*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
c5a57081 3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
b66d6d2e 29#include "gdb_string.h"
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
181875a4
JB
36#include "ada-varobj.h"
37#include "ada-lang.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
85254831
KS
46/* The names of varobjs representing anonymous structs or unions. */
47#define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48#define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
8b93c638
JM
50/* Non-zero if we want to see trace of varobj level stuff. */
51
52int varobjdebug = 0;
920d2a44
AC
53static void
54show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56{
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58}
8b93c638 59
581e13c1 60/* String representations of gdb's format codes. */
8b93c638 61char *varobj_format_string[] =
72330bd6 62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 63
581e13c1 64/* String representations of gdb's known languages. */
72330bd6 65char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 66
0cc7d26f
TT
67/* True if we want to allow Python-based pretty-printing. */
68static int pretty_printing = 0;
69
70void
71varobj_enable_pretty_printing (void)
72{
73 pretty_printing = 1;
74}
75
8b93c638
JM
76/* Data structures */
77
78/* Every root variable has one of these structures saved in its
581e13c1 79 varobj. Members which must be free'd are noted. */
8b93c638 80struct varobj_root
72330bd6 81{
8b93c638 82
581e13c1 83 /* Alloc'd expression for this parent. */
72330bd6 84 struct expression *exp;
8b93c638 85
581e13c1 86 /* Block for which this expression is valid. */
72330bd6 87 struct block *valid_block;
8b93c638 88
44a67aa7
VP
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
e64d9b3d 91 struct frame_id frame;
8b93c638 92
c5b48eac 93 /* The thread ID that this varobj_root belong to. This field
581e13c1 94 is only valid if valid_block is not NULL.
c5b48eac
VP
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
a5defcdc
VP
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
581e13c1 102 always updated in the specific scope/thread/frame. */
a5defcdc 103 int floating;
73a93a32 104
8756216b
DP
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
581e13c1 109 /* Language info for this variable and its children. */
72330bd6 110 struct language_specific *lang;
8b93c638 111
581e13c1 112 /* The varobj for this root node. */
72330bd6 113 struct varobj *rootvar;
8b93c638 114
72330bd6
AC
115 /* Next root variable */
116 struct varobj_root *next;
117};
8b93c638
JM
118
119/* Every variable in the system has a structure of this type defined
581e13c1
MS
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
8b93c638 122struct varobj
72330bd6 123{
8b93c638 124
581e13c1 125 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 126 child, then this name will be the child's source name.
581e13c1
MS
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
72330bd6 129 char *name;
8b93c638 130
02142340
VP
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
581e13c1
MS
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
72330bd6 137 char *obj_name;
8b93c638 138
581e13c1 139 /* Index of this variable in its parent or -1. */
72330bd6 140 int index;
8b93c638 141
202ddcaa
VP
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
72330bd6 145 struct type *type;
8b93c638 146
b20d8971
VP
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
b2c2bd75
VP
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
30b28db1 151 struct value *value;
8b93c638 152
581e13c1 153 /* The number of (immediate) children this variable has. */
72330bd6 154 int num_children;
8b93c638 155
581e13c1 156 /* If this object is a child, this points to its immediate parent. */
72330bd6 157 struct varobj *parent;
8b93c638 158
28335dcc
VP
159 /* Children of this object. */
160 VEC (varobj_p) *children;
8b93c638 161
b6313243
TT
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
581e13c1
MS
168 /* Description of the root variable. Points to root variable for
169 children. */
72330bd6 170 struct varobj_root *root;
8b93c638 171
581e13c1 172 /* The format of the output for this object. */
72330bd6 173 enum varobj_display_formats format;
fb9b6b35 174
581e13c1 175 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 176 int updated;
85265413
NR
177
178 /* Last print value. */
179 char *print_value;
25d5ea92
VP
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
b6313243 190
0cc7d26f
TT
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
b6313243
TT
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
0cc7d26f
TT
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
72330bd6 216};
8b93c638 217
8b93c638 218struct cpstack
72330bd6
AC
219{
220 char *name;
221 struct cpstack *next;
222};
8b93c638
JM
223
224/* A list of varobjs */
225
226struct vlist
72330bd6
AC
227{
228 struct varobj *var;
229 struct vlist *next;
230};
8b93c638
JM
231
232/* Private function prototypes */
233
581e13c1 234/* Helper functions for the above subcommands. */
8b93c638 235
a14ed312 236static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 237
a14ed312
KB
238static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
8b93c638 240
a14ed312 241static int install_variable (struct varobj *);
8b93c638 242
a14ed312 243static void uninstall_variable (struct varobj *);
8b93c638 244
a14ed312 245static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 246
b6313243
TT
247static struct varobj *
248create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
8b93c638
JM
251/* Utility routines */
252
a14ed312 253static struct varobj *new_variable (void);
8b93c638 254
a14ed312 255static struct varobj *new_root_variable (void);
8b93c638 256
a14ed312 257static void free_variable (struct varobj *var);
8b93c638 258
74b7792f
AC
259static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
a14ed312 261static struct type *get_type (struct varobj *var);
8b93c638 262
6e2a9270
VP
263static struct type *get_value_type (struct varobj *var);
264
a14ed312 265static struct type *get_target_type (struct type *);
8b93c638 266
a14ed312 267static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 268
a14ed312 269static void cppush (struct cpstack **pstack, char *name);
8b93c638 270
a14ed312 271static char *cppop (struct cpstack **pstack);
8b93c638 272
acd65feb
VP
273static int install_new_value (struct varobj *var, struct value *value,
274 int initial);
275
581e13c1 276/* Language-specific routines. */
8b93c638 277
a14ed312 278static enum varobj_languages variable_language (struct varobj *var);
8b93c638 279
a14ed312 280static int number_of_children (struct varobj *);
8b93c638 281
a14ed312 282static char *name_of_variable (struct varobj *);
8b93c638 283
a14ed312 284static char *name_of_child (struct varobj *, int);
8b93c638 285
30b28db1 286static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 287
30b28db1 288static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 289
de051565
MK
290static char *my_value_of_variable (struct varobj *var,
291 enum varobj_display_formats format);
8b93c638 292
85265413 293static char *value_get_print_value (struct value *value,
b6313243 294 enum varobj_display_formats format,
d452c4bc 295 struct varobj *var);
85265413 296
b2c2bd75
VP
297static int varobj_value_is_changeable_p (struct varobj *var);
298
299static int is_root_p (struct varobj *var);
8b93c638 300
d8b65138
JK
301#if HAVE_PYTHON
302
9a1edae6
PM
303static struct varobj *varobj_add_child (struct varobj *var,
304 const char *name,
305 struct value *value);
b6313243 306
d8b65138
JK
307#endif /* HAVE_PYTHON */
308
d32cafc7
JB
309static int default_value_is_changeable_p (struct varobj *var);
310
8b93c638
JM
311/* C implementation */
312
a14ed312 313static int c_number_of_children (struct varobj *var);
8b93c638 314
a14ed312 315static char *c_name_of_variable (struct varobj *parent);
8b93c638 316
a14ed312 317static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 318
02142340
VP
319static char *c_path_expr_of_child (struct varobj *child);
320
30b28db1 321static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 322
30b28db1 323static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 324
a14ed312 325static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 326
de051565
MK
327static char *c_value_of_variable (struct varobj *var,
328 enum varobj_display_formats format);
8b93c638
JM
329
330/* C++ implementation */
331
a14ed312 332static int cplus_number_of_children (struct varobj *var);
8b93c638 333
a14ed312 334static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 335
a14ed312 336static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 337
a14ed312 338static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 339
02142340
VP
340static char *cplus_path_expr_of_child (struct varobj *child);
341
30b28db1 342static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 343
30b28db1 344static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 345
a14ed312 346static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 347
de051565
MK
348static char *cplus_value_of_variable (struct varobj *var,
349 enum varobj_display_formats format);
8b93c638
JM
350
351/* Java implementation */
352
a14ed312 353static int java_number_of_children (struct varobj *var);
8b93c638 354
a14ed312 355static char *java_name_of_variable (struct varobj *parent);
8b93c638 356
a14ed312 357static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 358
02142340
VP
359static char *java_path_expr_of_child (struct varobj *child);
360
30b28db1 361static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 362
30b28db1 363static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 364
a14ed312 365static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 366
de051565
MK
367static char *java_value_of_variable (struct varobj *var,
368 enum varobj_display_formats format);
8b93c638 369
40591b7d
JCD
370/* Ada implementation */
371
372static int ada_number_of_children (struct varobj *var);
373
374static char *ada_name_of_variable (struct varobj *parent);
375
376static char *ada_name_of_child (struct varobj *parent, int index);
377
378static char *ada_path_expr_of_child (struct varobj *child);
379
380static struct value *ada_value_of_root (struct varobj **var_handle);
381
382static struct value *ada_value_of_child (struct varobj *parent, int index);
383
384static struct type *ada_type_of_child (struct varobj *parent, int index);
385
386static char *ada_value_of_variable (struct varobj *var,
387 enum varobj_display_formats format);
388
d32cafc7
JB
389static int ada_value_is_changeable_p (struct varobj *var);
390
7a290c40
JB
391static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
392 struct type *new_type);
393
8b93c638
JM
394/* The language specific vector */
395
396struct language_specific
72330bd6 397{
8b93c638 398
581e13c1 399 /* The language of this variable. */
72330bd6 400 enum varobj_languages language;
8b93c638 401
581e13c1 402 /* The number of children of PARENT. */
72330bd6 403 int (*number_of_children) (struct varobj * parent);
8b93c638 404
581e13c1 405 /* The name (expression) of a root varobj. */
72330bd6 406 char *(*name_of_variable) (struct varobj * parent);
8b93c638 407
581e13c1 408 /* The name of the INDEX'th child of PARENT. */
72330bd6 409 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 410
02142340
VP
411 /* Returns the rooted expression of CHILD, which is a variable
412 obtain that has some parent. */
413 char *(*path_expr_of_child) (struct varobj * child);
414
581e13c1 415 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 416 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 417
581e13c1 418 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 419 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 420
581e13c1 421 /* The type of the INDEX'th child of PARENT. */
72330bd6 422 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 423
581e13c1 424 /* The current value of VAR. */
de051565
MK
425 char *(*value_of_variable) (struct varobj * var,
426 enum varobj_display_formats format);
7a290c40 427
d32cafc7
JB
428 /* Return non-zero if changes in value of VAR must be detected and
429 reported by -var-update. Return zero if -var-update should never
430 report changes of such values. This makes sense for structures
431 (since the changes in children values will be reported separately),
432 or for artifical objects (like 'public' pseudo-field in C++).
433
434 Return value of 0 means that gdb need not call value_fetch_lazy
435 for the value of this variable object. */
436 int (*value_is_changeable_p) (struct varobj *var);
437
7a290c40
JB
438 /* Return nonzero if the type of VAR has mutated.
439
440 VAR's value is still the varobj's previous value, while NEW_VALUE
441 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
442 may be NULL indicating that there is no value available (the varobj
443 may be out of scope, of may be the child of a null pointer, for
444 instance). NEW_TYPE, on the other hand, must never be NULL.
445
446 This function should also be able to assume that var's number of
447 children is set (not < 0).
448
449 Languages where types do not mutate can set this to NULL. */
450 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
451 struct type *new_type);
72330bd6 452};
8b93c638 453
581e13c1 454/* Array of known source language routines. */
d5d6fca5 455static struct language_specific languages[vlang_end] = {
581e13c1 456 /* Unknown (try treating as C). */
8b93c638 457 {
72330bd6
AC
458 vlang_unknown,
459 c_number_of_children,
460 c_name_of_variable,
461 c_name_of_child,
02142340 462 c_path_expr_of_child,
72330bd6
AC
463 c_value_of_root,
464 c_value_of_child,
465 c_type_of_child,
7a290c40 466 c_value_of_variable,
d32cafc7 467 default_value_is_changeable_p,
7a290c40 468 NULL /* value_has_mutated */}
8b93c638
JM
469 ,
470 /* C */
471 {
72330bd6
AC
472 vlang_c,
473 c_number_of_children,
474 c_name_of_variable,
475 c_name_of_child,
02142340 476 c_path_expr_of_child,
72330bd6
AC
477 c_value_of_root,
478 c_value_of_child,
479 c_type_of_child,
7a290c40 480 c_value_of_variable,
d32cafc7 481 default_value_is_changeable_p,
7a290c40 482 NULL /* value_has_mutated */}
8b93c638
JM
483 ,
484 /* C++ */
485 {
72330bd6
AC
486 vlang_cplus,
487 cplus_number_of_children,
488 cplus_name_of_variable,
489 cplus_name_of_child,
02142340 490 cplus_path_expr_of_child,
72330bd6
AC
491 cplus_value_of_root,
492 cplus_value_of_child,
493 cplus_type_of_child,
7a290c40 494 cplus_value_of_variable,
d32cafc7 495 default_value_is_changeable_p,
7a290c40 496 NULL /* value_has_mutated */}
8b93c638
JM
497 ,
498 /* Java */
499 {
72330bd6
AC
500 vlang_java,
501 java_number_of_children,
502 java_name_of_variable,
503 java_name_of_child,
02142340 504 java_path_expr_of_child,
72330bd6
AC
505 java_value_of_root,
506 java_value_of_child,
507 java_type_of_child,
7a290c40 508 java_value_of_variable,
d32cafc7 509 default_value_is_changeable_p,
7a290c40 510 NULL /* value_has_mutated */},
40591b7d
JCD
511 /* Ada */
512 {
513 vlang_ada,
514 ada_number_of_children,
515 ada_name_of_variable,
516 ada_name_of_child,
517 ada_path_expr_of_child,
518 ada_value_of_root,
519 ada_value_of_child,
520 ada_type_of_child,
7a290c40 521 ada_value_of_variable,
d32cafc7 522 ada_value_is_changeable_p,
7a290c40 523 ada_value_has_mutated}
8b93c638
JM
524};
525
581e13c1 526/* A little convenience enum for dealing with C++/Java. */
8b93c638 527enum vsections
72330bd6
AC
528{
529 v_public = 0, v_private, v_protected
530};
8b93c638
JM
531
532/* Private data */
533
581e13c1 534/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 535static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 536
581e13c1 537/* Header of the list of root variable objects. */
8b93c638 538static struct varobj_root *rootlist;
8b93c638 539
581e13c1
MS
540/* Prime number indicating the number of buckets in the hash table. */
541/* A prime large enough to avoid too many colisions. */
8b93c638
JM
542#define VAROBJ_TABLE_SIZE 227
543
581e13c1 544/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
545static struct vlist **varobj_table;
546
581e13c1 547/* Is the variable X one of our "fake" children? */
8b93c638
JM
548#define CPLUS_FAKE_CHILD(x) \
549((x) != NULL && (x)->type == NULL && (x)->value == NULL)
550\f
551
552/* API Implementation */
b2c2bd75
VP
553static int
554is_root_p (struct varobj *var)
555{
556 return (var->root->rootvar == var);
557}
8b93c638 558
d452c4bc
UW
559#ifdef HAVE_PYTHON
560/* Helper function to install a Python environment suitable for
561 use during operations on VAR. */
70221824 562static struct cleanup *
d452c4bc
UW
563varobj_ensure_python_env (struct varobj *var)
564{
565 return ensure_python_env (var->root->exp->gdbarch,
566 var->root->exp->language_defn);
567}
568#endif
569
581e13c1 570/* Creates a varobj (not its children). */
8b93c638 571
7d8547c9
AC
572/* Return the full FRAME which corresponds to the given CORE_ADDR
573 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
574
575static struct frame_info *
576find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
577{
578 struct frame_info *frame = NULL;
579
580 if (frame_addr == (CORE_ADDR) 0)
581 return NULL;
582
9d49bdc2
PA
583 for (frame = get_current_frame ();
584 frame != NULL;
585 frame = get_prev_frame (frame))
7d8547c9 586 {
1fac167a
UW
587 /* The CORE_ADDR we get as argument was parsed from a string GDB
588 output as $fp. This output got truncated to gdbarch_addr_bit.
