* solist.h (struct target_so_ops): New member clear_so.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
8acc9f48 3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
b66d6d2e 29#include "gdb_string.h"
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
181875a4
JB
36#include "ada-varobj.h"
37#include "ada-lang.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
85254831
KS
46/* The names of varobjs representing anonymous structs or unions. */
47#define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48#define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
8b93c638
JM
50/* Non-zero if we want to see trace of varobj level stuff. */
51
ccce17b0 52unsigned int varobjdebug = 0;
920d2a44
AC
53static void
54show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56{
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58}
8b93c638 59
581e13c1 60/* String representations of gdb's format codes. */
8b93c638 61char *varobj_format_string[] =
72330bd6 62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 63
581e13c1 64/* String representations of gdb's known languages. */
72330bd6 65char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 66
0cc7d26f
TT
67/* True if we want to allow Python-based pretty-printing. */
68static int pretty_printing = 0;
69
70void
71varobj_enable_pretty_printing (void)
72{
73 pretty_printing = 1;
74}
75
8b93c638
JM
76/* Data structures */
77
78/* Every root variable has one of these structures saved in its
581e13c1 79 varobj. Members which must be free'd are noted. */
8b93c638 80struct varobj_root
72330bd6 81{
8b93c638 82
581e13c1 83 /* Alloc'd expression for this parent. */
72330bd6 84 struct expression *exp;
8b93c638 85
581e13c1 86 /* Block for which this expression is valid. */
270140bd 87 const struct block *valid_block;
8b93c638 88
44a67aa7
VP
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
e64d9b3d 91 struct frame_id frame;
8b93c638 92
c5b48eac 93 /* The thread ID that this varobj_root belong to. This field
581e13c1 94 is only valid if valid_block is not NULL.
c5b48eac
VP
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
a5defcdc
VP
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
581e13c1 102 always updated in the specific scope/thread/frame. */
a5defcdc 103 int floating;
73a93a32 104
8756216b
DP
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
581e13c1 109 /* Language info for this variable and its children. */
72330bd6 110 struct language_specific *lang;
8b93c638 111
581e13c1 112 /* The varobj for this root node. */
72330bd6 113 struct varobj *rootvar;
8b93c638 114
72330bd6
AC
115 /* Next root variable */
116 struct varobj_root *next;
117};
8b93c638
JM
118
119/* Every variable in the system has a structure of this type defined
581e13c1
MS
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
8b93c638 122struct varobj
72330bd6 123{
8b93c638 124
581e13c1 125 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 126 child, then this name will be the child's source name.
581e13c1
MS
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
72330bd6 129 char *name;
8b93c638 130
02142340
VP
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
581e13c1
MS
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
72330bd6 137 char *obj_name;
8b93c638 138
581e13c1 139 /* Index of this variable in its parent or -1. */
72330bd6 140 int index;
8b93c638 141
202ddcaa
VP
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
72330bd6 145 struct type *type;
8b93c638 146
b20d8971
VP
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
b2c2bd75
VP
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
30b28db1 151 struct value *value;
8b93c638 152
581e13c1 153 /* The number of (immediate) children this variable has. */
72330bd6 154 int num_children;
8b93c638 155
581e13c1 156 /* If this object is a child, this points to its immediate parent. */
72330bd6 157 struct varobj *parent;
8b93c638 158
28335dcc
VP
159 /* Children of this object. */
160 VEC (varobj_p) *children;
8b93c638 161
b6313243
TT
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
581e13c1
MS
168 /* Description of the root variable. Points to root variable for
169 children. */
72330bd6 170 struct varobj_root *root;
8b93c638 171
581e13c1 172 /* The format of the output for this object. */
72330bd6 173 enum varobj_display_formats format;
fb9b6b35 174
581e13c1 175 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 176 int updated;
85265413
NR
177
178 /* Last print value. */
179 char *print_value;
25d5ea92
VP
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
b6313243 190
0cc7d26f
TT
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
b6313243
TT
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
0cc7d26f
TT
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
72330bd6 216};
8b93c638 217
8b93c638 218struct cpstack
72330bd6
AC
219{
220 char *name;
221 struct cpstack *next;
222};
8b93c638
JM
223
224/* A list of varobjs */
225
226struct vlist
72330bd6
AC
227{
228 struct varobj *var;
229 struct vlist *next;
230};
8b93c638
JM
231
232/* Private function prototypes */
233
581e13c1 234/* Helper functions for the above subcommands. */
8b93c638 235
a14ed312 236static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 237
a14ed312
KB
238static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
8b93c638 240
a14ed312 241static int install_variable (struct varobj *);
8b93c638 242
a14ed312 243static void uninstall_variable (struct varobj *);
8b93c638 244
a14ed312 245static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 246
b6313243
TT
247static struct varobj *
248create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
8b93c638
JM
251/* Utility routines */
252
a14ed312 253static struct varobj *new_variable (void);
8b93c638 254
a14ed312 255static struct varobj *new_root_variable (void);
8b93c638 256
a14ed312 257static void free_variable (struct varobj *var);
8b93c638 258
74b7792f
AC
259static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
a14ed312 261static struct type *get_type (struct varobj *var);
8b93c638 262
6e2a9270
VP
263static struct type *get_value_type (struct varobj *var);
264
a14ed312 265static struct type *get_target_type (struct type *);
8b93c638 266
a14ed312 267static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 268
a14ed312 269static void cppush (struct cpstack **pstack, char *name);
8b93c638 270
a14ed312 271static char *cppop (struct cpstack **pstack);
8b93c638 272
8264ba82
AG
273static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
275
acd65feb
VP
276static int install_new_value (struct varobj *var, struct value *value,
277 int initial);
278
581e13c1 279/* Language-specific routines. */
8b93c638 280
a14ed312 281static enum varobj_languages variable_language (struct varobj *var);
8b93c638 282
a14ed312 283static int number_of_children (struct varobj *);
8b93c638 284
a14ed312 285static char *name_of_variable (struct varobj *);
8b93c638 286
a14ed312 287static char *name_of_child (struct varobj *, int);
8b93c638 288
30b28db1 289static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 290
30b28db1 291static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 292
de051565
MK
293static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
8b93c638 295
85265413 296static char *value_get_print_value (struct value *value,
b6313243 297 enum varobj_display_formats format,
d452c4bc 298 struct varobj *var);
85265413 299
b2c2bd75
VP
300static int varobj_value_is_changeable_p (struct varobj *var);
301
302static int is_root_p (struct varobj *var);
8b93c638 303
d8b65138
JK
304#if HAVE_PYTHON
305
9a1edae6
PM
306static struct varobj *varobj_add_child (struct varobj *var,
307 const char *name,
308 struct value *value);
b6313243 309
d8b65138
JK
310#endif /* HAVE_PYTHON */
311
d32cafc7
JB
312static int default_value_is_changeable_p (struct varobj *var);
313
8b93c638
JM
314/* C implementation */
315
a14ed312 316static int c_number_of_children (struct varobj *var);
8b93c638 317
a14ed312 318static char *c_name_of_variable (struct varobj *parent);
8b93c638 319
a14ed312 320static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 321
02142340
VP
322static char *c_path_expr_of_child (struct varobj *child);
323
30b28db1 324static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 325
30b28db1 326static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 327
a14ed312 328static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 329
de051565
MK
330static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
8b93c638
JM
332
333/* C++ implementation */
334
a14ed312 335static int cplus_number_of_children (struct varobj *var);
8b93c638 336
a14ed312 337static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 338
a14ed312 339static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 340
a14ed312 341static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 342
02142340
VP
343static char *cplus_path_expr_of_child (struct varobj *child);
344
30b28db1 345static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 346
30b28db1 347static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 348
a14ed312 349static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 350
de051565
MK
351static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
8b93c638
JM
353
354/* Java implementation */
355
a14ed312 356static int java_number_of_children (struct varobj *var);
8b93c638 357
a14ed312 358static char *java_name_of_variable (struct varobj *parent);
8b93c638 359
a14ed312 360static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 361
02142340
VP
362static char *java_path_expr_of_child (struct varobj *child);
363
30b28db1 364static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 365
30b28db1 366static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 367
a14ed312 368static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 369
de051565
MK
370static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
8b93c638 372
40591b7d
JCD
373/* Ada implementation */
374
375static int ada_number_of_children (struct varobj *var);
376
377static char *ada_name_of_variable (struct varobj *parent);
378
379static char *ada_name_of_child (struct varobj *parent, int index);
380
381static char *ada_path_expr_of_child (struct varobj *child);
382
383static struct value *ada_value_of_root (struct varobj **var_handle);
384
385static struct value *ada_value_of_child (struct varobj *parent, int index);
386
387static struct type *ada_type_of_child (struct varobj *parent, int index);
388
389static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
391
d32cafc7
JB
392static int ada_value_is_changeable_p (struct varobj *var);
393
7a290c40
JB
394static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
396
8b93c638
JM
397/* The language specific vector */
398
399struct language_specific
72330bd6 400{
8b93c638 401
581e13c1 402 /* The language of this variable. */
72330bd6 403 enum varobj_languages language;
8b93c638 404
581e13c1 405 /* The number of children of PARENT. */
72330bd6 406 int (*number_of_children) (struct varobj * parent);
8b93c638 407
581e13c1 408 /* The name (expression) of a root varobj. */
72330bd6 409 char *(*name_of_variable) (struct varobj * parent);
8b93c638 410
581e13c1 411 /* The name of the INDEX'th child of PARENT. */
72330bd6 412 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 413
02142340
VP
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
417
581e13c1 418 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 419 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 420
581e13c1 421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 422 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 423
581e13c1 424 /* The type of the INDEX'th child of PARENT. */
72330bd6 425 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 426
581e13c1 427 /* The current value of VAR. */
de051565
MK
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
7a290c40 430
d32cafc7
JB
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
436
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
440
7a290c40
JB
441 /* Return nonzero if the type of VAR has mutated.
442
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
448
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
451
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
72330bd6 455};
8b93c638 456
581e13c1 457/* Array of known source language routines. */
d5d6fca5 458static struct language_specific languages[vlang_end] = {
581e13c1 459 /* Unknown (try treating as C). */
8b93c638 460 {
72330bd6
AC
461 vlang_unknown,
462 c_number_of_children,
463 c_name_of_variable,
464 c_name_of_child,
02142340 465 c_path_expr_of_child,
72330bd6
AC
466 c_value_of_root,
467 c_value_of_child,
468 c_type_of_child,
7a290c40 469 c_value_of_variable,
d32cafc7 470 default_value_is_changeable_p,
7a290c40 471 NULL /* value_has_mutated */}
8b93c638
JM
472 ,
473 /* C */
474 {
72330bd6
AC
475 vlang_c,
476 c_number_of_children,
477 c_name_of_variable,
478 c_name_of_child,
02142340 479 c_path_expr_of_child,
72330bd6
AC
480 c_value_of_root,
481 c_value_of_child,
482 c_type_of_child,
7a290c40 483 c_value_of_variable,
d32cafc7 484 default_value_is_changeable_p,
7a290c40 485 NULL /* value_has_mutated */}
8b93c638
JM
486 ,
487 /* C++ */
488 {
72330bd6
AC
489 vlang_cplus,
490 cplus_number_of_children,
491 cplus_name_of_variable,
492 cplus_name_of_child,
02142340 493 cplus_path_expr_of_child,
72330bd6
AC
494 cplus_value_of_root,
495 cplus_value_of_child,
496 cplus_type_of_child,
7a290c40 497 cplus_value_of_variable,
d32cafc7 498 default_value_is_changeable_p,
7a290c40 499 NULL /* value_has_mutated */}
8b93c638
JM
500 ,
501 /* Java */
502 {
72330bd6
AC
503 vlang_java,
504 java_number_of_children,
505 java_name_of_variable,
506 java_name_of_child,
02142340 507 java_path_expr_of_child,
72330bd6
AC
508 java_value_of_root,
509 java_value_of_child,
510 java_type_of_child,
7a290c40 511 java_value_of_variable,
d32cafc7 512 default_value_is_changeable_p,
7a290c40 513 NULL /* value_has_mutated */},
40591b7d
JCD
514 /* Ada */
515 {
516 vlang_ada,
517 ada_number_of_children,
518 ada_name_of_variable,
519 ada_name_of_child,
520 ada_path_expr_of_child,
521 ada_value_of_root,
522 ada_value_of_child,
523 ada_type_of_child,
7a290c40 524 ada_value_of_variable,
d32cafc7 525 ada_value_is_changeable_p,
7a290c40 526 ada_value_has_mutated}
8b93c638
JM
527};
528
581e13c1 529/* A little convenience enum for dealing with C++/Java. */
8b93c638 530enum vsections
72330bd6
AC
531{
532 v_public = 0, v_private, v_protected
533};
8b93c638
JM
534
535/* Private data */
536
581e13c1 537/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 538static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 539
581e13c1 540/* Header of the list of root variable objects. */
8b93c638 541static struct varobj_root *rootlist;
8b93c638 542
581e13c1
MS
543/* Prime number indicating the number of buckets in the hash table. */
544/* A prime large enough to avoid too many colisions. */
8b93c638
JM
545#define VAROBJ_TABLE_SIZE 227
546
581e13c1 547/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
548static struct vlist **varobj_table;
549
581e13c1 550/* Is the variable X one of our "fake" children? */
8b93c638
JM
551#define CPLUS_FAKE_CHILD(x) \
552((x) != NULL && (x)->type == NULL && (x)->value == NULL)
553\f
554
555/* API Implementation */
b2c2bd75
VP
556static int
557is_root_p (struct varobj *var)
558{
559 return (var->root->rootvar == var);
560}
8b93c638 561
d452c4bc
UW
562#ifdef HAVE_PYTHON
563/* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
70221824 565static struct cleanup *
d452c4bc
UW
566varobj_ensure_python_env (struct varobj *var)
567{
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
570}
571#endif
572
581e13c1 573/* Creates a varobj (not its children). */
8b93c638 574
7d8547c9
AC
575/* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
577
578static struct frame_info *
579find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
580{
581 struct frame_info *frame = NULL;
582
583 if (frame_addr == (CORE_ADDR) 0)
584 return NULL;
585
9d49bdc2
PA
586 for (frame = get_current_frame ();
587 frame != NULL;
588 frame = get_prev_frame (frame))
7d8547c9 589 {
1fac167a
UW
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 596
1fac167a
UW
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
599
600 if (frame_base == frame_addr)
7d8547c9
AC
601 return frame;
602 }
9d49bdc2
PA
603
604 return NULL;
7d8547c9
AC
605}
606
8b93c638
JM
607struct varobj *
608varobj_create (char *objname,
72330bd6 609 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
610{
611 struct varobj *var;
8b93c638
JM
612 struct cleanup *old_chain;
613
581e13c1 614 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 615 var = new_root_variable ();
74b7792f 616 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
617
618 if (expression != NULL)
619 {
e4195b40 620 struct frame_info *fi;
35633fef 621 struct frame_id old_id = null_frame_id;
e4195b40 622 struct block *block;
bbc13ae3 623 const char *p;
8b93c638 624 enum varobj_languages lang;
e55dccf0 625 struct value *value = NULL;
8e7b59a5 626 volatile struct gdb_exception except;
1bb9788d 627 CORE_ADDR pc;
8b93c638 628
9d49bdc2
PA
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
631
632 if (has_stack_frames ())
633 {
581e13c1 634 /* Allow creator to specify context of variable. */
9d49bdc2
PA
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
637 else
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
644 function. */
645 fi = find_frame_addr_in_frame_chain (frame);
646 }
8b93c638 647 else
9d49bdc2 648 fi = NULL;
8b93c638 649
581e13c1 650 /* frame = -2 means always use selected frame. */
73a93a32 651 if (type == USE_SELECTED_FRAME)
a5defcdc 652 var->root->floating = 1;
73a93a32 653
1bb9788d 654 pc = 0;
8b93c638
JM
655 block = NULL;
656 if (fi != NULL)
1bb9788d
TT
657 {
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
660 }
8b93c638
JM
661
662 p = expression;
663 innermost_block = NULL;
73a93a32 664 /* Wrap the call to parse expression, so we can
581e13c1 665 return a sensible error. */
8e7b59a5
KS
666 TRY_CATCH (except, RETURN_MASK_ERROR)
667 {
1bb9788d 668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
669 }
670
671 if (except.reason < 0)
73a93a32 672 {
f748fb40 673 do_cleanups (old_chain);
73a93a32
JI
674 return NULL;
675 }
8b93c638 676
581e13c1 677 /* Don't allow variables to be created for types. */
608b4967
TT
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
681 {
682 do_cleanups (old_chain);
bc8332bb
AC
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
8b93c638
JM
685 return NULL;
686 }
687
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
1b36a34b 690 var->name = xstrdup (expression);
02142340 691 /* For a root var, the name and the expr are the same. */
1b36a34b 692 var->path_expr = xstrdup (expression);
8b93c638
JM
693
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
581e13c1 697 Since select_frame is so benign, just call it for all cases. */
4e22772d 698 if (innermost_block)
8b93c638 699 {
4e22772d
JK
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
704 if (fi == NULL)
705 error (_("Failed to find the specified frame"));
706
7a424e99 707 var->root->frame = get_frame_id (fi);
c5b48eac 708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 709 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 710 select_frame (fi);
8b93c638
JM
711 }
712
340a7723 713 /* We definitely need to catch errors here.
