Revert the last change.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 4 2009, 2010, 2011 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638 55
581e13c1 56/* String representations of gdb's format codes. */
8b93c638 57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 59
581e13c1 60/* String representations of gdb's known languages. */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
581e13c1 75 varobj. Members which must be free'd are noted. */
8b93c638 76struct varobj_root
72330bd6 77{
8b93c638 78
581e13c1 79 /* Alloc'd expression for this parent. */
72330bd6 80 struct expression *exp;
8b93c638 81
581e13c1 82 /* Block for which this expression is valid. */
72330bd6 83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac 89 /* The thread ID that this varobj_root belong to. This field
581e13c1 90 is only valid if valid_block is not NULL.
c5b48eac
VP
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
581e13c1 98 always updated in the specific scope/thread/frame. */
a5defcdc 99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
581e13c1 105 /* Language info for this variable and its children. */
72330bd6 106 struct language_specific *lang;
8b93c638 107
581e13c1 108 /* The varobj for this root node. */
72330bd6 109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
581e13c1
MS
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
8b93c638 118struct varobj
72330bd6 119{
8b93c638 120
581e13c1 121 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 122 child, then this name will be the child's source name.
581e13c1
MS
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
72330bd6 125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
581e13c1
MS
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
72330bd6 133 char *obj_name;
8b93c638 134
581e13c1 135 /* Index of this variable in its parent or -1. */
72330bd6 136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
581e13c1 149 /* The number of (immediate) children this variable has. */
72330bd6 150 int num_children;
8b93c638 151
581e13c1 152 /* If this object is a child, this points to its immediate parent. */
72330bd6 153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
581e13c1
MS
164 /* Description of the root variable. Points to root variable for
165 children. */
72330bd6 166 struct varobj_root *root;
8b93c638 167
581e13c1 168 /* The format of the output for this object. */
72330bd6 169 enum varobj_display_formats format;
fb9b6b35 170
581e13c1 171 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 172 int updated;
85265413
NR
173
174 /* Last print value. */
175 char *print_value;
25d5ea92
VP
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
b6313243 186
0cc7d26f
TT
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
b6313243
TT
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
0cc7d26f
TT
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
72330bd6 212};
8b93c638 213
8b93c638 214struct cpstack
72330bd6
AC
215{
216 char *name;
217 struct cpstack *next;
218};
8b93c638
JM
219
220/* A list of varobjs */
221
222struct vlist
72330bd6
AC
223{
224 struct varobj *var;
225 struct vlist *next;
226};
8b93c638
JM
227
228/* Private function prototypes */
229
581e13c1 230/* Helper functions for the above subcommands. */
8b93c638 231
a14ed312 232static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 233
a14ed312
KB
234static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
8b93c638 236
a14ed312 237static int install_variable (struct varobj *);
8b93c638 238
a14ed312 239static void uninstall_variable (struct varobj *);
8b93c638 240
a14ed312 241static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 242
b6313243
TT
243static struct varobj *
244create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
8b93c638
JM
247/* Utility routines */
248
a14ed312 249static struct varobj *new_variable (void);
8b93c638 250
a14ed312 251static struct varobj *new_root_variable (void);
8b93c638 252
a14ed312 253static void free_variable (struct varobj *var);
8b93c638 254
74b7792f
AC
255static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
a14ed312 257static struct type *get_type (struct varobj *var);
8b93c638 258
6e2a9270
VP
259static struct type *get_value_type (struct varobj *var);
260
a14ed312 261static struct type *get_target_type (struct type *);
8b93c638 262
a14ed312 263static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 264
a14ed312 265static void cppush (struct cpstack **pstack, char *name);
8b93c638 266
a14ed312 267static char *cppop (struct cpstack **pstack);
8b93c638 268
acd65feb
VP
269static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
581e13c1 272/* Language-specific routines. */
8b93c638 273
a14ed312 274static enum varobj_languages variable_language (struct varobj *var);
8b93c638 275
a14ed312 276static int number_of_children (struct varobj *);
8b93c638 277
a14ed312 278static char *name_of_variable (struct varobj *);
8b93c638 279
a14ed312 280static char *name_of_child (struct varobj *, int);
8b93c638 281
30b28db1 282static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 283
30b28db1 284static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 285
de051565
MK
286static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
8b93c638 288
85265413 289static char *value_get_print_value (struct value *value,
b6313243 290 enum varobj_display_formats format,
d452c4bc 291 struct varobj *var);
85265413 292
b2c2bd75
VP
293static int varobj_value_is_changeable_p (struct varobj *var);
294
295static int is_root_p (struct varobj *var);
8b93c638 296
d8b65138
JK
297#if HAVE_PYTHON
298
9a1edae6
PM
299static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
b6313243 302
d8b65138
JK
303#endif /* HAVE_PYTHON */
304
8b93c638
JM
305/* C implementation */
306
a14ed312 307static int c_number_of_children (struct varobj *var);
8b93c638 308
a14ed312 309static char *c_name_of_variable (struct varobj *parent);
8b93c638 310
a14ed312 311static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 312
02142340
VP
313static char *c_path_expr_of_child (struct varobj *child);
314
30b28db1 315static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 316
30b28db1 317static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 318
a14ed312 319static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 320
de051565
MK
321static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
8b93c638
JM
323
324/* C++ implementation */
325
a14ed312 326static int cplus_number_of_children (struct varobj *var);
8b93c638 327
a14ed312 328static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 329
a14ed312 330static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 331
a14ed312 332static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 333
02142340
VP
334static char *cplus_path_expr_of_child (struct varobj *child);
335
30b28db1 336static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 337
30b28db1 338static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 339
a14ed312 340static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 341
de051565
MK
342static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
8b93c638
JM
344
345/* Java implementation */
346
a14ed312 347static int java_number_of_children (struct varobj *var);
8b93c638 348
a14ed312 349static char *java_name_of_variable (struct varobj *parent);
8b93c638 350
a14ed312 351static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 352
02142340
VP
353static char *java_path_expr_of_child (struct varobj *child);
354
30b28db1 355static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 356
30b28db1 357static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 358
a14ed312 359static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 360
de051565
MK
361static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
8b93c638
JM
363
364/* The language specific vector */
365
366struct language_specific
72330bd6 367{
8b93c638 368
581e13c1 369 /* The language of this variable. */
72330bd6 370 enum varobj_languages language;
8b93c638 371
581e13c1 372 /* The number of children of PARENT. */
72330bd6 373 int (*number_of_children) (struct varobj * parent);
8b93c638 374
581e13c1 375 /* The name (expression) of a root varobj. */
72330bd6 376 char *(*name_of_variable) (struct varobj * parent);
8b93c638 377
581e13c1 378 /* The name of the INDEX'th child of PARENT. */
72330bd6 379 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 380
02142340
VP
381 /* Returns the rooted expression of CHILD, which is a variable
382 obtain that has some parent. */
383 char *(*path_expr_of_child) (struct varobj * child);
384
581e13c1 385 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 386 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 387
581e13c1 388 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 389 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 390
581e13c1 391 /* The type of the INDEX'th child of PARENT. */
72330bd6 392 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 393
581e13c1 394 /* The current value of VAR. */
de051565
MK
395 char *(*value_of_variable) (struct varobj * var,
396 enum varobj_display_formats format);
72330bd6 397};
8b93c638 398
581e13c1 399/* Array of known source language routines. */
d5d6fca5 400static struct language_specific languages[vlang_end] = {
581e13c1 401 /* Unknown (try treating as C). */
8b93c638 402 {
72330bd6
AC
403 vlang_unknown,
404 c_number_of_children,
405 c_name_of_variable,
406 c_name_of_child,
02142340 407 c_path_expr_of_child,
72330bd6
AC
408 c_value_of_root,
409 c_value_of_child,
410 c_type_of_child,
72330bd6 411 c_value_of_variable}
8b93c638
JM
412 ,
413 /* C */
414 {
72330bd6
AC
415 vlang_c,
416 c_number_of_children,
417 c_name_of_variable,
418 c_name_of_child,
02142340 419 c_path_expr_of_child,
72330bd6
AC
420 c_value_of_root,
421 c_value_of_child,
422 c_type_of_child,
72330bd6 423 c_value_of_variable}
8b93c638
JM
424 ,
425 /* C++ */
426 {
72330bd6
AC
427 vlang_cplus,
428 cplus_number_of_children,
429 cplus_name_of_variable,
430 cplus_name_of_child,
02142340 431 cplus_path_expr_of_child,
72330bd6
AC
432 cplus_value_of_root,
433 cplus_value_of_child,
434 cplus_type_of_child,
72330bd6 435 cplus_value_of_variable}
8b93c638
JM
436 ,
437 /* Java */
438 {
72330bd6
AC
439 vlang_java,
440 java_number_of_children,
441 java_name_of_variable,
442 java_name_of_child,
02142340 443 java_path_expr_of_child,
72330bd6
AC
444 java_value_of_root,
445 java_value_of_child,
446 java_type_of_child,
72330bd6 447 java_value_of_variable}
8b93c638
JM
448};
449
581e13c1 450/* A little convenience enum for dealing with C++/Java. */
8b93c638 451enum vsections
72330bd6
AC
452{
453 v_public = 0, v_private, v_protected
454};
8b93c638
JM
455
456/* Private data */
457
581e13c1 458/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 459static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 460
581e13c1 461/* Header of the list of root variable objects. */
8b93c638 462static struct varobj_root *rootlist;
8b93c638 463
581e13c1
MS
464/* Prime number indicating the number of buckets in the hash table. */
465/* A prime large enough to avoid too many colisions. */
8b93c638
JM
466#define VAROBJ_TABLE_SIZE 227
467
581e13c1 468/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
469static struct vlist **varobj_table;
470
581e13c1 471/* Is the variable X one of our "fake" children? */
8b93c638
JM
472#define CPLUS_FAKE_CHILD(x) \
473((x) != NULL && (x)->type == NULL && (x)->value == NULL)
474\f
475
476/* API Implementation */
b2c2bd75
VP
477static int
478is_root_p (struct varobj *var)
479{
480 return (var->root->rootvar == var);
481}
8b93c638 482
d452c4bc
UW
483#ifdef HAVE_PYTHON
484/* Helper function to install a Python environment suitable for
485 use during operations on VAR. */
486struct cleanup *
487varobj_ensure_python_env (struct varobj *var)
488{
489 return ensure_python_env (var->root->exp->gdbarch,
490 var->root->exp->language_defn);
491}
492#endif
493
581e13c1 494/* Creates a varobj (not its children). */
8b93c638 495
7d8547c9
AC
496/* Return the full FRAME which corresponds to the given CORE_ADDR
497 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
498
499static struct frame_info *
500find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
501{
502 struct frame_info *frame = NULL;
503
504 if (frame_addr == (CORE_ADDR) 0)
505 return NULL;
506
9d49bdc2
PA
507 for (frame = get_current_frame ();
508 frame != NULL;
509 frame = get_prev_frame (frame))
7d8547c9 510 {
1fac167a
UW
511 /* The CORE_ADDR we get as argument was parsed from a string GDB
512 output as $fp. This output got truncated to gdbarch_addr_bit.