589 Truncate the frame base address in the same manner before
590 comparing it against our argument. */
591 CORE_ADDR frame_base = get_frame_base_address (frame);
592 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 593
1fac167a
UW
594 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
595 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
596
597 if (frame_base == frame_addr)
7d8547c9
AC
598 return frame;
599 }
9d49bdc2
PA
600
601 return NULL;
7d8547c9
AC
602}
603
8b93c638
JM
604struct varobj *
605varobj_create (char *objname,
72330bd6 606 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
607{
608 struct varobj *var;
8b93c638
JM
609 struct cleanup *old_chain;
610
581e13c1 611 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 612 var = new_root_variable ();
74b7792f 613 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
614
615 if (expression != NULL)
616 {
e4195b40 617 struct frame_info *fi;
35633fef 618 struct frame_id old_id = null_frame_id;
e4195b40 619 struct block *block;
8b93c638
JM
620 char *p;
621 enum varobj_languages lang;
e55dccf0 622 struct value *value = NULL;
8e7b59a5 623 volatile struct gdb_exception except;
8b93c638 624
9d49bdc2
PA
625 /* Parse and evaluate the expression, filling in as much of the
626 variable's data as possible. */
627
628 if (has_stack_frames ())
629 {
581e13c1 630 /* Allow creator to specify context of variable. */
9d49bdc2
PA
631 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
632 fi = get_selected_frame (NULL);
633 else
634 /* FIXME: cagney/2002-11-23: This code should be doing a
635 lookup using the frame ID and not just the frame's
636 ``address''. This, of course, means an interface
637 change. However, with out that interface change ISAs,
638 such as the ia64 with its two stacks, won't work.
639 Similar goes for the case where there is a frameless
640 function. */
641 fi = find_frame_addr_in_frame_chain (frame);
642 }
8b93c638 643 else
9d49bdc2 644 fi = NULL;
8b93c638 645
581e13c1 646 /* frame = -2 means always use selected frame. */
73a93a32 647 if (type == USE_SELECTED_FRAME)
a5defcdc 648 var->root->floating = 1;
73a93a32 649
8b93c638
JM
650 block = NULL;
651 if (fi != NULL)
ae767bfb 652 block = get_frame_block (fi, 0);
8b93c638
JM
653
654 p = expression;
655 innermost_block = NULL;
73a93a32 656 /* Wrap the call to parse expression, so we can
581e13c1 657 return a sensible error. */
8e7b59a5
KS
658 TRY_CATCH (except, RETURN_MASK_ERROR)
659 {
660 var->root->exp = parse_exp_1 (&p, block, 0);
661 }
662
663 if (except.reason < 0)
73a93a32 664 {
f748fb40 665 do_cleanups (old_chain);
73a93a32
JI
666 return NULL;
667 }
8b93c638 668
581e13c1 669 /* Don't allow variables to be created for types. */
8b93c638
JM
670 if (var->root->exp->elts[0].opcode == OP_TYPE)
671 {
672 do_cleanups (old_chain);
bc8332bb
AC
673 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
674 " as an expression.\n");
8b93c638
JM
675 return NULL;
676 }
677
678 var->format = variable_default_display (var);
679 var->root->valid_block = innermost_block;
1b36a34b 680 var->name = xstrdup (expression);
02142340 681 /* For a root var, the name and the expr are the same. */
1b36a34b 682 var->path_expr = xstrdup (expression);
8b93c638
JM
683
684 /* When the frame is different from the current frame,
685 we must select the appropriate frame before parsing
686 the expression, otherwise the value will not be current.
581e13c1 687 Since select_frame is so benign, just call it for all cases. */
4e22772d 688 if (innermost_block)
8b93c638 689 {
4e22772d
JK
690 /* User could specify explicit FRAME-ADDR which was not found but
691 EXPRESSION is frame specific and we would not be able to evaluate
692 it correctly next time. With VALID_BLOCK set we must also set
693 FRAME and THREAD_ID. */
694 if (fi == NULL)
695 error (_("Failed to find the specified frame"));
696
7a424e99 697 var->root->frame = get_frame_id (fi);
c5b48eac 698 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 699 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 700 select_frame (fi);
8b93c638
JM
701 }
702
340a7723 703 /* We definitely need to catch errors here.
8b93c638 704 If evaluate_expression succeeds we got the value we wanted.
581e13c1 705 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
706 TRY_CATCH (except, RETURN_MASK_ERROR)
707 {
708 value = evaluate_expression (var->root->exp);
709 }
710
711 if (except.reason < 0)
e55dccf0
VP
712 {
713 /* Error getting the value. Try to at least get the
714 right type. */
715 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 716
e55dccf0
VP
717 var->type = value_type (type_only_value);
718 }
719 else
720 var->type = value_type (value);
acd65feb 721
8b93c638
JM
722 /* Set language info */
723 lang = variable_language (var);
d5d6fca5 724 var->root->lang = &languages[lang];
8b93c638 725
d32cafc7
JB
726 install_new_value (var, value, 1 /* Initial assignment */);
727
581e13c1 728 /* Set ourselves as our root. */
8b93c638
JM
729 var->root->rootvar = var;
730
581e13c1 731 /* Reset the selected frame. */
35633fef
JK
732 if (frame_id_p (old_id))
733 select_frame (frame_find_by_id (old_id));
8b93c638
JM
734 }
735
73a93a32 736 /* If the variable object name is null, that means this
581e13c1 737 is a temporary variable, so don't install it. */
73a93a32
JI
738
739 if ((var != NULL) && (objname != NULL))
8b93c638 740 {
1b36a34b 741 var->obj_name = xstrdup (objname);
8b93c638
JM
742
743 /* If a varobj name is duplicated, the install will fail so
581e13c1 744 we must cleanup. */
8b93c638
JM
745 if (!install_variable (var))
746 {
747 do_cleanups (old_chain);
748 return NULL;
749 }
750 }
751
752 discard_cleanups (old_chain);
753 return var;
754}
755
581e13c1 756/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
757
758char *
759varobj_gen_name (void)
760{
761 static int id = 0;
e64d9b3d 762 char *obj_name;
8b93c638 763
581e13c1 764 /* Generate a name for this object. */
8b93c638 765 id++;
b435e160 766 obj_name = xstrprintf ("var%d", id);
8b93c638 767
e64d9b3d 768 return obj_name;
8b93c638
JM
769}
770
61d8f275
JK
771/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
772 error if OBJNAME cannot be found. */
8b93c638
JM
773
774struct varobj *
775varobj_get_handle (char *objname)
776{
777 struct vlist *cv;
778 const char *chp;
779 unsigned int index = 0;
780 unsigned int i = 1;
781
782 for (chp = objname; *chp; chp++)
783 {
784 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
785 }
786
787 cv = *(varobj_table + index);
788 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
789 cv = cv->next;
790
791 if (cv == NULL)
8a3fe4f8 792 error (_("Variable object not found"));
8b93c638
JM
793
794 return cv->var;
795}
796
581e13c1 797/* Given the handle, return the name of the object. */
8b93c638
JM
798
799char *
800varobj_get_objname (struct varobj *var)
801{
802 return var->obj_name;
803}
804
581e13c1 805/* Given the handle, return the expression represented by the object. */
8b93c638
JM
806
807char *
808varobj_get_expression (struct varobj *var)
809{
810 return name_of_variable (var);
811}
812
813/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
814 otherwise deletes only the children; returns a malloc'ed list of
815 all the (malloc'ed) names of the variables that have been deleted
581e13c1 816 (NULL terminated). */
8b93c638
JM
817
818int
819varobj_delete (struct varobj *var, char ***dellist, int only_children)
820{
821 int delcount;
822 int mycount;
823 struct cpstack *result = NULL;
824 char **cp;
825
581e13c1 826 /* Initialize a stack for temporary results. */
8b93c638
JM
827 cppush (&result, NULL);
828
829 if (only_children)
581e13c1 830 /* Delete only the variable children. */
8b93c638
JM
831 delcount = delete_variable (&result, var, 1 /* only the children */ );
832 else
581e13c1 833 /* Delete the variable and all its children. */
8b93c638
JM
834 delcount = delete_variable (&result, var, 0 /* parent+children */ );
835
581e13c1 836 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
837 if (dellist != NULL)
838 {
839 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
840
841 cp = *dellist;
842 mycount = delcount;
843 *cp = cppop (&result);
844 while ((*cp != NULL) && (mycount > 0))
845 {
846 mycount--;
847 cp++;
848 *cp = cppop (&result);
849 }
850
851 if (mycount || (*cp != NULL))
8a3fe4f8 852 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 853 mycount);
8b93c638
JM
854 }
855
856 return delcount;
857}
858
d8b65138
JK
859#if HAVE_PYTHON
860
b6313243
TT
861/* Convenience function for varobj_set_visualizer. Instantiate a
862 pretty-printer for a given value. */
863static PyObject *
864instantiate_pretty_printer (PyObject *constructor, struct value *value)
865{
b6313243
TT
866 PyObject *val_obj = NULL;
867 PyObject *printer;
b6313243 868
b6313243 869 val_obj = value_to_value_object (value);
b6313243
TT
870 if (! val_obj)
871 return NULL;
872
873 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
874 Py_DECREF (val_obj);
875 return printer;
b6313243
TT
876}
877
d8b65138
JK
878#endif
879
581e13c1 880/* Set/Get variable object display format. */
8b93c638
JM
881
882enum varobj_display_formats
883varobj_set_display_format (struct varobj *var,
884 enum varobj_display_formats format)
885{
886 switch (format)
887 {
888 case FORMAT_NATURAL:
889 case FORMAT_BINARY:
890 case FORMAT_DECIMAL:
891 case FORMAT_HEXADECIMAL:
892 case FORMAT_OCTAL:
893 var->format = format;
894 break;
895
896 default:
897 var->format = variable_default_display (var);
898 }
899
ae7d22a6
VP
900 if (varobj_value_is_changeable_p (var)
901 && var->value && !value_lazy (var->value))
902 {
6c761d9c 903 xfree (var->print_value);
d452c4bc 904 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
905 }
906
8b93c638
JM
907 return var->format;
908}
909
910enum varobj_display_formats
911varobj_get_display_format (struct varobj *var)
912{
913 return var->format;
914}
915
b6313243
TT
916char *
917varobj_get_display_hint (struct varobj *var)
918{
919 char *result = NULL;
920
921#if HAVE_PYTHON
d452c4bc
UW
922 struct cleanup *back_to = varobj_ensure_python_env (var);
923
b6313243
TT
924 if (var->pretty_printer)
925 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
926
927 do_cleanups (back_to);
b6313243
TT
928#endif
929
930 return result;
931}
932
0cc7d26f
TT
933/* Return true if the varobj has items after TO, false otherwise. */
934
935int
936varobj_has_more (struct varobj *var, int to)
937{
938 if (VEC_length (varobj_p, var->children) > to)
939 return 1;
940 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
941 && var->saved_item != NULL);
942}
943
c5b48eac
VP
944/* If the variable object is bound to a specific thread, that
945 is its evaluation can always be done in context of a frame
946 inside that thread, returns GDB id of the thread -- which
581e13c1 947 is always positive. Otherwise, returns -1. */
c5b48eac
VP
948int
949varobj_get_thread_id (struct varobj *var)
950{
951 if (var->root->valid_block && var->root->thread_id > 0)
952 return var->root->thread_id;
953 else
954 return -1;
955}
956
25d5ea92
VP
957void
958varobj_set_frozen (struct varobj *var, int frozen)
959{
960 /* When a variable is unfrozen, we don't fetch its value.
961 The 'not_fetched' flag remains set, so next -var-update
962 won't complain.