8b93c638 714 If evaluate_expression succeeds we got the value we wanted.
581e13c1 715 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
716 TRY_CATCH (except, RETURN_MASK_ERROR)
717 {
718 value = evaluate_expression (var->root->exp);
719 }
720
721 if (except.reason < 0)
e55dccf0
VP
722 {
723 /* Error getting the value. Try to at least get the
724 right type. */
725 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 726
e55dccf0
VP
727 var->type = value_type (type_only_value);
728 }
8264ba82
AG
729 else
730 {
731 int real_type_found = 0;
732
733 var->type = value_actual_type (value, 0, &real_type_found);
734 if (real_type_found)
735 value = value_cast (var->type, value);
736 }
acd65feb 737
8b93c638
JM
738 /* Set language info */
739 lang = variable_language (var);
d5d6fca5 740 var->root->lang = &languages[lang];
8b93c638 741
d32cafc7
JB
742 install_new_value (var, value, 1 /* Initial assignment */);
743
581e13c1 744 /* Set ourselves as our root. */
8b93c638
JM
745 var->root->rootvar = var;
746
581e13c1 747 /* Reset the selected frame. */
35633fef
JK
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
8b93c638
JM
750 }
751
73a93a32 752 /* If the variable object name is null, that means this
581e13c1 753 is a temporary variable, so don't install it. */
73a93a32
JI
754
755 if ((var != NULL) && (objname != NULL))
8b93c638 756 {
1b36a34b 757 var->obj_name = xstrdup (objname);
8b93c638
JM
758
759 /* If a varobj name is duplicated, the install will fail so
581e13c1 760 we must cleanup. */
8b93c638
JM
761 if (!install_variable (var))
762 {
763 do_cleanups (old_chain);
764 return NULL;
765 }
766 }
767
768 discard_cleanups (old_chain);
769 return var;
770}
771
581e13c1 772/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
773
774char *
775varobj_gen_name (void)
776{
777 static int id = 0;
e64d9b3d 778 char *obj_name;
8b93c638 779
581e13c1 780 /* Generate a name for this object. */
8b93c638 781 id++;
b435e160 782 obj_name = xstrprintf ("var%d", id);
8b93c638 783
e64d9b3d 784 return obj_name;
8b93c638
JM
785}
786
61d8f275
JK
787/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
8b93c638
JM
789
790struct varobj *
791varobj_get_handle (char *objname)
792{
793 struct vlist *cv;
794 const char *chp;
795 unsigned int index = 0;
796 unsigned int i = 1;
797
798 for (chp = objname; *chp; chp++)
799 {
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
801 }
802
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
805 cv = cv->next;
806
807 if (cv == NULL)
8a3fe4f8 808 error (_("Variable object not found"));
8b93c638
JM
809
810 return cv->var;
811}
812
581e13c1 813/* Given the handle, return the name of the object. */
8b93c638
JM
814
815char *
816varobj_get_objname (struct varobj *var)
817{
818 return var->obj_name;
819}
820
581e13c1 821/* Given the handle, return the expression represented by the object. */
8b93c638
JM
822
823char *
824varobj_get_expression (struct varobj *var)
825{
826 return name_of_variable (var);
827}
828
829/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
581e13c1 832 (NULL terminated). */
8b93c638
JM
833
834int
835varobj_delete (struct varobj *var, char ***dellist, int only_children)
836{
837 int delcount;
838 int mycount;
839 struct cpstack *result = NULL;
840 char **cp;
841
581e13c1 842 /* Initialize a stack for temporary results. */
8b93c638
JM
843 cppush (&result, NULL);
844
845 if (only_children)
581e13c1 846 /* Delete only the variable children. */
8b93c638
JM
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
848 else
581e13c1 849 /* Delete the variable and all its children. */
8b93c638
JM
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
851
581e13c1 852 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
853 if (dellist != NULL)
854 {
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
856
857 cp = *dellist;
858 mycount = delcount;
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
861 {
862 mycount--;
863 cp++;
864 *cp = cppop (&result);
865 }
866
867 if (mycount || (*cp != NULL))
8a3fe4f8 868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 869 mycount);
8b93c638
JM
870 }
871
872 return delcount;
873}
874
d8b65138
JK
875#if HAVE_PYTHON
876
b6313243
TT
877/* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
879static PyObject *
880instantiate_pretty_printer (PyObject *constructor, struct value *value)
881{
b6313243
TT
882 PyObject *val_obj = NULL;
883 PyObject *printer;
b6313243 884
b6313243 885 val_obj = value_to_value_object (value);
b6313243
TT
886 if (! val_obj)
887 return NULL;
888
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
890 Py_DECREF (val_obj);
891 return printer;
b6313243
TT
892}
893
d8b65138
JK
894#endif
895
581e13c1 896/* Set/Get variable object display format. */
8b93c638
JM
897
898enum varobj_display_formats
899varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
901{
902 switch (format)
903 {
904 case FORMAT_NATURAL:
905 case FORMAT_BINARY:
906 case FORMAT_DECIMAL:
907 case FORMAT_HEXADECIMAL:
908 case FORMAT_OCTAL:
909 var->format = format;
910 break;
911
912 default:
913 var->format = variable_default_display (var);
914 }
915
ae7d22a6
VP
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
918 {
6c761d9c 919 xfree (var->print_value);
d452c4bc 920 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
921 }
922
8b93c638
JM
923 return var->format;
924}
925
926enum varobj_display_formats
927varobj_get_display_format (struct varobj *var)
928{
929 return var->format;
930}
931
b6313243
TT
932char *
933varobj_get_display_hint (struct varobj *var)
934{
935 char *result = NULL;
936
937#if HAVE_PYTHON
d452c4bc
UW
938 struct cleanup *back_to = varobj_ensure_python_env (var);
939
b6313243
TT
940 if (var->pretty_printer)
941 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
942
943 do_cleanups (back_to);
b6313243
TT
944#endif
945
946 return result;
947}
948
0cc7d26f
TT
949/* Return true if the varobj has items after TO, false otherwise. */
950
951int
952varobj_has_more (struct varobj *var, int to)
953{
954 if (VEC_length (varobj_p, var->children) > to)
955 return 1;
956 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
957 && var->saved_item != NULL);
958}
959
c5b48eac
VP
960/* If the variable object is bound to a specific thread, that
961 is its evaluation can always be done in context of a frame
962 inside that thread, returns GDB id of the thread -- which
581e13c1 963 is always positive. Otherwise, returns -1. */
c5b48eac
VP
964int
965varobj_get_thread_id (struct varobj *var)
966{
967 if (var->root->valid_block && var->root->thread_id > 0)
968 return var->root->thread_id;
969 else
970 return -1;
971}
972
25d5ea92
VP
973void
974varobj_set_frozen (struct varobj *var, int frozen)
975{
976 /* When a variable is unfrozen, we don't fetch its value.
977 The 'not_fetched' flag remains set, so next -var-update
978 won't complain.
979
980 We don't fetch the value, because for structures the client
981 should do -var-update anyway. It would be bad to have different
982 client-size logic for structure and other types. */
983 var->frozen = frozen;
984}
985
986int
987varobj_get_frozen (struct varobj *var)
988{
989 return var->frozen;
990}
991
0cc7d26f
TT
992/* A helper function that restricts a range to what is actually
993 available in a VEC. This follows the usual rules for the meaning
994 of FROM and TO -- if either is negative, the entire range is
995 used. */
996
997static void
998restrict_range (VEC (varobj_p) *children, int *from, int *to)
999{
1000 if (*from < 0 || *to < 0)
1001 {
1002 *from = 0;
1003 *to = VEC_length (varobj_p, children);
1004 }
1005 else
1006 {
1007 if (*from > VEC_length (varobj_p, children))
1008 *from = VEC_length (varobj_p, children);
1009 if (*to > VEC_length (varobj_p, children))
1010 *to = VEC_length (varobj_p, children);
1011 if (*from > *to)
1012 *from = *to;
1013 }
1014}
1015
d8b65138
JK
1016#if HAVE_PYTHON
1017
0cc7d26f
TT
1018/* A helper for update_dynamic_varobj_children that installs a new
1019 child when needed. */
1020
1021static void
1022install_dynamic_child (struct varobj *var,
1023 VEC (varobj_p) **changed,
8264ba82 1024 VEC (varobj_p) **type_changed,
0cc7d26f
TT
1025 VEC (varobj_p) **new,
1026 VEC (varobj_p) **unchanged,
1027 int *cchanged,
1028 int index,
1029 const char *name,
1030 struct value *value)
1031{
1032 if (VEC_length (varobj_p, var->children) < index + 1)
1033 {
1034 /* There's no child yet. */
1035 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 1036
0cc7d26f
TT
1037 if (new)
1038 {
1039 VEC_safe_push (varobj_p, *new, child);
1040 *cchanged = 1;
1041 }
1042 }
1043 else
1044 {
1045 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 1046
8264ba82
AG
1047 int type_updated = update_type_if_necessary (existing, value);
1048 if (type_updated)
1049 {
1050 if (type_changed)
1051 VEC_safe_push (varobj_p, *type_changed, existing);
1052 }
0cc7d26f
TT
1053 if (install_new_value (existing, value, 0))
1054 {
8264ba82 1055 if (!type_updated && changed)
0cc7d26f
TT
1056 VEC_safe_push (varobj_p, *changed, existing);
1057 }
8264ba82 1058 else if (!type_updated && unchanged)
0cc7d26f
TT
1059 VEC_safe_push (varobj_p, *unchanged, existing);
1060 }
1061}
1062
0cc7d26f
TT
1063static int
1064dynamic_varobj_has_child_method (struct varobj *var)
1065{
1066 struct cleanup *back_to;
1067 PyObject *printer = var->pretty_printer;
1068 int result;
1069
1070 back_to = varobj_ensure_python_env (var);
1071 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1072 do_cleanups (back_to);
1073 return result;
1074}
1075
1076#endif
1077
b6313243
TT
1078static int
1079update_dynamic_varobj_children (struct varobj *var,
1080 VEC (varobj_p) **changed,
8264ba82 1081 VEC (varobj_p) **type_changed,
0cc7d26f
TT
1082 VEC (varobj_p) **new,
1083 VEC (varobj_p) **unchanged,
1084 int *cchanged,
1085 int update_children,
1086 int from,
1087 int to)
b6313243
TT
1088{
1089#if HAVE_PYTHON
b6313243
TT
1090 struct cleanup *back_to;
1091 PyObject *children;
b6313243 1092 int i;
b6313243 1093 PyObject *printer = var->pretty_printer;
b6313243 1094
d452c4bc 1095 back_to = varobj_ensure_python_env (var);
b6313243
TT
1096
1097 *cchanged = 0;
1098 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1099 {
1100 do_cleanups (back_to);
1101 return 0;
1102 }
1103
0cc7d26f 1104 if (update_children || !var->child_iter)
b6313243 1105 {
0cc7d26f
TT
1106 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1107 NULL);
b6313243 1108
0cc7d26f
TT
1109 if (!children)
1110 {
1111 gdbpy_print_stack ();
1112 error (_("Null value returned for children"));
1113 }
b6313243 1114
0cc7d26f 1115 make_cleanup_py_decref (children);
b6313243 1116
0cc7d26f
TT
1117 Py_XDECREF (var->child_iter);
1118 var->child_iter = PyObject_GetIter (children);
1119 if (!var->child_iter)
1120 {
1121 gdbpy_print_stack ();
1122 error (_("Could not get children iterator"));
1123 }
1124
1125 Py_XDECREF (var->saved_item);
1126 var->saved_item = NULL;
1127
1128 i = 0;
b6313243 1129 }
0cc7d26f
TT
1130 else
1131 i = VEC_length (varobj_p, var->children);
b6313243 1132
0cc7d26f
TT
1133 /* We ask for one extra child, so that MI can report whether there
1134 are more children. */
1135 for (; to < 0 || i < to + 1; ++i)
b6313243 1136 {
0cc7d26f 1137 PyObject *item;
a4c8e806 1138 int force_done = 0;
b6313243 1139
0cc7d26f
TT
1140 /* See if there was a leftover from last time. */
1141 if (var->saved_item)
1142 {
1143 item = var->saved_item;
1144 var->saved_item = NULL;
1145 }
1146 else
1147 item = PyIter_Next (var->child_iter);
b6313243 1148
0cc7d26f 1149 if (!item)
a4c8e806
TT
1150 {
1151 /* Normal end of iteration. */
1152 if (!PyErr_Occurred ())
1153 break;
1154
1155 /* If we got a memory error, just use the text as the
1156 item. */
1157 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1158 {
1159 PyObject *type, *value, *trace;
1160 char *name_str, *value_str;
1161
1162 PyErr_Fetch (&type, &value, &trace);
1163 value_str = gdbpy_exception_to_string (type, value);
1164 Py_XDECREF (type);
1165 Py_XDECREF (value);
1166 Py_XDECREF (trace);
1167 if (!value_str)
1168 {
1169 gdbpy_print_stack ();
1170 break;
1171 }
1172
1173 name_str = xstrprintf ("<error at %d>", i);
1174 item = Py_BuildValue ("(ss)", name_str, value_str);
1175 xfree (name_str);
1176 xfree (value_str);
1177 if (!item)
1178 {
1179 gdbpy_print_stack ();
1180 break;
1181 }
1182
1183 force_done = 1;
1184 }
1185 else
1186 {
1187 /* Any other kind of error. */
1188 gdbpy_print_stack ();
1189 break;
1190 }
1191 }
b6313243 1192
0cc7d26f
TT
1193 /* We don't want to push the extra child on any report list. */
1194 if (to < 0 || i < to)
b6313243 1195 {
0cc7d26f 1196 PyObject *py_v;
ddd49eee 1197 const char *name;
0cc7d26f
TT
1198 struct value *v;
1199 struct cleanup *inner;
1200 int can_mention = from < 0 || i >= from;
1201
1202 inner = make_cleanup_py_decref (item);
1203
1204 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1205 {
1206 gdbpy_print_stack ();
1207 error (_("Invalid item from the child list"));
1208 }
0cc7d26f
TT
1209
1210 v = convert_value_from_python (py_v);
8dc78533
JK
1211 if (v == NULL)
1212 gdbpy_print_stack ();
0cc7d26f 1213 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 1214 can_mention ? type_changed : NULL,
0cc7d26f
TT
1215 can_mention ? new : NULL,
1216 can_mention ? unchanged : NULL,
1217 can_mention ? cchanged : NULL, i, name, v);
1218 do_cleanups (inner);
b6313243 1219 }
0cc7d26f 1220 else
b6313243 1221 {
0cc7d26f
TT
1222 Py_XDECREF (var->saved_item);
1223 var->saved_item = item;
b6313243 1224
0cc7d26f
TT
1225 /* We want to truncate the child list just before this
1226 element. */
1227 break;
1228 }
a4c8e806
TT
1229
1230 if (force_done)
1231 break;
b6313243
TT
1232 }
1233
1234 if (i < VEC_length (varobj_p, var->children))
1235 {
0cc7d26f 1236 int j;
a109c7c1 1237
0cc7d26f
TT
1238 *cchanged = 1;
1239 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1240 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1241 VEC_truncate (varobj_p, var->children, i);
b6313243 1242 }
0cc7d26f
TT
1243
1244 /* If there are fewer children than requested, note that the list of
1245 children changed. */
1246 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1247 *cchanged = 1;
1248
b6313243
TT
1249 var->num_children = VEC_length (varobj_p, var->children);
1250
1251 do_cleanups (back_to);
1252
b6313243
TT
1253 return 1;
1254#else
9e77999c 1255 gdb_assert_not_reached ("should never be called if Python is not enabled");
b6313243
TT
1256#endif
1257}
25d5ea92 1258
8b93c638
JM
1259int
1260varobj_get_num_children (struct varobj *var)
1261{
1262 if (var->num_children == -1)
b6313243 1263 {
0cc7d26f
TT
1264 if (var->pretty_printer)
1265 {
1266 int dummy;
1267
1268 /* If we have a dynamic varobj, don't report -1 children.
