSUSED*/
1389{
82a2edfb 1390 register value_ptr val;
dd3b648e
RP
1391 CORE_ADDR addr;
1392
1393#if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1394 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1395 if (struct_return) {
1396 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1397 if (!addr)
1398 error ("Function return value unknown");
1399 return value_at (valtype, addr);
1400 }
1401#endif
1402
1403 val = allocate_value (valtype);
1404 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1405
1406 return val;
1407}
1408
1409/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1410 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1411 and TYPE is the type (which is known to be struct, union or array).
1412
1413 On most machines, the struct convention is used unless we are
1414 using gcc and the type is of a special size. */
9925b928
JK
1415/* As of about 31 Mar 93, GCC was changed to be compatible with the
1416 native compiler. GCC 2.3.3 was the last release that did it the
1417 old way. Since gcc2_compiled was not changed, we have no
1418 way to correctly win in all cases, so we just do the right thing
1419 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1420 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1421 would cause more chaos than dealing with some struct returns being
1422 handled wrong. */
dd3b648e
RP
1423#if !defined (USE_STRUCT_CONVENTION)
1424#define USE_STRUCT_CONVENTION(gcc_p, type)\
9925b928
JK
1425 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1426 || TYPE_LENGTH (value_type) == 2 \
1427 || TYPE_LENGTH (value_type) == 4 \
1428 || TYPE_LENGTH (value_type) == 8 \
1429 ) \
dd3b648e
RP
1430 ))
1431#endif
1432
1433/* Return true if the function specified is using the structure returning
1434 convention on this machine to return arguments, or 0 if it is using
1435 the value returning convention. FUNCTION is the value representing
1436 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1437 is the type returned by the function. GCC_P is nonzero if compiled
1438 with GCC. */
1439
1440int
1441using_struct_return (function, funcaddr, value_type, gcc_p)
82a2edfb 1442 value_ptr function;
dd3b648e
RP
1443 CORE_ADDR funcaddr;
1444 struct type *value_type;
1445 int gcc_p;
1446 /*ARGSUSED*/
1447{
1448 register enum type_code code = TYPE_CODE (value_type);
1449
1450 if (code == TYPE_CODE_ERROR)
1451 error ("Function return type unknown.");
1452
1453 if (code == TYPE_CODE_STRUCT ||
1454 code == TYPE_CODE_UNION ||
1455 code == TYPE_CODE_ARRAY)
1456 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1457
1458 return 0;
1459}
1460
1461/* Store VAL so it will be returned if a function returns now.
1462 Does not verify that VAL's type matches what the current
1463 function wants to return. */
1464
1465void
1466set_return_value (val)
82a2edfb 1467 value_ptr val;
dd3b648e
RP
1468{
1469 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
dd3b648e
RP
1470
1471 if (code == TYPE_CODE_ERROR)
1472 error ("Function return type unknown.");
1473
f1d77e90
JG
1474 if ( code == TYPE_CODE_STRUCT
1475 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1476 error ("GDB does not support specifying a struct or union return value.");
dd3b648e 1477
07aa9fdc 1478 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
dd3b648e
RP
1479}
1480\f
1481void
1482_initialize_values ()
1483{
f266e564 1484 add_cmd ("convenience", no_class, show_convenience,
dd3b648e
RP
1485 "Debugger convenience (\"$foo\") variables.\n\
1486These variables are created when you assign them values;\n\
1487thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1488A few convenience variables are given values automatically:\n\
1489\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f266e564
JK
1490\"$__\" holds the contents of the last address examined with \"x\".",
1491 &showlist);
dd3b648e 1492
f266e564
JK
1493 add_cmd ("values", no_class, show_values,
1494 "Elements of value history around item number IDX (or last ten).",
1495 &showlist);
dd3b648e 1496}
This page took 0.345311 seconds and 4 git commands to generate.