963
964 We don't fetch the value, because for structures the client
965 should do -var-update anyway. It would be bad to have different
966 client-size logic for structure and other types. */
967 var->frozen = frozen;
968}
969
970int
971varobj_get_frozen (struct varobj *var)
972{
973 return var->frozen;
974}
975
0cc7d26f
TT
976/* A helper function that restricts a range to what is actually
977 available in a VEC. This follows the usual rules for the meaning
978 of FROM and TO -- if either is negative, the entire range is
979 used. */
980
981static void
982restrict_range (VEC (varobj_p) *children, int *from, int *to)
983{
984 if (*from < 0 || *to < 0)
985 {
986 *from = 0;
987 *to = VEC_length (varobj_p, children);
988 }
989 else
990 {
991 if (*from > VEC_length (varobj_p, children))
992 *from = VEC_length (varobj_p, children);
993 if (*to > VEC_length (varobj_p, children))
994 *to = VEC_length (varobj_p, children);
995 if (*from > *to)
996 *from = *to;
997 }
998}
999
d8b65138
JK
1000#if HAVE_PYTHON
1001
0cc7d26f
TT
1002/* A helper for update_dynamic_varobj_children that installs a new
1003 child when needed. */
1004
1005static void
1006install_dynamic_child (struct varobj *var,
1007 VEC (varobj_p) **changed,
1008 VEC (varobj_p) **new,
1009 VEC (varobj_p) **unchanged,
1010 int *cchanged,
1011 int index,
1012 const char *name,
1013 struct value *value)
1014{
1015 if (VEC_length (varobj_p, var->children) < index + 1)
1016 {
1017 /* There's no child yet. */
1018 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 1019
0cc7d26f
TT
1020 if (new)
1021 {
1022 VEC_safe_push (varobj_p, *new, child);
1023 *cchanged = 1;
1024 }
1025 }
1026 else
1027 {
1028 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 1029
0cc7d26f
TT
1030 if (install_new_value (existing, value, 0))
1031 {
1032 if (changed)
1033 VEC_safe_push (varobj_p, *changed, existing);
1034 }
1035 else if (unchanged)
1036 VEC_safe_push (varobj_p, *unchanged, existing);
1037 }
1038}
1039
0cc7d26f
TT
1040static int
1041dynamic_varobj_has_child_method (struct varobj *var)
1042{
1043 struct cleanup *back_to;
1044 PyObject *printer = var->pretty_printer;
1045 int result;
1046
1047 back_to = varobj_ensure_python_env (var);
1048 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1049 do_cleanups (back_to);
1050 return result;
1051}
1052
1053#endif
1054
b6313243
TT
1055static int
1056update_dynamic_varobj_children (struct varobj *var,
1057 VEC (varobj_p) **changed,
0cc7d26f
TT
1058 VEC (varobj_p) **new,
1059 VEC (varobj_p) **unchanged,
1060 int *cchanged,
1061 int update_children,
1062 int from,
1063 int to)
b6313243
TT
1064{
1065#if HAVE_PYTHON
b6313243
TT
1066 struct cleanup *back_to;
1067 PyObject *children;
b6313243 1068 int i;
b6313243 1069 PyObject *printer = var->pretty_printer;
b6313243 1070
d452c4bc 1071 back_to = varobj_ensure_python_env (var);
b6313243
TT
1072
1073 *cchanged = 0;
1074 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1075 {
1076 do_cleanups (back_to);
1077 return 0;
1078 }
1079
0cc7d26f 1080 if (update_children || !var->child_iter)
b6313243 1081 {
0cc7d26f
TT
1082 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1083 NULL);
b6313243 1084
0cc7d26f
TT
1085 if (!children)
1086 {
1087 gdbpy_print_stack ();
1088 error (_("Null value returned for children"));
1089 }
b6313243 1090
0cc7d26f 1091 make_cleanup_py_decref (children);
b6313243 1092
0cc7d26f
TT
1093 if (!PyIter_Check (children))
1094 error (_("Returned value is not iterable"));
1095
1096 Py_XDECREF (var->child_iter);
1097 var->child_iter = PyObject_GetIter (children);
1098 if (!var->child_iter)
1099 {
1100 gdbpy_print_stack ();
1101 error (_("Could not get children iterator"));
1102 }
1103
1104 Py_XDECREF (var->saved_item);
1105 var->saved_item = NULL;
1106
1107 i = 0;
b6313243 1108 }
0cc7d26f
TT
1109 else
1110 i = VEC_length (varobj_p, var->children);
b6313243 1111
0cc7d26f
TT
1112 /* We ask for one extra child, so that MI can report whether there
1113 are more children. */
1114 for (; to < 0 || i < to + 1; ++i)
b6313243 1115 {
0cc7d26f 1116 PyObject *item;
a4c8e806 1117 int force_done = 0;
b6313243 1118
0cc7d26f
TT
1119 /* See if there was a leftover from last time. */
1120 if (var->saved_item)
1121 {
1122 item = var->saved_item;
1123 var->saved_item = NULL;
1124 }
1125 else
1126 item = PyIter_Next (var->child_iter);
b6313243 1127
0cc7d26f 1128 if (!item)
a4c8e806
TT
1129 {
1130 /* Normal end of iteration. */
1131 if (!PyErr_Occurred ())
1132 break;
1133
1134 /* If we got a memory error, just use the text as the
1135 item. */
1136 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1137 {
1138 PyObject *type, *value, *trace;
1139 char *name_str, *value_str;
1140
1141 PyErr_Fetch (&type, &value, &trace);
1142 value_str = gdbpy_exception_to_string (type, value);
1143 Py_XDECREF (type);
1144 Py_XDECREF (value);
1145 Py_XDECREF (trace);
1146 if (!value_str)
1147 {
1148 gdbpy_print_stack ();
1149 break;
1150 }
1151
1152 name_str = xstrprintf ("<error at %d>", i);
1153 item = Py_BuildValue ("(ss)", name_str, value_str);
1154 xfree (name_str);
1155 xfree (value_str);
1156 if (!item)
1157 {
1158 gdbpy_print_stack ();
1159 break;
1160 }
1161
1162 force_done = 1;
1163 }
1164 else
1165 {
1166 /* Any other kind of error. */
1167 gdbpy_print_stack ();
1168 break;
1169 }
1170 }
b6313243 1171
0cc7d26f
TT
1172 /* We don't want to push the extra child on any report list. */
1173 if (to < 0 || i < to)
b6313243 1174 {
0cc7d26f 1175 PyObject *py_v;
ddd49eee 1176 const char *name;
0cc7d26f
TT
1177 struct value *v;
1178 struct cleanup *inner;
1179 int can_mention = from < 0 || i >= from;
1180
1181 inner = make_cleanup_py_decref (item);
1182
1183 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1184 {
1185 gdbpy_print_stack ();
1186 error (_("Invalid item from the child list"));
1187 }
0cc7d26f
TT
1188
1189 v = convert_value_from_python (py_v);
8dc78533
JK
1190 if (v == NULL)
1191 gdbpy_print_stack ();
0cc7d26f
TT
1192 install_dynamic_child (var, can_mention ? changed : NULL,
1193 can_mention ? new : NULL,
1194 can_mention ? unchanged : NULL,
1195 can_mention ? cchanged : NULL, i, name, v);
1196 do_cleanups (inner);
b6313243 1197 }
0cc7d26f 1198 else
b6313243 1199 {
0cc7d26f
TT
1200 Py_XDECREF (var->saved_item);
1201 var->saved_item = item;
b6313243 1202
0cc7d26f
TT
1203 /* We want to truncate the child list just before this
1204 element. */
1205 break;
1206 }
a4c8e806
TT
1207
1208 if (force_done)
1209 break;
b6313243
TT
1210 }
1211
1212 if (i < VEC_length (varobj_p, var->children))
1213 {
0cc7d26f 1214 int j;
a109c7c1 1215
0cc7d26f
TT
1216 *cchanged = 1;
1217 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1218 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1219 VEC_truncate (varobj_p, var->children, i);
b6313243 1220 }
0cc7d26f
TT
1221
1222 /* If there are fewer children than requested, note that the list of
1223 children changed. */
1224 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1225 *cchanged = 1;
1226
b6313243
TT
1227 var->num_children = VEC_length (varobj_p, var->children);
1228
1229 do_cleanups (back_to);
1230
b6313243
TT
1231 return 1;
1232#else
1233 gdb_assert (0 && "should never be called if Python is not enabled");
1234#endif
1235}
25d5ea92 1236
8b93c638
JM
1237int
1238varobj_get_num_children (struct varobj *var)
1239{
1240 if (var->num_children == -1)
b6313243 1241 {
0cc7d26f
TT
1242 if (var->pretty_printer)
1243 {
1244 int dummy;
1245
1246 /* If we have a dynamic varobj, don't report -1 children.
1247 So, try to fetch some children first. */
1248 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1249 0, 0, 0);
1250 }
1251 else
b6313243
TT
1252 var->num_children = number_of_children (var);
1253 }
8b93c638 1254
0cc7d26f 1255 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1256}
1257
1258/* Creates a list of the immediate children of a variable object;
581e13c1 1259 the return code is the number of such children or -1 on error. */
8b93c638 1260
d56d46f5 1261VEC (varobj_p)*
0cc7d26f 1262varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1263{
8b93c638 1264 char *name;
b6313243
TT
1265 int i, children_changed;
1266
1267 var->children_requested = 1;
1268
0cc7d26f
TT
1269 if (var->pretty_printer)
1270 {
b6313243
TT
1271 /* This, in theory, can result in the number of children changing without
1272 frontend noticing. But well, calling -var-list-children on the same
1273 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1274 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1275 0, 0, *to);
1276 restrict_range (var->children, from, to);
1277 return var->children;
1278 }
8b93c638 1279
8b93c638
JM
1280 if (var->num_children == -1)
1281 var->num_children = number_of_children (var);
1282
74a44383
DJ
1283 /* If that failed, give up. */
1284 if (var->num_children == -1)
d56d46f5 1285 return var->children;
74a44383 1286
28335dcc
VP
1287 /* If we're called when the list of children is not yet initialized,
1288 allocate enough elements in it. */
1289 while (VEC_length (varobj_p, var->children) < var->num_children)
1290 VEC_safe_push (varobj_p, var->children, NULL);
1291
8b93c638
JM
1292 for (i = 0; i < var->num_children; i++)
1293 {
d56d46f5 1294 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1295
1296 if (existing == NULL)
1297 {
1298 /* Either it's the first call to varobj_list_children for
1299 this variable object, and the child was never created,
1300 or it was explicitly deleted by the client. */
1301 name = name_of_child (var, i);
1302 existing = create_child (var, i, name);
1303 VEC_replace (varobj_p, var->children, i, existing);
1304 }
8b93c638
JM
1305 }
1306
0cc7d26f 1307 restrict_range (var->children, from, to);
d56d46f5 1308 return var->children;
8b93c638
JM
1309}
1310
d8b65138
JK
1311#if HAVE_PYTHON
1312
b6313243
TT
1313static struct varobj *
1314varobj_add_child (struct varobj *var, const char *name, struct value *value)
1315{
1316 varobj_p v = create_child_with_value (var,
1317 VEC_length (varobj_p, var->children),
1318 name, value);
a109c7c1 1319
b6313243 1320 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1321 return v;
1322}
1323
d8b65138
JK
1324#endif /* HAVE_PYTHON */
1325
8b93c638 1326/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1327 prints on the console. */
8b93c638
JM
1328
1329char *
1330varobj_get_type (struct varobj *var)
1331{
581e13c1 1332 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1333 NULL, too.)
1334 Do not return a type for invalid variables as well. */
1335 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1336 return NULL;
1337
1a4300e9 1338 return type_to_string (var->type);
8b93c638
JM
1339}
1340
1ecb4ee0
DJ
1341/* Obtain the type of an object variable. */
1342
1343struct type *
1344varobj_get_gdb_type (struct varobj *var)
1345{
1346 return var->type;
1347}
1348
85254831
KS
1349/* Is VAR a path expression parent, i.e., can it be used to construct
1350 a valid path expression? */
1351
1352static int
1353is_path_expr_parent (struct varobj *var)
1354{
1355 struct type *type;
1356
1357 /* "Fake" children are not path_expr parents. */
1358 if (CPLUS_FAKE_CHILD (var))
1359 return 0;
1360
1361 type = get_value_type (var);
1362
1363 /* Anonymous unions and structs are also not path_expr parents. */
1364 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1365 || TYPE_CODE (type) == TYPE_CODE_UNION)
1366 && TYPE_NAME (type) == NULL);
1367}
1368
1369/* Return the path expression parent for VAR. */
1370
1371static struct varobj *
1372get_path_expr_parent (struct varobj *var)
1373{
1374 struct varobj *parent = var;
1375
1376 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1377 parent = parent->parent;
1378
1379 return parent;
1380}
1381
02142340
VP
1382/* Return a pointer to the full rooted expression of varobj VAR.
1383 If it has not been computed yet, compute it. */
1384char *
1385varobj_get_path_expr (struct varobj *var)
1386{
1387 if (var->path_expr != NULL)
1388 return var->path_expr;
1389 else
1390 {
1391 /* For root varobjs, we initialize path_expr
1392 when creating varobj, so here it should be
1393 child varobj. */
1394 gdb_assert (!is_root_p (var));
1395 return (*var->root->lang->path_expr_of_child) (var);
1396 }
1397}
1398
8b93c638
JM
1399enum varobj_languages
1400varobj_get_language (struct varobj *var)
1401{
1402 return variable_language (var);
1403}
1404
1405int
1406varobj_get_attributes (struct varobj *var)
1407{
1408 int attributes = 0;
1409
340a7723 1410 if (varobj_editable_p (var))
581e13c1 1411 /* FIXME: define masks for attributes. */
8b93c638
JM
1412 attributes |= 0x00000001; /* Editable */
1413
1414 return attributes;
1415}
1416
0cc7d26f
TT
1417int
1418varobj_pretty_printed_p (struct varobj *var)
1419{
1420 return var->pretty_printer != NULL;
1421}
1422
de051565
MK
1423char *
1424varobj_get_formatted_value (struct varobj *var,
1425 enum varobj_display_formats format)
1426{
1427 return my_value_of_variable (var, format);
1428}
1429
8b93c638
JM
1430char *
1431varobj_get_value (struct varobj *var)
1432{
de051565 1433 return my_value_of_variable (var, var->format);
8b93c638
JM
1434}
1435
1436/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1437 value of the given expression. */
1438/* Note: Invokes functions that can call error(). */
8b93c638
JM
1439
1440int
1441varobj_set_value (struct varobj *var, char *expression)
1442{
34365054 1443 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1444 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1445 We need to first construct a legal expression for this -- ugh! */
1446 /* Does this cover all the bases? */
8b93c638 1447 struct expression *exp;
34365054 1448 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1449 int saved_input_radix = input_radix;
340a7723 1450 char *s = expression;
8e7b59a5 1451 volatile struct gdb_exception except;
8b93c638 1452
340a7723 1453 gdb_assert (varobj_editable_p (var));
8b93c638 1454
581e13c1 1455 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
340a7723 1456 exp = parse_exp_1 (&s, 0, 0);
8e7b59a5
KS
1457 TRY_CATCH (except, RETURN_MASK_ERROR)
1458 {
1459 value = evaluate_expression (exp);
1460 }
1461
1462 if (except.reason < 0)
340a7723 1463 {
581e13c1 1464 /* We cannot proceed without a valid expression. */
340a7723
NR
1465 xfree (exp);
1466 return 0;
8b93c638
JM
1467 }
1468
340a7723
NR
1469 /* All types that are editable must also be changeable. */
1470 gdb_assert (varobj_value_is_changeable_p (var));
1471
1472 /* The value of a changeable variable object must not be lazy. */
1473 gdb_assert (!value_lazy (var->value));
1474
1475 /* Need to coerce the input. We want to check if the
1476 value of the variable object will be different
1477 after assignment, and the first thing value_assign
1478 does is coerce the input.
1479 For example, if we are assigning an array to a pointer variable we
b021a221 1480 should compare the pointer with the array's address, not with the
340a7723
NR
1481 array's content. */
1482 value = coerce_array (value);
1483
8e7b59a5
KS
1484 /* The new value may be lazy. value_assign, or
1485 rather value_contents, will take care of this. */
1486 TRY_CATCH (except, RETURN_MASK_ERROR)
1487 {
1488 val = value_assign (var->value, value);
1489 }
1490
1491 if (except.reason < 0)
340a7723 1492 return 0;
8e7b59a5 1493
340a7723
NR
1494 /* If the value has changed, record it, so that next -var-update can
1495 report this change. If a variable had a value of '1', we've set it
1496 to '333' and then set again to '1', when -var-update will report this
1497 variable as changed -- because the first assignment has set the
1498 'updated' flag. There's no need to optimize that, because return value
1499 of -var-update should be considered an approximation. */
581e13c1 1500 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1501 input_radix = saved_input_radix;
1502 return 1;
8b93c638
JM
1503}
1504
0cc7d26f
TT
1505#if HAVE_PYTHON
1506
1507/* A helper function to install a constructor function and visualizer
1508 in a varobj. */
1509
1510static void
1511install_visualizer (struct varobj *var, PyObject *constructor,
1512 PyObject *visualizer)
1513{
1514 Py_XDECREF (var->constructor);
1515 var->constructor = constructor;
1516
1517 Py_XDECREF (var->pretty_printer);
1518 var->pretty_printer = visualizer;
1519
1520 Py_XDECREF (var->child_iter);
1521 var->child_iter = NULL;
1522}
1523
1524/* Install the default visualizer for VAR. */
1525
1526static void
1527install_default_visualizer (struct varobj *var)
1528{
d65aec65
PM
1529 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1530 if (CPLUS_FAKE_CHILD (var))
1531 return;
1532
0cc7d26f
TT
1533 if (pretty_printing)
1534 {
1535 PyObject *pretty_printer = NULL;
1536
1537 if (var->value)
1538 {
1539 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1540 if (! pretty_printer)
1541 {
1542 gdbpy_print_stack ();
1543 error (_("Cannot instantiate printer for default visualizer"));
1544 }
1545 }
1546
1547 if (pretty_printer == Py_None)
1548 {
1549 Py_DECREF (pretty_printer);
1550 pretty_printer = NULL;
1551 }
1552
1553 install_visualizer (var, NULL, pretty_printer);
1554 }
1555}
1556
1557/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1558 make a new object. */
1559
1560static void
1561construct_visualizer (struct varobj *var, PyObject *constructor)
1562{
1563 PyObject *pretty_printer;
1564
d65aec65
PM
1565 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1566 if (CPLUS_FAKE_CHILD (var))
1567 return;
1568
0cc7d26f
TT
1569 Py_INCREF (constructor);
1570 if (constructor == Py_None)
1571 pretty_printer = NULL;
1572 else
1573 {
1574 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1575 if (! pretty_printer)
1576 {
1577 gdbpy_print_stack ();
1578 Py_DECREF (constructor);
1579 constructor = Py_None;
1580 Py_INCREF (constructor);
1581 }
1582
1583 if (pretty_printer == Py_None)
1584 {
1585 Py_DECREF (pretty_printer);
1586 pretty_printer = NULL;
1587 }
1588 }
1589
1590 install_visualizer (var, constructor, pretty_printer);
1591}
1592
1593#endif /* HAVE_PYTHON */
1594
1595/* A helper function for install_new_value. This creates and installs
1596 a visualizer for VAR, if appropriate. */
1597
1598static void
1599install_new_value_visualizer (struct varobj *var)
1600{
1601#if HAVE_PYTHON
1602 /* If the constructor is None, then we want the raw value. If VAR
1603 does not have a value, just skip this. */
1604 if (var->constructor != Py_None && var->value)
1605 {
1606 struct cleanup *cleanup;
0cc7d26f
TT
1607
1608 cleanup = varobj_ensure_python_env (var);
1609
1610 if (!var->constructor)
1611 install_default_visualizer (var);
1612 else
1613 construct_visualizer (var, var->constructor);
1614
1615 do_cleanups (cleanup);
1616 }
1617#else
1618 /* Do nothing. */
1619#endif
1620}
1621
acd65feb
VP
1622/* Assign a new value to a variable object. If INITIAL is non-zero,
1623 this is the first assignement after the variable object was just
1624 created, or changed type. In that case, just assign the value
1625 and return 0.