1269 So, try to fetch some children first. */
8264ba82 1270 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
1271 0, 0, 0);
1272 }
1273 else
b6313243
TT
1274 var->num_children = number_of_children (var);
1275 }
8b93c638 1276
0cc7d26f 1277 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1278}
1279
1280/* Creates a list of the immediate children of a variable object;
581e13c1 1281 the return code is the number of such children or -1 on error. */
8b93c638 1282
d56d46f5 1283VEC (varobj_p)*
0cc7d26f 1284varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1285{
8b93c638 1286 char *name;
b6313243
TT
1287 int i, children_changed;
1288
1289 var->children_requested = 1;
1290
0cc7d26f
TT
1291 if (var->pretty_printer)
1292 {
b6313243
TT
1293 /* This, in theory, can result in the number of children changing without
1294 frontend noticing. But well, calling -var-list-children on the same
1295 varobj twice is not something a sane frontend would do. */
8264ba82
AG
1296 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1297 &children_changed, 0, 0, *to);
0cc7d26f
TT
1298 restrict_range (var->children, from, to);
1299 return var->children;
1300 }
8b93c638 1301
8b93c638
JM
1302 if (var->num_children == -1)
1303 var->num_children = number_of_children (var);
1304
74a44383
DJ
1305 /* If that failed, give up. */
1306 if (var->num_children == -1)
d56d46f5 1307 return var->children;
74a44383 1308
28335dcc
VP
1309 /* If we're called when the list of children is not yet initialized,
1310 allocate enough elements in it. */
1311 while (VEC_length (varobj_p, var->children) < var->num_children)
1312 VEC_safe_push (varobj_p, var->children, NULL);
1313
8b93c638
JM
1314 for (i = 0; i < var->num_children; i++)
1315 {
d56d46f5 1316 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1317
1318 if (existing == NULL)
1319 {
1320 /* Either it's the first call to varobj_list_children for
1321 this variable object, and the child was never created,
1322 or it was explicitly deleted by the client. */
1323 name = name_of_child (var, i);
1324 existing = create_child (var, i, name);
1325 VEC_replace (varobj_p, var->children, i, existing);
1326 }
8b93c638
JM
1327 }
1328
0cc7d26f 1329 restrict_range (var->children, from, to);
d56d46f5 1330 return var->children;
8b93c638
JM
1331}
1332
d8b65138
JK
1333#if HAVE_PYTHON
1334
b6313243
TT
1335static struct varobj *
1336varobj_add_child (struct varobj *var, const char *name, struct value *value)
1337{
1338 varobj_p v = create_child_with_value (var,
1339 VEC_length (varobj_p, var->children),
1340 name, value);
a109c7c1 1341
b6313243 1342 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1343 return v;
1344}
1345
d8b65138
JK
1346#endif /* HAVE_PYTHON */
1347
8b93c638 1348/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1349 prints on the console. */
8b93c638
JM
1350
1351char *
1352varobj_get_type (struct varobj *var)
1353{
581e13c1 1354 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1355 NULL, too.)
1356 Do not return a type for invalid variables as well. */
1357 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1358 return NULL;
1359
1a4300e9 1360 return type_to_string (var->type);
8b93c638
JM
1361}
1362
1ecb4ee0
DJ
1363/* Obtain the type of an object variable. */
1364
1365struct type *
1366varobj_get_gdb_type (struct varobj *var)
1367{
1368 return var->type;
1369}
1370
85254831
KS
1371/* Is VAR a path expression parent, i.e., can it be used to construct
1372 a valid path expression? */
1373
1374static int
1375is_path_expr_parent (struct varobj *var)
1376{
1377 struct type *type;
1378
1379 /* "Fake" children are not path_expr parents. */
1380 if (CPLUS_FAKE_CHILD (var))
1381 return 0;
1382
1383 type = get_value_type (var);
1384
1385 /* Anonymous unions and structs are also not path_expr parents. */
1386 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1387 || TYPE_CODE (type) == TYPE_CODE_UNION)
1388 && TYPE_NAME (type) == NULL);
1389}
1390
1391/* Return the path expression parent for VAR. */
1392
1393static struct varobj *
1394get_path_expr_parent (struct varobj *var)
1395{
1396 struct varobj *parent = var;
1397
1398 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1399 parent = parent->parent;
1400
1401 return parent;
1402}
1403
02142340
VP
1404/* Return a pointer to the full rooted expression of varobj VAR.
1405 If it has not been computed yet, compute it. */
1406char *
1407varobj_get_path_expr (struct varobj *var)
1408{
1409 if (var->path_expr != NULL)
1410 return var->path_expr;
1411 else
1412 {
1413 /* For root varobjs, we initialize path_expr
1414 when creating varobj, so here it should be
1415 child varobj. */
1416 gdb_assert (!is_root_p (var));
1417 return (*var->root->lang->path_expr_of_child) (var);
1418 }
1419}
1420
8b93c638
JM
1421enum varobj_languages
1422varobj_get_language (struct varobj *var)
1423{
1424 return variable_language (var);
1425}
1426
1427int
1428varobj_get_attributes (struct varobj *var)
1429{
1430 int attributes = 0;
1431
340a7723 1432 if (varobj_editable_p (var))
581e13c1 1433 /* FIXME: define masks for attributes. */
8b93c638
JM
1434 attributes |= 0x00000001; /* Editable */
1435
1436 return attributes;
1437}
1438
0cc7d26f
TT
1439int
1440varobj_pretty_printed_p (struct varobj *var)
1441{
1442 return var->pretty_printer != NULL;
1443}
1444
de051565
MK
1445char *
1446varobj_get_formatted_value (struct varobj *var,
1447 enum varobj_display_formats format)
1448{
1449 return my_value_of_variable (var, format);
1450}
1451
8b93c638
JM
1452char *
1453varobj_get_value (struct varobj *var)
1454{
de051565 1455 return my_value_of_variable (var, var->format);
8b93c638
JM
1456}
1457
1458/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1459 value of the given expression. */
1460/* Note: Invokes functions that can call error(). */
8b93c638
JM
1461
1462int
1463varobj_set_value (struct varobj *var, char *expression)
1464{
34365054 1465 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1466 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1467 We need to first construct a legal expression for this -- ugh! */
1468 /* Does this cover all the bases? */
8b93c638 1469 struct expression *exp;
34365054 1470 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1471 int saved_input_radix = input_radix;
bbc13ae3 1472 const char *s = expression;
8e7b59a5 1473 volatile struct gdb_exception except;
8b93c638 1474
340a7723 1475 gdb_assert (varobj_editable_p (var));
8b93c638 1476
581e13c1 1477 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1478 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1479 TRY_CATCH (except, RETURN_MASK_ERROR)
1480 {
1481 value = evaluate_expression (exp);
1482 }
1483
1484 if (except.reason < 0)
340a7723 1485 {
581e13c1 1486 /* We cannot proceed without a valid expression. */
340a7723
NR
1487 xfree (exp);
1488 return 0;
8b93c638
JM
1489 }
1490
340a7723
NR
1491 /* All types that are editable must also be changeable. */
1492 gdb_assert (varobj_value_is_changeable_p (var));
1493
1494 /* The value of a changeable variable object must not be lazy. */
1495 gdb_assert (!value_lazy (var->value));
1496
1497 /* Need to coerce the input. We want to check if the
1498 value of the variable object will be different
1499 after assignment, and the first thing value_assign
1500 does is coerce the input.
1501 For example, if we are assigning an array to a pointer variable we
b021a221 1502 should compare the pointer with the array's address, not with the
340a7723
NR
1503 array's content. */
1504 value = coerce_array (value);
1505
8e7b59a5
KS
1506 /* The new value may be lazy. value_assign, or
1507 rather value_contents, will take care of this. */
1508 TRY_CATCH (except, RETURN_MASK_ERROR)
1509 {
1510 val = value_assign (var->value, value);
1511 }
1512
1513 if (except.reason < 0)
340a7723 1514 return 0;
8e7b59a5 1515
340a7723
NR
1516 /* If the value has changed, record it, so that next -var-update can
1517 report this change. If a variable had a value of '1', we've set it
1518 to '333' and then set again to '1', when -var-update will report this
1519 variable as changed -- because the first assignment has set the
1520 'updated' flag. There's no need to optimize that, because return value
1521 of -var-update should be considered an approximation. */
581e13c1 1522 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1523 input_radix = saved_input_radix;
1524 return 1;
8b93c638
JM
1525}
1526
0cc7d26f
TT
1527#if HAVE_PYTHON
1528
1529/* A helper function to install a constructor function and visualizer
1530 in a varobj. */
1531
1532static void
1533install_visualizer (struct varobj *var, PyObject *constructor,
1534 PyObject *visualizer)
1535{
1536 Py_XDECREF (var->constructor);
1537 var->constructor = constructor;
1538
1539 Py_XDECREF (var->pretty_printer);
1540 var->pretty_printer = visualizer;
1541
1542 Py_XDECREF (var->child_iter);
1543 var->child_iter = NULL;
1544}
1545
1546/* Install the default visualizer for VAR. */
1547
1548static void
1549install_default_visualizer (struct varobj *var)
1550{
d65aec65
PM
1551 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1552 if (CPLUS_FAKE_CHILD (var))
1553 return;
1554
0cc7d26f
TT
1555 if (pretty_printing)
1556 {
1557 PyObject *pretty_printer = NULL;
1558
1559 if (var->value)
1560 {
1561 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1562 if (! pretty_printer)
1563 {
1564 gdbpy_print_stack ();
1565 error (_("Cannot instantiate printer for default visualizer"));
1566 }
1567 }
1568
1569 if (pretty_printer == Py_None)
1570 {
1571 Py_DECREF (pretty_printer);
1572 pretty_printer = NULL;
1573 }
1574
1575 install_visualizer (var, NULL, pretty_printer);
1576 }
1577}
1578
1579/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1580 make a new object. */
1581
1582static void
1583construct_visualizer (struct varobj *var, PyObject *constructor)
1584{
1585 PyObject *pretty_printer;
1586
d65aec65
PM
1587 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1588 if (CPLUS_FAKE_CHILD (var))
1589 return;
1590
0cc7d26f
TT
1591 Py_INCREF (constructor);
1592 if (constructor == Py_None)
1593 pretty_printer = NULL;
1594 else
1595 {
1596 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1597 if (! pretty_printer)
1598 {
1599 gdbpy_print_stack ();
1600 Py_DECREF (constructor);
1601 constructor = Py_None;
1602 Py_INCREF (constructor);
1603 }
1604
1605 if (pretty_printer == Py_None)
1606 {
1607 Py_DECREF (pretty_printer);
1608 pretty_printer = NULL;
1609 }
1610 }
1611
1612 install_visualizer (var, constructor, pretty_printer);
1613}
1614
1615#endif /* HAVE_PYTHON */
1616
1617/* A helper function for install_new_value. This creates and installs
1618 a visualizer for VAR, if appropriate. */
1619
1620static void
1621install_new_value_visualizer (struct varobj *var)
1622{
1623#if HAVE_PYTHON
1624 /* If the constructor is None, then we want the raw value. If VAR
1625 does not have a value, just skip this. */
1626 if (var->constructor != Py_None && var->value)
1627 {
1628 struct cleanup *cleanup;
0cc7d26f
TT
1629
1630 cleanup = varobj_ensure_python_env (var);
1631
1632 if (!var->constructor)
1633 install_default_visualizer (var);
1634 else
1635 construct_visualizer (var, var->constructor);
1636
1637 do_cleanups (cleanup);
1638 }
1639#else
1640 /* Do nothing. */
1641#endif
1642}
1643
8264ba82
AG
1644/* When using RTTI to determine variable type it may be changed in runtime when
1645 the variable value is changed. This function checks whether type of varobj
1646 VAR will change when a new value NEW_VALUE is assigned and if it is so
1647 updates the type of VAR. */
1648
1649static int
1650update_type_if_necessary (struct varobj *var, struct value *new_value)
1651{
1652 if (new_value)
1653 {
1654 struct value_print_options opts;
1655
1656 get_user_print_options (&opts);
1657 if (opts.objectprint)
1658 {
1659 struct type *new_type;
1660 char *curr_type_str, *new_type_str;
1661
1662 new_type = value_actual_type (new_value, 0, 0);
1663 new_type_str = type_to_string (new_type);
1664 curr_type_str = varobj_get_type (var);
1665 if (strcmp (curr_type_str, new_type_str) != 0)
1666 {
1667 var->type = new_type;
1668
1669 /* This information may be not valid for a new type. */
1670 varobj_delete (var, NULL, 1);
1671 VEC_free (varobj_p, var->children);
1672 var->num_children = -1;
1673 return 1;
1674 }
1675 }
1676 }
1677
1678 return 0;
1679}
1680
acd65feb
VP
1681/* Assign a new value to a variable object. If INITIAL is non-zero,
1682 this is the first assignement after the variable object was just
1683 created, or changed type. In that case, just assign the value
1684 and return 0.
581e13c1
MS
1685 Otherwise, assign the new value, and return 1 if the value is
1686 different from the current one, 0 otherwise. The comparison is
1687 done on textual representation of value. Therefore, some types
1688 need not be compared. E.g. for structures the reported value is
1689 always "{...}", so no comparison is necessary here. If the old
1690 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1691
1692 The VALUE parameter should not be released -- the function will
1693 take care of releasing it when needed. */
acd65feb
VP
1694static int
1695install_new_value (struct varobj *var, struct value *value, int initial)
1696{
1697 int changeable;
1698 int need_to_fetch;
1699 int changed = 0;
25d5ea92 1700 int intentionally_not_fetched = 0;
7a4d50bf 1701 char *print_value = NULL;
acd65feb 1702
acd65feb 1703 /* We need to know the varobj's type to decide if the value should
3e43a32a 1704 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1705 don't have a type. */
acd65feb 1706 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1707 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1708
1709 /* If the type has custom visualizer, we consider it to be always
581e13c1 1710 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1711 mess up read-sensitive values. */
1712 if (var->pretty_printer)
1713 changeable = 1;
1714
acd65feb
VP
1715 need_to_fetch = changeable;
1716
b26ed50d
VP
1717 /* We are not interested in the address of references, and given
1718 that in C++ a reference is not rebindable, it cannot
1719 meaningfully change. So, get hold of the real value. */
1720 if (value)
0cc7d26f 1721 value = coerce_ref (value);
b26ed50d 1722
acd65feb
VP
1723 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1724 /* For unions, we need to fetch the value implicitly because
1725 of implementation of union member fetch. When gdb
1726 creates a value for a field and the value of the enclosing
1727 structure is not lazy, it immediately copies the necessary
1728 bytes from the enclosing values. If the enclosing value is
1729 lazy, the call to value_fetch_lazy on the field will read
1730 the data from memory. For unions, that means we'll read the
1731 same memory more than once, which is not desirable. So
1732 fetch now. */
1733 need_to_fetch = 1;
1734
1735 /* The new value might be lazy. If the type is changeable,
1736 that is we'll be comparing values of this type, fetch the
1737 value now. Otherwise, on the next update the old value
1738 will be lazy, which means we've lost that old value. */
1739 if (need_to_fetch && value && value_lazy (value))
1740 {
25d5ea92
VP
1741 struct varobj *parent = var->parent;
1742 int frozen = var->frozen;
a109c7c1 1743
25d5ea92
VP
1744 for (; !frozen && parent; parent = parent->parent)
1745 frozen |= parent->frozen;
1746
1747 if (frozen && initial)
1748 {
1749 /* For variables that are frozen, or are children of frozen
1750 variables, we don't do fetch on initial assignment.