513 Truncate the frame base address in the same manner before
514 comparing it against our argument. */
515 CORE_ADDR frame_base = get_frame_base_address (frame);
516 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 517
1fac167a
UW
518 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
519 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
520
521 if (frame_base == frame_addr)
7d8547c9
AC
522 return frame;
523 }
9d49bdc2
PA
524
525 return NULL;
7d8547c9
AC
526}
527
8b93c638
JM
528struct varobj *
529varobj_create (char *objname,
72330bd6 530 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
531{
532 struct varobj *var;
8b93c638
JM
533 struct cleanup *old_chain;
534
581e13c1 535 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 536 var = new_root_variable ();
74b7792f 537 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
538
539 if (expression != NULL)
540 {
e4195b40 541 struct frame_info *fi;
35633fef 542 struct frame_id old_id = null_frame_id;
e4195b40 543 struct block *block;
8b93c638
JM
544 char *p;
545 enum varobj_languages lang;
e55dccf0 546 struct value *value = NULL;
8b93c638 547
9d49bdc2
PA
548 /* Parse and evaluate the expression, filling in as much of the
549 variable's data as possible. */
550
551 if (has_stack_frames ())
552 {
581e13c1 553 /* Allow creator to specify context of variable. */
9d49bdc2
PA
554 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
555 fi = get_selected_frame (NULL);
556 else
557 /* FIXME: cagney/2002-11-23: This code should be doing a
558 lookup using the frame ID and not just the frame's
559 ``address''. This, of course, means an interface
560 change. However, with out that interface change ISAs,
561 such as the ia64 with its two stacks, won't work.
562 Similar goes for the case where there is a frameless
563 function. */
564 fi = find_frame_addr_in_frame_chain (frame);
565 }
8b93c638 566 else
9d49bdc2 567 fi = NULL;
8b93c638 568
581e13c1 569 /* frame = -2 means always use selected frame. */
73a93a32 570 if (type == USE_SELECTED_FRAME)
a5defcdc 571 var->root->floating = 1;
73a93a32 572
8b93c638
JM
573 block = NULL;
574 if (fi != NULL)
ae767bfb 575 block = get_frame_block (fi, 0);
8b93c638
JM
576
577 p = expression;
578 innermost_block = NULL;
73a93a32 579 /* Wrap the call to parse expression, so we can
581e13c1 580 return a sensible error. */
73a93a32
JI
581 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
582 {
f748fb40 583 do_cleanups (old_chain);
73a93a32
JI
584 return NULL;
585 }
8b93c638 586
581e13c1 587 /* Don't allow variables to be created for types. */
8b93c638
JM
588 if (var->root->exp->elts[0].opcode == OP_TYPE)
589 {
590 do_cleanups (old_chain);
bc8332bb
AC
591 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
592 " as an expression.\n");
8b93c638
JM
593 return NULL;
594 }
595
596 var->format = variable_default_display (var);
597 var->root->valid_block = innermost_block;
1b36a34b 598 var->name = xstrdup (expression);
02142340 599 /* For a root var, the name and the expr are the same. */
1b36a34b 600 var->path_expr = xstrdup (expression);
8b93c638
JM
601
602 /* When the frame is different from the current frame,
603 we must select the appropriate frame before parsing
604 the expression, otherwise the value will not be current.
581e13c1 605 Since select_frame is so benign, just call it for all cases. */
4e22772d 606 if (innermost_block)
8b93c638 607 {
4e22772d
JK
608 /* User could specify explicit FRAME-ADDR which was not found but
609 EXPRESSION is frame specific and we would not be able to evaluate
610 it correctly next time. With VALID_BLOCK set we must also set
611 FRAME and THREAD_ID. */
612 if (fi == NULL)
613 error (_("Failed to find the specified frame"));
614
7a424e99 615 var->root->frame = get_frame_id (fi);
c5b48eac 616 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 617 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 618 select_frame (fi);
8b93c638
JM
619 }
620
340a7723 621 /* We definitely need to catch errors here.
8b93c638 622 If evaluate_expression succeeds we got the value we wanted.
581e13c1 623 But if it fails, we still go on with a call to evaluate_type(). */
acd65feb 624 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
625 {
626 /* Error getting the value. Try to at least get the
627 right type. */
628 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 629
e55dccf0
VP
630 var->type = value_type (type_only_value);
631 }
632 else
633 var->type = value_type (value);
acd65feb 634
acd65feb 635 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
636
637 /* Set language info */
638 lang = variable_language (var);
d5d6fca5 639 var->root->lang = &languages[lang];
8b93c638 640
581e13c1 641 /* Set ourselves as our root. */
8b93c638
JM
642 var->root->rootvar = var;
643
581e13c1 644 /* Reset the selected frame. */
35633fef
JK
645 if (frame_id_p (old_id))
646 select_frame (frame_find_by_id (old_id));
8b93c638
JM
647 }
648
73a93a32 649 /* If the variable object name is null, that means this
581e13c1 650 is a temporary variable, so don't install it. */
73a93a32
JI
651
652 if ((var != NULL) && (objname != NULL))
8b93c638 653 {
1b36a34b 654 var->obj_name = xstrdup (objname);
8b93c638
JM
655
656 /* If a varobj name is duplicated, the install will fail so
581e13c1 657 we must cleanup. */
8b93c638
JM
658 if (!install_variable (var))
659 {
660 do_cleanups (old_chain);
661 return NULL;
662 }
663 }
664
665 discard_cleanups (old_chain);
666 return var;
667}
668
581e13c1 669/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
670
671char *
672varobj_gen_name (void)
673{
674 static int id = 0;
e64d9b3d 675 char *obj_name;
8b93c638 676
581e13c1 677 /* Generate a name for this object. */
8b93c638 678 id++;
b435e160 679 obj_name = xstrprintf ("var%d", id);
8b93c638 680
e64d9b3d 681 return obj_name;
8b93c638
JM
682}
683
61d8f275
JK
684/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
685 error if OBJNAME cannot be found. */
8b93c638
JM
686
687struct varobj *
688varobj_get_handle (char *objname)
689{
690 struct vlist *cv;
691 const char *chp;
692 unsigned int index = 0;
693 unsigned int i = 1;
694
695 for (chp = objname; *chp; chp++)
696 {
697 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
698 }
699
700 cv = *(varobj_table + index);
701 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
702 cv = cv->next;
703
704 if (cv == NULL)
8a3fe4f8 705 error (_("Variable object not found"));
8b93c638
JM
706
707 return cv->var;
708}
709
581e13c1 710/* Given the handle, return the name of the object. */
8b93c638
JM
711
712char *
713varobj_get_objname (struct varobj *var)
714{
715 return var->obj_name;
716}
717
581e13c1 718/* Given the handle, return the expression represented by the object. */
8b93c638
JM
719
720char *
721varobj_get_expression (struct varobj *var)
722{
723 return name_of_variable (var);
724}
725
726/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
727 otherwise deletes only the children; returns a malloc'ed list of
728 all the (malloc'ed) names of the variables that have been deleted
581e13c1 729 (NULL terminated). */
8b93c638
JM
730
731int
732varobj_delete (struct varobj *var, char ***dellist, int only_children)
733{
734 int delcount;
735 int mycount;
736 struct cpstack *result = NULL;
737 char **cp;
738
581e13c1 739 /* Initialize a stack for temporary results. */
8b93c638
JM
740 cppush (&result, NULL);
741
742 if (only_children)
581e13c1 743 /* Delete only the variable children. */
8b93c638
JM
744 delcount = delete_variable (&result, var, 1 /* only the children */ );
745 else
581e13c1 746 /* Delete the variable and all its children. */
8b93c638
JM
747 delcount = delete_variable (&result, var, 0 /* parent+children */ );
748
581e13c1 749 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
750 if (dellist != NULL)
751 {
752 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
753
754 cp = *dellist;
755 mycount = delcount;
756 *cp = cppop (&result);
757 while ((*cp != NULL) && (mycount > 0))
758 {
759 mycount--;
760 cp++;
761 *cp = cppop (&result);
762 }
763
764 if (mycount || (*cp != NULL))
8a3fe4f8 765 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 766 mycount);
8b93c638
JM
767 }
768
769 return delcount;
770}
771
d8b65138
JK
772#if HAVE_PYTHON
773
b6313243
TT
774/* Convenience function for varobj_set_visualizer. Instantiate a
775 pretty-printer for a given value. */
776static PyObject *
777instantiate_pretty_printer (PyObject *constructor, struct value *value)
778{
b6313243
TT
779 PyObject *val_obj = NULL;
780 PyObject *printer;
b6313243 781
b6313243 782 val_obj = value_to_value_object (value);
b6313243
TT
783 if (! val_obj)
784 return NULL;
785
786 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
787 Py_DECREF (val_obj);
788 return printer;
b6313243
TT
789}
790
d8b65138
JK
791#endif
792
581e13c1 793/* Set/Get variable object display format. */
8b93c638
JM
794
795enum varobj_display_formats
796varobj_set_display_format (struct varobj *var,
797 enum varobj_display_formats format)
798{
799 switch (format)
800 {
801 case FORMAT_NATURAL:
802 case FORMAT_BINARY:
803 case FORMAT_DECIMAL:
804 case FORMAT_HEXADECIMAL:
805 case FORMAT_OCTAL:
806 var->format = format;
807 break;
808
809 default:
810 var->format = variable_default_display (var);
811 }
812
ae7d22a6
VP
813 if (varobj_value_is_changeable_p (var)
814 && var->value && !value_lazy (var->value))
815 {
6c761d9c 816 xfree (var->print_value);
d452c4bc 817 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
818 }
819
8b93c638
JM
820 return var->format;
821}
822
823enum varobj_display_formats
824varobj_get_display_format (struct varobj *var)
825{
826 return var->format;
827}
828
b6313243
TT
829char *
830varobj_get_display_hint (struct varobj *var)
831{
832 char *result = NULL;
833
834#if HAVE_PYTHON
d452c4bc
UW
835 struct cleanup *back_to = varobj_ensure_python_env (var);
836
b6313243
TT
837 if (var->pretty_printer)
838 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
839
840 do_cleanups (back_to);
b6313243
TT
841#endif
842
843 return result;
844}
845
0cc7d26f
TT
846/* Return true if the varobj has items after TO, false otherwise. */
847
848int
849varobj_has_more (struct varobj *var, int to)
850{
851 if (VEC_length (varobj_p, var->children) > to)
852 return 1;
853 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
854 && var->saved_item != NULL);
855}
856
c5b48eac
VP
857/* If the variable object is bound to a specific thread, that
858 is its evaluation can always be done in context of a frame
859 inside that thread, returns GDB id of the thread -- which
581e13c1 860 is always positive. Otherwise, returns -1. */
c5b48eac
VP
861int
862varobj_get_thread_id (struct varobj *var)
863{
864 if (var->root->valid_block && var->root->thread_id > 0)
865 return var->root->thread_id;
866 else
867 return -1;
868}
869
25d5ea92
VP
870void
871varobj_set_frozen (struct varobj *var, int frozen)
872{
873 /* When a variable is unfrozen, we don't fetch its value.
874 The 'not_fetched' flag remains set, so next -var-update
875 won't complain.