581e13c1
MS
1626 Otherwise, assign the new value, and return 1 if the value is
1627 different from the current one, 0 otherwise. The comparison is
1628 done on textual representation of value. Therefore, some types
1629 need not be compared. E.g. for structures the reported value is
1630 always "{...}", so no comparison is necessary here. If the old
1631 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1632
1633 The VALUE parameter should not be released -- the function will
1634 take care of releasing it when needed. */
acd65feb
VP
1635static int
1636install_new_value (struct varobj *var, struct value *value, int initial)
1637{
1638 int changeable;
1639 int need_to_fetch;
1640 int changed = 0;
25d5ea92 1641 int intentionally_not_fetched = 0;
7a4d50bf 1642 char *print_value = NULL;
acd65feb 1643
acd65feb 1644 /* We need to know the varobj's type to decide if the value should
3e43a32a 1645 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1646 don't have a type. */
acd65feb 1647 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1648 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1649
1650 /* If the type has custom visualizer, we consider it to be always
581e13c1 1651 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1652 mess up read-sensitive values. */
1653 if (var->pretty_printer)
1654 changeable = 1;
1655
acd65feb
VP
1656 need_to_fetch = changeable;
1657
b26ed50d
VP
1658 /* We are not interested in the address of references, and given
1659 that in C++ a reference is not rebindable, it cannot
1660 meaningfully change. So, get hold of the real value. */
1661 if (value)
0cc7d26f 1662 value = coerce_ref (value);
b26ed50d 1663
acd65feb
VP
1664 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1665 /* For unions, we need to fetch the value implicitly because
1666 of implementation of union member fetch. When gdb
1667 creates a value for a field and the value of the enclosing
1668 structure is not lazy, it immediately copies the necessary
1669 bytes from the enclosing values. If the enclosing value is
1670 lazy, the call to value_fetch_lazy on the field will read
1671 the data from memory. For unions, that means we'll read the
1672 same memory more than once, which is not desirable. So
1673 fetch now. */
1674 need_to_fetch = 1;
1675
1676 /* The new value might be lazy. If the type is changeable,
1677 that is we'll be comparing values of this type, fetch the
1678 value now. Otherwise, on the next update the old value
1679 will be lazy, which means we've lost that old value. */
1680 if (need_to_fetch && value && value_lazy (value))
1681 {
25d5ea92
VP
1682 struct varobj *parent = var->parent;
1683 int frozen = var->frozen;
a109c7c1 1684
25d5ea92
VP
1685 for (; !frozen && parent; parent = parent->parent)
1686 frozen |= parent->frozen;
1687
1688 if (frozen && initial)
1689 {
1690 /* For variables that are frozen, or are children of frozen
1691 variables, we don't do fetch on initial assignment.
1692 For non-initial assignemnt we do the fetch, since it means we're
1693 explicitly asked to compare the new value with the old one. */
1694 intentionally_not_fetched = 1;
1695 }
8e7b59a5 1696 else
acd65feb 1697 {
8e7b59a5
KS
1698 volatile struct gdb_exception except;
1699
1700 TRY_CATCH (except, RETURN_MASK_ERROR)
1701 {
1702 value_fetch_lazy (value);
1703 }
1704
1705 if (except.reason < 0)
1706 {
1707 /* Set the value to NULL, so that for the next -var-update,
1708 we don't try to compare the new value with this value,
1709 that we couldn't even read. */
1710 value = NULL;
1711 }
acd65feb 1712 }
acd65feb
VP
1713 }
1714
e848a8a5
TT
1715 /* Get a reference now, before possibly passing it to any Python
1716 code that might release it. */
1717 if (value != NULL)
1718 value_incref (value);
b6313243 1719
7a4d50bf
VP
1720 /* Below, we'll be comparing string rendering of old and new
1721 values. Don't get string rendering if the value is
1722 lazy -- if it is, the code above has decided that the value
1723 should not be fetched. */
0cc7d26f 1724 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1725 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1726
acd65feb
VP
1727 /* If the type is changeable, compare the old and the new values.
1728 If this is the initial assignment, we don't have any old value
1729 to compare with. */
7a4d50bf 1730 if (!initial && changeable)
acd65feb 1731 {
3e43a32a
MS
1732 /* If the value of the varobj was changed by -var-set-value,
1733 then the value in the varobj and in the target is the same.
1734 However, that value is different from the value that the
581e13c1 1735 varobj had after the previous -var-update. So need to the
3e43a32a 1736 varobj as changed. */
acd65feb 1737 if (var->updated)
57e66780 1738 {
57e66780
DJ
1739 changed = 1;
1740 }
0cc7d26f 1741 else if (! var->pretty_printer)
acd65feb
VP
1742 {
1743 /* Try to compare the values. That requires that both
1744 values are non-lazy. */
25d5ea92
VP
1745 if (var->not_fetched && value_lazy (var->value))
1746 {
1747 /* This is a frozen varobj and the value was never read.
1748 Presumably, UI shows some "never read" indicator.
1749 Now that we've fetched the real value, we need to report
1750 this varobj as changed so that UI can show the real
1751 value. */
1752 changed = 1;
1753 }
1754 else if (var->value == NULL && value == NULL)
581e13c1 1755 /* Equal. */
acd65feb
VP
1756 ;
1757 else if (var->value == NULL || value == NULL)
57e66780 1758 {
57e66780
DJ
1759 changed = 1;
1760 }
acd65feb
VP
1761 else
1762 {
1763 gdb_assert (!value_lazy (var->value));
1764 gdb_assert (!value_lazy (value));
85265413 1765
57e66780 1766 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1767 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1768 changed = 1;
acd65feb
VP
1769 }
1770 }
1771 }
85265413 1772
ee342b23
VP
1773 if (!initial && !changeable)
1774 {
1775 /* For values that are not changeable, we don't compare the values.
1776 However, we want to notice if a value was not NULL and now is NULL,
1777 or vise versa, so that we report when top-level varobjs come in scope
1778 and leave the scope. */
1779 changed = (var->value != NULL) != (value != NULL);
1780 }
1781
acd65feb 1782 /* We must always keep the new value, since children depend on it. */
25d5ea92 1783 if (var->value != NULL && var->value != value)
acd65feb
VP
1784 value_free (var->value);
1785 var->value = value;
25d5ea92
VP
1786 if (value && value_lazy (value) && intentionally_not_fetched)
1787 var->not_fetched = 1;
1788 else
1789 var->not_fetched = 0;
acd65feb 1790 var->updated = 0;
85265413 1791
0cc7d26f
TT
1792 install_new_value_visualizer (var);
1793
1794 /* If we installed a pretty-printer, re-compare the printed version
1795 to see if the variable changed. */
1796 if (var->pretty_printer)
1797 {
1798 xfree (print_value);
1799 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1800 if ((var->print_value == NULL && print_value != NULL)
1801 || (var->print_value != NULL && print_value == NULL)
1802 || (var->print_value != NULL && print_value != NULL
1803 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1804 changed = 1;
1805 }
1806 if (var->print_value)
1807 xfree (var->print_value);
1808 var->print_value = print_value;
1809
b26ed50d 1810 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1811
1812 return changed;
1813}
acd65feb 1814
0cc7d26f
TT
1815/* Return the requested range for a varobj. VAR is the varobj. FROM
1816 and TO are out parameters; *FROM and *TO will be set to the
1817 selected sub-range of VAR. If no range was selected using
1818 -var-set-update-range, then both will be -1. */
1819void
1820varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1821{
0cc7d26f
TT
1822 *from = var->from;
1823 *to = var->to;
b6313243
TT
1824}
1825
0cc7d26f
TT
1826/* Set the selected sub-range of children of VAR to start at index
1827 FROM and end at index TO. If either FROM or TO is less than zero,
1828 this is interpreted as a request for all children. */
1829void
1830varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1831{
0cc7d26f
TT
1832 var->from = from;
1833 var->to = to;
b6313243
TT
1834}
1835
1836void
1837varobj_set_visualizer (struct varobj *var, const char *visualizer)
1838{
1839#if HAVE_PYTHON
34fa1d9d
MS
1840 PyObject *mainmod, *globals, *constructor;
1841 struct cleanup *back_to;
b6313243 1842
d452c4bc 1843 back_to = varobj_ensure_python_env (var);
b6313243
TT
1844
1845 mainmod = PyImport_AddModule ("__main__");
1846 globals = PyModule_GetDict (mainmod);
1847 Py_INCREF (globals);
1848 make_cleanup_py_decref (globals);
1849
1850 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1851
0cc7d26f 1852 if (! constructor)
b6313243
TT
1853 {
1854 gdbpy_print_stack ();
da1f2771 1855 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1856 }
1857
0cc7d26f
TT
1858 construct_visualizer (var, constructor);
1859 Py_XDECREF (constructor);
b6313243 1860
0cc7d26f
TT
1861 /* If there are any children now, wipe them. */
1862 varobj_delete (var, NULL, 1 /* children only */);
1863 var->num_children = -1;
b6313243
TT
1864
1865 do_cleanups (back_to);
1866#else
da1f2771 1867 error (_("Python support required"));
b6313243
TT
1868#endif
1869}
1870
7a290c40
JB
1871/* If NEW_VALUE is the new value of the given varobj (var), return
1872 non-zero if var has mutated. In other words, if the type of
1873 the new value is different from the type of the varobj's old
1874 value.
1875
1876 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1877
1878static int
1879varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1880 struct type *new_type)
1881{
1882 /* If we haven't previously computed the number of children in var,
1883 it does not matter from the front-end's perspective whether
1884 the type has mutated or not. For all intents and purposes,
1885 it has not mutated. */
1886 if (var->num_children < 0)
1887 return 0;
1888
1889 if (var->root->lang->value_has_mutated)
1890 return var->root->lang->value_has_mutated (var, new_value, new_type);
1891 else
1892 return 0;
1893}
1894
8b93c638
JM
1895/* Update the values for a variable and its children. This is a
1896 two-pronged attack. First, re-parse the value for the root's
1897 expression to see if it's changed. Then go all the way
1898 through its children, reconstructing them and noting if they've
1899 changed.
1900
25d5ea92
VP
1901 The EXPLICIT parameter specifies if this call is result
1902 of MI request to update this specific variable, or
581e13c1 1903 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1904 update frozen variables.
705da579 1905
581e13c1 1906 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1907 returns TYPE_CHANGED, then it has done this and VARP will be modified
1908 to point to the new varobj. */
8b93c638 1909
1417b39d
JB
1910VEC(varobj_update_result) *
1911varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1912{
1913 int changed = 0;
25d5ea92 1914 int type_changed = 0;
8b93c638 1915 int i;
30b28db1 1916 struct value *new;
b6313243 1917 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1918 VEC (varobj_update_result) *result = NULL;
8b93c638 1919
25d5ea92
VP
1920 /* Frozen means frozen -- we don't check for any change in
1921 this varobj, including its going out of scope, or
1922 changing type. One use case for frozen varobjs is
1923 retaining previously evaluated expressions, and we don't
1924 want them to be reevaluated at all. */
1925 if (!explicit && (*varp)->frozen)
f7f9ae2c 1926 return result;
8756216b
DP
1927
1928 if (!(*varp)->root->is_valid)
f7f9ae2c 1929 {
cfce2ea2 1930 varobj_update_result r = {0};
a109c7c1 1931
cfce2ea2 1932 r.varobj = *varp;
f7f9ae2c
VP
1933 r.status = VAROBJ_INVALID;
1934 VEC_safe_push (varobj_update_result, result, &r);
1935 return result;
1936 }
8b93c638 1937
25d5ea92 1938 if ((*varp)->root->rootvar == *varp)
ae093f96 1939 {
cfce2ea2 1940 varobj_update_result r = {0};
a109c7c1 1941
cfce2ea2 1942 r.varobj = *varp;
f7f9ae2c
VP
1943 r.status = VAROBJ_IN_SCOPE;
1944
581e13c1 1945 /* Update the root variable. value_of_root can return NULL
25d5ea92 1946 if the variable is no longer around, i.e. we stepped out of
581e13c1 1947 the frame in which a local existed. We are letting the
25d5ea92
VP
1948 value_of_root variable dispose of the varobj if the type
1949 has changed. */
25d5ea92 1950 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1951 r.varobj = *varp;
1952
1953 r.type_changed = type_changed;
ea56f9c2 1954 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1955 r.changed = 1;
ea56f9c2 1956
25d5ea92 1957 if (new == NULL)
f7f9ae2c 1958 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1959 r.value_installed = 1;
f7f9ae2c
VP
1960
1961 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1962 {
0b4bc29a
JK
1963 if (r.type_changed || r.changed)
1964 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1965 return result;
1966 }
1967
1968 VEC_safe_push (varobj_update_result, stack, &r);
1969 }
1970 else
1971 {
cfce2ea2 1972 varobj_update_result r = {0};
a109c7c1 1973
cfce2ea2 1974 r.varobj = *varp;
b6313243 1975 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1976 }
8b93c638 1977
8756216b 1978 /* Walk through the children, reconstructing them all. */
b6313243 1979 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1980 {
b6313243
TT
1981 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1982 struct varobj *v = r.varobj;
1983
1984 VEC_pop (varobj_update_result, stack);
1985
1986 /* Update this variable, unless it's a root, which is already
1987 updated. */
1988 if (!r.value_installed)
7a290c40
JB
1989 {
1990 struct type *new_type;
1991
b6313243 1992 new = value_of_child (v->parent, v->index);
7a290c40
JB
1993 if (new)
1994 new_type = value_type (new);
1995 else
1996 new_type = v->root->lang->type_of_child (v->parent, v->index);
1997
1998 if (varobj_value_has_mutated (v, new, new_type))
1999 {
2000 /* The children are no longer valid; delete them now.
2001 Report the fact that its type changed as well. */
2002 varobj_delete (v, NULL, 1 /* only_children */);
2003 v->num_children = -1;
2004 v->to = -1;
2005 v->from = -1;
2006 v->type = new_type;
2007 r.type_changed = 1;
2008 }
2009
2010 if (install_new_value (v, new, r.type_changed))
b6313243
TT
2011 {
2012 r.changed = 1;
2013 v->updated = 0;
2014 }
2015 }
2016
2017 /* We probably should not get children of a varobj that has a
2018 pretty-printer, but for which -var-list-children was never
581e13c1 2019 invoked. */
b6313243
TT
2020 if (v->pretty_printer)
2021 {
0cc7d26f 2022 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 2023 int i, children_changed = 0;
b6313243
TT
2024
2025 if (v->frozen)
2026 continue;
2027
0cc7d26f
TT
2028 if (!v->children_requested)
2029 {
2030 int dummy;
2031
2032 /* If we initially did not have potential children, but
2033 now we do, consider the varobj as changed.