1751 For non-initial assignemnt we do the fetch, since it means we're
1752 explicitly asked to compare the new value with the old one. */
1753 intentionally_not_fetched = 1;
1754 }
8e7b59a5 1755 else
acd65feb 1756 {
8e7b59a5
KS
1757 volatile struct gdb_exception except;
1758
1759 TRY_CATCH (except, RETURN_MASK_ERROR)
1760 {
1761 value_fetch_lazy (value);
1762 }
1763
1764 if (except.reason < 0)
1765 {
1766 /* Set the value to NULL, so that for the next -var-update,
1767 we don't try to compare the new value with this value,
1768 that we couldn't even read. */
1769 value = NULL;
1770 }
acd65feb 1771 }
acd65feb
VP
1772 }
1773
e848a8a5
TT
1774 /* Get a reference now, before possibly passing it to any Python
1775 code that might release it. */
1776 if (value != NULL)
1777 value_incref (value);
b6313243 1778
7a4d50bf
VP
1779 /* Below, we'll be comparing string rendering of old and new
1780 values. Don't get string rendering if the value is
1781 lazy -- if it is, the code above has decided that the value
1782 should not be fetched. */
0cc7d26f 1783 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1784 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1785
acd65feb
VP
1786 /* If the type is changeable, compare the old and the new values.
1787 If this is the initial assignment, we don't have any old value
1788 to compare with. */
7a4d50bf 1789 if (!initial && changeable)
acd65feb 1790 {
3e43a32a
MS
1791 /* If the value of the varobj was changed by -var-set-value,
1792 then the value in the varobj and in the target is the same.
1793 However, that value is different from the value that the
581e13c1 1794 varobj had after the previous -var-update. So need to the
3e43a32a 1795 varobj as changed. */
acd65feb 1796 if (var->updated)
57e66780 1797 {
57e66780
DJ
1798 changed = 1;
1799 }
0cc7d26f 1800 else if (! var->pretty_printer)
acd65feb
VP
1801 {
1802 /* Try to compare the values. That requires that both
1803 values are non-lazy. */
25d5ea92
VP
1804 if (var->not_fetched && value_lazy (var->value))
1805 {
1806 /* This is a frozen varobj and the value was never read.
1807 Presumably, UI shows some "never read" indicator.
1808 Now that we've fetched the real value, we need to report
1809 this varobj as changed so that UI can show the real
1810 value. */
1811 changed = 1;
1812 }
1813 else if (var->value == NULL && value == NULL)
581e13c1 1814 /* Equal. */
acd65feb
VP
1815 ;
1816 else if (var->value == NULL || value == NULL)
57e66780 1817 {
57e66780
DJ
1818 changed = 1;
1819 }
acd65feb
VP
1820 else
1821 {
1822 gdb_assert (!value_lazy (var->value));
1823 gdb_assert (!value_lazy (value));
85265413 1824
57e66780 1825 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1826 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1827 changed = 1;
acd65feb
VP
1828 }
1829 }
1830 }
85265413 1831
ee342b23
VP
1832 if (!initial && !changeable)
1833 {
1834 /* For values that are not changeable, we don't compare the values.
1835 However, we want to notice if a value was not NULL and now is NULL,
1836 or vise versa, so that we report when top-level varobjs come in scope
1837 and leave the scope. */
1838 changed = (var->value != NULL) != (value != NULL);
1839 }
1840
acd65feb 1841 /* We must always keep the new value, since children depend on it. */
25d5ea92 1842 if (var->value != NULL && var->value != value)
acd65feb
VP
1843 value_free (var->value);
1844 var->value = value;
25d5ea92
VP
1845 if (value && value_lazy (value) && intentionally_not_fetched)
1846 var->not_fetched = 1;
1847 else
1848 var->not_fetched = 0;
acd65feb 1849 var->updated = 0;
85265413 1850
0cc7d26f
TT
1851 install_new_value_visualizer (var);
1852
1853 /* If we installed a pretty-printer, re-compare the printed version
1854 to see if the variable changed. */
1855 if (var->pretty_printer)
1856 {
1857 xfree (print_value);
1858 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1859 if ((var->print_value == NULL && print_value != NULL)
1860 || (var->print_value != NULL && print_value == NULL)
1861 || (var->print_value != NULL && print_value != NULL
1862 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1863 changed = 1;
1864 }
1865 if (var->print_value)
1866 xfree (var->print_value);
1867 var->print_value = print_value;
1868
b26ed50d 1869 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1870
1871 return changed;
1872}
acd65feb 1873
0cc7d26f
TT
1874/* Return the requested range for a varobj. VAR is the varobj. FROM
1875 and TO are out parameters; *FROM and *TO will be set to the
1876 selected sub-range of VAR. If no range was selected using
1877 -var-set-update-range, then both will be -1. */
1878void
1879varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1880{
0cc7d26f
TT
1881 *from = var->from;
1882 *to = var->to;
b6313243
TT
1883}
1884
0cc7d26f
TT
1885/* Set the selected sub-range of children of VAR to start at index
1886 FROM and end at index TO. If either FROM or TO is less than zero,
1887 this is interpreted as a request for all children. */
1888void
1889varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1890{
0cc7d26f
TT
1891 var->from = from;
1892 var->to = to;
b6313243
TT
1893}
1894
1895void
1896varobj_set_visualizer (struct varobj *var, const char *visualizer)
1897{
1898#if HAVE_PYTHON
34fa1d9d
MS
1899 PyObject *mainmod, *globals, *constructor;
1900 struct cleanup *back_to;
b6313243 1901
d452c4bc 1902 back_to = varobj_ensure_python_env (var);
b6313243
TT
1903
1904 mainmod = PyImport_AddModule ("__main__");
1905 globals = PyModule_GetDict (mainmod);
1906 Py_INCREF (globals);
1907 make_cleanup_py_decref (globals);
1908
1909 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1910
0cc7d26f 1911 if (! constructor)
b6313243
TT
1912 {
1913 gdbpy_print_stack ();
da1f2771 1914 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1915 }
1916
0cc7d26f
TT
1917 construct_visualizer (var, constructor);
1918 Py_XDECREF (constructor);
b6313243 1919
0cc7d26f
TT
1920 /* If there are any children now, wipe them. */
1921 varobj_delete (var, NULL, 1 /* children only */);
1922 var->num_children = -1;
b6313243
TT
1923
1924 do_cleanups (back_to);
1925#else
da1f2771 1926 error (_("Python support required"));
b6313243
TT
1927#endif
1928}
1929
7a290c40
JB
1930/* If NEW_VALUE is the new value of the given varobj (var), return
1931 non-zero if var has mutated. In other words, if the type of
1932 the new value is different from the type of the varobj's old
1933 value.
1934
1935 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1936
1937static int
1938varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1939 struct type *new_type)
1940{
1941 /* If we haven't previously computed the number of children in var,
1942 it does not matter from the front-end's perspective whether
1943 the type has mutated or not. For all intents and purposes,
1944 it has not mutated. */
1945 if (var->num_children < 0)
1946 return 0;
1947
1948 if (var->root->lang->value_has_mutated)
1949 return var->root->lang->value_has_mutated (var, new_value, new_type);
1950 else
1951 return 0;
1952}
1953
8b93c638
JM
1954/* Update the values for a variable and its children. This is a
1955 two-pronged attack. First, re-parse the value for the root's
1956 expression to see if it's changed. Then go all the way
1957 through its children, reconstructing them and noting if they've
1958 changed.
1959
25d5ea92
VP
1960 The EXPLICIT parameter specifies if this call is result
1961 of MI request to update this specific variable, or
581e13c1 1962 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1963 update frozen variables.
705da579 1964
581e13c1 1965 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1966 returns TYPE_CHANGED, then it has done this and VARP will be modified
1967 to point to the new varobj. */
8b93c638 1968
1417b39d
JB
1969VEC(varobj_update_result) *
1970varobj_update (struct varobj **varp, int explicit)
8b93c638 1971{
25d5ea92 1972 int type_changed = 0;
8b93c638 1973 int i;
30b28db1 1974 struct value *new;
b6313243 1975 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1976 VEC (varobj_update_result) *result = NULL;
8b93c638 1977
25d5ea92
VP
1978 /* Frozen means frozen -- we don't check for any change in
1979 this varobj, including its going out of scope, or
1980 changing type. One use case for frozen varobjs is
1981 retaining previously evaluated expressions, and we don't
1982 want them to be reevaluated at all. */
1983 if (!explicit && (*varp)->frozen)
f7f9ae2c 1984 return result;
8756216b
DP
1985
1986 if (!(*varp)->root->is_valid)
f7f9ae2c 1987 {
cfce2ea2 1988 varobj_update_result r = {0};
a109c7c1 1989
cfce2ea2 1990 r.varobj = *varp;
f7f9ae2c
VP
1991 r.status = VAROBJ_INVALID;
1992 VEC_safe_push (varobj_update_result, result, &r);
1993 return result;
1994 }
8b93c638 1995
25d5ea92 1996 if ((*varp)->root->rootvar == *varp)
ae093f96 1997 {
cfce2ea2 1998 varobj_update_result r = {0};
a109c7c1 1999
cfce2ea2 2000 r.varobj = *varp;
f7f9ae2c
VP
2001 r.status = VAROBJ_IN_SCOPE;
2002
581e13c1 2003 /* Update the root variable. value_of_root can return NULL
25d5ea92 2004 if the variable is no longer around, i.e. we stepped out of
581e13c1 2005 the frame in which a local existed. We are letting the
25d5ea92
VP
2006 value_of_root variable dispose of the varobj if the type
2007 has changed. */
25d5ea92 2008 new = value_of_root (varp, &type_changed);
8264ba82
AG
2009 if (update_type_if_necessary(*varp, new))
2010 type_changed = 1;
f7f9ae2c 2011 r.varobj = *varp;
f7f9ae2c 2012 r.type_changed = type_changed;
ea56f9c2 2013 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 2014 r.changed = 1;
ea56f9c2 2015
25d5ea92 2016 if (new == NULL)
f7f9ae2c 2017 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 2018 r.value_installed = 1;
f7f9ae2c
VP
2019
2020 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 2021 {
0b4bc29a
JK
2022 if (r.type_changed || r.changed)
2023 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
2024 return result;
2025 }
2026
2027 VEC_safe_push (varobj_update_result, stack, &r);
2028 }
2029 else
2030 {
cfce2ea2 2031 varobj_update_result r = {0};
a109c7c1 2032
cfce2ea2 2033 r.varobj = *varp;
b6313243 2034 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 2035 }
8b93c638 2036
8756216b 2037 /* Walk through the children, reconstructing them all. */
b6313243 2038 while (!VEC_empty (varobj_update_result, stack))
8b93c638 2039 {
b6313243
TT
2040 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2041 struct varobj *v = r.varobj;
2042
2043 VEC_pop (varobj_update_result, stack);
2044
2045 /* Update this variable, unless it's a root, which is already
2046 updated. */
2047 if (!r.value_installed)
7a290c40
JB
2048 {
2049 struct type *new_type;
2050
b6313243 2051 new = value_of_child (v->parent, v->index);
8264ba82
AG
2052 if (update_type_if_necessary(v, new))
2053 r.type_changed = 1;
7a290c40
JB
2054 if (new)
2055 new_type = value_type (new);
2056 else
2057 new_type = v->root->lang->type_of_child (v->parent, v->index);
2058
2059 if (varobj_value_has_mutated (v, new, new_type))
2060 {
2061 /* The children are no longer valid; delete them now.
2062 Report the fact that its type changed as well. */
2063 varobj_delete (v, NULL, 1 /* only_children */);
2064 v->num_children = -1;
2065 v->to = -1;
2066 v->from = -1;
2067 v->type = new_type;
2068 r.type_changed = 1;
2069 }
2070
2071 if (install_new_value (v, new, r.type_changed))
b6313243
TT
2072 {
2073 r.changed = 1;
2074 v->updated = 0;
2075 }
2076 }
2077
2078 /* We probably should not get children of a varobj that has a
2079 pretty-printer, but for which -var-list-children was never
581e13c1 2080 invoked. */
b6313243
TT
2081 if (v->pretty_printer)
2082 {
8264ba82
AG
2083 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2084 VEC (varobj_p) *new = 0;
26f9bcee 2085 int i, children_changed = 0;
b6313243
TT
2086
2087 if (v->frozen)
2088 continue;
2089
0cc7d26f
TT
2090 if (!v->children_requested)
2091 {
2092 int dummy;
2093
2094 /* If we initially did not have potential children, but
2095 now we do, consider the varobj as changed.