876
877 We don't fetch the value, because for structures the client
878 should do -var-update anyway. It would be bad to have different
879 client-size logic for structure and other types. */
880 var->frozen = frozen;
881}
882
883int
884varobj_get_frozen (struct varobj *var)
885{
886 return var->frozen;
887}
888
0cc7d26f
TT
889/* A helper function that restricts a range to what is actually
890 available in a VEC. This follows the usual rules for the meaning
891 of FROM and TO -- if either is negative, the entire range is
892 used. */
893
894static void
895restrict_range (VEC (varobj_p) *children, int *from, int *to)
896{
897 if (*from < 0 || *to < 0)
898 {
899 *from = 0;
900 *to = VEC_length (varobj_p, children);
901 }
902 else
903 {
904 if (*from > VEC_length (varobj_p, children))
905 *from = VEC_length (varobj_p, children);
906 if (*to > VEC_length (varobj_p, children))
907 *to = VEC_length (varobj_p, children);
908 if (*from > *to)
909 *from = *to;
910 }
911}
912
d8b65138
JK
913#if HAVE_PYTHON
914
0cc7d26f
TT
915/* A helper for update_dynamic_varobj_children that installs a new
916 child when needed. */
917
918static void
919install_dynamic_child (struct varobj *var,
920 VEC (varobj_p) **changed,
921 VEC (varobj_p) **new,
922 VEC (varobj_p) **unchanged,
923 int *cchanged,
924 int index,
925 const char *name,
926 struct value *value)
927{
928 if (VEC_length (varobj_p, var->children) < index + 1)
929 {
930 /* There's no child yet. */
931 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 932
0cc7d26f
TT
933 if (new)
934 {
935 VEC_safe_push (varobj_p, *new, child);
936 *cchanged = 1;
937 }
938 }
939 else
940 {
941 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 942
0cc7d26f
TT
943 if (install_new_value (existing, value, 0))
944 {
945 if (changed)
946 VEC_safe_push (varobj_p, *changed, existing);
947 }
948 else if (unchanged)
949 VEC_safe_push (varobj_p, *unchanged, existing);
950 }
951}
952
0cc7d26f
TT
953static int
954dynamic_varobj_has_child_method (struct varobj *var)
955{
956 struct cleanup *back_to;
957 PyObject *printer = var->pretty_printer;
958 int result;
959
960 back_to = varobj_ensure_python_env (var);
961 result = PyObject_HasAttr (printer, gdbpy_children_cst);
962 do_cleanups (back_to);
963 return result;
964}
965
966#endif
967
b6313243
TT
968static int
969update_dynamic_varobj_children (struct varobj *var,
970 VEC (varobj_p) **changed,
0cc7d26f
TT
971 VEC (varobj_p) **new,
972 VEC (varobj_p) **unchanged,
973 int *cchanged,
974 int update_children,
975 int from,
976 int to)
b6313243
TT
977{
978#if HAVE_PYTHON
b6313243
TT
979 struct cleanup *back_to;
980 PyObject *children;
b6313243 981 int i;
b6313243 982 PyObject *printer = var->pretty_printer;
b6313243 983
d452c4bc 984 back_to = varobj_ensure_python_env (var);
b6313243
TT
985
986 *cchanged = 0;
987 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
988 {
989 do_cleanups (back_to);
990 return 0;
991 }
992
0cc7d26f 993 if (update_children || !var->child_iter)
b6313243 994 {
0cc7d26f
TT
995 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
996 NULL);
b6313243 997
0cc7d26f
TT
998 if (!children)
999 {
1000 gdbpy_print_stack ();
1001 error (_("Null value returned for children"));
1002 }
b6313243 1003
0cc7d26f 1004 make_cleanup_py_decref (children);
b6313243 1005
0cc7d26f
TT
1006 if (!PyIter_Check (children))
1007 error (_("Returned value is not iterable"));
1008
1009 Py_XDECREF (var->child_iter);
1010 var->child_iter = PyObject_GetIter (children);
1011 if (!var->child_iter)
1012 {
1013 gdbpy_print_stack ();
1014 error (_("Could not get children iterator"));
1015 }
1016
1017 Py_XDECREF (var->saved_item);
1018 var->saved_item = NULL;
1019
1020 i = 0;
b6313243 1021 }
0cc7d26f
TT
1022 else
1023 i = VEC_length (varobj_p, var->children);
b6313243 1024
0cc7d26f
TT
1025 /* We ask for one extra child, so that MI can report whether there
1026 are more children. */
1027 for (; to < 0 || i < to + 1; ++i)
b6313243 1028 {
0cc7d26f 1029 PyObject *item;
a4c8e806 1030 int force_done = 0;
b6313243 1031
0cc7d26f
TT
1032 /* See if there was a leftover from last time. */
1033 if (var->saved_item)
1034 {
1035 item = var->saved_item;
1036 var->saved_item = NULL;
1037 }
1038 else
1039 item = PyIter_Next (var->child_iter);
b6313243 1040
0cc7d26f 1041 if (!item)
a4c8e806
TT
1042 {
1043 /* Normal end of iteration. */
1044 if (!PyErr_Occurred ())
1045 break;
1046
1047 /* If we got a memory error, just use the text as the
1048 item. */
1049 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1050 {
1051 PyObject *type, *value, *trace;
1052 char *name_str, *value_str;
1053
1054 PyErr_Fetch (&type, &value, &trace);
1055 value_str = gdbpy_exception_to_string (type, value);
1056 Py_XDECREF (type);
1057 Py_XDECREF (value);
1058 Py_XDECREF (trace);
1059 if (!value_str)
1060 {
1061 gdbpy_print_stack ();
1062 break;
1063 }
1064
1065 name_str = xstrprintf ("<error at %d>", i);
1066 item = Py_BuildValue ("(ss)", name_str, value_str);
1067 xfree (name_str);
1068 xfree (value_str);
1069 if (!item)
1070 {
1071 gdbpy_print_stack ();
1072 break;
1073 }
1074
1075 force_done = 1;
1076 }
1077 else
1078 {
1079 /* Any other kind of error. */
1080 gdbpy_print_stack ();
1081 break;
1082 }
1083 }
b6313243 1084
0cc7d26f
TT
1085 /* We don't want to push the extra child on any report list. */
1086 if (to < 0 || i < to)
b6313243 1087 {
0cc7d26f 1088 PyObject *py_v;
ddd49eee 1089 const char *name;
0cc7d26f
TT
1090 struct value *v;
1091 struct cleanup *inner;
1092 int can_mention = from < 0 || i >= from;
1093
1094 inner = make_cleanup_py_decref (item);
1095
1096 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1097 {
1098 gdbpy_print_stack ();
1099 error (_("Invalid item from the child list"));
1100 }
0cc7d26f
TT
1101
1102 v = convert_value_from_python (py_v);
8dc78533
JK
1103 if (v == NULL)
1104 gdbpy_print_stack ();
0cc7d26f
TT
1105 install_dynamic_child (var, can_mention ? changed : NULL,
1106 can_mention ? new : NULL,
1107 can_mention ? unchanged : NULL,
1108 can_mention ? cchanged : NULL, i, name, v);
1109 do_cleanups (inner);
b6313243 1110 }
0cc7d26f 1111 else
b6313243 1112 {
0cc7d26f
TT
1113 Py_XDECREF (var->saved_item);
1114 var->saved_item = item;
b6313243 1115
0cc7d26f
TT
1116 /* We want to truncate the child list just before this
1117 element. */
1118 break;
1119 }
a4c8e806
TT
1120
1121 if (force_done)
1122 break;
b6313243
TT
1123 }
1124
1125 if (i < VEC_length (varobj_p, var->children))
1126 {
0cc7d26f 1127 int j;
a109c7c1 1128
0cc7d26f
TT
1129 *cchanged = 1;
1130 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1131 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1132 VEC_truncate (varobj_p, var->children, i);
b6313243 1133 }
0cc7d26f
TT
1134
1135 /* If there are fewer children than requested, note that the list of
1136 children changed. */
1137 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1138 *cchanged = 1;
1139
b6313243
TT
1140 var->num_children = VEC_length (varobj_p, var->children);
1141
1142 do_cleanups (back_to);
1143
b6313243
TT
1144 return 1;
1145#else
1146 gdb_assert (0 && "should never be called if Python is not enabled");
1147#endif
1148}
25d5ea92 1149
8b93c638
JM
1150int
1151varobj_get_num_children (struct varobj *var)
1152{
1153 if (var->num_children == -1)
b6313243 1154 {
0cc7d26f
TT
1155 if (var->pretty_printer)
1156 {
1157 int dummy;
1158
1159 /* If we have a dynamic varobj, don't report -1 children.
1160 So, try to fetch some children first. */
1161 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1162 0, 0, 0);
1163 }
1164 else
b6313243
TT
1165 var->num_children = number_of_children (var);
1166 }
8b93c638 1167
0cc7d26f 1168 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1169}
1170
1171/* Creates a list of the immediate children of a variable object;
581e13c1 1172 the return code is the number of such children or -1 on error. */
8b93c638 1173
d56d46f5 1174VEC (varobj_p)*
0cc7d26f 1175varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1176{
8b93c638 1177 char *name;
b6313243
TT
1178 int i, children_changed;
1179
1180 var->children_requested = 1;
1181
0cc7d26f
TT
1182 if (var->pretty_printer)
1183 {
b6313243
TT
1184 /* This, in theory, can result in the number of children changing without
1185 frontend noticing. But well, calling -var-list-children on the same
1186 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1187 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1188 0, 0, *to);
1189 restrict_range (var->children, from, to);
1190 return var->children;
1191 }
8b93c638 1192
8b93c638
JM
1193 if (var->num_children == -1)
1194 var->num_children = number_of_children (var);
1195
74a44383
DJ
1196 /* If that failed, give up. */
1197 if (var->num_children == -1)
d56d46f5 1198 return var->children;
74a44383 1199
28335dcc
VP
1200 /* If we're called when the list of children is not yet initialized,
1201 allocate enough elements in it. */
1202 while (VEC_length (varobj_p, var->children) < var->num_children)
1203 VEC_safe_push (varobj_p, var->children, NULL);
1204
8b93c638
JM
1205 for (i = 0; i < var->num_children; i++)
1206 {
d56d46f5 1207 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1208
1209 if (existing == NULL)
1210 {
1211 /* Either it's the first call to varobj_list_children for
1212 this variable object, and the child was never created,
1213 or it was explicitly deleted by the client. */
1214 name = name_of_child (var, i);
1215 existing = create_child (var, i, name);
1216 VEC_replace (varobj_p, var->children, i, existing);
1217 }
8b93c638
JM
1218 }
1219
0cc7d26f 1220 restrict_range (var->children, from, to);
d56d46f5 1221 return var->children;
8b93c638
JM
1222}
1223
d8b65138
JK
1224#if HAVE_PYTHON
1225
b6313243
TT
1226static struct varobj *
1227varobj_add_child (struct varobj *var, const char *name, struct value *value)
1228{
1229 varobj_p v = create_child_with_value (var,
1230 VEC_length (varobj_p, var->children),
1231 name, value);
a109c7c1 1232
b6313243 1233 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1234 return v;
1235}
1236
d8b65138
JK
1237#endif /* HAVE_PYTHON */
1238
8b93c638 1239/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1240 prints on the console. */
8b93c638
JM
1241
1242char *
1243varobj_get_type (struct varobj *var)
1244{
581e13c1 1245 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1246 NULL, too.)
1247 Do not return a type for invalid variables as well. */
1248 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1249 return NULL;
1250
1a4300e9 1251 return type_to_string (var->type);
8b93c638
JM
1252}
1253
1ecb4ee0
DJ
1254/* Obtain the type of an object variable. */
1255
1256struct type *
1257varobj_get_gdb_type (struct varobj *var)
1258{
1259 return var->type;
1260}
1261
02142340
VP
1262/* Return a pointer to the full rooted expression of varobj VAR.