2034 Otherwise, if children were never requested, consider
2035 it as unchanged -- presumably, such varobj is not yet
2036 expanded in the UI, so we need not bother getting
2037 it. */
2038 if (!varobj_has_more (v, 0))
2039 {
2040 update_dynamic_varobj_children (v, NULL, NULL, NULL,
2041 &dummy, 0, 0, 0);
2042 if (varobj_has_more (v, 0))
2043 r.changed = 1;
2044 }
2045
2046 if (r.changed)
2047 VEC_safe_push (varobj_update_result, result, &r);
2048
2049 continue;
2050 }
2051
b6313243
TT
2052 /* If update_dynamic_varobj_children returns 0, then we have
2053 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
2054 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
2055 &children_changed, 1,
2056 v->from, v->to))
b6313243 2057 {
0cc7d26f 2058 if (children_changed || new)
b6313243 2059 {
0cc7d26f
TT
2060 r.children_changed = 1;
2061 r.new = new;
b6313243 2062 }
0cc7d26f
TT
2063 /* Push in reverse order so that the first child is
2064 popped from the work stack first, and so will be
2065 added to result first. This does not affect
2066 correctness, just "nicer". */
2067 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 2068 {
0cc7d26f 2069 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 2070 varobj_update_result r = {0};
a109c7c1 2071
cfce2ea2 2072 r.varobj = tmp;
0cc7d26f 2073 r.changed = 1;
b6313243
TT
2074 r.value_installed = 1;
2075 VEC_safe_push (varobj_update_result, stack, &r);
2076 }
0cc7d26f
TT
2077 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2078 {
2079 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 2080
0cc7d26f
TT
2081 if (!tmp->frozen)
2082 {
cfce2ea2 2083 varobj_update_result r = {0};
a109c7c1 2084
cfce2ea2 2085 r.varobj = tmp;
0cc7d26f
TT
2086 r.value_installed = 1;
2087 VEC_safe_push (varobj_update_result, stack, &r);
2088 }
2089 }
b6313243
TT
2090 if (r.changed || r.children_changed)
2091 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
2092
2093 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
2094 has been put into the result vector. */
2095 VEC_free (varobj_p, changed);
2096 VEC_free (varobj_p, unchanged);
2097
b6313243
TT
2098 continue;
2099 }
2100 }
28335dcc
VP
2101
2102 /* Push any children. Use reverse order so that the first
2103 child is popped from the work stack first, and so
2104 will be added to result first. This does not
2105 affect correctness, just "nicer". */
2106 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 2107 {
28335dcc 2108 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 2109
28335dcc 2110 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 2111 if (c != NULL && !c->frozen)
28335dcc 2112 {
cfce2ea2 2113 varobj_update_result r = {0};
a109c7c1 2114
cfce2ea2 2115 r.varobj = c;
b6313243 2116 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 2117 }
8b93c638 2118 }
b6313243
TT
2119
2120 if (r.changed || r.type_changed)
2121 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
2122 }
2123
b6313243
TT
2124 VEC_free (varobj_update_result, stack);
2125
f7f9ae2c 2126 return result;
8b93c638
JM
2127}
2128\f
2129
2130/* Helper functions */
2131
2132/*
2133 * Variable object construction/destruction
2134 */
2135
2136static int
fba45db2
KB
2137delete_variable (struct cpstack **resultp, struct varobj *var,
2138 int only_children_p)
8b93c638
JM
2139{
2140 int delcount = 0;
2141
2142 delete_variable_1 (resultp, &delcount, var,
2143 only_children_p, 1 /* remove_from_parent_p */ );
2144
2145 return delcount;
2146}
2147
581e13c1 2148/* Delete the variable object VAR and its children. */
8b93c638
JM
2149/* IMPORTANT NOTE: If we delete a variable which is a child
2150 and the parent is not removed we dump core. It must be always
581e13c1 2151 initially called with remove_from_parent_p set. */
8b93c638 2152static void
72330bd6
AC
2153delete_variable_1 (struct cpstack **resultp, int *delcountp,
2154 struct varobj *var, int only_children_p,
2155 int remove_from_parent_p)
8b93c638 2156{
28335dcc 2157 int i;
8b93c638 2158
581e13c1 2159 /* Delete any children of this variable, too. */
28335dcc
VP
2160 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2161 {
2162 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 2163
214270ab
VP
2164 if (!child)
2165 continue;
8b93c638 2166 if (!remove_from_parent_p)
28335dcc
VP
2167 child->parent = NULL;
2168 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 2169 }
28335dcc 2170 VEC_free (varobj_p, var->children);
8b93c638 2171
581e13c1 2172 /* if we were called to delete only the children we are done here. */
8b93c638
JM
2173 if (only_children_p)
2174 return;
2175
581e13c1 2176 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 2177 /* If the name is null, this is a temporary variable, that has not
581e13c1 2178 yet been installed, don't report it, it belongs to the caller... */
73a93a32 2179 if (var->obj_name != NULL)
8b93c638 2180 {
5b616ba1 2181 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
2182 *delcountp = *delcountp + 1;
2183 }
2184
581e13c1 2185 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2186 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2187 (as indicated by remove_from_parent_p) we don't bother doing an
2188 expensive list search to find the element to remove when we are
581e13c1 2189 discarding the list afterwards. */
72330bd6 2190 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2191 {
28335dcc 2192 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2193 }
72330bd6 2194
73a93a32
JI
2195 if (var->obj_name != NULL)
2196 uninstall_variable (var);
8b93c638 2197
581e13c1 2198 /* Free memory associated with this variable. */
8b93c638
JM
2199 free_variable (var);
2200}
2201
581e13c1 2202/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2203static int
fba45db2 2204install_variable (struct varobj *var)
8b93c638
JM
2205{
2206 struct vlist *cv;
2207 struct vlist *newvl;
2208 const char *chp;
2209 unsigned int index = 0;
2210 unsigned int i = 1;
2211
2212 for (chp = var->obj_name; *chp; chp++)
2213 {
2214 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2215 }
2216
2217 cv = *(varobj_table + index);
2218 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2219 cv = cv->next;
2220
2221 if (cv != NULL)
8a3fe4f8 2222 error (_("Duplicate variable object name"));
8b93c638 2223
581e13c1 2224 /* Add varobj to hash table. */
8b93c638
JM
2225 newvl = xmalloc (sizeof (struct vlist));
2226 newvl->next = *(varobj_table + index);
2227 newvl->var = var;
2228 *(varobj_table + index) = newvl;
2229
581e13c1 2230 /* If root, add varobj to root list. */
b2c2bd75 2231 if (is_root_p (var))
8b93c638 2232 {
581e13c1 2233 /* Add to list of root variables. */
8b93c638
JM
2234 if (rootlist == NULL)
2235 var->root->next = NULL;
2236 else
2237 var->root->next = rootlist;
2238 rootlist = var->root;
8b93c638
JM
2239 }
2240
2241 return 1; /* OK */
2242}
2243
581e13c1 2244/* Unistall the object VAR. */
8b93c638 2245static void
fba45db2 2246uninstall_variable (struct varobj *var)
8b93c638
JM
2247{
2248 struct vlist *cv;
2249 struct vlist *prev;
2250 struct varobj_root *cr;
2251 struct varobj_root *prer;
2252 const char *chp;
2253 unsigned int index = 0;
2254 unsigned int i = 1;
2255
581e13c1 2256 /* Remove varobj from hash table. */
8b93c638
JM
2257 for (chp = var->obj_name; *chp; chp++)
2258 {
2259 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2260 }
2261
2262 cv = *(varobj_table + index);
2263 prev = NULL;
2264 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2265 {
2266 prev = cv;
2267 cv = cv->next;
2268 }
2269
2270 if (varobjdebug)
2271 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2272
2273 if (cv == NULL)
2274 {
72330bd6
AC
2275 warning
2276 ("Assertion failed: Could not find variable object \"%s\" to delete",
2277 var->obj_name);
8b93c638
JM
2278 return;
2279 }
2280
2281 if (prev == NULL)
2282 *(varobj_table + index) = cv->next;
2283 else
2284 prev->next = cv->next;
2285
b8c9b27d 2286 xfree (cv);
8b93c638 2287
581e13c1 2288 /* If root, remove varobj from root list. */
b2c2bd75 2289 if (is_root_p (var))
8b93c638 2290 {
581e13c1 2291 /* Remove from list of root variables. */
8b93c638
JM
2292 if (rootlist == var->root)
2293 rootlist = var->root->next;
2294 else
2295 {
2296 prer = NULL;
2297 cr = rootlist;
2298 while ((cr != NULL) && (cr->rootvar != var))
2299 {
2300 prer = cr;
2301 cr = cr->next;
2302 }
2303 if (cr == NULL)
2304 {
8f7e195f
JB
2305 warning (_("Assertion failed: Could not find "
2306 "varobj \"%s\" in root list"),
3e43a32a 2307 var->obj_name);
8b93c638
JM
2308 return;
2309 }
2310 if (prer == NULL)
2311 rootlist = NULL;
2312 else
2313 prer->next = cr->next;
2314 }
8b93c638
JM
2315 }
2316
2317}
2318
581e13c1 2319/* Create and install a child of the parent of the given name. */
8b93c638 2320static struct varobj *
fba45db2 2321create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2322{
2323 return create_child_with_value (parent, index, name,
2324 value_of_child (parent, index));
2325}
2326
85254831
KS
2327/* Does CHILD represent a child with no name? This happens when
2328 the child is an anonmous struct or union and it has no field name
2329 in its parent variable.
2330
2331 This has already been determined by *_describe_child. The easiest
2332 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2333
2334static int
2335is_anonymous_child (struct varobj *child)
2336{
2337 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2338 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2339}
2340
b6313243
TT
2341static struct varobj *
2342create_child_with_value (struct varobj *parent, int index, const char *name,
2343 struct value *value)
8b93c638
JM
2344{
2345 struct varobj *child;
2346 char *childs_name;
2347
2348 child = new_variable ();
2349
581e13c1 2350 /* Name is allocated by name_of_child. */
b6313243
TT
2351 /* FIXME: xstrdup should not be here. */
2352 child->name = xstrdup (name);
8b93c638 2353 child->index = index;
8b93c638
JM
2354 child->parent = parent;
2355 child->root = parent->root;
85254831
KS
2356
2357 if (is_anonymous_child (child))
2358 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2359 else
2360 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2361 child->obj_name = childs_name;
85254831 2362
8b93c638
JM
2363 install_variable (child);
2364
acd65feb
VP
2365 /* Compute the type of the child. Must do this before
2366 calling install_new_value. */
2367 if (value != NULL)
2368 /* If the child had no evaluation errors, var->value
581e13c1 2369 will be non-NULL and contain a valid type. */
acd65feb
VP
2370 child->type = value_type (value);
2371 else
581e13c1 2372 /* Otherwise, we must compute the type. */
acd65feb
VP
2373 child->type = (*child->root->lang->type_of_child) (child->parent,
2374 child->index);
2375 install_new_value (child, value, 1);
2376
8b93c638
JM
2377 return child;
2378}
8b93c638
JM
2379\f
2380
2381/*
2382 * Miscellaneous utility functions.
2383 */
2384
581e13c1 2385/* Allocate memory and initialize a new variable. */
8b93c638
JM
2386static struct varobj *
2387new_variable (void)
2388{
2389 struct varobj *var;
2390
2391 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2392 var->name = NULL;
02142340 2393 var->path_expr = NULL;
8b93c638
JM
2394 var->obj_name = NULL;
2395 var->index = -1;
2396 var->type = NULL;
2397 var->value = NULL;
8b93c638
JM
2398 var->num_children = -1;
2399 var->parent = NULL;
2400 var->children = NULL;
2401 var->format = 0;
2402 var->root = NULL;
fb9b6b35 2403 var->updated = 0;
85265413 2404 var->print_value = NULL;
25d5ea92
VP
2405 var->frozen = 0;
2406 var->not_fetched = 0;
b6313243 2407 var->children_requested = 0;
0cc7d26f
TT
2408 var->from = -1;
2409 var->to = -1;
2410 var->constructor = 0;
b6313243 2411 var->pretty_printer = 0;
0cc7d26f
TT
2412 var->child_iter = 0;
2413 var->saved_item = 0;
8b93c638
JM
2414
2415 return var;
2416}
2417
581e13c1 2418/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2419static struct varobj *
2420new_root_variable (void)
2421{
2422 struct varobj *var = new_variable ();
a109c7c1 2423
3e43a32a 2424 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2425 var->root->lang = NULL;
2426 var->root->exp = NULL;
2427 var->root->valid_block = NULL;
7a424e99 2428 var->root->frame = null_frame_id;
a5defcdc 2429 var->root->floating = 0;
8b93c638 2430 var->root->rootvar = NULL;
8756216b 2431 var->root->is_valid = 1;
8b93c638
JM
2432
2433 return var;
2434}
2435
581e13c1 2436/* Free any allocated memory associated with VAR. */
8b93c638 2437static void
fba45db2 2438free_variable (struct varobj *var)
8b93c638 2439{
d452c4bc
UW
2440#if HAVE_PYTHON
2441 if (var->pretty_printer)
2442 {
2443 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2444 Py_XDECREF (var->constructor);
2445 Py_XDECREF (var->pretty_printer);
2446 Py_XDECREF (var->child_iter);
2447 Py_XDECREF (var->saved_item);
d452c4bc
UW
2448 do_cleanups (cleanup);
2449 }
2450#endif
2451
36746093
JK
2452 value_free (var->value);
2453
581e13c1 2454 /* Free the expression if this is a root variable. */
b2c2bd75 2455 if (is_root_p (var))
8b93c638 2456 {
3038237c 2457 xfree (var->root->exp);
8038e1e2 2458 xfree (var->root);
8b93c638
JM
2459 }
2460
8038e1e2
AC
2461 xfree (var->name);
2462 xfree (var->obj_name);
85265413 2463 xfree (var->print_value);
02142340 2464 xfree (var->path_expr);
8038e1e2 2465 xfree (var);
8b93c638
JM
2466}
2467
74b7792f
AC
2468static void
2469do_free_variable_cleanup (void *var)
2470{
2471 free_variable (var);
2472}
2473
2474static struct cleanup *
2475make_cleanup_free_variable (struct varobj *var)
2476{
2477 return make_cleanup (do_free_variable_cleanup, var);
2478}
2479
581e13c1 2480/* This returns the type of the variable. It also skips past typedefs
6766a268 2481 to return the real type of the variable.
94b66fa7
KS
2482
2483 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2484 except within get_target_type and get_type. */
8b93c638 2485static struct type *
fba45db2 2486get_type (struct varobj *var)
8b93c638
JM
2487{
2488 struct type *type;
8b93c638 2489
a109c7c1 2490 type = var->type;
6766a268
DJ
2491 if (type != NULL)
2492 type = check_typedef (type);
8b93c638
JM
2493
2494 return type;
2495}
2496
6e2a9270
VP
2497/* Return the type of the value that's stored in VAR,
2498 or that would have being stored there if the
581e13c1 2499 value were accessible.
6e2a9270
VP
2500
2501 This differs from VAR->type in that VAR->type is always
2502 the true type of the expession in the source language.
2503 The return value of this function is the type we're
2504 actually storing in varobj, and using for displaying
2505 the values and for comparing previous and new values.
2506
2507 For example, top-level references are always stripped. */
2508static struct type *
2509get_value_type (struct varobj *var)
2510{
2511 struct type *type;
2512
2513 if (var->value)
2514 type = value_type (var->value);
2515 else
2516 type = var->type;
2517
2518 type = check_typedef (type);
2519
2520 if (TYPE_CODE (type) == TYPE_CODE_REF)
2521 type = get_target_type (type);
2522
2523 type = check_typedef (type);
2524
2525 return type;
2526}
2527
8b93c638 2528/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2529 past typedefs, just like get_type ().