2096 Otherwise, if children were never requested, consider
2097 it as unchanged -- presumably, such varobj is not yet
2098 expanded in the UI, so we need not bother getting
2099 it. */
2100 if (!varobj_has_more (v, 0))
2101 {
8264ba82 2102 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
2103 &dummy, 0, 0, 0);
2104 if (varobj_has_more (v, 0))
2105 r.changed = 1;
2106 }
2107
2108 if (r.changed)
2109 VEC_safe_push (varobj_update_result, result, &r);
2110
2111 continue;
2112 }
2113
b6313243
TT
2114 /* If update_dynamic_varobj_children returns 0, then we have
2115 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
2116 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2117 &unchanged, &children_changed, 1,
0cc7d26f 2118 v->from, v->to))
b6313243 2119 {
0cc7d26f 2120 if (children_changed || new)
b6313243 2121 {
0cc7d26f
TT
2122 r.children_changed = 1;
2123 r.new = new;
b6313243 2124 }
0cc7d26f
TT
2125 /* Push in reverse order so that the first child is
2126 popped from the work stack first, and so will be
2127 added to result first. This does not affect
2128 correctness, just "nicer". */
8264ba82
AG
2129 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2130 {
2131 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2132 varobj_update_result r = {0};
2133
2134 /* Type may change only if value was changed. */
2135 r.varobj = tmp;
2136 r.changed = 1;
2137 r.type_changed = 1;
2138 r.value_installed = 1;
2139 VEC_safe_push (varobj_update_result, stack, &r);
2140 }
0cc7d26f 2141 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 2142 {
0cc7d26f 2143 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 2144 varobj_update_result r = {0};
a109c7c1 2145
cfce2ea2 2146 r.varobj = tmp;
0cc7d26f 2147 r.changed = 1;
b6313243
TT
2148 r.value_installed = 1;
2149 VEC_safe_push (varobj_update_result, stack, &r);
2150 }
0cc7d26f
TT
2151 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2152 {
2153 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 2154
0cc7d26f
TT
2155 if (!tmp->frozen)
2156 {
cfce2ea2 2157 varobj_update_result r = {0};
a109c7c1 2158
cfce2ea2 2159 r.varobj = tmp;
0cc7d26f
TT
2160 r.value_installed = 1;
2161 VEC_safe_push (varobj_update_result, stack, &r);
2162 }
2163 }
b6313243
TT
2164 if (r.changed || r.children_changed)
2165 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 2166
8264ba82
AG
2167 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2168 because NEW has been put into the result vector. */
0cc7d26f 2169 VEC_free (varobj_p, changed);
8264ba82 2170 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
2171 VEC_free (varobj_p, unchanged);
2172
b6313243
TT
2173 continue;
2174 }
2175 }
28335dcc
VP
2176
2177 /* Push any children. Use reverse order so that the first
2178 child is popped from the work stack first, and so
2179 will be added to result first. This does not
2180 affect correctness, just "nicer". */
2181 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 2182 {
28335dcc 2183 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 2184
28335dcc 2185 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 2186 if (c != NULL && !c->frozen)
28335dcc 2187 {
cfce2ea2 2188 varobj_update_result r = {0};
a109c7c1 2189
cfce2ea2 2190 r.varobj = c;
b6313243 2191 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 2192 }
8b93c638 2193 }
b6313243
TT
2194
2195 if (r.changed || r.type_changed)
2196 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
2197 }
2198
b6313243
TT
2199 VEC_free (varobj_update_result, stack);
2200
f7f9ae2c 2201 return result;
8b93c638
JM
2202}
2203\f
2204
2205/* Helper functions */
2206
2207/*
2208 * Variable object construction/destruction
2209 */
2210
2211static int
fba45db2
KB
2212delete_variable (struct cpstack **resultp, struct varobj *var,
2213 int only_children_p)
8b93c638
JM
2214{
2215 int delcount = 0;
2216
2217 delete_variable_1 (resultp, &delcount, var,
2218 only_children_p, 1 /* remove_from_parent_p */ );
2219
2220 return delcount;
2221}
2222
581e13c1 2223/* Delete the variable object VAR and its children. */
8b93c638
JM
2224/* IMPORTANT NOTE: If we delete a variable which is a child
2225 and the parent is not removed we dump core. It must be always
581e13c1 2226 initially called with remove_from_parent_p set. */
8b93c638 2227static void
72330bd6
AC
2228delete_variable_1 (struct cpstack **resultp, int *delcountp,
2229 struct varobj *var, int only_children_p,
2230 int remove_from_parent_p)
8b93c638 2231{
28335dcc 2232 int i;
8b93c638 2233
581e13c1 2234 /* Delete any children of this variable, too. */
28335dcc
VP
2235 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2236 {
2237 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 2238
214270ab
VP
2239 if (!child)
2240 continue;
8b93c638 2241 if (!remove_from_parent_p)
28335dcc
VP
2242 child->parent = NULL;
2243 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 2244 }
28335dcc 2245 VEC_free (varobj_p, var->children);
8b93c638 2246
581e13c1 2247 /* if we were called to delete only the children we are done here. */
8b93c638
JM
2248 if (only_children_p)
2249 return;
2250
581e13c1 2251 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 2252 /* If the name is null, this is a temporary variable, that has not
581e13c1 2253 yet been installed, don't report it, it belongs to the caller... */
73a93a32 2254 if (var->obj_name != NULL)
8b93c638 2255 {
5b616ba1 2256 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
2257 *delcountp = *delcountp + 1;
2258 }
2259
581e13c1 2260 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2261 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2262 (as indicated by remove_from_parent_p) we don't bother doing an
2263 expensive list search to find the element to remove when we are
581e13c1 2264 discarding the list afterwards. */
72330bd6 2265 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2266 {
28335dcc 2267 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2268 }
72330bd6 2269
73a93a32
JI
2270 if (var->obj_name != NULL)
2271 uninstall_variable (var);
8b93c638 2272
581e13c1 2273 /* Free memory associated with this variable. */
8b93c638
JM
2274 free_variable (var);
2275}
2276
581e13c1 2277/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2278static int
fba45db2 2279install_variable (struct varobj *var)
8b93c638
JM
2280{
2281 struct vlist *cv;
2282 struct vlist *newvl;
2283 const char *chp;
2284 unsigned int index = 0;
2285 unsigned int i = 1;
2286
2287 for (chp = var->obj_name; *chp; chp++)
2288 {
2289 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2290 }
2291
2292 cv = *(varobj_table + index);
2293 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2294 cv = cv->next;
2295
2296 if (cv != NULL)
8a3fe4f8 2297 error (_("Duplicate variable object name"));
8b93c638 2298
581e13c1 2299 /* Add varobj to hash table. */
8b93c638
JM
2300 newvl = xmalloc (sizeof (struct vlist));
2301 newvl->next = *(varobj_table + index);
2302 newvl->var = var;
2303 *(varobj_table + index) = newvl;
2304
581e13c1 2305 /* If root, add varobj to root list. */
b2c2bd75 2306 if (is_root_p (var))
8b93c638 2307 {
581e13c1 2308 /* Add to list of root variables. */
8b93c638
JM
2309 if (rootlist == NULL)
2310 var->root->next = NULL;
2311 else
2312 var->root->next = rootlist;
2313 rootlist = var->root;
8b93c638
JM
2314 }
2315
2316 return 1; /* OK */
2317}
2318
581e13c1 2319/* Unistall the object VAR. */
8b93c638 2320static void
fba45db2 2321uninstall_variable (struct varobj *var)
8b93c638
JM
2322{
2323 struct vlist *cv;
2324 struct vlist *prev;
2325 struct varobj_root *cr;
2326 struct varobj_root *prer;
2327 const char *chp;
2328 unsigned int index = 0;
2329 unsigned int i = 1;
2330
581e13c1 2331 /* Remove varobj from hash table. */
8b93c638
JM
2332 for (chp = var->obj_name; *chp; chp++)
2333 {
2334 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2335 }
2336
2337 cv = *(varobj_table + index);
2338 prev = NULL;
2339 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2340 {
2341 prev = cv;
2342 cv = cv->next;
2343 }
2344
2345 if (varobjdebug)
2346 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2347
2348 if (cv == NULL)
2349 {
72330bd6
AC
2350 warning
2351 ("Assertion failed: Could not find variable object \"%s\" to delete",
2352 var->obj_name);
8b93c638
JM
2353 return;
2354 }
2355
2356 if (prev == NULL)
2357 *(varobj_table + index) = cv->next;
2358 else
2359 prev->next = cv->next;
2360
b8c9b27d 2361 xfree (cv);
8b93c638 2362
581e13c1 2363 /* If root, remove varobj from root list. */
b2c2bd75 2364 if (is_root_p (var))
8b93c638 2365 {
581e13c1 2366 /* Remove from list of root variables. */
8b93c638
JM
2367 if (rootlist == var->root)
2368 rootlist = var->root->next;
2369 else
2370 {
2371 prer = NULL;
2372 cr = rootlist;
2373 while ((cr != NULL) && (cr->rootvar != var))
2374 {
2375 prer = cr;
2376 cr = cr->next;
2377 }
2378 if (cr == NULL)
2379 {
8f7e195f
JB
2380 warning (_("Assertion failed: Could not find "
2381 "varobj \"%s\" in root list"),
3e43a32a 2382 var->obj_name);
8b93c638
JM
2383 return;
2384 }
2385 if (prer == NULL)
2386 rootlist = NULL;
2387 else
2388 prer->next = cr->next;
2389 }
8b93c638
JM
2390 }
2391
2392}
2393
581e13c1 2394/* Create and install a child of the parent of the given name. */
8b93c638 2395static struct varobj *
fba45db2 2396create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2397{
2398 return create_child_with_value (parent, index, name,
2399 value_of_child (parent, index));
2400}
2401
85254831
KS
2402/* Does CHILD represent a child with no name? This happens when
2403 the child is an anonmous struct or union and it has no field name
2404 in its parent variable.
2405
2406 This has already been determined by *_describe_child. The easiest
2407 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2408
2409static int
2410is_anonymous_child (struct varobj *child)
2411{
2412 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2413 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2414}
2415
b6313243
TT
2416static struct varobj *
2417create_child_with_value (struct varobj *parent, int index, const char *name,
2418 struct value *value)
8b93c638
JM
2419{
2420 struct varobj *child;
2421 char *childs_name;
2422
2423 child = new_variable ();
2424
581e13c1 2425 /* Name is allocated by name_of_child. */
b6313243
TT
2426 /* FIXME: xstrdup should not be here. */
2427 child->name = xstrdup (name);
8b93c638 2428 child->index = index;
8b93c638
JM
2429 child->parent = parent;
2430 child->root = parent->root;
85254831
KS
2431
2432 if (is_anonymous_child (child))
2433 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2434 else
2435 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2436 child->obj_name = childs_name;
85254831 2437
8b93c638
JM
2438 install_variable (child);
2439
acd65feb
VP
2440 /* Compute the type of the child. Must do this before
2441 calling install_new_value. */
2442 if (value != NULL)
2443 /* If the child had no evaluation errors, var->value
581e13c1 2444 will be non-NULL and contain a valid type. */
8264ba82 2445 child->type = value_actual_type (value, 0, NULL);
acd65feb 2446 else
581e13c1 2447 /* Otherwise, we must compute the type. */
acd65feb
VP
2448 child->type = (*child->root->lang->type_of_child) (child->parent,
2449 child->index);
2450 install_new_value (child, value, 1);
2451
8b93c638
JM
2452 return child;
2453}
8b93c638
JM
2454\f
2455
2456/*
2457 * Miscellaneous utility functions.
2458 */
2459
581e13c1 2460/* Allocate memory and initialize a new variable. */
8b93c638
JM
2461static struct varobj *
2462new_variable (void)
2463{
2464 struct varobj *var;
2465
2466 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2467 var->name = NULL;
02142340 2468 var->path_expr = NULL;
8b93c638
JM
2469 var->obj_name = NULL;
2470 var->index = -1;
2471 var->type = NULL;
2472 var->value = NULL;
8b93c638
JM
2473 var->num_children = -1;
2474 var->parent = NULL;
2475 var->children = NULL;
2476 var->format = 0;
2477 var->root = NULL;
fb9b6b35 2478 var->updated = 0;
85265413 2479 var->print_value = NULL;
25d5ea92
VP
2480 var->frozen = 0;
2481 var->not_fetched = 0;
b6313243 2482 var->children_requested = 0;
0cc7d26f
TT
2483 var->from = -1;
2484 var->to = -1;
2485 var->constructor = 0;
b6313243 2486 var->pretty_printer = 0;
0cc7d26f
TT
2487 var->child_iter = 0;
2488 var->saved_item = 0;
8b93c638
JM
2489
2490 return var;
2491}
2492
581e13c1 2493/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2494static struct varobj *
2495new_root_variable (void)
2496{
2497 struct varobj *var = new_variable ();
a109c7c1 2498
3e43a32a 2499 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2500 var->root->lang = NULL;
2501 var->root->exp = NULL;
2502 var->root->valid_block = NULL;
7a424e99 2503 var->root->frame = null_frame_id;
a5defcdc 2504 var->root->floating = 0;
8b93c638 2505 var->root->rootvar = NULL;
8756216b 2506 var->root->is_valid = 1;
8b93c638
JM
2507
2508 return var;
2509}
2510
581e13c1 2511/* Free any allocated memory associated with VAR. */
8b93c638 2512static void
fba45db2 2513free_variable (struct varobj *var)
8b93c638 2514{
d452c4bc
UW
2515#if HAVE_PYTHON
2516 if (var->pretty_printer)
2517 {
2518 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2519 Py_XDECREF (var->constructor);
2520 Py_XDECREF (var->pretty_printer);
2521 Py_XDECREF (var->child_iter);
2522 Py_XDECREF (var->saved_item);
d452c4bc
UW
2523 do_cleanups (cleanup);
2524 }
2525#endif
2526
36746093
JK
2527 value_free (var->value);
2528
581e13c1 2529 /* Free the expression if this is a root variable. */
b2c2bd75 2530 if (is_root_p (var))
8b93c638 2531 {
3038237c 2532 xfree (var->root->exp);
8038e1e2 2533 xfree (var->root);
8b93c638
JM
2534 }
2535
8038e1e2
AC
2536 xfree (var->name);
2537 xfree (var->obj_name);
85265413 2538 xfree (var->print_value);
02142340 2539 xfree (var->path_expr);
8038e1e2 2540 xfree (var);
8b93c638
JM
2541}
2542
74b7792f
AC
2543static void
2544do_free_variable_cleanup (void *var)
2545{
2546 free_variable (var);
2547}
2548
2549static struct cleanup *
2550make_cleanup_free_variable (struct varobj *var)
2551{
2552 return make_cleanup (do_free_variable_cleanup, var);
2553}
2554
581e13c1 2555/* This returns the type of the variable. It also skips past typedefs
6766a268 2556 to return the real type of the variable.
94b66fa7
KS
2557
2558 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2559 except within get_target_type and get_type. */
8b93c638 2560static struct type *
fba45db2 2561get_type (struct varobj *var)
8b93c638
JM
2562{
2563 struct type *type;
8b93c638 2564
a109c7c1 2565 type = var->type;
6766a268
DJ
2566 if (type != NULL)
2567 type = check_typedef (type);
8b93c638
JM
2568
2569 return type;
2570}
2571
6e2a9270
VP
2572/* Return the type of the value that's stored in VAR,
2573 or that would have being stored there if the
581e13c1 2574 value were accessible.
6e2a9270
VP
2575
2576 This differs from VAR->type in that VAR->type is always
2577 the true type of the expession in the source language.
2578 The return value of this function is the type we're
2579 actually storing in varobj, and using for displaying
2580 the values and for comparing previous and new values.
2581
2582 For example, top-level references are always stripped. */
2583static struct type *
2584get_value_type (struct varobj *var)
2585{
2586 struct type *type;
2587
2588 if (var->value)
2589 type = value_type (var->value);
2590 else
2591 type = var->type;
2592
2593 type = check_typedef (type);
2594
2595 if (TYPE_CODE (type) == TYPE_CODE_REF)
2596 type = get_target_type (type);
2597
2598 type = check_typedef (type);
2599
2600 return type;
2601}
2602
8b93c638 2603/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2604 past typedefs, just like get_type ().
2605
2606 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2607 except within get_target_type and get_type. */
8b93c638 2608static struct type *
fba45db2 2609get_target_type (struct type *type)
8b93c638
JM
2610{
2611 if (type != NULL)
2612 {
2613 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2614 if (type != NULL)
2615 type = check_typedef (type);
8b93c638
JM
2616 }
2617
2618 return type;
2619}
2620
2621/* What is the default display for this variable? We assume that
581e13c1 2622 everything is "natural". Any exceptions? */
8b93c638 2623static enum varobj_display_formats
fba45db2 2624variable_default_display (struct varobj *var)
8b93c638
JM
2625{
2626 return FORMAT_NATURAL;
2627}
2628
581e13c1 2629/* FIXME: The following should be generic for any pointer. */
8b93c638 2630static void
fba45db2 2631cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2632{
2633 struct cpstack *s;
2634
2635 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2636 s->name = name;
2637 s->next = *pstack;
2638 *pstack = s;
2639}
2640
581e13c1 2641/* FIXME: The following should be generic for any pointer. */
8b93c638 2642static char *
fba45db2 2643cppop (struct cpstack **pstack)
8b93c638
JM
2644{
2645 struct cpstack *s;
2646 char *v;
2647
2648 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2649 return NULL;
2650
2651 s = *pstack;
2652 v = s->name;
2653 *pstack = (*pstack)->next;
b8c9b27d 2654 xfree (s);
8b93c638
JM
2655
2656 return v;
2657}
2658\f
2659/*
2660 * Language-dependencies
2661 */
2662
2663/* Common entry points */
2664
581e13c1 2665/* Get the language of variable VAR. */
8b93c638 2666static enum varobj_languages
fba45db2 2667variable_language (struct varobj *var)
8b93c638
JM
2668{
2669 enum varobj_languages lang;
2670
2671 switch (var->root->exp->language_defn->la_language)
2672 {
2673 default:
2674 case language_c:
2675 lang = vlang_c;
2676 break;
2677 case language_cplus:
2678 lang = vlang_cplus;
2679 break;
2680 case language_java:
2681 lang = vlang_java;
2682 break;
40591b7d
JCD
2683 case language_ada:
2684 lang = vlang_ada;
2685 break;
8b93c638
JM
2686 }
2687
2688 return lang;
2689}
2690
2691/* Return the number of children for a given variable.