1263 If it has not been computed yet, compute it. */
1264char *
1265varobj_get_path_expr (struct varobj *var)
1266{
1267 if (var->path_expr != NULL)
1268 return var->path_expr;
1269 else
1270 {
1271 /* For root varobjs, we initialize path_expr
1272 when creating varobj, so here it should be
1273 child varobj. */
1274 gdb_assert (!is_root_p (var));
1275 return (*var->root->lang->path_expr_of_child) (var);
1276 }
1277}
1278
8b93c638
JM
1279enum varobj_languages
1280varobj_get_language (struct varobj *var)
1281{
1282 return variable_language (var);
1283}
1284
1285int
1286varobj_get_attributes (struct varobj *var)
1287{
1288 int attributes = 0;
1289
340a7723 1290 if (varobj_editable_p (var))
581e13c1 1291 /* FIXME: define masks for attributes. */
8b93c638
JM
1292 attributes |= 0x00000001; /* Editable */
1293
1294 return attributes;
1295}
1296
0cc7d26f
TT
1297int
1298varobj_pretty_printed_p (struct varobj *var)
1299{
1300 return var->pretty_printer != NULL;
1301}
1302
de051565
MK
1303char *
1304varobj_get_formatted_value (struct varobj *var,
1305 enum varobj_display_formats format)
1306{
1307 return my_value_of_variable (var, format);
1308}
1309
8b93c638
JM
1310char *
1311varobj_get_value (struct varobj *var)
1312{
de051565 1313 return my_value_of_variable (var, var->format);
8b93c638
JM
1314}
1315
1316/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1317 value of the given expression. */
1318/* Note: Invokes functions that can call error(). */
8b93c638
JM
1319
1320int
1321varobj_set_value (struct varobj *var, char *expression)
1322{
30b28db1 1323 struct value *val;
8b93c638
JM
1324
1325 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1326 We need to first construct a legal expression for this -- ugh! */
1327 /* Does this cover all the bases? */
8b93c638 1328 struct expression *exp;
30b28db1 1329 struct value *value;
8b93c638 1330 int saved_input_radix = input_radix;
340a7723 1331 char *s = expression;
8b93c638 1332
340a7723 1333 gdb_assert (varobj_editable_p (var));
8b93c638 1334
581e13c1 1335 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
340a7723
NR
1336 exp = parse_exp_1 (&s, 0, 0);
1337 if (!gdb_evaluate_expression (exp, &value))
1338 {
581e13c1 1339 /* We cannot proceed without a valid expression. */
340a7723
NR
1340 xfree (exp);
1341 return 0;
8b93c638
JM
1342 }
1343
340a7723
NR
1344 /* All types that are editable must also be changeable. */
1345 gdb_assert (varobj_value_is_changeable_p (var));
1346
1347 /* The value of a changeable variable object must not be lazy. */
1348 gdb_assert (!value_lazy (var->value));
1349
1350 /* Need to coerce the input. We want to check if the
1351 value of the variable object will be different
1352 after assignment, and the first thing value_assign
1353 does is coerce the input.
1354 For example, if we are assigning an array to a pointer variable we
b021a221 1355 should compare the pointer with the array's address, not with the
340a7723
NR
1356 array's content. */
1357 value = coerce_array (value);
1358
1359 /* The new value may be lazy. gdb_value_assign, or
1360 rather value_contents, will take care of this.
1361 If fetching of the new value will fail, gdb_value_assign
1362 with catch the exception. */
1363 if (!gdb_value_assign (var->value, value, &val))
1364 return 0;
1365
1366 /* If the value has changed, record it, so that next -var-update can
1367 report this change. If a variable had a value of '1', we've set it
1368 to '333' and then set again to '1', when -var-update will report this
1369 variable as changed -- because the first assignment has set the
1370 'updated' flag. There's no need to optimize that, because return value
1371 of -var-update should be considered an approximation. */
581e13c1 1372 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1373 input_radix = saved_input_radix;
1374 return 1;
8b93c638
JM
1375}
1376
0cc7d26f
TT
1377#if HAVE_PYTHON
1378
1379/* A helper function to install a constructor function and visualizer
1380 in a varobj. */
1381
1382static void
1383install_visualizer (struct varobj *var, PyObject *constructor,
1384 PyObject *visualizer)
1385{
1386 Py_XDECREF (var->constructor);
1387 var->constructor = constructor;
1388
1389 Py_XDECREF (var->pretty_printer);
1390 var->pretty_printer = visualizer;
1391
1392 Py_XDECREF (var->child_iter);
1393 var->child_iter = NULL;
1394}
1395
1396/* Install the default visualizer for VAR. */
1397
1398static void
1399install_default_visualizer (struct varobj *var)
1400{
d65aec65
PM
1401 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1402 if (CPLUS_FAKE_CHILD (var))
1403 return;
1404
0cc7d26f
TT
1405 if (pretty_printing)
1406 {
1407 PyObject *pretty_printer = NULL;
1408
1409 if (var->value)
1410 {
1411 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1412 if (! pretty_printer)
1413 {
1414 gdbpy_print_stack ();
1415 error (_("Cannot instantiate printer for default visualizer"));
1416 }
1417 }
1418
1419 if (pretty_printer == Py_None)
1420 {
1421 Py_DECREF (pretty_printer);
1422 pretty_printer = NULL;
1423 }
1424
1425 install_visualizer (var, NULL, pretty_printer);
1426 }
1427}
1428
1429/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1430 make a new object. */
1431
1432static void
1433construct_visualizer (struct varobj *var, PyObject *constructor)
1434{
1435 PyObject *pretty_printer;
1436
d65aec65
PM
1437 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1438 if (CPLUS_FAKE_CHILD (var))
1439 return;
1440
0cc7d26f
TT
1441 Py_INCREF (constructor);
1442 if (constructor == Py_None)
1443 pretty_printer = NULL;
1444 else
1445 {
1446 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1447 if (! pretty_printer)
1448 {
1449 gdbpy_print_stack ();
1450 Py_DECREF (constructor);
1451 constructor = Py_None;
1452 Py_INCREF (constructor);
1453 }
1454
1455 if (pretty_printer == Py_None)
1456 {
1457 Py_DECREF (pretty_printer);
1458 pretty_printer = NULL;
1459 }
1460 }
1461
1462 install_visualizer (var, constructor, pretty_printer);
1463}
1464
1465#endif /* HAVE_PYTHON */
1466
1467/* A helper function for install_new_value. This creates and installs
1468 a visualizer for VAR, if appropriate. */
1469
1470static void
1471install_new_value_visualizer (struct varobj *var)
1472{
1473#if HAVE_PYTHON
1474 /* If the constructor is None, then we want the raw value. If VAR
1475 does not have a value, just skip this. */
1476 if (var->constructor != Py_None && var->value)
1477 {
1478 struct cleanup *cleanup;
0cc7d26f
TT
1479
1480 cleanup = varobj_ensure_python_env (var);
1481
1482 if (!var->constructor)
1483 install_default_visualizer (var);
1484 else
1485 construct_visualizer (var, var->constructor);
1486
1487 do_cleanups (cleanup);
1488 }
1489#else
1490 /* Do nothing. */
1491#endif
1492}
1493
acd65feb
VP
1494/* Assign a new value to a variable object. If INITIAL is non-zero,
1495 this is the first assignement after the variable object was just
1496 created, or changed type. In that case, just assign the value
1497 and return 0.
581e13c1
MS
1498 Otherwise, assign the new value, and return 1 if the value is
1499 different from the current one, 0 otherwise. The comparison is
1500 done on textual representation of value. Therefore, some types
1501 need not be compared. E.g. for structures the reported value is
1502 always "{...}", so no comparison is necessary here. If the old
1503 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1504
1505 The VALUE parameter should not be released -- the function will
1506 take care of releasing it when needed. */
acd65feb
VP
1507static int
1508install_new_value (struct varobj *var, struct value *value, int initial)
1509{
1510 int changeable;
1511 int need_to_fetch;
1512 int changed = 0;
25d5ea92 1513 int intentionally_not_fetched = 0;
7a4d50bf 1514 char *print_value = NULL;
acd65feb 1515
acd65feb 1516 /* We need to know the varobj's type to decide if the value should
3e43a32a 1517 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1518 don't have a type. */
acd65feb 1519 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1520 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1521
1522 /* If the type has custom visualizer, we consider it to be always
581e13c1 1523 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1524 mess up read-sensitive values. */
1525 if (var->pretty_printer)
1526 changeable = 1;
1527
acd65feb
VP
1528 need_to_fetch = changeable;
1529
b26ed50d
VP
1530 /* We are not interested in the address of references, and given
1531 that in C++ a reference is not rebindable, it cannot
1532 meaningfully change. So, get hold of the real value. */
1533 if (value)
0cc7d26f 1534 value = coerce_ref (value);
b26ed50d 1535
acd65feb
VP
1536 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1537 /* For unions, we need to fetch the value implicitly because
1538 of implementation of union member fetch. When gdb
1539 creates a value for a field and the value of the enclosing
1540 structure is not lazy, it immediately copies the necessary
1541 bytes from the enclosing values. If the enclosing value is
1542 lazy, the call to value_fetch_lazy on the field will read
1543 the data from memory. For unions, that means we'll read the
1544 same memory more than once, which is not desirable. So
1545 fetch now. */
1546 need_to_fetch = 1;
1547
1548 /* The new value might be lazy. If the type is changeable,
1549 that is we'll be comparing values of this type, fetch the
1550 value now. Otherwise, on the next update the old value
1551 will be lazy, which means we've lost that old value. */
1552 if (need_to_fetch && value && value_lazy (value))
1553 {
25d5ea92
VP
1554 struct varobj *parent = var->parent;
1555 int frozen = var->frozen;
a109c7c1 1556
25d5ea92
VP
1557 for (; !frozen && parent; parent = parent->parent)
1558 frozen |= parent->frozen;
1559
1560 if (frozen && initial)
1561 {
1562 /* For variables that are frozen, or are children of frozen
1563 variables, we don't do fetch on initial assignment.
1564 For non-initial assignemnt we do the fetch, since it means we're
1565 explicitly asked to compare the new value with the old one. */
1566 intentionally_not_fetched = 1;
1567 }
1568 else if (!gdb_value_fetch_lazy (value))
acd65feb 1569 {
acd65feb
VP
1570 /* Set the value to NULL, so that for the next -var-update,
1571 we don't try to compare the new value with this value,
1572 that we couldn't even read. */
1573 value = NULL;
1574 }
acd65feb
VP
1575 }
1576
b6313243 1577
7a4d50bf
VP
1578 /* Below, we'll be comparing string rendering of old and new
1579 values. Don't get string rendering if the value is
1580 lazy -- if it is, the code above has decided that the value
1581 should not be fetched. */
0cc7d26f 1582 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1583 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1584
acd65feb
VP
1585 /* If the type is changeable, compare the old and the new values.
1586 If this is the initial assignment, we don't have any old value
1587 to compare with. */
7a4d50bf 1588 if (!initial && changeable)
acd65feb 1589 {
3e43a32a
MS
1590 /* If the value of the varobj was changed by -var-set-value,
1591 then the value in the varobj and in the target is the same.
1592 However, that value is different from the value that the
581e13c1 1593 varobj had after the previous -var-update. So need to the
3e43a32a 1594 varobj as changed. */
acd65feb 1595 if (var->updated)
57e66780 1596 {
57e66780
DJ
1597 changed = 1;
1598 }
0cc7d26f 1599 else if (! var->pretty_printer)
acd65feb
VP
1600 {
1601 /* Try to compare the values. That requires that both
1602 values are non-lazy. */
25d5ea92
VP
1603 if (var->not_fetched && value_lazy (var->value))
1604 {
1605 /* This is a frozen varobj and the value was never read.
1606 Presumably, UI shows some "never read" indicator.
1607 Now that we've fetched the real value, we need to report
1608 this varobj as changed so that UI can show the real
1609 value. */
1610 changed = 1;
1611 }
1612 else if (var->value == NULL && value == NULL)
581e13c1 1613 /* Equal. */
acd65feb
VP
1614 ;
1615 else if (var->value == NULL || value == NULL)
57e66780 1616 {
57e66780
DJ
1617 changed = 1;
1618 }
acd65feb
VP
1619 else
1620 {
1621 gdb_assert (!value_lazy (var->value));
1622 gdb_assert (!value_lazy (value));
85265413 1623
57e66780 1624 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1625 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1626 changed = 1;
acd65feb
VP
1627 }
1628 }
1629 }
85265413 1630
ee342b23
VP
1631 if (!initial && !changeable)
1632 {
1633 /* For values that are not changeable, we don't compare the values.