2530
2531 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2532 except within get_target_type and get_type. */
8b93c638 2533static struct type *
fba45db2 2534get_target_type (struct type *type)
8b93c638
JM
2535{
2536 if (type != NULL)
2537 {
2538 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2539 if (type != NULL)
2540 type = check_typedef (type);
8b93c638
JM
2541 }
2542
2543 return type;
2544}
2545
2546/* What is the default display for this variable? We assume that
581e13c1 2547 everything is "natural". Any exceptions? */
8b93c638 2548static enum varobj_display_formats
fba45db2 2549variable_default_display (struct varobj *var)
8b93c638
JM
2550{
2551 return FORMAT_NATURAL;
2552}
2553
581e13c1 2554/* FIXME: The following should be generic for any pointer. */
8b93c638 2555static void
fba45db2 2556cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2557{
2558 struct cpstack *s;
2559
2560 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2561 s->name = name;
2562 s->next = *pstack;
2563 *pstack = s;
2564}
2565
581e13c1 2566/* FIXME: The following should be generic for any pointer. */
8b93c638 2567static char *
fba45db2 2568cppop (struct cpstack **pstack)
8b93c638
JM
2569{
2570 struct cpstack *s;
2571 char *v;
2572
2573 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2574 return NULL;
2575
2576 s = *pstack;
2577 v = s->name;
2578 *pstack = (*pstack)->next;
b8c9b27d 2579 xfree (s);
8b93c638
JM
2580
2581 return v;
2582}
2583\f
2584/*
2585 * Language-dependencies
2586 */
2587
2588/* Common entry points */
2589
581e13c1 2590/* Get the language of variable VAR. */
8b93c638 2591static enum varobj_languages
fba45db2 2592variable_language (struct varobj *var)
8b93c638
JM
2593{
2594 enum varobj_languages lang;
2595
2596 switch (var->root->exp->language_defn->la_language)
2597 {
2598 default:
2599 case language_c:
2600 lang = vlang_c;
2601 break;
2602 case language_cplus:
2603 lang = vlang_cplus;
2604 break;
2605 case language_java:
2606 lang = vlang_java;
2607 break;
40591b7d
JCD
2608 case language_ada:
2609 lang = vlang_ada;
2610 break;
8b93c638
JM
2611 }
2612
2613 return lang;
2614}
2615
2616/* Return the number of children for a given variable.
2617 The result of this function is defined by the language
581e13c1 2618 implementation. The number of children returned by this function
8b93c638 2619 is the number of children that the user will see in the variable
581e13c1 2620 display. */
8b93c638 2621static int
fba45db2 2622number_of_children (struct varobj *var)
8b93c638 2623{
82ae4854 2624 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2625}
2626
3e43a32a 2627/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2628 string. */
8b93c638 2629static char *
fba45db2 2630name_of_variable (struct varobj *var)
8b93c638
JM
2631{
2632 return (*var->root->lang->name_of_variable) (var);
2633}
2634
3e43a32a 2635/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2636 string. */
8b93c638 2637static char *
fba45db2 2638name_of_child (struct varobj *var, int index)
8b93c638
JM
2639{
2640 return (*var->root->lang->name_of_child) (var, index);
2641}
2642
a5defcdc
VP
2643/* What is the ``struct value *'' of the root variable VAR?
2644 For floating variable object, evaluation can get us a value
2645 of different type from what is stored in varobj already. In
2646 that case:
2647 - *type_changed will be set to 1
2648 - old varobj will be freed, and new one will be
2649 created, with the same name.
2650 - *var_handle will be set to the new varobj
2651 Otherwise, *type_changed will be set to 0. */
30b28db1 2652static struct value *
fba45db2 2653value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2654{
73a93a32
JI
2655 struct varobj *var;
2656
2657 if (var_handle == NULL)
2658 return NULL;
2659
2660 var = *var_handle;
2661
2662 /* This should really be an exception, since this should
581e13c1 2663 only get called with a root variable. */
73a93a32 2664
b2c2bd75 2665 if (!is_root_p (var))
73a93a32
JI
2666 return NULL;
2667
a5defcdc 2668 if (var->root->floating)
73a93a32
JI
2669 {
2670 struct varobj *tmp_var;
2671 char *old_type, *new_type;
6225abfa 2672
73a93a32
JI
2673 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2674 USE_SELECTED_FRAME);
2675 if (tmp_var == NULL)
2676 {
2677 return NULL;
2678 }
6225abfa 2679 old_type = varobj_get_type (var);
73a93a32 2680 new_type = varobj_get_type (tmp_var);
72330bd6 2681 if (strcmp (old_type, new_type) == 0)
73a93a32 2682 {
fcacd99f
VP
2683 /* The expression presently stored inside var->root->exp
2684 remembers the locations of local variables relatively to
2685 the frame where the expression was created (in DWARF location
2686 button, for example). Naturally, those locations are not
2687 correct in other frames, so update the expression. */
2688
2689 struct expression *tmp_exp = var->root->exp;
a109c7c1 2690
fcacd99f
VP
2691 var->root->exp = tmp_var->root->exp;
2692 tmp_var->root->exp = tmp_exp;
2693
73a93a32
JI
2694 varobj_delete (tmp_var, NULL, 0);
2695 *type_changed = 0;
2696 }
2697 else
2698 {
1b36a34b 2699 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2700 tmp_var->from = var->from;
2701 tmp_var->to = var->to;
a5defcdc
VP
2702 varobj_delete (var, NULL, 0);
2703
73a93a32
JI
2704 install_variable (tmp_var);
2705 *var_handle = tmp_var;
705da579 2706 var = *var_handle;
73a93a32
JI
2707 *type_changed = 1;
2708 }
74dddad3
MS
2709 xfree (old_type);
2710 xfree (new_type);
73a93a32
JI
2711 }
2712 else
2713 {
2714 *type_changed = 0;
2715 }
2716
7a290c40
JB
2717 {
2718 struct value *value;
2719
2720 value = (*var->root->lang->value_of_root) (var_handle);
2721 if (var->value == NULL || value == NULL)
2722 {
2723 /* For root varobj-s, a NULL value indicates a scoping issue.
2724 So, nothing to do in terms of checking for mutations. */
2725 }
2726 else if (varobj_value_has_mutated (var, value, value_type (value)))
2727 {
2728 /* The type has mutated, so the children are no longer valid.
2729 Just delete them, and tell our caller that the type has
2730 changed. */
2731 varobj_delete (var, NULL, 1 /* only_children */);
2732 var->num_children = -1;
2733 var->to = -1;
2734 var->from = -1;
2735 *type_changed = 1;
2736 }
2737 return value;
2738 }
8b93c638
JM
2739}
2740
581e13c1 2741/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2742static struct value *
fba45db2 2743value_of_child (struct varobj *parent, int index)
8b93c638 2744{
30b28db1 2745 struct value *value;
8b93c638
JM
2746
2747 value = (*parent->root->lang->value_of_child) (parent, index);
2748
8b93c638
JM
2749 return value;
2750}
2751
581e13c1 2752/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2753static char *
de051565 2754my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2755{
8756216b 2756 if (var->root->is_valid)
0cc7d26f
TT
2757 {
2758 if (var->pretty_printer)
2759 return value_get_print_value (var->value, var->format, var);
2760 return (*var->root->lang->value_of_variable) (var, format);
2761 }
8756216b
DP
2762 else
2763 return NULL;
8b93c638
JM
2764}
2765
85265413 2766static char *
b6313243 2767value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2768 struct varobj *var)
85265413 2769{
57e66780 2770 struct ui_file *stb;
621c8364 2771 struct cleanup *old_chain;
fbb8f299 2772 gdb_byte *thevalue = NULL;
79a45b7d 2773 struct value_print_options opts;
be759fcf
PM
2774 struct type *type = NULL;
2775 long len = 0;
2776 char *encoding = NULL;
2777 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2778 /* Initialize it just to avoid a GCC false warning. */
2779 CORE_ADDR str_addr = 0;
09ca9e2e 2780 int string_print = 0;
57e66780
DJ
2781
2782 if (value == NULL)
2783 return NULL;
2784
621c8364
TT
2785 stb = mem_fileopen ();
2786 old_chain = make_cleanup_ui_file_delete (stb);
2787
be759fcf 2788 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2789#if HAVE_PYTHON
2790 {
d452c4bc
UW
2791 PyObject *value_formatter = var->pretty_printer;
2792
09ca9e2e
TT
2793 varobj_ensure_python_env (var);
2794
0cc7d26f 2795 if (value_formatter)
b6313243 2796 {
0cc7d26f
TT
2797 /* First check to see if we have any children at all. If so,
2798 we simply return {...}. */
2799 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2800 {
2801 do_cleanups (old_chain);
2802 return xstrdup ("{...}");
2803 }
b6313243 2804
0cc7d26f 2805 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2806 {
0cc7d26f 2807 struct value *replacement;
0cc7d26f
TT
2808 PyObject *output = NULL;
2809
0cc7d26f 2810 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2811 &replacement,
2812 stb);
00bd41d6
PM
2813
2814 /* If we have string like output ... */
0cc7d26f
TT
2815 if (output)
2816 {
09ca9e2e
TT
2817 make_cleanup_py_decref (output);
2818
00bd41d6
PM
2819 /* If this is a lazy string, extract it. For lazy
2820 strings we always print as a string, so set
2821 string_print. */
be759fcf 2822 if (gdbpy_is_lazy_string (output))
0cc7d26f 2823 {
09ca9e2e
TT
2824 gdbpy_extract_lazy_string (output, &str_addr, &type,
2825 &len, &encoding);
2826 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2827 string_print = 1;
2828 }
2829 else
2830 {
00bd41d6
PM
2831 /* If it is a regular (non-lazy) string, extract
2832 it and copy the contents into THEVALUE. If the
2833 hint says to print it as a string, set
2834 string_print. Otherwise just return the extracted
2835 string as a value. */
2836
be759fcf
PM
2837 PyObject *py_str
2838 = python_string_to_target_python_string (output);
a109c7c1 2839
be759fcf
PM
2840 if (py_str)
2841 {
2842 char *s = PyString_AsString (py_str);
00bd41d6
PM
2843 char *hint;
2844
2845 hint = gdbpy_get_display_hint (value_formatter);
2846 if (hint)
2847 {
2848 if (!strcmp (hint, "string"))
2849 string_print = 1;
2850 xfree (hint);
2851 }
a109c7c1 2852
be759fcf
PM
2853 len = PyString_Size (py_str);
2854 thevalue = xmemdup (s, len + 1, len + 1);
2855 type = builtin_type (gdbarch)->builtin_char;
2856 Py_DECREF (py_str);
09ca9e2e
TT
2857
2858 if (!string_print)
2859 {
2860 do_cleanups (old_chain);
2861 return thevalue;
2862 }
2863
2864 make_cleanup (xfree, thevalue);
be759fcf 2865 }
8dc78533
JK
2866 else
2867 gdbpy_print_stack ();
0cc7d26f 2868 }
0cc7d26f 2869 }
00bd41d6
PM
2870 /* If the printer returned a replacement value, set VALUE
2871 to REPLACEMENT. If there is not a replacement value,
2872 just use the value passed to this function. */
0cc7d26f
TT
2873 if (replacement)
2874 value = replacement;
b6313243 2875 }
b6313243 2876 }
b6313243
TT
2877 }
2878#endif
2879
79a45b7d
TT
2880 get_formatted_print_options (&opts, format_code[(int) format]);
2881 opts.deref_ref = 0;
b6313243 2882 opts.raw = 1;
00bd41d6
PM
2883
2884 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2885 if (thevalue)
09ca9e2e
TT
2886 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2887 else if (string_print)
00bd41d6
PM
2888 /* Otherwise, if string_print is set, and it is not a regular
2889 string, it is a lazy string. */
09ca9e2e 2890 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2891 else
00bd41d6 2892 /* All other cases. */
b6313243 2893 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2894
759ef836 2895 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2896
85265413
NR
2897 do_cleanups (old_chain);
2898 return thevalue;
2899}
2900
340a7723
NR
2901int
2902varobj_editable_p (struct varobj *var)
2903{
2904 struct type *type;
340a7723
NR
2905
2906 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2907 return 0;
2908
2909 type = get_value_type (var);
2910
2911 switch (TYPE_CODE (type))
2912 {
2913 case TYPE_CODE_STRUCT:
2914 case TYPE_CODE_UNION:
2915 case TYPE_CODE_ARRAY:
2916 case TYPE_CODE_FUNC:
2917 case TYPE_CODE_METHOD:
2918 return 0;
2919 break;
2920
2921 default:
2922 return 1;
2923 break;
2924 }
2925}
2926
d32cafc7 2927/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2928
8b93c638 2929static int
b2c2bd75 2930varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2931{
d32cafc7 2932 return var->root->lang->value_is_changeable_p (var);
8b93c638
JM
2933}
2934
5a413362
VP
2935/* Return 1 if that varobj is floating, that is is always evaluated in the
2936 selected frame, and not bound to thread/frame. Such variable objects
2937 are created using '@' as frame specifier to -var-create. */
2938int
2939varobj_floating_p (struct varobj *var)
2940{
2941 return var->root->floating;
2942}
2943
2024f65a
VP
2944/* Given the value and the type of a variable object,
2945 adjust the value and type to those necessary
2946 for getting children of the variable object.
2947 This includes dereferencing top-level references
2948 to all types and dereferencing pointers to
581e13c1 2949 structures.
2024f65a 2950
581e13c1 2951 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
2952 can be null if we want to only translate type.
2953 *VALUE can be null as well -- if the parent
581e13c1 2954 value is not known.
02142340
VP
2955
2956 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2957 depending on whether pointer was dereferenced
02142340 2958 in this function. */
2024f65a
VP
2959static void
2960adjust_value_for_child_access (struct value **value,
02142340
VP
2961 struct type **type,
2962 int *was_ptr)
2024f65a
VP
2963{
2964 gdb_assert (type && *type);
2965
02142340
VP
2966 if (was_ptr)
2967 *was_ptr = 0;
2968
2024f65a
VP
2969 *type = check_typedef (*type);
2970
2971 /* The type of value stored in varobj, that is passed
2972 to us, is already supposed to be
2973 reference-stripped. */
2974
2975 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2976
2977 /* Pointers to structures are treated just like
2978 structures when accessing children. Don't
2979 dererences pointers to other types. */
2980 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2981 {
2982 struct type *target_type = get_target_type (*type);
2983 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2984 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2985 {
2986 if (value && *value)
3f4178d6 2987 {
8e7b59a5 2988 volatile struct gdb_exception except;
a109c7c1 2989
8e7b59a5
KS
2990 TRY_CATCH (except, RETURN_MASK_ERROR)
2991 {
2992 *value = value_ind (*value);
2993 }
2994
2995 if (except.reason < 0)
3f4178d6
DJ
2996 *value = NULL;
2997 }
2024f65a 2998 *type = target_type;
02142340
VP
2999 if (was_ptr)
3000 *was_ptr = 1;
2024f65a
VP
3001 }
3002 }
3003
3004 /* The 'get_target_type' function calls check_typedef on
3005 result, so we can immediately check type code. No
3006 need to call check_typedef here. */
3007}
3008
d32cafc7
JB
3009/* Implement the "value_is_changeable_p" varobj callback for most
3010 languages. */
3011
3012static int
3013default_value_is_changeable_p (struct varobj *var)
3014{
3015 int r;
3016 struct type *type;
3017
3018 if (CPLUS_FAKE_CHILD (var))
3019 return 0;
3020
3021 type = get_value_type (var);
3022
3023 switch (TYPE_CODE (type))
3024 {
3025 case TYPE_CODE_STRUCT:
3026 case TYPE_CODE_UNION:
3027 case TYPE_CODE_ARRAY:
3028 r = 0;
3029 break;
3030
3031 default:
3032 r = 1;
3033 }
3034
3035 return r;
3036}
3037
8b93c638 3038/* C */
d32cafc7 3039
8b93c638 3040static int
fba45db2 3041c_number_of_children (struct varobj *var)
8b93c638 3042{
2024f65a
VP
3043 struct type *type = get_value_type (var);
3044 int children = 0;
8b93c638 3045 struct type *target;
8b93c638 3046
02142340 3047 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 3048 target = get_target_type (type);
8b93c638
JM
3049
3050 switch (TYPE_CODE (type))
3051 {
3052 case TYPE_CODE_ARRAY:
3053 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 3054 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
3055 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3056 else
74a44383
DJ
3057 /* If we don't know how many elements there are, don't display
3058 any. */
3059 children = 0;
8b93c638
JM
3060 break;
3061
3062 case TYPE_CODE_STRUCT:
3063 case TYPE_CODE_UNION:
3064 children = TYPE_NFIELDS (type);
3065 break;
3066
3067 case TYPE_CODE_PTR:
581e13c1 3068 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
3069 have one child, except for function ptrs, which have no children,
3070 and except for void*, as we don't know what to show.