2692 The result of this function is defined by the language
581e13c1 2693 implementation. The number of children returned by this function
8b93c638 2694 is the number of children that the user will see in the variable
581e13c1 2695 display. */
8b93c638 2696static int
fba45db2 2697number_of_children (struct varobj *var)
8b93c638 2698{
82ae4854 2699 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2700}
2701
3e43a32a 2702/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2703 string. */
8b93c638 2704static char *
fba45db2 2705name_of_variable (struct varobj *var)
8b93c638
JM
2706{
2707 return (*var->root->lang->name_of_variable) (var);
2708}
2709
3e43a32a 2710/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2711 string. */
8b93c638 2712static char *
fba45db2 2713name_of_child (struct varobj *var, int index)
8b93c638
JM
2714{
2715 return (*var->root->lang->name_of_child) (var, index);
2716}
2717
a5defcdc
VP
2718/* What is the ``struct value *'' of the root variable VAR?
2719 For floating variable object, evaluation can get us a value
2720 of different type from what is stored in varobj already. In
2721 that case:
2722 - *type_changed will be set to 1
2723 - old varobj will be freed, and new one will be
2724 created, with the same name.
2725 - *var_handle will be set to the new varobj
2726 Otherwise, *type_changed will be set to 0. */
30b28db1 2727static struct value *
fba45db2 2728value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2729{
73a93a32
JI
2730 struct varobj *var;
2731
2732 if (var_handle == NULL)
2733 return NULL;
2734
2735 var = *var_handle;
2736
2737 /* This should really be an exception, since this should
581e13c1 2738 only get called with a root variable. */
73a93a32 2739
b2c2bd75 2740 if (!is_root_p (var))
73a93a32
JI
2741 return NULL;
2742
a5defcdc 2743 if (var->root->floating)
73a93a32
JI
2744 {
2745 struct varobj *tmp_var;
2746 char *old_type, *new_type;
6225abfa 2747
73a93a32
JI
2748 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2749 USE_SELECTED_FRAME);
2750 if (tmp_var == NULL)
2751 {
2752 return NULL;
2753 }
6225abfa 2754 old_type = varobj_get_type (var);
73a93a32 2755 new_type = varobj_get_type (tmp_var);
72330bd6 2756 if (strcmp (old_type, new_type) == 0)
73a93a32 2757 {
fcacd99f
VP
2758 /* The expression presently stored inside var->root->exp
2759 remembers the locations of local variables relatively to
2760 the frame where the expression was created (in DWARF location
2761 button, for example). Naturally, those locations are not
2762 correct in other frames, so update the expression. */
2763
2764 struct expression *tmp_exp = var->root->exp;
a109c7c1 2765
fcacd99f
VP
2766 var->root->exp = tmp_var->root->exp;
2767 tmp_var->root->exp = tmp_exp;
2768
73a93a32
JI
2769 varobj_delete (tmp_var, NULL, 0);
2770 *type_changed = 0;
2771 }
2772 else
2773 {
1b36a34b 2774 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2775 tmp_var->from = var->from;
2776 tmp_var->to = var->to;
a5defcdc
VP
2777 varobj_delete (var, NULL, 0);
2778
73a93a32
JI
2779 install_variable (tmp_var);
2780 *var_handle = tmp_var;
705da579 2781 var = *var_handle;
73a93a32
JI
2782 *type_changed = 1;
2783 }
74dddad3
MS
2784 xfree (old_type);
2785 xfree (new_type);
73a93a32
JI
2786 }
2787 else
2788 {
2789 *type_changed = 0;
2790 }
2791
7a290c40
JB
2792 {
2793 struct value *value;
2794
2795 value = (*var->root->lang->value_of_root) (var_handle);
2796 if (var->value == NULL || value == NULL)
2797 {
2798 /* For root varobj-s, a NULL value indicates a scoping issue.
2799 So, nothing to do in terms of checking for mutations. */
2800 }
2801 else if (varobj_value_has_mutated (var, value, value_type (value)))
2802 {
2803 /* The type has mutated, so the children are no longer valid.
2804 Just delete them, and tell our caller that the type has
2805 changed. */
2806 varobj_delete (var, NULL, 1 /* only_children */);
2807 var->num_children = -1;
2808 var->to = -1;
2809 var->from = -1;
2810 *type_changed = 1;
2811 }
2812 return value;
2813 }
8b93c638
JM
2814}
2815
581e13c1 2816/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2817static struct value *
fba45db2 2818value_of_child (struct varobj *parent, int index)
8b93c638 2819{
30b28db1 2820 struct value *value;
8b93c638
JM
2821
2822 value = (*parent->root->lang->value_of_child) (parent, index);
2823
8b93c638
JM
2824 return value;
2825}
2826
581e13c1 2827/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2828static char *
de051565 2829my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2830{
8756216b 2831 if (var->root->is_valid)
0cc7d26f
TT
2832 {
2833 if (var->pretty_printer)
2834 return value_get_print_value (var->value, var->format, var);
2835 return (*var->root->lang->value_of_variable) (var, format);
2836 }
8756216b
DP
2837 else
2838 return NULL;
8b93c638
JM
2839}
2840
85265413 2841static char *
b6313243 2842value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2843 struct varobj *var)
85265413 2844{
57e66780 2845 struct ui_file *stb;
621c8364 2846 struct cleanup *old_chain;
ac91cd70 2847 char *thevalue = NULL;
79a45b7d 2848 struct value_print_options opts;
be759fcf
PM
2849 struct type *type = NULL;
2850 long len = 0;
2851 char *encoding = NULL;
2852 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2853 /* Initialize it just to avoid a GCC false warning. */
2854 CORE_ADDR str_addr = 0;
09ca9e2e 2855 int string_print = 0;
57e66780
DJ
2856
2857 if (value == NULL)
2858 return NULL;
2859
621c8364
TT
2860 stb = mem_fileopen ();
2861 old_chain = make_cleanup_ui_file_delete (stb);
2862
be759fcf 2863 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2864#if HAVE_PYTHON
2865 {
d452c4bc
UW
2866 PyObject *value_formatter = var->pretty_printer;
2867
09ca9e2e
TT
2868 varobj_ensure_python_env (var);
2869
0cc7d26f 2870 if (value_formatter)
b6313243 2871 {
0cc7d26f
TT
2872 /* First check to see if we have any children at all. If so,
2873 we simply return {...}. */
2874 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2875 {
2876 do_cleanups (old_chain);
2877 return xstrdup ("{...}");
2878 }
b6313243 2879
0cc7d26f 2880 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2881 {
0cc7d26f 2882 struct value *replacement;
0cc7d26f
TT
2883 PyObject *output = NULL;
2884
0cc7d26f 2885 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2886 &replacement,
2887 stb);
00bd41d6
PM
2888
2889 /* If we have string like output ... */
0cc7d26f
TT
2890 if (output)
2891 {
09ca9e2e
TT
2892 make_cleanup_py_decref (output);
2893
00bd41d6
PM
2894 /* If this is a lazy string, extract it. For lazy
2895 strings we always print as a string, so set
2896 string_print. */
be759fcf 2897 if (gdbpy_is_lazy_string (output))
0cc7d26f 2898 {
09ca9e2e
TT
2899 gdbpy_extract_lazy_string (output, &str_addr, &type,
2900 &len, &encoding);
2901 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2902 string_print = 1;
2903 }
2904 else
2905 {
00bd41d6
PM
2906 /* If it is a regular (non-lazy) string, extract
2907 it and copy the contents into THEVALUE. If the
2908 hint says to print it as a string, set
2909 string_print. Otherwise just return the extracted
2910 string as a value. */
2911
9a27f2c6 2912 char *s = python_string_to_target_string (output);
a109c7c1 2913
9a27f2c6 2914 if (s)
be759fcf 2915 {
00bd41d6
PM
2916 char *hint;
2917
2918 hint = gdbpy_get_display_hint (value_formatter);
2919 if (hint)
2920 {
2921 if (!strcmp (hint, "string"))
2922 string_print = 1;
2923 xfree (hint);
2924 }
a109c7c1 2925
9a27f2c6 2926 len = strlen (s);
be759fcf
PM
2927 thevalue = xmemdup (s, len + 1, len + 1);
2928 type = builtin_type (gdbarch)->builtin_char;
9a27f2c6 2929 xfree (s);
09ca9e2e
TT
2930
2931 if (!string_print)
2932 {
2933 do_cleanups (old_chain);
2934 return thevalue;
2935 }
2936
2937 make_cleanup (xfree, thevalue);
be759fcf 2938 }
8dc78533
JK
2939 else
2940 gdbpy_print_stack ();
0cc7d26f 2941 }
0cc7d26f 2942 }
00bd41d6
PM
2943 /* If the printer returned a replacement value, set VALUE
2944 to REPLACEMENT. If there is not a replacement value,
2945 just use the value passed to this function. */
0cc7d26f
TT
2946 if (replacement)
2947 value = replacement;
b6313243 2948 }
b6313243 2949 }
b6313243
TT
2950 }
2951#endif
2952
79a45b7d
TT
2953 get_formatted_print_options (&opts, format_code[(int) format]);
2954 opts.deref_ref = 0;
b6313243 2955 opts.raw = 1;
00bd41d6
PM
2956
2957 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2958 if (thevalue)
ac91cd70 2959 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2960 else if (string_print)
00bd41d6
PM
2961 /* Otherwise, if string_print is set, and it is not a regular
2962 string, it is a lazy string. */
09ca9e2e 2963 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2964 else
00bd41d6 2965 /* All other cases. */
b6313243 2966 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2967
759ef836 2968 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2969
85265413
NR
2970 do_cleanups (old_chain);
2971 return thevalue;
2972}
2973
340a7723
NR
2974int
2975varobj_editable_p (struct varobj *var)
2976{
2977 struct type *type;
340a7723
NR
2978
2979 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2980 return 0;
2981
2982 type = get_value_type (var);
2983
2984 switch (TYPE_CODE (type))
2985 {
2986 case TYPE_CODE_STRUCT:
2987 case TYPE_CODE_UNION:
2988 case TYPE_CODE_ARRAY:
2989 case TYPE_CODE_FUNC:
2990 case TYPE_CODE_METHOD:
2991 return 0;
2992 break;
2993
2994 default:
2995 return 1;
2996 break;
2997 }
2998}
2999
d32cafc7 3000/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 3001
8b93c638 3002static int
b2c2bd75 3003varobj_value_is_changeable_p (struct varobj *var)
8b93c638 3004{
d32cafc7 3005 return var->root->lang->value_is_changeable_p (var);
8b93c638
JM
3006}
3007
5a413362
VP
3008/* Return 1 if that varobj is floating, that is is always evaluated in the
3009 selected frame, and not bound to thread/frame. Such variable objects
3010 are created using '@' as frame specifier to -var-create. */
3011int
3012varobj_floating_p (struct varobj *var)
3013{
3014 return var->root->floating;
3015}
3016
2024f65a
VP
3017/* Given the value and the type of a variable object,
3018 adjust the value and type to those necessary
3019 for getting children of the variable object.
3020 This includes dereferencing top-level references
3021 to all types and dereferencing pointers to
581e13c1 3022 structures.
2024f65a 3023
8264ba82
AG
3024 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3025 value will be fetched and if it differs from static type
3026 the value will be casted to it.
3027
581e13c1 3028 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
3029 can be null if we want to only translate type.
3030 *VALUE can be null as well -- if the parent
581e13c1 3031 value is not known.
02142340
VP
3032
3033 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 3034 depending on whether pointer was dereferenced
02142340 3035 in this function. */
2024f65a
VP
3036static void
3037adjust_value_for_child_access (struct value **value,
02142340 3038 struct type **type,
8264ba82
AG
3039 int *was_ptr,
3040 int lookup_actual_type)
2024f65a
VP
3041{
3042 gdb_assert (type && *type);
3043
02142340
VP
3044 if (was_ptr)
3045 *was_ptr = 0;
3046
2024f65a
VP
3047 *type = check_typedef (*type);
3048
3049 /* The type of value stored in varobj, that is passed
3050 to us, is already supposed to be
3051 reference-stripped. */
3052
3053 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3054
3055 /* Pointers to structures are treated just like
3056 structures when accessing children. Don't
3057 dererences pointers to other types. */
3058 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3059 {
3060 struct type *target_type = get_target_type (*type);
3061 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3062 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3063 {
3064 if (value && *value)
3f4178d6 3065 {
8e7b59a5 3066 volatile struct gdb_exception except;
a109c7c1 3067
8e7b59a5
KS
3068 TRY_CATCH (except, RETURN_MASK_ERROR)
3069 {
3070 *value = value_ind (*value);
3071 }
3072
3073 if (except.reason < 0)
3f4178d6
DJ
3074 *value = NULL;
3075 }
2024f65a 3076 *type = target_type;
02142340
VP
3077 if (was_ptr)
3078 *was_ptr = 1;
2024f65a
VP
3079 }
3080 }
3081
3082 /* The 'get_target_type' function calls check_typedef on
3083 result, so we can immediately check type code. No
3084 need to call check_typedef here. */
8264ba82
AG
3085
3086 /* Access a real type of the value (if necessary and possible). */
3087 if (value && *value && lookup_actual_type)
3088 {
3089 struct type *enclosing_type;
3090 int real_type_found = 0;
3091
3092 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3093 if (real_type_found)
3094 {
3095 *type = enclosing_type;
3096 *value = value_cast (enclosing_type, *value);
3097 }
3098 }
2024f65a
VP
3099}
3100
d32cafc7
JB
3101/* Implement the "value_is_changeable_p" varobj callback for most
3102 languages. */
3103
3104static int
3105default_value_is_changeable_p (struct varobj *var)
3106{
3107 int r;
3108 struct type *type;
3109
3110 if (CPLUS_FAKE_CHILD (var))
3111 return 0;
3112
3113 type = get_value_type (var);
3114
3115 switch (TYPE_CODE (type))
3116 {
3117 case TYPE_CODE_STRUCT:
3118 case TYPE_CODE_UNION:
3119 case TYPE_CODE_ARRAY:
3120 r = 0;
3121 break;
3122
3123 default:
3124 r = 1;
3125 }
3126
3127 return r;
3128}
3129
8b93c638 3130/* C */
d32cafc7 3131
8b93c638 3132static int
fba45db2 3133c_number_of_children (struct varobj *var)
8b93c638 3134{
2024f65a
VP
3135 struct type *type = get_value_type (var);
3136 int children = 0;
8b93c638 3137 struct type *target;
8b93c638 3138
8264ba82 3139 adjust_value_for_child_access (NULL, &type, NULL, 0);
8b93c638 3140 target = get_target_type (type);
8b93c638
JM
3141
3142 switch (TYPE_CODE (type))
3143 {
3144 case TYPE_CODE_ARRAY:
3145 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 3146 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
3147 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3148 else
74a44383
DJ
3149 /* If we don't know how many elements there are, don't display
3150 any. */
3151 children = 0;
8b93c638
JM
3152 break;
3153
3154 case TYPE_CODE_STRUCT:
3155 case TYPE_CODE_UNION:
3156 children = TYPE_NFIELDS (type);
3157 break;
3158
3159 case TYPE_CODE_PTR:
581e13c1 3160 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
3161 have one child, except for function ptrs, which have no children,
3162 and except for void*, as we don't know what to show.