1634 However, we want to notice if a value was not NULL and now is NULL,
1635 or vise versa, so that we report when top-level varobjs come in scope
1636 and leave the scope. */
1637 changed = (var->value != NULL) != (value != NULL);
1638 }
1639
acd65feb 1640 /* We must always keep the new value, since children depend on it. */
25d5ea92 1641 if (var->value != NULL && var->value != value)
acd65feb
VP
1642 value_free (var->value);
1643 var->value = value;
0cc7d26f
TT
1644 if (value != NULL)
1645 value_incref (value);
25d5ea92
VP
1646 if (value && value_lazy (value) && intentionally_not_fetched)
1647 var->not_fetched = 1;
1648 else
1649 var->not_fetched = 0;
acd65feb 1650 var->updated = 0;
85265413 1651
0cc7d26f
TT
1652 install_new_value_visualizer (var);
1653
1654 /* If we installed a pretty-printer, re-compare the printed version
1655 to see if the variable changed. */
1656 if (var->pretty_printer)
1657 {
1658 xfree (print_value);
1659 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1660 if ((var->print_value == NULL && print_value != NULL)
1661 || (var->print_value != NULL && print_value == NULL)
1662 || (var->print_value != NULL && print_value != NULL
1663 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1664 changed = 1;
1665 }
1666 if (var->print_value)
1667 xfree (var->print_value);
1668 var->print_value = print_value;
1669
b26ed50d 1670 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1671
1672 return changed;
1673}
acd65feb 1674
0cc7d26f
TT
1675/* Return the requested range for a varobj. VAR is the varobj. FROM
1676 and TO are out parameters; *FROM and *TO will be set to the
1677 selected sub-range of VAR. If no range was selected using
1678 -var-set-update-range, then both will be -1. */
1679void
1680varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1681{
0cc7d26f
TT
1682 *from = var->from;
1683 *to = var->to;
b6313243
TT
1684}
1685
0cc7d26f
TT
1686/* Set the selected sub-range of children of VAR to start at index
1687 FROM and end at index TO. If either FROM or TO is less than zero,
1688 this is interpreted as a request for all children. */
1689void
1690varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1691{
0cc7d26f
TT
1692 var->from = from;
1693 var->to = to;
b6313243
TT
1694}
1695
1696void
1697varobj_set_visualizer (struct varobj *var, const char *visualizer)
1698{
1699#if HAVE_PYTHON
34fa1d9d
MS
1700 PyObject *mainmod, *globals, *constructor;
1701 struct cleanup *back_to;
b6313243 1702
d452c4bc 1703 back_to = varobj_ensure_python_env (var);
b6313243
TT
1704
1705 mainmod = PyImport_AddModule ("__main__");
1706 globals = PyModule_GetDict (mainmod);
1707 Py_INCREF (globals);
1708 make_cleanup_py_decref (globals);
1709
1710 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1711
0cc7d26f 1712 if (! constructor)
b6313243
TT
1713 {
1714 gdbpy_print_stack ();
da1f2771 1715 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1716 }
1717
0cc7d26f
TT
1718 construct_visualizer (var, constructor);
1719 Py_XDECREF (constructor);
b6313243 1720
0cc7d26f
TT
1721 /* If there are any children now, wipe them. */
1722 varobj_delete (var, NULL, 1 /* children only */);
1723 var->num_children = -1;
b6313243
TT
1724
1725 do_cleanups (back_to);
1726#else
da1f2771 1727 error (_("Python support required"));
b6313243
TT
1728#endif
1729}
1730
8b93c638
JM
1731/* Update the values for a variable and its children. This is a
1732 two-pronged attack. First, re-parse the value for the root's
1733 expression to see if it's changed. Then go all the way
1734 through its children, reconstructing them and noting if they've
1735 changed.
1736
25d5ea92
VP
1737 The EXPLICIT parameter specifies if this call is result
1738 of MI request to update this specific variable, or
581e13c1 1739 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1740 update frozen variables.
705da579 1741
581e13c1 1742 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1743 returns TYPE_CHANGED, then it has done this and VARP will be modified
1744 to point to the new varobj. */
8b93c638 1745
f7f9ae2c 1746VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1747{
1748 int changed = 0;
25d5ea92 1749 int type_changed = 0;
8b93c638 1750 int i;
30b28db1 1751 struct value *new;
b6313243 1752 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1753 VEC (varobj_update_result) *result = NULL;
8b93c638 1754
25d5ea92
VP
1755 /* Frozen means frozen -- we don't check for any change in
1756 this varobj, including its going out of scope, or
1757 changing type. One use case for frozen varobjs is
1758 retaining previously evaluated expressions, and we don't
1759 want them to be reevaluated at all. */
1760 if (!explicit && (*varp)->frozen)
f7f9ae2c 1761 return result;
8756216b
DP
1762
1763 if (!(*varp)->root->is_valid)
f7f9ae2c 1764 {
cfce2ea2 1765 varobj_update_result r = {0};
a109c7c1 1766
cfce2ea2 1767 r.varobj = *varp;
f7f9ae2c
VP
1768 r.status = VAROBJ_INVALID;
1769 VEC_safe_push (varobj_update_result, result, &r);
1770 return result;
1771 }
8b93c638 1772
25d5ea92 1773 if ((*varp)->root->rootvar == *varp)
ae093f96 1774 {
cfce2ea2 1775 varobj_update_result r = {0};
a109c7c1 1776
cfce2ea2 1777 r.varobj = *varp;
f7f9ae2c
VP
1778 r.status = VAROBJ_IN_SCOPE;
1779
581e13c1 1780 /* Update the root variable. value_of_root can return NULL
25d5ea92 1781 if the variable is no longer around, i.e. we stepped out of
581e13c1 1782 the frame in which a local existed. We are letting the
25d5ea92
VP
1783 value_of_root variable dispose of the varobj if the type
1784 has changed. */
25d5ea92 1785 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1786 r.varobj = *varp;
1787
1788 r.type_changed = type_changed;
ea56f9c2 1789 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1790 r.changed = 1;
ea56f9c2 1791
25d5ea92 1792 if (new == NULL)
f7f9ae2c 1793 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1794 r.value_installed = 1;
f7f9ae2c
VP
1795
1796 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1797 {
0b4bc29a
JK
1798 if (r.type_changed || r.changed)
1799 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1800 return result;
1801 }
1802
1803 VEC_safe_push (varobj_update_result, stack, &r);
1804 }
1805 else
1806 {
cfce2ea2 1807 varobj_update_result r = {0};
a109c7c1 1808
cfce2ea2 1809 r.varobj = *varp;
b6313243 1810 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1811 }
8b93c638 1812
8756216b 1813 /* Walk through the children, reconstructing them all. */
b6313243 1814 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1815 {
b6313243
TT
1816 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1817 struct varobj *v = r.varobj;
1818
1819 VEC_pop (varobj_update_result, stack);
1820
1821 /* Update this variable, unless it's a root, which is already
1822 updated. */
1823 if (!r.value_installed)
1824 {
1825 new = value_of_child (v->parent, v->index);
1826 if (install_new_value (v, new, 0 /* type not changed */))
1827 {
1828 r.changed = 1;
1829 v->updated = 0;
1830 }
1831 }
1832
1833 /* We probably should not get children of a varobj that has a
1834 pretty-printer, but for which -var-list-children was never
581e13c1 1835 invoked. */
b6313243
TT
1836 if (v->pretty_printer)
1837 {
0cc7d26f 1838 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1839 int i, children_changed = 0;
b6313243
TT
1840
1841 if (v->frozen)
1842 continue;
1843
0cc7d26f
TT
1844 if (!v->children_requested)
1845 {
1846 int dummy;
1847
1848 /* If we initially did not have potential children, but
1849 now we do, consider the varobj as changed.
1850 Otherwise, if children were never requested, consider
1851 it as unchanged -- presumably, such varobj is not yet
1852 expanded in the UI, so we need not bother getting
1853 it. */
1854 if (!varobj_has_more (v, 0))
1855 {
1856 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1857 &dummy, 0, 0, 0);
1858 if (varobj_has_more (v, 0))
1859 r.changed = 1;
1860 }
1861
1862 if (r.changed)
1863 VEC_safe_push (varobj_update_result, result, &r);
1864
1865 continue;
1866 }
1867
b6313243
TT
1868 /* If update_dynamic_varobj_children returns 0, then we have
1869 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1870 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1871 &children_changed, 1,
1872 v->from, v->to))
b6313243 1873 {
0cc7d26f 1874 if (children_changed || new)
b6313243 1875 {
0cc7d26f
TT
1876 r.children_changed = 1;
1877 r.new = new;
b6313243 1878 }
0cc7d26f
TT
1879 /* Push in reverse order so that the first child is
1880 popped from the work stack first, and so will be
1881 added to result first. This does not affect
1882 correctness, just "nicer". */
1883 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1884 {
0cc7d26f 1885 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1886 varobj_update_result r = {0};
a109c7c1 1887
cfce2ea2 1888 r.varobj = tmp;
0cc7d26f 1889 r.changed = 1;
b6313243
TT
1890 r.value_installed = 1;
1891 VEC_safe_push (varobj_update_result, stack, &r);
1892 }
0cc7d26f
TT
1893 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1894 {
1895 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1896
0cc7d26f
TT
1897 if (!tmp->frozen)
1898 {
cfce2ea2 1899 varobj_update_result r = {0};
a109c7c1 1900
cfce2ea2 1901 r.varobj = tmp;
0cc7d26f
TT
1902 r.value_installed = 1;
1903 VEC_safe_push (varobj_update_result, stack, &r);
1904 }
1905 }
b6313243
TT
1906 if (r.changed || r.children_changed)
1907 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1908
1909 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1910 has been put into the result vector. */
1911 VEC_free (varobj_p, changed);
1912 VEC_free (varobj_p, unchanged);
1913
b6313243
TT
1914 continue;
1915 }
1916 }
28335dcc
VP
1917
1918 /* Push any children. Use reverse order so that the first
1919 child is popped from the work stack first, and so
1920 will be added to result first. This does not
1921 affect correctness, just "nicer". */
1922 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1923 {
28335dcc 1924 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1925
28335dcc 1926 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1927 if (c != NULL && !c->frozen)
28335dcc 1928 {
cfce2ea2 1929 varobj_update_result r = {0};
a109c7c1 1930
cfce2ea2 1931 r.varobj = c;
b6313243 1932 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1933 }
8b93c638 1934 }
b6313243
TT
1935
1936 if (r.changed || r.type_changed)
1937 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1938 }
1939
b6313243
TT
1940 VEC_free (varobj_update_result, stack);
1941
f7f9ae2c 1942 return result;
8b93c638
JM
1943}
1944\f
1945
1946/* Helper functions */
1947
1948/*
1949 * Variable object construction/destruction
1950 */
1951
1952static int
fba45db2
KB
1953delete_variable (struct cpstack **resultp, struct varobj *var,
1954 int only_children_p)
8b93c638
JM
1955{
1956 int delcount = 0;
1957
1958 delete_variable_1 (resultp, &delcount, var,
1959 only_children_p, 1 /* remove_from_parent_p */ );
1960
1961 return delcount;
1962}
1963
581e13c1 1964/* Delete the variable object VAR and its children. */
8b93c638
JM
1965/* IMPORTANT NOTE: If we delete a variable which is a child
1966 and the parent is not removed we dump core. It must be always
581e13c1 1967 initially called with remove_from_parent_p set. */
8b93c638 1968static void
72330bd6
AC
1969delete_variable_1 (struct cpstack **resultp, int *delcountp,
1970 struct varobj *var, int only_children_p,
1971 int remove_from_parent_p)
8b93c638 1972{
28335dcc 1973 int i;
8b93c638 1974
581e13c1 1975 /* Delete any children of this variable, too. */
28335dcc
VP
1976 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1977 {
1978 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1979
214270ab
VP
1980 if (!child)
1981 continue;
8b93c638 1982 if (!remove_from_parent_p)
28335dcc
VP
1983 child->parent = NULL;
1984 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1985 }
28335dcc 1986 VEC_free (varobj_p, var->children);
8b93c638 1987
581e13c1 1988 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1989 if (only_children_p)