3071
0755e6c1
FN
3072 We can show char* so we allow it to be dereferenced. If you decide
3073 to test for it, please mind that a little magic is necessary to
3074 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 3075 TYPE_NAME == "char". */
2024f65a
VP
3076 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3077 || TYPE_CODE (target) == TYPE_CODE_VOID)
3078 children = 0;
3079 else
3080 children = 1;
8b93c638
JM
3081 break;
3082
3083 default:
581e13c1 3084 /* Other types have no children. */
8b93c638
JM
3085 break;
3086 }
3087
3088 return children;
3089}
3090
3091static char *
fba45db2 3092c_name_of_variable (struct varobj *parent)
8b93c638 3093{
1b36a34b 3094 return xstrdup (parent->name);
8b93c638
JM
3095}
3096
bbec2603
VP
3097/* Return the value of element TYPE_INDEX of a structure
3098 value VALUE. VALUE's type should be a structure,
581e13c1 3099 or union, or a typedef to struct/union.
bbec2603
VP
3100
3101 Returns NULL if getting the value fails. Never throws. */
3102static struct value *
3103value_struct_element_index (struct value *value, int type_index)
8b93c638 3104{
bbec2603
VP
3105 struct value *result = NULL;
3106 volatile struct gdb_exception e;
bbec2603 3107 struct type *type = value_type (value);
a109c7c1 3108
bbec2603
VP
3109 type = check_typedef (type);
3110
3111 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3112 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 3113
bbec2603
VP
3114 TRY_CATCH (e, RETURN_MASK_ERROR)
3115 {
d6a843b5 3116 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
3117 result = value_static_field (type, type_index);
3118 else
3119 result = value_primitive_field (value, 0, type_index, type);
3120 }
3121 if (e.reason < 0)
3122 {
3123 return NULL;
3124 }
3125 else
3126 {
3127 return result;
3128 }
3129}
3130
3131/* Obtain the information about child INDEX of the variable
581e13c1 3132 object PARENT.
bbec2603
VP
3133 If CNAME is not null, sets *CNAME to the name of the child relative
3134 to the parent.
3135 If CVALUE is not null, sets *CVALUE to the value of the child.
3136 If CTYPE is not null, sets *CTYPE to the type of the child.
3137
3138 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3139 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3140 to NULL. */
3141static void
3142c_describe_child (struct varobj *parent, int index,
02142340
VP
3143 char **cname, struct value **cvalue, struct type **ctype,
3144 char **cfull_expression)
bbec2603
VP
3145{
3146 struct value *value = parent->value;
2024f65a 3147 struct type *type = get_value_type (parent);
02142340
VP
3148 char *parent_expression = NULL;
3149 int was_ptr;
8e7b59a5 3150 volatile struct gdb_exception except;
bbec2603
VP
3151
3152 if (cname)
3153 *cname = NULL;
3154 if (cvalue)
3155 *cvalue = NULL;
3156 if (ctype)
3157 *ctype = NULL;
02142340
VP
3158 if (cfull_expression)
3159 {
3160 *cfull_expression = NULL;
85254831 3161 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
02142340
VP
3162 }
3163 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 3164
8b93c638
JM
3165 switch (TYPE_CODE (type))
3166 {
3167 case TYPE_CODE_ARRAY:
bbec2603 3168 if (cname)
3e43a32a
MS
3169 *cname
3170 = xstrdup (int_string (index
3171 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3172 10, 1, 0, 0));
bbec2603
VP
3173
3174 if (cvalue && value)
3175 {
3176 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 3177
8e7b59a5
KS
3178 TRY_CATCH (except, RETURN_MASK_ERROR)
3179 {
3180 *cvalue = value_subscript (value, real_index);
3181 }
bbec2603
VP
3182 }
3183
3184 if (ctype)
3185 *ctype = get_target_type (type);
3186
02142340 3187 if (cfull_expression)
43bbcdc2
PH
3188 *cfull_expression =
3189 xstrprintf ("(%s)[%s]", parent_expression,
3190 int_string (index
3191 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3192 10, 1, 0, 0));
02142340
VP
3193
3194
8b93c638
JM
3195 break;
3196
3197 case TYPE_CODE_STRUCT:
3198 case TYPE_CODE_UNION:
85254831 3199 {
0d5cff50 3200 const char *field_name;
bbec2603 3201
85254831
KS
3202 /* If the type is anonymous and the field has no name,
3203 set an appropriate name. */
3204 field_name = TYPE_FIELD_NAME (type, index);
3205 if (field_name == NULL || *field_name == '\0')
3206 {
3207 if (cname)
3208 {
3209 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3210 == TYPE_CODE_STRUCT)
3211 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3212 else
3213 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3214 }
bbec2603 3215
85254831
KS
3216 if (cfull_expression)
3217 *cfull_expression = xstrdup ("");
3218 }
3219 else
3220 {
3221 if (cname)
3222 *cname = xstrdup (field_name);
bbec2603 3223
85254831
KS
3224 if (cfull_expression)
3225 {
3226 char *join = was_ptr ? "->" : ".";
a109c7c1 3227
85254831
KS
3228 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3229 join, field_name);
3230 }
3231 }
02142340 3232
85254831
KS
3233 if (cvalue && value)
3234 {
3235 /* For C, varobj index is the same as type index. */
3236 *cvalue = value_struct_element_index (value, index);
3237 }
3238
3239 if (ctype)
3240 *ctype = TYPE_FIELD_TYPE (type, index);
3241 }
8b93c638
JM
3242 break;
3243
3244 case TYPE_CODE_PTR:
bbec2603
VP
3245 if (cname)
3246 *cname = xstrprintf ("*%s", parent->name);
8b93c638 3247
bbec2603 3248 if (cvalue && value)
3f4178d6 3249 {
8e7b59a5
KS
3250 TRY_CATCH (except, RETURN_MASK_ERROR)
3251 {
3252 *cvalue = value_ind (value);
3253 }
a109c7c1 3254
8e7b59a5 3255 if (except.reason < 0)
3f4178d6
DJ
3256 *cvalue = NULL;
3257 }
bbec2603 3258
2024f65a
VP
3259 /* Don't use get_target_type because it calls
3260 check_typedef and here, we want to show the true
3261 declared type of the variable. */
bbec2603 3262 if (ctype)
2024f65a 3263 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
3264
3265 if (cfull_expression)
3266 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 3267
8b93c638
JM
3268 break;
3269
3270 default:
581e13c1 3271 /* This should not happen. */
bbec2603
VP
3272 if (cname)
3273 *cname = xstrdup ("???");
02142340
VP
3274 if (cfull_expression)
3275 *cfull_expression = xstrdup ("???");
581e13c1 3276 /* Don't set value and type, we don't know then. */
8b93c638 3277 }
bbec2603 3278}
8b93c638 3279
bbec2603
VP
3280static char *
3281c_name_of_child (struct varobj *parent, int index)
3282{
3283 char *name;
a109c7c1 3284
02142340 3285 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3286 return name;
3287}
3288
02142340
VP
3289static char *
3290c_path_expr_of_child (struct varobj *child)
3291{
3292 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3293 &child->path_expr);
3294 return child->path_expr;
3295}
3296
c5b48eac
VP
3297/* If frame associated with VAR can be found, switch
3298 to it and return 1. Otherwise, return 0. */
3299static int
3300check_scope (struct varobj *var)
3301{
3302 struct frame_info *fi;
3303 int scope;
3304
3305 fi = frame_find_by_id (var->root->frame);
3306 scope = fi != NULL;
3307
3308 if (fi)
3309 {
3310 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3311
c5b48eac
VP
3312 if (pc < BLOCK_START (var->root->valid_block) ||
3313 pc >= BLOCK_END (var->root->valid_block))
3314 scope = 0;
3315 else
3316 select_frame (fi);
3317 }
3318 return scope;
3319}
3320
30b28db1 3321static struct value *
fba45db2 3322c_value_of_root (struct varobj **var_handle)
8b93c638 3323{
5e572bb4 3324 struct value *new_val = NULL;
73a93a32 3325 struct varobj *var = *var_handle;
c5b48eac 3326 int within_scope = 0;
6208b47d
VP
3327 struct cleanup *back_to;
3328
581e13c1 3329 /* Only root variables can be updated... */
b2c2bd75 3330 if (!is_root_p (var))
581e13c1 3331 /* Not a root var. */
73a93a32
JI
3332 return NULL;
3333
4f8d22e3 3334 back_to = make_cleanup_restore_current_thread ();
72330bd6 3335
581e13c1 3336 /* Determine whether the variable is still around. */
a5defcdc 3337 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3338 within_scope = 1;
c5b48eac
VP
3339 else if (var->root->thread_id == 0)
3340 {
3341 /* The program was single-threaded when the variable object was
3342 created. Technically, it's possible that the program became
3343 multi-threaded since then, but we don't support such
3344 scenario yet. */
3345 within_scope = check_scope (var);
3346 }
8b93c638
JM
3347 else
3348 {
c5b48eac
VP
3349 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3350 if (in_thread_list (ptid))
d2353924 3351 {
c5b48eac
VP
3352 switch_to_thread (ptid);
3353 within_scope = check_scope (var);
3354 }
8b93c638 3355 }
72330bd6 3356
8b93c638
JM
3357 if (within_scope)
3358 {
8e7b59a5
KS
3359 volatile struct gdb_exception except;
3360
73a93a32 3361 /* We need to catch errors here, because if evaluate
85d93f1d 3362 expression fails we want to just return NULL. */
8e7b59a5
KS
3363 TRY_CATCH (except, RETURN_MASK_ERROR)
3364 {
3365 new_val = evaluate_expression (var->root->exp);
3366 }
3367
8b93c638
JM
3368 return new_val;
3369 }
3370
6208b47d
VP
3371 do_cleanups (back_to);
3372
8b93c638
JM
3373 return NULL;
3374}
3375
30b28db1 3376static struct value *
fba45db2 3377c_value_of_child (struct varobj *parent, int index)
8b93c638 3378{
bbec2603 3379 struct value *value = NULL;
8b93c638 3380
a109c7c1 3381 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3382 return value;
3383}
3384
3385static struct type *
fba45db2 3386c_type_of_child (struct varobj *parent, int index)
8b93c638 3387{
bbec2603 3388 struct type *type = NULL;
a109c7c1 3389
02142340 3390 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3391 return type;
3392}
3393
8b93c638 3394static char *
de051565 3395c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3396{
14b3d9c9
JB
3397 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3398 it will print out its children instead of "{...}". So we need to
3399 catch that case explicitly. */
3400 struct type *type = get_type (var);
e64d9b3d 3401
581e13c1 3402 /* Strip top-level references. */
14b3d9c9
JB
3403 while (TYPE_CODE (type) == TYPE_CODE_REF)
3404 type = check_typedef (TYPE_TARGET_TYPE (type));
3405
3406 switch (TYPE_CODE (type))
8b93c638
JM
3407 {
3408 case TYPE_CODE_STRUCT:
3409 case TYPE_CODE_UNION:
3410 return xstrdup ("{...}");
3411 /* break; */
3412
3413 case TYPE_CODE_ARRAY:
3414 {
e64d9b3d 3415 char *number;
a109c7c1 3416
b435e160 3417 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3418 return (number);
8b93c638
JM
3419 }
3420 /* break; */
3421
3422 default:
3423 {
575bbeb6
KS
3424 if (var->value == NULL)
3425 {
3426 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3427 member when the parent is an invalid pointer. This is an
3428 error condition, so we should tell the caller. */
575bbeb6
KS
3429 return NULL;
3430 }
3431 else
3432 {
25d5ea92
VP
3433 if (var->not_fetched && value_lazy (var->value))
3434 /* Frozen variable and no value yet. We don't
3435 implicitly fetch the value. MI response will
3436 use empty string for the value, which is OK. */
3437 return NULL;
3438
b2c2bd75 3439 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3440 gdb_assert (!value_lazy (var->value));
de051565
MK
3441
3442 /* If the specified format is the current one,
581e13c1 3443 we can reuse print_value. */
de051565
MK
3444 if (format == var->format)
3445 return xstrdup (var->print_value);
3446 else
d452c4bc 3447 return value_get_print_value (var->value, format, var);
85265413 3448 }
e64d9b3d 3449 }
8b93c638
JM
3450 }
3451}
3452\f
3453
3454/* C++ */
3455
3456static int
fba45db2 3457cplus_number_of_children (struct varobj *var)
8b93c638
JM
3458{
3459 struct type *type;
3460 int children, dont_know;
3461
3462 dont_know = 1;
3463 children = 0;
3464
3465 if (!CPLUS_FAKE_CHILD (var))
3466 {
2024f65a 3467 type = get_value_type (var);
02142340 3468 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3469
3470 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3471 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3472 {
3473 int kids[3];
3474
3475 cplus_class_num_children (type, kids);
3476 if (kids[v_public] != 0)
3477 children++;
3478 if (kids[v_private] != 0)
3479 children++;
3480 if (kids[v_protected] != 0)
3481 children++;
3482
581e13c1 3483 /* Add any baseclasses. */
8b93c638
JM
3484 children += TYPE_N_BASECLASSES (type);
3485 dont_know = 0;
3486
581e13c1 3487 /* FIXME: save children in var. */
8b93c638
JM
3488 }
3489 }
3490 else
3491 {
3492 int kids[3];
3493
2024f65a 3494 type = get_value_type (var->parent);
02142340 3495 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3496
3497 cplus_class_num_children (type, kids);
6e382aa3 3498 if (strcmp (var->name, "public") == 0)
8b93c638 3499 children = kids[v_public];
6e382aa3 3500 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3501 children = kids[v_private];
3502 else
3503 children = kids[v_protected];
3504 dont_know = 0;
3505 }
3506
3507 if (dont_know)
3508 children = c_number_of_children (var);
3509
3510 return children;
3511}
3512
3513/* Compute # of public, private, and protected variables in this class.
3514 That means we need to descend into all baseclasses and find out
581e13c1 3515 how many are there, too. */
8b93c638 3516static void
1669605f 3517cplus_class_num_children (struct type *type, int children[3])
8b93c638 3518{
d48cc9dd
DJ
3519 int i, vptr_fieldno;
3520 struct type *basetype = NULL;
8b93c638
JM
3521
3522 children[v_public] = 0;
3523 children[v_private] = 0;
3524 children[v_protected] = 0;
3525
d48cc9dd 3526 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3527 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3528 {
d48cc9dd
DJ
3529 /* If we have a virtual table pointer, omit it. Even if virtual
3530 table pointers are not specifically marked in the debug info,
3531 they should be artificial. */
3532 if ((type == basetype && i == vptr_fieldno)
3533 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3534 continue;
3535
3536 if (TYPE_FIELD_PROTECTED (type, i))
3537 children[v_protected]++;
3538 else if (TYPE_FIELD_PRIVATE (type, i))
3539 children[v_private]++;
3540 else
3541 children[v_public]++;
3542 }
3543}
3544
3545static char *
fba45db2 3546cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3547{
3548 return c_name_of_variable (parent);
3549}
3550
2024f65a
VP
3551enum accessibility { private_field, protected_field, public_field };
3552
3553/* Check if field INDEX of TYPE has the specified accessibility.