3163
0755e6c1
FN
3164 We can show char* so we allow it to be dereferenced. If you decide
3165 to test for it, please mind that a little magic is necessary to
3166 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 3167 TYPE_NAME == "char". */
2024f65a
VP
3168 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3169 || TYPE_CODE (target) == TYPE_CODE_VOID)
3170 children = 0;
3171 else
3172 children = 1;
8b93c638
JM
3173 break;
3174
3175 default:
581e13c1 3176 /* Other types have no children. */
8b93c638
JM
3177 break;
3178 }
3179
3180 return children;
3181}
3182
3183static char *
fba45db2 3184c_name_of_variable (struct varobj *parent)
8b93c638 3185{
1b36a34b 3186 return xstrdup (parent->name);
8b93c638
JM
3187}
3188
bbec2603
VP
3189/* Return the value of element TYPE_INDEX of a structure
3190 value VALUE. VALUE's type should be a structure,
581e13c1 3191 or union, or a typedef to struct/union.
bbec2603
VP
3192
3193 Returns NULL if getting the value fails. Never throws. */
3194static struct value *
3195value_struct_element_index (struct value *value, int type_index)
8b93c638 3196{
bbec2603
VP
3197 struct value *result = NULL;
3198 volatile struct gdb_exception e;
bbec2603 3199 struct type *type = value_type (value);
a109c7c1 3200
bbec2603
VP
3201 type = check_typedef (type);
3202
3203 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3204 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 3205
bbec2603
VP
3206 TRY_CATCH (e, RETURN_MASK_ERROR)
3207 {
d6a843b5 3208 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
3209 result = value_static_field (type, type_index);
3210 else
3211 result = value_primitive_field (value, 0, type_index, type);
3212 }
3213 if (e.reason < 0)
3214 {
3215 return NULL;
3216 }
3217 else
3218 {
3219 return result;
3220 }
3221}
3222
3223/* Obtain the information about child INDEX of the variable
581e13c1 3224 object PARENT.
bbec2603
VP
3225 If CNAME is not null, sets *CNAME to the name of the child relative
3226 to the parent.
3227 If CVALUE is not null, sets *CVALUE to the value of the child.
3228 If CTYPE is not null, sets *CTYPE to the type of the child.
3229
3230 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3231 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3232 to NULL. */
3233static void
3234c_describe_child (struct varobj *parent, int index,
02142340
VP
3235 char **cname, struct value **cvalue, struct type **ctype,
3236 char **cfull_expression)
bbec2603
VP
3237{
3238 struct value *value = parent->value;
2024f65a 3239 struct type *type = get_value_type (parent);
02142340
VP
3240 char *parent_expression = NULL;
3241 int was_ptr;
8e7b59a5 3242 volatile struct gdb_exception except;
bbec2603
VP
3243
3244 if (cname)
3245 *cname = NULL;
3246 if (cvalue)
3247 *cvalue = NULL;
3248 if (ctype)
3249 *ctype = NULL;
02142340
VP
3250 if (cfull_expression)
3251 {
3252 *cfull_expression = NULL;
85254831 3253 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
02142340 3254 }
8264ba82 3255 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
bbec2603 3256
8b93c638
JM
3257 switch (TYPE_CODE (type))
3258 {
3259 case TYPE_CODE_ARRAY:
bbec2603 3260 if (cname)
3e43a32a
MS
3261 *cname
3262 = xstrdup (int_string (index
3263 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3264 10, 1, 0, 0));
bbec2603
VP
3265
3266 if (cvalue && value)
3267 {
3268 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 3269
8e7b59a5
KS
3270 TRY_CATCH (except, RETURN_MASK_ERROR)
3271 {
3272 *cvalue = value_subscript (value, real_index);
3273 }
bbec2603
VP
3274 }
3275
3276 if (ctype)
3277 *ctype = get_target_type (type);
3278
02142340 3279 if (cfull_expression)
43bbcdc2
PH
3280 *cfull_expression =
3281 xstrprintf ("(%s)[%s]", parent_expression,
3282 int_string (index
3283 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3284 10, 1, 0, 0));
02142340
VP
3285
3286
8b93c638
JM
3287 break;
3288
3289 case TYPE_CODE_STRUCT:
3290 case TYPE_CODE_UNION:
85254831 3291 {
0d5cff50 3292 const char *field_name;
bbec2603 3293
85254831
KS
3294 /* If the type is anonymous and the field has no name,
3295 set an appropriate name. */
3296 field_name = TYPE_FIELD_NAME (type, index);
3297 if (field_name == NULL || *field_name == '\0')
3298 {
3299 if (cname)
3300 {
3301 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3302 == TYPE_CODE_STRUCT)
3303 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3304 else
3305 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3306 }
bbec2603 3307
85254831
KS
3308 if (cfull_expression)
3309 *cfull_expression = xstrdup ("");
3310 }
3311 else
3312 {
3313 if (cname)
3314 *cname = xstrdup (field_name);
bbec2603 3315
85254831
KS
3316 if (cfull_expression)
3317 {
3318 char *join = was_ptr ? "->" : ".";
a109c7c1 3319
85254831
KS
3320 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3321 join, field_name);
3322 }
3323 }
02142340 3324
85254831
KS
3325 if (cvalue && value)
3326 {
3327 /* For C, varobj index is the same as type index. */
3328 *cvalue = value_struct_element_index (value, index);
3329 }
3330
3331 if (ctype)
3332 *ctype = TYPE_FIELD_TYPE (type, index);
3333 }
8b93c638
JM
3334 break;
3335
3336 case TYPE_CODE_PTR:
bbec2603
VP
3337 if (cname)
3338 *cname = xstrprintf ("*%s", parent->name);
8b93c638 3339
bbec2603 3340 if (cvalue && value)
3f4178d6 3341 {
8e7b59a5
KS
3342 TRY_CATCH (except, RETURN_MASK_ERROR)
3343 {
3344 *cvalue = value_ind (value);
3345 }
a109c7c1 3346
8e7b59a5 3347 if (except.reason < 0)
3f4178d6
DJ
3348 *cvalue = NULL;
3349 }
bbec2603 3350
2024f65a
VP
3351 /* Don't use get_target_type because it calls
3352 check_typedef and here, we want to show the true
3353 declared type of the variable. */
bbec2603 3354 if (ctype)
2024f65a 3355 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
3356
3357 if (cfull_expression)
3358 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 3359
8b93c638
JM
3360 break;
3361
3362 default:
581e13c1 3363 /* This should not happen. */
bbec2603
VP
3364 if (cname)
3365 *cname = xstrdup ("???");
02142340
VP
3366 if (cfull_expression)
3367 *cfull_expression = xstrdup ("???");
581e13c1 3368 /* Don't set value and type, we don't know then. */
8b93c638 3369 }
bbec2603 3370}
8b93c638 3371
bbec2603
VP
3372static char *
3373c_name_of_child (struct varobj *parent, int index)
3374{
3375 char *name;
a109c7c1 3376
02142340 3377 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3378 return name;
3379}
3380
02142340
VP
3381static char *
3382c_path_expr_of_child (struct varobj *child)
3383{
3384 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3385 &child->path_expr);
3386 return child->path_expr;
3387}
3388
c5b48eac
VP
3389/* If frame associated with VAR can be found, switch
3390 to it and return 1. Otherwise, return 0. */
3391static int
3392check_scope (struct varobj *var)
3393{
3394 struct frame_info *fi;
3395 int scope;
3396
3397 fi = frame_find_by_id (var->root->frame);
3398 scope = fi != NULL;
3399
3400 if (fi)
3401 {
3402 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3403
c5b48eac
VP
3404 if (pc < BLOCK_START (var->root->valid_block) ||
3405 pc >= BLOCK_END (var->root->valid_block))
3406 scope = 0;
3407 else
3408 select_frame (fi);
3409 }
3410 return scope;
3411}
3412
30b28db1 3413static struct value *
fba45db2 3414c_value_of_root (struct varobj **var_handle)
8b93c638 3415{
5e572bb4 3416 struct value *new_val = NULL;
73a93a32 3417 struct varobj *var = *var_handle;
c5b48eac 3418 int within_scope = 0;
6208b47d
VP
3419 struct cleanup *back_to;
3420
581e13c1 3421 /* Only root variables can be updated... */
b2c2bd75 3422 if (!is_root_p (var))
581e13c1 3423 /* Not a root var. */
73a93a32
JI
3424 return NULL;
3425
4f8d22e3 3426 back_to = make_cleanup_restore_current_thread ();
72330bd6 3427
581e13c1 3428 /* Determine whether the variable is still around. */
a5defcdc 3429 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3430 within_scope = 1;
c5b48eac
VP
3431 else if (var->root->thread_id == 0)
3432 {
3433 /* The program was single-threaded when the variable object was
3434 created. Technically, it's possible that the program became
3435 multi-threaded since then, but we don't support such
3436 scenario yet. */
3437 within_scope = check_scope (var);
3438 }
8b93c638
JM
3439 else
3440 {
c5b48eac
VP
3441 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3442 if (in_thread_list (ptid))
d2353924 3443 {
c5b48eac
VP
3444 switch_to_thread (ptid);
3445 within_scope = check_scope (var);
3446 }
8b93c638 3447 }
72330bd6 3448
8b93c638
JM
3449 if (within_scope)
3450 {
8e7b59a5
KS
3451 volatile struct gdb_exception except;
3452
73a93a32 3453 /* We need to catch errors here, because if evaluate
85d93f1d 3454 expression fails we want to just return NULL. */
8e7b59a5
KS
3455 TRY_CATCH (except, RETURN_MASK_ERROR)
3456 {
3457 new_val = evaluate_expression (var->root->exp);
3458 }
3459
8b93c638
JM
3460 return new_val;
3461 }
3462
6208b47d
VP
3463 do_cleanups (back_to);
3464
8b93c638
JM
3465 return NULL;
3466}
3467
30b28db1 3468static struct value *
fba45db2 3469c_value_of_child (struct varobj *parent, int index)
8b93c638 3470{
bbec2603 3471 struct value *value = NULL;
8b93c638 3472
a109c7c1 3473 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3474 return value;
3475}
3476
3477static struct type *
fba45db2 3478c_type_of_child (struct varobj *parent, int index)
8b93c638 3479{
bbec2603 3480 struct type *type = NULL;
a109c7c1 3481
02142340 3482 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3483 return type;
3484}
3485
8b93c638 3486static char *
de051565 3487c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3488{
14b3d9c9
JB
3489 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3490 it will print out its children instead of "{...}". So we need to
3491 catch that case explicitly. */
3492 struct type *type = get_type (var);
e64d9b3d 3493
581e13c1 3494 /* Strip top-level references. */
14b3d9c9
JB
3495 while (TYPE_CODE (type) == TYPE_CODE_REF)
3496 type = check_typedef (TYPE_TARGET_TYPE (type));
3497
3498 switch (TYPE_CODE (type))
8b93c638
JM
3499 {
3500 case TYPE_CODE_STRUCT:
3501 case TYPE_CODE_UNION:
3502 return xstrdup ("{...}");
3503 /* break; */
3504
3505 case TYPE_CODE_ARRAY:
3506 {
e64d9b3d 3507 char *number;
a109c7c1 3508
b435e160 3509 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3510 return (number);
8b93c638
JM
3511 }
3512 /* break; */
3513
3514 default:
3515 {
575bbeb6
KS
3516 if (var->value == NULL)
3517 {
3518 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3519 member when the parent is an invalid pointer. This is an
3520 error condition, so we should tell the caller. */
575bbeb6
KS
3521 return NULL;
3522 }
3523 else
3524 {
25d5ea92
VP
3525 if (var->not_fetched && value_lazy (var->value))
3526 /* Frozen variable and no value yet. We don't
3527 implicitly fetch the value. MI response will
3528 use empty string for the value, which is OK. */
3529 return NULL;
3530
b2c2bd75 3531 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3532 gdb_assert (!value_lazy (var->value));
de051565
MK
3533
3534 /* If the specified format is the current one,
581e13c1 3535 we can reuse print_value. */
de051565
MK
3536 if (format == var->format)
3537 return xstrdup (var->print_value);
3538 else
d452c4bc 3539 return value_get_print_value (var->value, format, var);
85265413 3540 }
e64d9b3d 3541 }
8b93c638
JM
3542 }
3543}
3544\f
3545
3546/* C++ */
3547
3548static int
fba45db2 3549cplus_number_of_children (struct varobj *var)
8b93c638 3550{
8264ba82 3551 struct value *value = NULL;
8b93c638
JM
3552 struct type *type;
3553 int children, dont_know;
8264ba82
AG
3554 int lookup_actual_type = 0;
3555 struct value_print_options opts;
8b93c638
JM
3556
3557 dont_know = 1;
3558 children = 0;
3559
8264ba82
AG
3560 get_user_print_options (&opts);
3561
8b93c638
JM
3562 if (!CPLUS_FAKE_CHILD (var))
3563 {
2024f65a 3564 type = get_value_type (var);
8264ba82
AG
3565
3566 /* It is necessary to access a real type (via RTTI). */
3567 if (opts.objectprint)
3568 {
3569 value = var->value;
3570 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3571 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3572 }
3573 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
8b93c638
JM
3574
3575 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3576 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3577 {
3578 int kids[3];
3579
3580 cplus_class_num_children (type, kids);
3581 if (kids[v_public] != 0)
3582 children++;
3583 if (kids[v_private] != 0)
3584 children++;
3585 if (kids[v_protected] != 0)
3586 children++;
3587
581e13c1 3588 /* Add any baseclasses. */
8b93c638
JM
3589 children += TYPE_N_BASECLASSES (type);
3590 dont_know = 0;
3591
581e13c1 3592 /* FIXME: save children in var. */
8b93c638
JM
3593 }
3594 }
3595 else
3596 {
3597 int kids[3];
3598
2024f65a 3599 type = get_value_type (var->parent);
8264ba82
AG
3600
3601 /* It is necessary to access a real type (via RTTI). */
3602 if (opts.objectprint)
3603 {
3604 struct varobj *parent = var->parent;
3605
3606 value = parent->value;
3607 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3608 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3609 }
3610 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
8b93c638
JM
3611
3612 cplus_class_num_children (type, kids);
6e382aa3 3613 if (strcmp (var->name, "public") == 0)
8b93c638 3614 children = kids[v_public];
6e382aa3 3615 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3616 children = kids[v_private];
3617 else
3618 children = kids[v_protected];
3619 dont_know = 0;
3620 }
3621
3622 if (dont_know)
3623 children = c_number_of_children (var);
3624
3625 return children;
3626}
3627
3628/* Compute # of public, private, and protected variables in this class.
3629 That means we need to descend into all baseclasses and find out
581e13c1 3630 how many are there, too. */
8b93c638 3631static void
1669605f 3632cplus_class_num_children (struct type *type, int children[3])
8b93c638 3633{
d48cc9dd
DJ
3634 int i, vptr_fieldno;
3635 struct type *basetype = NULL;
8b93c638
JM
3636
3637 children[v_public] = 0;
3638 children[v_private] = 0;
3639 children[v_protected] = 0;
3640
d48cc9dd 3641 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3642 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3643 {
d48cc9dd
DJ
3644 /* If we have a virtual table pointer, omit it. Even if virtual
3645 table pointers are not specifically marked in the debug info,
3646 they should be artificial. */
3647 if ((type == basetype && i == vptr_fieldno)
3648 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3649 continue;
3650
3651 if (TYPE_FIELD_PROTECTED (type, i))
3652 children[v_protected]++;
3653 else if (TYPE_FIELD_PRIVATE (type, i))
3654 children[v_private]++;
3655 else
3656 children[v_public]++;
3657 }
3658}
3659
3660static char *
fba45db2 3661cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3662{
3663 return c_name_of_variable (parent);
3664}
3665
2024f65a
VP
3666enum accessibility { private_field, protected_field, public_field };
3667
3668/* Check if field INDEX of TYPE has the specified accessibility.