1990 return;
1991
581e13c1 1992 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1993 /* If the name is null, this is a temporary variable, that has not
581e13c1 1994 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1995 if (var->obj_name != NULL)
8b93c638 1996 {
5b616ba1 1997 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1998 *delcountp = *delcountp + 1;
1999 }
2000
581e13c1 2001 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2002 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2003 (as indicated by remove_from_parent_p) we don't bother doing an
2004 expensive list search to find the element to remove when we are
581e13c1 2005 discarding the list afterwards. */
72330bd6 2006 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2007 {
28335dcc 2008 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2009 }
72330bd6 2010
73a93a32
JI
2011 if (var->obj_name != NULL)
2012 uninstall_variable (var);
8b93c638 2013
581e13c1 2014 /* Free memory associated with this variable. */
8b93c638
JM
2015 free_variable (var);
2016}
2017
581e13c1 2018/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2019static int
fba45db2 2020install_variable (struct varobj *var)
8b93c638
JM
2021{
2022 struct vlist *cv;
2023 struct vlist *newvl;
2024 const char *chp;
2025 unsigned int index = 0;
2026 unsigned int i = 1;
2027
2028 for (chp = var->obj_name; *chp; chp++)
2029 {
2030 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2031 }
2032
2033 cv = *(varobj_table + index);
2034 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2035 cv = cv->next;
2036
2037 if (cv != NULL)
8a3fe4f8 2038 error (_("Duplicate variable object name"));
8b93c638 2039
581e13c1 2040 /* Add varobj to hash table. */
8b93c638
JM
2041 newvl = xmalloc (sizeof (struct vlist));
2042 newvl->next = *(varobj_table + index);
2043 newvl->var = var;
2044 *(varobj_table + index) = newvl;
2045
581e13c1 2046 /* If root, add varobj to root list. */
b2c2bd75 2047 if (is_root_p (var))
8b93c638 2048 {
581e13c1 2049 /* Add to list of root variables. */
8b93c638
JM
2050 if (rootlist == NULL)
2051 var->root->next = NULL;
2052 else
2053 var->root->next = rootlist;
2054 rootlist = var->root;
8b93c638
JM
2055 }
2056
2057 return 1; /* OK */
2058}
2059
581e13c1 2060/* Unistall the object VAR. */
8b93c638 2061static void
fba45db2 2062uninstall_variable (struct varobj *var)
8b93c638
JM
2063{
2064 struct vlist *cv;
2065 struct vlist *prev;
2066 struct varobj_root *cr;
2067 struct varobj_root *prer;
2068 const char *chp;
2069 unsigned int index = 0;
2070 unsigned int i = 1;
2071
581e13c1 2072 /* Remove varobj from hash table. */
8b93c638
JM
2073 for (chp = var->obj_name; *chp; chp++)
2074 {
2075 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2076 }
2077
2078 cv = *(varobj_table + index);
2079 prev = NULL;
2080 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2081 {
2082 prev = cv;
2083 cv = cv->next;
2084 }
2085
2086 if (varobjdebug)
2087 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2088
2089 if (cv == NULL)
2090 {
72330bd6
AC
2091 warning
2092 ("Assertion failed: Could not find variable object \"%s\" to delete",
2093 var->obj_name);
8b93c638
JM
2094 return;
2095 }
2096
2097 if (prev == NULL)
2098 *(varobj_table + index) = cv->next;
2099 else
2100 prev->next = cv->next;
2101
b8c9b27d 2102 xfree (cv);
8b93c638 2103
581e13c1 2104 /* If root, remove varobj from root list. */
b2c2bd75 2105 if (is_root_p (var))
8b93c638 2106 {
581e13c1 2107 /* Remove from list of root variables. */
8b93c638
JM
2108 if (rootlist == var->root)
2109 rootlist = var->root->next;
2110 else
2111 {
2112 prer = NULL;
2113 cr = rootlist;
2114 while ((cr != NULL) && (cr->rootvar != var))
2115 {
2116 prer = cr;
2117 cr = cr->next;
2118 }
2119 if (cr == NULL)
2120 {
8f7e195f
JB
2121 warning (_("Assertion failed: Could not find "
2122 "varobj \"%s\" in root list"),
3e43a32a 2123 var->obj_name);
8b93c638
JM
2124 return;
2125 }
2126 if (prer == NULL)
2127 rootlist = NULL;
2128 else
2129 prer->next = cr->next;
2130 }
8b93c638
JM
2131 }
2132
2133}
2134
581e13c1 2135/* Create and install a child of the parent of the given name. */
8b93c638 2136static struct varobj *
fba45db2 2137create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2138{
2139 return create_child_with_value (parent, index, name,
2140 value_of_child (parent, index));
2141}
2142
2143static struct varobj *
2144create_child_with_value (struct varobj *parent, int index, const char *name,
2145 struct value *value)
8b93c638
JM
2146{
2147 struct varobj *child;
2148 char *childs_name;
2149
2150 child = new_variable ();
2151
581e13c1 2152 /* Name is allocated by name_of_child. */
b6313243
TT
2153 /* FIXME: xstrdup should not be here. */
2154 child->name = xstrdup (name);
8b93c638 2155 child->index = index;
8b93c638
JM
2156 child->parent = parent;
2157 child->root = parent->root;
b435e160 2158 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2159 child->obj_name = childs_name;
2160 install_variable (child);
2161
acd65feb
VP
2162 /* Compute the type of the child. Must do this before
2163 calling install_new_value. */
2164 if (value != NULL)
2165 /* If the child had no evaluation errors, var->value
581e13c1 2166 will be non-NULL and contain a valid type. */
acd65feb
VP
2167 child->type = value_type (value);
2168 else
581e13c1 2169 /* Otherwise, we must compute the type. */
acd65feb
VP
2170 child->type = (*child->root->lang->type_of_child) (child->parent,
2171 child->index);
2172 install_new_value (child, value, 1);
2173
8b93c638
JM
2174 return child;
2175}
8b93c638
JM
2176\f
2177
2178/*
2179 * Miscellaneous utility functions.
2180 */
2181
581e13c1 2182/* Allocate memory and initialize a new variable. */
8b93c638
JM
2183static struct varobj *
2184new_variable (void)
2185{
2186 struct varobj *var;
2187
2188 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2189 var->name = NULL;
02142340 2190 var->path_expr = NULL;
8b93c638
JM
2191 var->obj_name = NULL;
2192 var->index = -1;
2193 var->type = NULL;
2194 var->value = NULL;
8b93c638
JM
2195 var->num_children = -1;
2196 var->parent = NULL;
2197 var->children = NULL;
2198 var->format = 0;
2199 var->root = NULL;
fb9b6b35 2200 var->updated = 0;
85265413 2201 var->print_value = NULL;
25d5ea92
VP
2202 var->frozen = 0;
2203 var->not_fetched = 0;
b6313243 2204 var->children_requested = 0;
0cc7d26f
TT
2205 var->from = -1;
2206 var->to = -1;
2207 var->constructor = 0;
b6313243 2208 var->pretty_printer = 0;
0cc7d26f
TT
2209 var->child_iter = 0;
2210 var->saved_item = 0;
8b93c638
JM
2211
2212 return var;
2213}
2214
581e13c1 2215/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2216static struct varobj *
2217new_root_variable (void)
2218{
2219 struct varobj *var = new_variable ();
a109c7c1 2220
3e43a32a 2221 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2222 var->root->lang = NULL;
2223 var->root->exp = NULL;
2224 var->root->valid_block = NULL;
7a424e99 2225 var->root->frame = null_frame_id;
a5defcdc 2226 var->root->floating = 0;
8b93c638 2227 var->root->rootvar = NULL;
8756216b 2228 var->root->is_valid = 1;
8b93c638
JM
2229
2230 return var;
2231}
2232
581e13c1 2233/* Free any allocated memory associated with VAR. */
8b93c638 2234static void
fba45db2 2235free_variable (struct varobj *var)
8b93c638 2236{
d452c4bc
UW
2237#if HAVE_PYTHON
2238 if (var->pretty_printer)
2239 {
2240 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2241 Py_XDECREF (var->constructor);
2242 Py_XDECREF (var->pretty_printer);
2243 Py_XDECREF (var->child_iter);
2244 Py_XDECREF (var->saved_item);
d452c4bc
UW
2245 do_cleanups (cleanup);
2246 }
2247#endif
2248
36746093
JK
2249 value_free (var->value);
2250
581e13c1 2251 /* Free the expression if this is a root variable. */
b2c2bd75 2252 if (is_root_p (var))
8b93c638 2253 {
3038237c 2254 xfree (var->root->exp);
8038e1e2 2255 xfree (var->root);
8b93c638
JM
2256 }
2257
8038e1e2
AC
2258 xfree (var->name);
2259 xfree (var->obj_name);
85265413 2260 xfree (var->print_value);
02142340 2261 xfree (var->path_expr);
8038e1e2 2262 xfree (var);
8b93c638
JM
2263}
2264
74b7792f
AC
2265static void
2266do_free_variable_cleanup (void *var)
2267{
2268 free_variable (var);
2269}
2270
2271static struct cleanup *
2272make_cleanup_free_variable (struct varobj *var)
2273{
2274 return make_cleanup (do_free_variable_cleanup, var);
2275}
2276
581e13c1 2277/* This returns the type of the variable. It also skips past typedefs
6766a268 2278 to return the real type of the variable.
94b66fa7
KS
2279
2280 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2281 except within get_target_type and get_type. */
8b93c638 2282static struct type *
fba45db2 2283get_type (struct varobj *var)
8b93c638
JM
2284{
2285 struct type *type;
8b93c638 2286
a109c7c1 2287 type = var->type;
6766a268
DJ
2288 if (type != NULL)
2289 type = check_typedef (type);
8b93c638
JM
2290
2291 return type;
2292}
2293
6e2a9270
VP
2294/* Return the type of the value that's stored in VAR,
2295 or that would have being stored there if the
581e13c1 2296 value were accessible.
6e2a9270
VP
2297
2298 This differs from VAR->type in that VAR->type is always
2299 the true type of the expession in the source language.
2300 The return value of this function is the type we're
2301 actually storing in varobj, and using for displaying
2302 the values and for comparing previous and new values.
2303
2304 For example, top-level references are always stripped. */
2305static struct type *
2306get_value_type (struct varobj *var)
2307{
2308 struct type *type;
2309
2310 if (var->value)
2311 type = value_type (var->value);
2312 else
2313 type = var->type;
2314
2315 type = check_typedef (type);
2316
2317 if (TYPE_CODE (type) == TYPE_CODE_REF)
2318 type = get_target_type (type);
2319
2320 type = check_typedef (type);
2321
2322 return type;
2323}
2324
8b93c638 2325/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2326 past typedefs, just like get_type ().
2327
2328 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2329 except within get_target_type and get_type. */
8b93c638 2330static struct type *
fba45db2 2331get_target_type (struct type *type)
8b93c638
JM
2332{
2333 if (type != NULL)
2334 {
2335 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2336 if (type != NULL)
2337 type = check_typedef (type);
8b93c638
JM
2338 }
2339
2340 return type;
2341}
2342
2343/* What is the default display for this variable? We assume that
581e13c1 2344 everything is "natural". Any exceptions? */
8b93c638 2345static enum varobj_display_formats
fba45db2 2346variable_default_display (struct varobj *var)
8b93c638
JM
2347{
2348 return FORMAT_NATURAL;
2349}
2350
581e13c1 2351/* FIXME: The following should be generic for any pointer. */
8b93c638 2352static void
fba45db2 2353cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2354{
2355 struct cpstack *s;
2356
2357 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2358 s->name = name;
2359 s->next = *pstack;
2360 *pstack = s;
2361}
2362
581e13c1 2363/* FIXME: The following should be generic for any pointer. */
8b93c638 2364static char *
fba45db2 2365cppop (struct cpstack **pstack)
8b93c638
JM
2366{
2367 struct cpstack *s;
2368 char *v;
2369
2370 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2371 return NULL;
2372
2373 s = *pstack;
2374 v = s->name;
2375 *pstack = (*pstack)->next;
b8c9b27d 2376 xfree (s);
8b93c638
JM
2377
2378 return v;
2379}
2380\f
2381/*
2382 * Language-dependencies
2383 */
2384
2385/* Common entry points */
2386
581e13c1 2387/* Get the language of variable VAR. */
8b93c638 2388static enum varobj_languages
fba45db2 2389variable_language (struct varobj *var)
8b93c638
JM
2390{
2391 enum varobj_languages lang;
2392
2393 switch (var->root->exp->language_defn->la_language)
2394 {
2395 default:
2396 case language_c:
2397 lang = vlang_c;
2398 break;
2399 case language_cplus:
2400 lang = vlang_cplus;
2401 break;
2402 case language_java:
2403 lang = vlang_java;
2404 break;
2405 }
2406
2407 return lang;
2408}
2409
2410/* Return the number of children for a given variable.