3554 Return 0 if so and 1 otherwise. */
3555static int
3556match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3557{
2024f65a
VP
3558 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3559 return 1;
3560 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3561 return 1;
3562 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3563 && !TYPE_FIELD_PROTECTED (type, index))
3564 return 1;
3565 else
3566 return 0;
3567}
3568
3569static void
3570cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3571 char **cname, struct value **cvalue, struct type **ctype,
3572 char **cfull_expression)
2024f65a 3573{
2024f65a 3574 struct value *value;
8b93c638 3575 struct type *type;
02142340
VP
3576 int was_ptr;
3577 char *parent_expression = NULL;
8b93c638 3578
2024f65a
VP
3579 if (cname)
3580 *cname = NULL;
3581 if (cvalue)
3582 *cvalue = NULL;
3583 if (ctype)
3584 *ctype = NULL;
02142340
VP
3585 if (cfull_expression)
3586 *cfull_expression = NULL;
2024f65a 3587
8b93c638
JM
3588 if (CPLUS_FAKE_CHILD (parent))
3589 {
2024f65a
VP
3590 value = parent->parent->value;
3591 type = get_value_type (parent->parent);
02142340 3592 if (cfull_expression)
85254831
KS
3593 parent_expression
3594 = varobj_get_path_expr (get_path_expr_parent (parent->parent));
8b93c638
JM
3595 }
3596 else
2024f65a
VP
3597 {
3598 value = parent->value;
3599 type = get_value_type (parent);
02142340 3600 if (cfull_expression)
85254831
KS
3601 parent_expression
3602 = varobj_get_path_expr (get_path_expr_parent (parent));
2024f65a 3603 }
8b93c638 3604
02142340 3605 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3606
3607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3608 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3609 {
02142340 3610 char *join = was_ptr ? "->" : ".";
a109c7c1 3611
8b93c638
JM
3612 if (CPLUS_FAKE_CHILD (parent))
3613 {
6e382aa3
JJ
3614 /* The fields of the class type are ordered as they
3615 appear in the class. We are given an index for a
3616 particular access control type ("public","protected",
3617 or "private"). We must skip over fields that don't
3618 have the access control we are looking for to properly
581e13c1 3619 find the indexed field. */
6e382aa3 3620 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3621 enum accessibility acc = public_field;
d48cc9dd
DJ
3622 int vptr_fieldno;
3623 struct type *basetype = NULL;
0d5cff50 3624 const char *field_name;
d48cc9dd
DJ
3625
3626 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3627 if (strcmp (parent->name, "private") == 0)
2024f65a 3628 acc = private_field;
6e382aa3 3629 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3630 acc = protected_field;
3631
3632 while (index >= 0)
6e382aa3 3633 {
d48cc9dd
DJ
3634 if ((type == basetype && type_index == vptr_fieldno)
3635 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3636 ; /* ignore vptr */
3637 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3638 --index;
3639 ++type_index;
6e382aa3 3640 }
2024f65a
VP
3641 --type_index;
3642
85254831
KS
3643 /* If the type is anonymous and the field has no name,
3644 set an appopriate name. */
3645 field_name = TYPE_FIELD_NAME (type, type_index);
3646 if (field_name == NULL || *field_name == '\0')
3647 {
3648 if (cname)
3649 {
3650 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3651 == TYPE_CODE_STRUCT)
3652 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3653 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3654 == TYPE_CODE_UNION)
3655 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3656 }
3657
3658 if (cfull_expression)
3659 *cfull_expression = xstrdup ("");
3660 }
3661 else
3662 {
3663 if (cname)
3664 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3665
3666 if (cfull_expression)
3667 *cfull_expression
3668 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3669 field_name);
3670 }
2024f65a
VP
3671
3672 if (cvalue && value)
3673 *cvalue = value_struct_element_index (value, type_index);
3674
3675 if (ctype)
3676 *ctype = TYPE_FIELD_TYPE (type, type_index);
3677 }
3678 else if (index < TYPE_N_BASECLASSES (type))
3679 {
3680 /* This is a baseclass. */
3681 if (cname)
3682 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3683
3684 if (cvalue && value)
0cc7d26f 3685 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3686
2024f65a
VP
3687 if (ctype)
3688 {
3689 *ctype = TYPE_FIELD_TYPE (type, index);
3690 }
02142340
VP
3691
3692 if (cfull_expression)
3693 {
3694 char *ptr = was_ptr ? "*" : "";
a109c7c1 3695
581e13c1 3696 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3697 expression like
3698 (Base1)d
3699 will create an lvalue, for all appearences, so we don't
3700 need to use more fancy:
3701 *(Base1*)(&d)
0d932b2f
MK
3702 construct.
3703
3704 When we are in the scope of the base class or of one
3705 of its children, the type field name will be interpreted
3706 as a constructor, if it exists. Therefore, we must
3707 indicate that the name is a class name by using the
3708 'class' keyword. See PR mi/11912 */
3709 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
02142340
VP
3710 ptr,
3711 TYPE_FIELD_NAME (type, index),
3712 ptr,
3713 parent_expression);
3714 }
8b93c638 3715 }
8b93c638
JM
3716 else
3717 {
348144ba 3718 char *access = NULL;
6e382aa3 3719 int children[3];
a109c7c1 3720
2024f65a 3721 cplus_class_num_children (type, children);
6e382aa3 3722
8b93c638 3723 /* Everything beyond the baseclasses can
6e382aa3
JJ
3724 only be "public", "private", or "protected"
3725
3726 The special "fake" children are always output by varobj in
581e13c1 3727 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3728 index -= TYPE_N_BASECLASSES (type);
3729 switch (index)
3730 {
3731 case 0:
6e382aa3 3732 if (children[v_public] > 0)
2024f65a 3733 access = "public";
6e382aa3 3734 else if (children[v_private] > 0)
2024f65a 3735 access = "private";
6e382aa3 3736 else
2024f65a 3737 access = "protected";
6e382aa3 3738 break;
8b93c638 3739 case 1:
6e382aa3 3740 if (children[v_public] > 0)
8b93c638 3741 {
6e382aa3 3742 if (children[v_private] > 0)
2024f65a 3743 access = "private";
6e382aa3 3744 else
2024f65a 3745 access = "protected";
8b93c638 3746 }
6e382aa3 3747 else if (children[v_private] > 0)
2024f65a 3748 access = "protected";
6e382aa3 3749 break;
8b93c638 3750 case 2:
581e13c1 3751 /* Must be protected. */
2024f65a 3752 access = "protected";
6e382aa3 3753 break;
8b93c638 3754 default:
581e13c1 3755 /* error! */
8b93c638
JM
3756 break;
3757 }
348144ba
MS
3758
3759 gdb_assert (access);
2024f65a
VP
3760 if (cname)
3761 *cname = xstrdup (access);
8b93c638 3762
02142340 3763 /* Value and type and full expression are null here. */
2024f65a 3764 }
8b93c638 3765 }
8b93c638
JM
3766 else
3767 {
02142340 3768 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3769 }
3770}
8b93c638 3771
2024f65a
VP
3772static char *
3773cplus_name_of_child (struct varobj *parent, int index)
3774{
3775 char *name = NULL;
a109c7c1 3776
02142340 3777 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3778 return name;
3779}
3780
02142340
VP
3781static char *
3782cplus_path_expr_of_child (struct varobj *child)
3783{
3784 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3785 &child->path_expr);
3786 return child->path_expr;
3787}
3788
30b28db1 3789static struct value *
fba45db2 3790cplus_value_of_root (struct varobj **var_handle)
8b93c638 3791{
73a93a32 3792 return c_value_of_root (var_handle);
8b93c638
JM
3793}
3794
30b28db1 3795static struct value *
fba45db2 3796cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3797{
2024f65a 3798 struct value *value = NULL;
a109c7c1 3799
02142340 3800 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3801 return value;
3802}
3803
3804static struct type *
fba45db2 3805cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3806{
2024f65a 3807 struct type *type = NULL;
a109c7c1 3808
02142340 3809 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3810 return type;
3811}
3812
8b93c638 3813static char *
a109c7c1
MS
3814cplus_value_of_variable (struct varobj *var,
3815 enum varobj_display_formats format)
8b93c638
JM
3816{
3817
3818 /* If we have one of our special types, don't print out
581e13c1 3819 any value. */
8b93c638
JM
3820 if (CPLUS_FAKE_CHILD (var))
3821 return xstrdup ("");
3822
de051565 3823 return c_value_of_variable (var, format);
8b93c638
JM
3824}
3825\f
3826/* Java */
3827
3828static int
fba45db2 3829java_number_of_children (struct varobj *var)
8b93c638
JM
3830{
3831 return cplus_number_of_children (var);
3832}
3833
3834static char *
fba45db2 3835java_name_of_variable (struct varobj *parent)
8b93c638
JM
3836{
3837 char *p, *name;
3838
3839 name = cplus_name_of_variable (parent);
3840 /* If the name has "-" in it, it is because we
581e13c1 3841 needed to escape periods in the name... */
8b93c638
JM
3842 p = name;
3843
3844 while (*p != '\000')
3845 {
3846 if (*p == '-')
3847 *p = '.';
3848 p++;
3849 }
3850
3851 return name;
3852}
3853
3854static char *
fba45db2 3855java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3856{
3857 char *name, *p;
3858
3859 name = cplus_name_of_child (parent, index);
581e13c1 3860 /* Escape any periods in the name... */
8b93c638
JM
3861 p = name;
3862
3863 while (*p != '\000')
3864 {
3865 if (*p == '.')
3866 *p = '-';
3867 p++;
3868 }
3869
3870 return name;
3871}
3872
02142340
VP
3873static char *
3874java_path_expr_of_child (struct varobj *child)
3875{
3876 return NULL;
3877}
3878
30b28db1 3879static struct value *
fba45db2 3880java_value_of_root (struct varobj **var_handle)
8b93c638 3881{
73a93a32 3882 return cplus_value_of_root (var_handle);
8b93c638
JM
3883}
3884
30b28db1 3885static struct value *
fba45db2 3886java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3887{
3888 return cplus_value_of_child (parent, index);
3889}
3890
3891static struct type *
fba45db2 3892java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3893{
3894 return cplus_type_of_child (parent, index);
3895}
3896
8b93c638 3897static char *
de051565 3898java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3899{
de051565 3900 return cplus_value_of_variable (var, format);
8b93c638 3901}
54333c3b 3902
40591b7d
JCD
3903/* Ada specific callbacks for VAROBJs. */
3904
3905static int
3906ada_number_of_children (struct varobj *var)
3907{
181875a4 3908 return ada_varobj_get_number_of_children (var->value, var->type);
40591b7d
JCD
3909}
3910
3911static char *
3912ada_name_of_variable (struct varobj *parent)
3913{
3914 return c_name_of_variable (parent);
3915}
3916
3917static char *
3918ada_name_of_child (struct varobj *parent, int index)
3919{
181875a4
JB
3920 return ada_varobj_get_name_of_child (parent->value, parent->type,
3921 parent->name, index);
40591b7d
JCD
3922}
3923
3924static char*
3925ada_path_expr_of_child (struct varobj *child)
3926{
181875a4
JB
3927 struct varobj *parent = child->parent;
3928 const char *parent_path_expr = varobj_get_path_expr (parent);
3929
3930 return ada_varobj_get_path_expr_of_child (parent->value,
3931 parent->type,
3932 parent->name,
3933 parent_path_expr,
3934 child->index);
40591b7d
JCD
3935}
3936
3937static struct value *
3938ada_value_of_root (struct varobj **var_handle)
3939{
3940 return c_value_of_root (var_handle);
3941}
3942
3943static struct value *
3944ada_value_of_child (struct varobj *parent, int index)
3945{
181875a4
JB
3946 return ada_varobj_get_value_of_child (parent->value, parent->type,
3947 parent->name, index);
40591b7d
JCD
3948}
3949
3950static struct type *
3951ada_type_of_child (struct varobj *parent, int index)
3952{
181875a4
JB
3953 return ada_varobj_get_type_of_child (parent->value, parent->type,
3954 index);
40591b7d
JCD
3955}
3956
3957static char *
3958ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3959{
181875a4
JB
3960 struct value_print_options opts;
3961
3962 get_formatted_print_options (&opts, format_code[(int) format]);
3963 opts.deref_ref = 0;
3964 opts.raw = 1;
3965
3966 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
40591b7d
JCD
3967}
3968
d32cafc7
JB
3969/* Implement the "value_is_changeable_p" routine for Ada. */
3970
3971static int
3972ada_value_is_changeable_p (struct varobj *var)
3973{
3974 struct type *type = var->value ? value_type (var->value) : var->type;
3975
3976 if (ada_is_array_descriptor_type (type)
3977 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
3978 {
3979 /* This is in reality a pointer to an unconstrained array.
3980 its value is changeable. */
3981 return 1;
3982 }
3983
3984 if (ada_is_string_type (type))
3985 {
3986 /* We display the contents of the string in the array's
3987 "value" field. The contents can change, so consider
3988 that the array is changeable. */
3989 return 1;
3990 }
3991
3992 return default_value_is_changeable_p (var);
3993}
3994
7a290c40
JB
3995/* Implement the "value_has_mutated" routine for Ada. */
3996
3997static int
3998ada_value_has_mutated (struct varobj *var, struct value *new_val,
3999 struct type *new_type)
4000{
181875a4
JB
4001 int i;
4002 int from = -1;
4003 int to = -1;
4004
4005 /* If the number of fields have changed, then for sure the type
4006 has mutated. */
4007 if (ada_varobj_get_number_of_children (new_val, new_type)
4008 != var->num_children)
4009 return 1;
4010
4011 /* If the number of fields have remained the same, then we need
4012 to check the name of each field. If they remain the same,
4013 then chances are the type hasn't mutated. This is technically
4014 an incomplete test, as the child's type might have changed
4015 despite the fact that the name remains the same. But we'll
4016 handle this situation by saying that the child has mutated,
4017 not this value.
4018
4019 If only part (or none!) of the children have been fetched,
4020 then only check the ones we fetched. It does not matter
4021 to the frontend whether a child that it has not fetched yet
4022 has mutated or not. So just assume it hasn't. */
4023
4024 restrict_range (var->children, &from, &to);
4025 for (i = from; i < to; i++)
4026 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4027 var->name, i),
4028 VEC_index (varobj_p, var->children, i)->name) != 0)
4029 return 1;
4030
7a290c40
JB
4031 return 0;
4032}
4033
54333c3b
JK
4034/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4035 with an arbitrary caller supplied DATA pointer. */
4036
4037void
4038all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4039{
4040 struct varobj_root *var_root, *var_root_next;
4041
4042 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4043
4044 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4045 {
4046 var_root_next = var_root->next;
4047
4048 (*func) (var_root->rootvar, data);
4049 }
4050}
8b93c638
JM
4051\f
4052extern void _initialize_varobj (void);
4053void
4054_initialize_varobj (void)
4055{
4056 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4057
4058 varobj_table = xmalloc (sizeof_table);
4059 memset (varobj_table, 0, sizeof_table);
4060
85c07804 4061 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
4062 &varobjdebug,
4063 _("Set varobj debugging."),
4064 _("Show varobj debugging."),
4065 _("When non-zero, varobj debugging is enabled."),
4066 NULL, show_varobjdebug,
85c07804 4067 &setlist, &showlist);
8b93c638 4068}
8756216b 4069
54333c3b
JK
4070/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4071 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 4072
54333c3b
JK
4073static void
4074varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 4075{
54333c3b
JK
4076 /* Floating varobjs are reparsed on each stop, so we don't care if the
4077 presently parsed expression refers to something that's gone. */
4078 if (var->root->floating)
4079 return;
8756216b 4080
54333c3b
JK
4081 /* global var must be re-evaluated. */
4082 if (var->root->valid_block == NULL)
2dbd25e5 4083 {
54333c3b 4084 struct varobj *tmp_var;
2dbd25e5 4085
54333c3b
JK
4086 /* Try to create a varobj with same expression. If we succeed
4087 replace the old varobj, otherwise invalidate it. */
4088 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4089 USE_CURRENT_FRAME);
4090 if (tmp_var != NULL)
4091 {
4092 tmp_var->obj_name = xstrdup (var->obj_name);
4093 varobj_delete (var, NULL, 0);
4094 install_variable (tmp_var);
2dbd25e5 4095 }
54333c3b
JK
4096 else
4097 var->root->is_valid = 0;
2dbd25e5 4098 }
54333c3b
JK
4099 else /* locals must be invalidated. */
4100 var->root->is_valid = 0;
4101}
4102
4103/* Invalidate the varobjs that are tied to locals and re-create the ones that
4104 are defined on globals.
4105 Invalidated varobjs will be always printed in_scope="invalid". */
4106
4107void
4108varobj_invalidate (void)
4109{
4110 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 4111}
This page took 1.528565 seconds and 4 git commands to generate.