3669 Return 0 if so and 1 otherwise. */
3670static int
3671match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3672{
2024f65a
VP
3673 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3674 return 1;
3675 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3676 return 1;
3677 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3678 && !TYPE_FIELD_PROTECTED (type, index))
3679 return 1;
3680 else
3681 return 0;
3682}
3683
3684static void
3685cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3686 char **cname, struct value **cvalue, struct type **ctype,
3687 char **cfull_expression)
2024f65a 3688{
2024f65a 3689 struct value *value;
8b93c638 3690 struct type *type;
02142340 3691 int was_ptr;
8264ba82 3692 int lookup_actual_type = 0;
02142340 3693 char *parent_expression = NULL;
8264ba82
AG
3694 struct varobj *var;
3695 struct value_print_options opts;
8b93c638 3696
2024f65a
VP
3697 if (cname)
3698 *cname = NULL;
3699 if (cvalue)
3700 *cvalue = NULL;
3701 if (ctype)
3702 *ctype = NULL;
02142340
VP
3703 if (cfull_expression)
3704 *cfull_expression = NULL;
2024f65a 3705
8264ba82
AG
3706 get_user_print_options (&opts);
3707
3708 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3709 if (opts.objectprint)
3710 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3711 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3712 value = var->value;
3713 type = get_value_type (var);
3714 if (cfull_expression)
3715 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
8b93c638 3716
8264ba82 3717 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
2024f65a
VP
3718
3719 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3720 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3721 {
02142340 3722 char *join = was_ptr ? "->" : ".";
a109c7c1 3723
8b93c638
JM
3724 if (CPLUS_FAKE_CHILD (parent))
3725 {
6e382aa3
JJ
3726 /* The fields of the class type are ordered as they
3727 appear in the class. We are given an index for a
3728 particular access control type ("public","protected",
3729 or "private"). We must skip over fields that don't
3730 have the access control we are looking for to properly
581e13c1 3731 find the indexed field. */
6e382aa3 3732 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3733 enum accessibility acc = public_field;
d48cc9dd
DJ
3734 int vptr_fieldno;
3735 struct type *basetype = NULL;
0d5cff50 3736 const char *field_name;
d48cc9dd
DJ
3737
3738 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3739 if (strcmp (parent->name, "private") == 0)
2024f65a 3740 acc = private_field;
6e382aa3 3741 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3742 acc = protected_field;
3743
3744 while (index >= 0)
6e382aa3 3745 {
d48cc9dd
DJ
3746 if ((type == basetype && type_index == vptr_fieldno)
3747 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3748 ; /* ignore vptr */
3749 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3750 --index;
3751 ++type_index;
6e382aa3 3752 }
2024f65a
VP
3753 --type_index;
3754
85254831
KS
3755 /* If the type is anonymous and the field has no name,
3756 set an appopriate name. */
3757 field_name = TYPE_FIELD_NAME (type, type_index);
3758 if (field_name == NULL || *field_name == '\0')
3759 {
3760 if (cname)
3761 {
3762 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3763 == TYPE_CODE_STRUCT)
3764 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3765 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3766 == TYPE_CODE_UNION)
3767 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3768 }
3769
3770 if (cfull_expression)
3771 *cfull_expression = xstrdup ("");
3772 }
3773 else
3774 {
3775 if (cname)
3776 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3777
3778 if (cfull_expression)
3779 *cfull_expression
3780 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3781 field_name);
3782 }
2024f65a
VP
3783
3784 if (cvalue && value)
3785 *cvalue = value_struct_element_index (value, type_index);
3786
3787 if (ctype)
3788 *ctype = TYPE_FIELD_TYPE (type, type_index);
3789 }
3790 else if (index < TYPE_N_BASECLASSES (type))
3791 {
3792 /* This is a baseclass. */
3793 if (cname)
3794 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3795
3796 if (cvalue && value)
0cc7d26f 3797 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3798
2024f65a
VP
3799 if (ctype)
3800 {
3801 *ctype = TYPE_FIELD_TYPE (type, index);
3802 }
02142340
VP
3803
3804 if (cfull_expression)
3805 {
3806 char *ptr = was_ptr ? "*" : "";
a109c7c1 3807
581e13c1 3808 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3809 expression like
3810 (Base1)d
3811 will create an lvalue, for all appearences, so we don't
3812 need to use more fancy:
3813 *(Base1*)(&d)
0d932b2f
MK
3814 construct.
3815
3816 When we are in the scope of the base class or of one
3817 of its children, the type field name will be interpreted
3818 as a constructor, if it exists. Therefore, we must
3819 indicate that the name is a class name by using the
3820 'class' keyword. See PR mi/11912 */
3821 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
02142340
VP
3822 ptr,
3823 TYPE_FIELD_NAME (type, index),
3824 ptr,
3825 parent_expression);
3826 }
8b93c638 3827 }
8b93c638
JM
3828 else
3829 {
348144ba 3830 char *access = NULL;
6e382aa3 3831 int children[3];
a109c7c1 3832
2024f65a 3833 cplus_class_num_children (type, children);
6e382aa3 3834
8b93c638 3835 /* Everything beyond the baseclasses can
6e382aa3
JJ
3836 only be "public", "private", or "protected"
3837
3838 The special "fake" children are always output by varobj in
581e13c1 3839 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3840 index -= TYPE_N_BASECLASSES (type);
3841 switch (index)
3842 {
3843 case 0:
6e382aa3 3844 if (children[v_public] > 0)
2024f65a 3845 access = "public";
6e382aa3 3846 else if (children[v_private] > 0)
2024f65a 3847 access = "private";
6e382aa3 3848 else
2024f65a 3849 access = "protected";
6e382aa3 3850 break;
8b93c638 3851 case 1:
6e382aa3 3852 if (children[v_public] > 0)
8b93c638 3853 {
6e382aa3 3854 if (children[v_private] > 0)
2024f65a 3855 access = "private";
6e382aa3 3856 else
2024f65a 3857 access = "protected";
8b93c638 3858 }
6e382aa3 3859 else if (children[v_private] > 0)
2024f65a 3860 access = "protected";
6e382aa3 3861 break;
8b93c638 3862 case 2:
581e13c1 3863 /* Must be protected. */
2024f65a 3864 access = "protected";
6e382aa3 3865 break;
8b93c638 3866 default:
581e13c1 3867 /* error! */
8b93c638
JM
3868 break;
3869 }
348144ba
MS
3870
3871 gdb_assert (access);
2024f65a
VP
3872 if (cname)
3873 *cname = xstrdup (access);
8b93c638 3874
02142340 3875 /* Value and type and full expression are null here. */
2024f65a 3876 }
8b93c638 3877 }
8b93c638
JM
3878 else
3879 {
02142340 3880 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3881 }
3882}
8b93c638 3883
2024f65a
VP
3884static char *
3885cplus_name_of_child (struct varobj *parent, int index)
3886{
3887 char *name = NULL;
a109c7c1 3888
02142340 3889 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3890 return name;
3891}
3892
02142340
VP
3893static char *
3894cplus_path_expr_of_child (struct varobj *child)
3895{
3896 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3897 &child->path_expr);
3898 return child->path_expr;
3899}
3900
30b28db1 3901static struct value *
fba45db2 3902cplus_value_of_root (struct varobj **var_handle)
8b93c638 3903{
73a93a32 3904 return c_value_of_root (var_handle);
8b93c638
JM
3905}
3906
30b28db1 3907static struct value *
fba45db2 3908cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3909{
2024f65a 3910 struct value *value = NULL;
a109c7c1 3911
02142340 3912 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3913 return value;
3914}
3915
3916static struct type *
fba45db2 3917cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3918{
2024f65a 3919 struct type *type = NULL;
a109c7c1 3920
02142340 3921 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3922 return type;
3923}
3924
8b93c638 3925static char *
a109c7c1
MS
3926cplus_value_of_variable (struct varobj *var,
3927 enum varobj_display_formats format)
8b93c638
JM
3928{
3929
3930 /* If we have one of our special types, don't print out
581e13c1 3931 any value. */
8b93c638
JM
3932 if (CPLUS_FAKE_CHILD (var))
3933 return xstrdup ("");
3934
de051565 3935 return c_value_of_variable (var, format);
8b93c638
JM
3936}
3937\f
3938/* Java */
3939
3940static int
fba45db2 3941java_number_of_children (struct varobj *var)
8b93c638
JM
3942{
3943 return cplus_number_of_children (var);
3944}
3945
3946static char *
fba45db2 3947java_name_of_variable (struct varobj *parent)
8b93c638
JM
3948{
3949 char *p, *name;
3950
3951 name = cplus_name_of_variable (parent);
3952 /* If the name has "-" in it, it is because we
581e13c1 3953 needed to escape periods in the name... */
8b93c638
JM
3954 p = name;
3955
3956 while (*p != '\000')
3957 {
3958 if (*p == '-')
3959 *p = '.';
3960 p++;
3961 }
3962
3963 return name;
3964}
3965
3966static char *
fba45db2 3967java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3968{
3969 char *name, *p;
3970
3971 name = cplus_name_of_child (parent, index);
581e13c1 3972 /* Escape any periods in the name... */
8b93c638
JM
3973 p = name;
3974
3975 while (*p != '\000')
3976 {
3977 if (*p == '.')
3978 *p = '-';
3979 p++;
3980 }
3981
3982 return name;
3983}
3984
02142340
VP
3985static char *
3986java_path_expr_of_child (struct varobj *child)
3987{
3988 return NULL;
3989}
3990
30b28db1 3991static struct value *
fba45db2 3992java_value_of_root (struct varobj **var_handle)
8b93c638 3993{
73a93a32 3994 return cplus_value_of_root (var_handle);
8b93c638
JM
3995}
3996
30b28db1 3997static struct value *
fba45db2 3998java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3999{
4000 return cplus_value_of_child (parent, index);
4001}
4002
4003static struct type *
fba45db2 4004java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
4005{
4006 return cplus_type_of_child (parent, index);
4007}
4008
8b93c638 4009static char *
de051565 4010java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 4011{
de051565 4012 return cplus_value_of_variable (var, format);
8b93c638 4013}
54333c3b 4014
40591b7d
JCD
4015/* Ada specific callbacks for VAROBJs. */
4016
4017static int
4018ada_number_of_children (struct varobj *var)
4019{
181875a4 4020 return ada_varobj_get_number_of_children (var->value, var->type);
40591b7d
JCD
4021}
4022
4023static char *
4024ada_name_of_variable (struct varobj *parent)
4025{
4026 return c_name_of_variable (parent);
4027}
4028
4029static char *
4030ada_name_of_child (struct varobj *parent, int index)
4031{
181875a4
JB
4032 return ada_varobj_get_name_of_child (parent->value, parent->type,
4033 parent->name, index);
40591b7d
JCD
4034}
4035
4036static char*
4037ada_path_expr_of_child (struct varobj *child)
4038{
181875a4
JB
4039 struct varobj *parent = child->parent;
4040 const char *parent_path_expr = varobj_get_path_expr (parent);
4041
4042 return ada_varobj_get_path_expr_of_child (parent->value,
4043 parent->type,
4044 parent->name,
4045 parent_path_expr,
4046 child->index);
40591b7d
JCD
4047}
4048
4049static struct value *
4050ada_value_of_root (struct varobj **var_handle)
4051{
4052 return c_value_of_root (var_handle);
4053}
4054
4055static struct value *
4056ada_value_of_child (struct varobj *parent, int index)
4057{
181875a4
JB
4058 return ada_varobj_get_value_of_child (parent->value, parent->type,
4059 parent->name, index);
40591b7d
JCD
4060}
4061
4062static struct type *
4063ada_type_of_child (struct varobj *parent, int index)
4064{
181875a4
JB
4065 return ada_varobj_get_type_of_child (parent->value, parent->type,
4066 index);
40591b7d
JCD
4067}
4068
4069static char *
4070ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4071{
181875a4
JB
4072 struct value_print_options opts;
4073
4074 get_formatted_print_options (&opts, format_code[(int) format]);
4075 opts.deref_ref = 0;
4076 opts.raw = 1;
4077
4078 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
40591b7d
JCD
4079}
4080
d32cafc7
JB
4081/* Implement the "value_is_changeable_p" routine for Ada. */
4082
4083static int
4084ada_value_is_changeable_p (struct varobj *var)
4085{
4086 struct type *type = var->value ? value_type (var->value) : var->type;
4087
4088 if (ada_is_array_descriptor_type (type)
4089 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4090 {
4091 /* This is in reality a pointer to an unconstrained array.
4092 its value is changeable. */
4093 return 1;
4094 }
4095
4096 if (ada_is_string_type (type))
4097 {
4098 /* We display the contents of the string in the array's
4099 "value" field. The contents can change, so consider
4100 that the array is changeable. */
4101 return 1;
4102 }
4103
4104 return default_value_is_changeable_p (var);
4105}
4106
7a290c40
JB
4107/* Implement the "value_has_mutated" routine for Ada. */
4108
4109static int
4110ada_value_has_mutated (struct varobj *var, struct value *new_val,
4111 struct type *new_type)
4112{
181875a4
JB
4113 int i;
4114 int from = -1;
4115 int to = -1;
4116
4117 /* If the number of fields have changed, then for sure the type
4118 has mutated. */
4119 if (ada_varobj_get_number_of_children (new_val, new_type)
4120 != var->num_children)
4121 return 1;
4122
4123 /* If the number of fields have remained the same, then we need
4124 to check the name of each field. If they remain the same,
4125 then chances are the type hasn't mutated. This is technically
4126 an incomplete test, as the child's type might have changed
4127 despite the fact that the name remains the same. But we'll
4128 handle this situation by saying that the child has mutated,
4129 not this value.
4130
4131 If only part (or none!) of the children have been fetched,
4132 then only check the ones we fetched. It does not matter
4133 to the frontend whether a child that it has not fetched yet
4134 has mutated or not. So just assume it hasn't. */
4135
4136 restrict_range (var->children, &from, &to);
4137 for (i = from; i < to; i++)
4138 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4139 var->name, i),
4140 VEC_index (varobj_p, var->children, i)->name) != 0)
4141 return 1;
4142
7a290c40
JB
4143 return 0;
4144}
4145
54333c3b
JK
4146/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4147 with an arbitrary caller supplied DATA pointer. */
4148
4149void
4150all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4151{
4152 struct varobj_root *var_root, *var_root_next;
4153
4154 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4155
4156 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4157 {
4158 var_root_next = var_root->next;
4159
4160 (*func) (var_root->rootvar, data);
4161 }
4162}
8b93c638
JM
4163\f
4164extern void _initialize_varobj (void);
4165void
4166_initialize_varobj (void)
4167{
4168 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4169
4170 varobj_table = xmalloc (sizeof_table);
4171 memset (varobj_table, 0, sizeof_table);
4172
ccce17b0
YQ
4173 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
4174 &varobjdebug,
4175 _("Set varobj debugging."),
4176 _("Show varobj debugging."),
4177 _("When non-zero, varobj debugging is enabled."),
4178 NULL, show_varobjdebug,
4179 &setlist, &showlist);
8b93c638 4180}
8756216b 4181
54333c3b 4182/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
4183 defined on globals. It is a helper for varobj_invalidate.
4184
4185 This function is called after changing the symbol file, in this case the
4186 pointers to "struct type" stored by the varobj are no longer valid. All
4187 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 4188
54333c3b
JK
4189static void
4190varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 4191{
4e969b4f
AB
4192 /* global and floating var must be re-evaluated. */
4193 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 4194 {
54333c3b 4195 struct varobj *tmp_var;
2dbd25e5 4196
54333c3b
JK
4197 /* Try to create a varobj with same expression. If we succeed
4198 replace the old varobj, otherwise invalidate it. */
4199 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4200 USE_CURRENT_FRAME);
4201 if (tmp_var != NULL)
4202 {
4203 tmp_var->obj_name = xstrdup (var->obj_name);
4204 varobj_delete (var, NULL, 0);
4205 install_variable (tmp_var);
2dbd25e5 4206 }
54333c3b
JK
4207 else
4208 var->root->is_valid = 0;
2dbd25e5 4209 }
54333c3b
JK
4210 else /* locals must be invalidated. */
4211 var->root->is_valid = 0;
4212}
4213
4214/* Invalidate the varobjs that are tied to locals and re-create the ones that
4215 are defined on globals.
4216 Invalidated varobjs will be always printed in_scope="invalid". */
4217
4218void
4219varobj_invalidate (void)
4220{
4221 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 4222}
This page took 1.615424 seconds and 4 git commands to generate.