2411 The result of this function is defined by the language
581e13c1 2412 implementation. The number of children returned by this function
8b93c638 2413 is the number of children that the user will see in the variable
581e13c1 2414 display. */
8b93c638 2415static int
fba45db2 2416number_of_children (struct varobj *var)
8b93c638 2417{
82ae4854 2418 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2419}
2420
3e43a32a 2421/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2422 string. */
8b93c638 2423static char *
fba45db2 2424name_of_variable (struct varobj *var)
8b93c638
JM
2425{
2426 return (*var->root->lang->name_of_variable) (var);
2427}
2428
3e43a32a 2429/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2430 string. */
8b93c638 2431static char *
fba45db2 2432name_of_child (struct varobj *var, int index)
8b93c638
JM
2433{
2434 return (*var->root->lang->name_of_child) (var, index);
2435}
2436
a5defcdc
VP
2437/* What is the ``struct value *'' of the root variable VAR?
2438 For floating variable object, evaluation can get us a value
2439 of different type from what is stored in varobj already. In
2440 that case:
2441 - *type_changed will be set to 1
2442 - old varobj will be freed, and new one will be
2443 created, with the same name.
2444 - *var_handle will be set to the new varobj
2445 Otherwise, *type_changed will be set to 0. */
30b28db1 2446static struct value *
fba45db2 2447value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2448{
73a93a32
JI
2449 struct varobj *var;
2450
2451 if (var_handle == NULL)
2452 return NULL;
2453
2454 var = *var_handle;
2455
2456 /* This should really be an exception, since this should
581e13c1 2457 only get called with a root variable. */
73a93a32 2458
b2c2bd75 2459 if (!is_root_p (var))
73a93a32
JI
2460 return NULL;
2461
a5defcdc 2462 if (var->root->floating)
73a93a32
JI
2463 {
2464 struct varobj *tmp_var;
2465 char *old_type, *new_type;
6225abfa 2466
73a93a32
JI
2467 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2468 USE_SELECTED_FRAME);
2469 if (tmp_var == NULL)
2470 {
2471 return NULL;
2472 }
6225abfa 2473 old_type = varobj_get_type (var);
73a93a32 2474 new_type = varobj_get_type (tmp_var);
72330bd6 2475 if (strcmp (old_type, new_type) == 0)
73a93a32 2476 {
fcacd99f
VP
2477 /* The expression presently stored inside var->root->exp
2478 remembers the locations of local variables relatively to
2479 the frame where the expression was created (in DWARF location
2480 button, for example). Naturally, those locations are not
2481 correct in other frames, so update the expression. */
2482
2483 struct expression *tmp_exp = var->root->exp;
a109c7c1 2484
fcacd99f
VP
2485 var->root->exp = tmp_var->root->exp;
2486 tmp_var->root->exp = tmp_exp;
2487
73a93a32
JI
2488 varobj_delete (tmp_var, NULL, 0);
2489 *type_changed = 0;
2490 }
2491 else
2492 {
1b36a34b 2493 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2494 tmp_var->from = var->from;
2495 tmp_var->to = var->to;
a5defcdc
VP
2496 varobj_delete (var, NULL, 0);
2497
73a93a32
JI
2498 install_variable (tmp_var);
2499 *var_handle = tmp_var;
705da579 2500 var = *var_handle;
73a93a32
JI
2501 *type_changed = 1;
2502 }
74dddad3
MS
2503 xfree (old_type);
2504 xfree (new_type);
73a93a32
JI
2505 }
2506 else
2507 {
2508 *type_changed = 0;
2509 }
2510
2511 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2512}
2513
581e13c1 2514/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2515static struct value *
fba45db2 2516value_of_child (struct varobj *parent, int index)
8b93c638 2517{
30b28db1 2518 struct value *value;
8b93c638
JM
2519
2520 value = (*parent->root->lang->value_of_child) (parent, index);
2521
8b93c638
JM
2522 return value;
2523}
2524
581e13c1 2525/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2526static char *
de051565 2527my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2528{
8756216b 2529 if (var->root->is_valid)
0cc7d26f
TT
2530 {
2531 if (var->pretty_printer)
2532 return value_get_print_value (var->value, var->format, var);
2533 return (*var->root->lang->value_of_variable) (var, format);
2534 }
8756216b
DP
2535 else
2536 return NULL;
8b93c638
JM
2537}
2538
85265413 2539static char *
b6313243 2540value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2541 struct varobj *var)
85265413 2542{
57e66780 2543 struct ui_file *stb;
621c8364 2544 struct cleanup *old_chain;
fbb8f299 2545 gdb_byte *thevalue = NULL;
79a45b7d 2546 struct value_print_options opts;
be759fcf
PM
2547 struct type *type = NULL;
2548 long len = 0;
2549 char *encoding = NULL;
2550 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2551 /* Initialize it just to avoid a GCC false warning. */
2552 CORE_ADDR str_addr = 0;
09ca9e2e 2553 int string_print = 0;
57e66780
DJ
2554
2555 if (value == NULL)
2556 return NULL;
2557
621c8364
TT
2558 stb = mem_fileopen ();
2559 old_chain = make_cleanup_ui_file_delete (stb);
2560
be759fcf 2561 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2562#if HAVE_PYTHON
2563 {
d452c4bc
UW
2564 PyObject *value_formatter = var->pretty_printer;
2565
09ca9e2e
TT
2566 varobj_ensure_python_env (var);
2567
0cc7d26f 2568 if (value_formatter)
b6313243 2569 {
0cc7d26f
TT
2570 /* First check to see if we have any children at all. If so,
2571 we simply return {...}. */
2572 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2573 {
2574 do_cleanups (old_chain);
2575 return xstrdup ("{...}");
2576 }
b6313243 2577
0cc7d26f 2578 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2579 {
0cc7d26f
TT
2580 char *hint;
2581 struct value *replacement;
0cc7d26f
TT
2582 PyObject *output = NULL;
2583
2584 hint = gdbpy_get_display_hint (value_formatter);
2585 if (hint)
2586 {
2587 if (!strcmp (hint, "string"))
2588 string_print = 1;
2589 xfree (hint);
2590 }
b6313243 2591
0cc7d26f 2592 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2593 &replacement,
2594 stb);
0cc7d26f
TT
2595 if (output)
2596 {
09ca9e2e
TT
2597 make_cleanup_py_decref (output);
2598
be759fcf 2599 if (gdbpy_is_lazy_string (output))
0cc7d26f 2600 {
09ca9e2e
TT
2601 gdbpy_extract_lazy_string (output, &str_addr, &type,
2602 &len, &encoding);
2603 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2604 string_print = 1;
2605 }
2606 else
2607 {
2608 PyObject *py_str
2609 = python_string_to_target_python_string (output);
a109c7c1 2610
be759fcf
PM
2611 if (py_str)
2612 {
2613 char *s = PyString_AsString (py_str);
a109c7c1 2614
be759fcf
PM
2615 len = PyString_Size (py_str);
2616 thevalue = xmemdup (s, len + 1, len + 1);
2617 type = builtin_type (gdbarch)->builtin_char;
2618 Py_DECREF (py_str);
09ca9e2e
TT
2619
2620 if (!string_print)
2621 {
2622 do_cleanups (old_chain);
2623 return thevalue;
2624 }
2625
2626 make_cleanup (xfree, thevalue);
be759fcf 2627 }
8dc78533
JK
2628 else
2629 gdbpy_print_stack ();
0cc7d26f 2630 }
0cc7d26f
TT
2631 }
2632 if (replacement)
2633 value = replacement;
b6313243 2634 }
b6313243 2635 }
b6313243
TT
2636 }
2637#endif
2638
79a45b7d
TT
2639 get_formatted_print_options (&opts, format_code[(int) format]);
2640 opts.deref_ref = 0;
b6313243
TT
2641 opts.raw = 1;
2642 if (thevalue)
09ca9e2e
TT
2643 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2644 else if (string_print)
2645 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243
TT
2646 else
2647 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2648 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2649
85265413
NR
2650 do_cleanups (old_chain);
2651 return thevalue;
2652}
2653
340a7723
NR
2654int
2655varobj_editable_p (struct varobj *var)
2656{
2657 struct type *type;
340a7723
NR
2658
2659 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2660 return 0;
2661
2662 type = get_value_type (var);
2663
2664 switch (TYPE_CODE (type))
2665 {
2666 case TYPE_CODE_STRUCT:
2667 case TYPE_CODE_UNION:
2668 case TYPE_CODE_ARRAY:
2669 case TYPE_CODE_FUNC:
2670 case TYPE_CODE_METHOD:
2671 return 0;
2672 break;
2673
2674 default:
2675 return 1;
2676 break;
2677 }
2678}
2679
acd65feb
VP
2680/* Return non-zero if changes in value of VAR
2681 must be detected and reported by -var-update.
2682 Return zero is -var-update should never report
2683 changes of such values. This makes sense for structures
2684 (since the changes in children values will be reported separately),
2685 or for artifical objects (like 'public' pseudo-field in C++).
2686
2687 Return value of 0 means that gdb need not call value_fetch_lazy
2688 for the value of this variable object. */
8b93c638 2689static int
b2c2bd75 2690varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2691{
2692 int r;
2693 struct type *type;
2694
2695 if (CPLUS_FAKE_CHILD (var))
2696 return 0;
2697
6e2a9270 2698 type = get_value_type (var);
8b93c638
JM
2699
2700 switch (TYPE_CODE (type))
2701 {
72330bd6
AC
2702 case TYPE_CODE_STRUCT:
2703 case TYPE_CODE_UNION:
2704 case TYPE_CODE_ARRAY:
2705 r = 0;
2706 break;
8b93c638 2707
72330bd6
AC
2708 default:
2709 r = 1;
8b93c638
JM
2710 }
2711
2712 return r;
2713}
2714
5a413362
VP
2715/* Return 1 if that varobj is floating, that is is always evaluated in the
2716 selected frame, and not bound to thread/frame. Such variable objects
2717 are created using '@' as frame specifier to -var-create. */
2718int
2719varobj_floating_p (struct varobj *var)
2720{
2721 return var->root->floating;
2722}
2723
2024f65a
VP
2724/* Given the value and the type of a variable object,
2725 adjust the value and type to those necessary
2726 for getting children of the variable object.
2727 This includes dereferencing top-level references
2728 to all types and dereferencing pointers to
581e13c1 2729 structures.
2024f65a 2730
581e13c1 2731 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
2732 can be null if we want to only translate type.
2733 *VALUE can be null as well -- if the parent
581e13c1 2734 value is not known.
02142340
VP
2735
2736 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2737 depending on whether pointer was dereferenced
02142340 2738 in this function. */
2024f65a
VP
2739static void
2740adjust_value_for_child_access (struct value **value,
02142340
VP
2741 struct type **type,
2742 int *was_ptr)
2024f65a
VP
2743{
2744 gdb_assert (type && *type);
2745
02142340
VP
2746 if (was_ptr)
2747 *was_ptr = 0;
2748
2024f65a
VP
2749 *type = check_typedef (*type);
2750
2751 /* The type of value stored in varobj, that is passed
2752 to us, is already supposed to be
2753 reference-stripped. */
2754
2755 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2756
2757 /* Pointers to structures are treated just like
2758 structures when accessing children. Don't
2759 dererences pointers to other types. */
2760 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2761 {
2762 struct type *target_type = get_target_type (*type);
2763 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2764 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2765 {
2766 if (value && *value)
3f4178d6 2767 {
a109c7c1
MS
2768 int success = gdb_value_ind (*value, value);
2769
3f4178d6
DJ
2770 if (!success)
2771 *value = NULL;
2772 }
2024f65a 2773 *type = target_type;
02142340
VP
2774 if (was_ptr)
2775 *was_ptr = 1;
2024f65a
VP
2776 }
2777 }
2778
2779 /* The 'get_target_type' function calls check_typedef on
2780 result, so we can immediately check type code. No
2781 need to call check_typedef here. */
2782}
2783
8b93c638
JM
2784/* C */
2785static int
fba45db2 2786c_number_of_children (struct varobj *var)
8b93c638 2787{
2024f65a
VP
2788 struct type *type = get_value_type (var);
2789 int children = 0;
8b93c638 2790 struct type *target;
8b93c638 2791
02142340 2792 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2793 target = get_target_type (type);
8b93c638
JM
2794
2795 switch (TYPE_CODE (type))
2796 {
2797 case TYPE_CODE_ARRAY:
2798 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2799 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2800 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2801 else
74a44383
DJ
2802 /* If we don't know how many elements there are, don't display
2803 any. */
2804 children = 0;
8b93c638
JM
2805 break;
2806
2807 case TYPE_CODE_STRUCT:
2808 case TYPE_CODE_UNION:
2809 children = TYPE_NFIELDS (type);
2810 break;
2811
2812 case TYPE_CODE_PTR:
581e13c1 2813 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
2814 have one child, except for function ptrs, which have no children,
2815 and except for void*, as we don't know what to show.
2816
0755e6c1
FN
2817 We can show char* so we allow it to be dereferenced. If you decide
2818 to test for it, please mind that a little magic is necessary to
2819 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 2820 TYPE_NAME == "char". */
2024f65a
VP
2821 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2822 || TYPE_CODE (target) == TYPE_CODE_VOID)
2823 children = 0;
2824 else
2825 children = 1;
8b93c638
JM
2826 break;
2827
2828 default:
581e13c1 2829 /* Other types have no children. */
8b93c638
JM
2830 break;
2831 }
2832
2833 return children;
2834}
2835
2836static char *
fba45db2 2837c_name_of_variable (struct varobj *parent)
8b93c638 2838{
1b36a34b 2839 return xstrdup (parent->name);
8b93c638
JM
2840}
2841
bbec2603
VP
2842/* Return the value of element TYPE_INDEX of a structure
2843 value VALUE. VALUE's type should be a structure,
581e13c1 2844 or union, or a typedef to struct/union.
bbec2603
VP
2845
2846 Returns NULL if getting the value fails. Never throws. */
2847static struct value *
2848value_struct_element_index (struct value *value, int type_index)
8b93c638 2849{
bbec2603
VP
2850 struct value *result = NULL;
2851 volatile struct gdb_exception e;
bbec2603 2852 struct type *type = value_type (value);
a109c7c1 2853
bbec2603
VP
2854 type = check_typedef (type);
2855
2856 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2857 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2858
bbec2603
VP
2859 TRY_CATCH (e, RETURN_MASK_ERROR)
2860 {
d6a843b5 2861 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2862 result = value_static_field (type, type_index);
2863 else
2864 result = value_primitive_field (value, 0, type_index, type);
2865 }
2866 if (e.reason < 0)
2867 {
2868 return NULL;
2869 }
2870 else
2871 {
2872 return result;
2873 }
2874}
2875
2876/* Obtain the information about child INDEX of the variable
581e13c1 2877 object PARENT.
bbec2603
VP
2878 If CNAME is not null, sets *CNAME to the name of the child relative
2879 to the parent.
2880 If CVALUE is not null, sets *CVALUE to the value of the child.
2881 If CTYPE is not null, sets *CTYPE to the type of the child.
2882
2883 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2884 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2885 to NULL. */
2886static void
2887c_describe_child (struct varobj *parent, int index,
02142340
VP
2888 char **cname, struct value **cvalue, struct type **ctype,
2889 char **cfull_expression)
bbec2603
VP
2890{
2891 struct value *value = parent->value;
2024f65a 2892 struct type *type = get_value_type (parent);
02142340
VP
2893 char *parent_expression = NULL;
2894 int was_ptr;
bbec2603
VP
2895
2896 if (cname)
2897 *cname = NULL;
2898 if (cvalue)
2899 *cvalue = NULL;
2900 if (ctype)
2901 *ctype = NULL;
02142340
VP
2902 if (cfull_expression)
2903 {
2904 *cfull_expression = NULL;
2905 parent_expression = varobj_get_path_expr (parent);
2906 }
2907 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2908
8b93c638
JM
2909 switch (TYPE_CODE (type))
2910 {
2911 case TYPE_CODE_ARRAY:
bbec2603 2912 if (cname)
3e43a32a
MS
2913 *cname
2914 = xstrdup (int_string (index
2915 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2916 10, 1, 0, 0));
bbec2603
VP
2917
2918 if (cvalue && value)
2919 {
2920 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2921
2497b498 2922 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2923 }
2924
2925 if (ctype)
2926 *ctype = get_target_type (type);
2927
02142340 2928 if (cfull_expression)
43bbcdc2
PH
2929 *cfull_expression =
2930 xstrprintf ("(%s)[%s]", parent_expression,
2931 int_string (index
2932 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2933 10, 1, 0, 0));
02142340
VP
2934
2935
8b93c638
JM
2936 break;
2937
2938 case TYPE_CODE_STRUCT:
2939 case TYPE_CODE_UNION:
bbec2603 2940 if (cname)
1b36a34b 2941 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2942
2943 if (cvalue && value)
2944 {
2945 /* For C, varobj index is the same as type index. */
2946 *cvalue = value_struct_element_index (value, index);
2947 }
2948
2949 if (ctype)
2950 *ctype = TYPE_FIELD_TYPE (type, index);
2951
02142340
VP
2952 if (cfull_expression)
2953 {
2954 char *join = was_ptr ? "->" : ".";
a109c7c1 2955
02142340
VP
2956 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2957 TYPE_FIELD_NAME (type, index));
2958 }
2959
8b93c638
JM
2960 break;
2961
2962 case TYPE_CODE_PTR:
bbec2603
VP
2963 if (cname)
2964 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2965
bbec2603 2966 if (cvalue && value)
3f4178d6
DJ
2967 {
2968 int success = gdb_value_ind (value, cvalue);
a109c7c1 2969
3f4178d6
DJ
2970 if (!success)
2971 *cvalue = NULL;
2972 }
bbec2603 2973
2024f65a
VP
2974 /* Don't use get_target_type because it calls
2975 check_typedef and here, we want to show the true
2976 declared type of the variable. */
bbec2603 2977 if (ctype)
2024f65a 2978 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2979
2980 if (cfull_expression)
2981 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2982
8b93c638
JM
2983 break;
2984
2985 default:
581e13c1 2986 /* This should not happen. */
bbec2603
VP
2987 if (cname)
2988 *cname = xstrdup ("???");
02142340
VP
2989 if (cfull_expression)
2990 *cfull_expression = xstrdup ("???");
581e13c1 2991 /* Don't set value and type, we don't know then. */
8b93c638 2992 }
bbec2603 2993}
8b93c638 2994
bbec2603
VP
2995static char *
2996c_name_of_child (struct varobj *parent, int index)
2997{
2998 char *name;
a109c7c1 2999
02142340 3000 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3001 return name;
3002}
3003
02142340
VP
3004static char *
3005c_path_expr_of_child (struct varobj *child)
3006{
3007 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3008 &child->path_expr);
3009 return child->path_expr;
3010}
3011
c5b48eac
VP
3012/* If frame associated with VAR can be found, switch
3013 to it and return 1. Otherwise, return 0. */
3014static int
3015check_scope (struct varobj *var)
3016{
3017 struct frame_info *fi;
3018 int scope;
3019
3020 fi = frame_find_by_id (var->root->frame);
3021 scope = fi != NULL;
3022
3023 if (fi)
3024 {
3025 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3026
c5b48eac
VP
3027 if (pc < BLOCK_START (var->root->valid_block) ||
3028 pc >= BLOCK_END (var->root->valid_block))
3029 scope = 0;
3030 else
3031 select_frame (fi);
3032 }
3033 return scope;
3034}
3035
30b28db1 3036static struct value *
fba45db2 3037c_value_of_root (struct varobj **var_handle)
8b93c638 3038{
5e572bb4 3039 struct value *new_val = NULL;
73a93a32 3040 struct varobj *var = *var_handle;
c5b48eac 3041 int within_scope = 0;
6208b47d
VP
3042 struct cleanup *back_to;
3043
581e13c1 3044 /* Only root variables can be updated... */
b2c2bd75 3045 if (!is_root_p (var))
581e13c1 3046 /* Not a root var. */
73a93a32
JI
3047 return NULL;
3048
4f8d22e3 3049 back_to = make_cleanup_restore_current_thread ();
72330bd6 3050
581e13c1 3051 /* Determine whether the variable is still around. */
a5defcdc 3052 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3053 within_scope = 1;
c5b48eac
VP
3054 else if (var->root->thread_id == 0)
3055 {
3056 /* The program was single-threaded when the variable object was
3057 created. Technically, it's possible that the program became
3058 multi-threaded since then, but we don't support such
3059 scenario yet. */
3060 within_scope = check_scope (var);
3061 }
8b93c638
JM
3062 else
3063 {
c5b48eac
VP
3064 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3065 if (in_thread_list (ptid))
d2353924 3066 {
c5b48eac
VP
3067 switch_to_thread (ptid);
3068 within_scope = check_scope (var);
3069 }
8b93c638 3070 }
72330bd6 3071
8b93c638
JM
3072 if (within_scope)
3073 {
73a93a32 3074 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3075 expression fails we want to just return NULL. */
3076 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3077 return new_val;
3078 }
3079
6208b47d
VP
3080 do_cleanups (back_to);
3081
8b93c638
JM
3082 return NULL;
3083}
3084
30b28db1 3085static struct value *
fba45db2 3086c_value_of_child (struct varobj *parent, int index)
8b93c638 3087{
bbec2603 3088 struct value *value = NULL;
8b93c638 3089
a109c7c1 3090 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3091 return value;
3092}
3093
3094static struct type *
fba45db2 3095c_type_of_child (struct varobj *parent, int index)
8b93c638 3096{
bbec2603 3097 struct type *type = NULL;
a109c7c1 3098
02142340 3099 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3100 return type;
3101}
3102
8b93c638 3103static char *
de051565 3104c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3105{
14b3d9c9
JB
3106 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3107 it will print out its children instead of "{...}". So we need to
3108 catch that case explicitly. */
3109 struct type *type = get_type (var);
e64d9b3d 3110
b6313243
TT
3111 /* If we have a custom formatter, return whatever string it has
3112 produced. */
3113 if (var->pretty_printer && var->print_value)
3114 return xstrdup (var->print_value);
3115
581e13c1 3116 /* Strip top-level references. */
14b3d9c9
JB
3117 while (TYPE_CODE (type) == TYPE_CODE_REF)
3118 type = check_typedef (TYPE_TARGET_TYPE (type));
3119
3120 switch (TYPE_CODE (type))
8b93c638
JM
3121 {
3122 case TYPE_CODE_STRUCT:
3123 case TYPE_CODE_UNION:
3124 return xstrdup ("{...}");
3125 /* break; */
3126
3127 case TYPE_CODE_ARRAY:
3128 {
e64d9b3d 3129 char *number;
a109c7c1 3130
b435e160 3131 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3132 return (number);
8b93c638
JM
3133 }
3134 /* break; */
3135
3136 default:
3137 {
575bbeb6
KS
3138 if (var->value == NULL)
3139 {
3140 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3141 member when the parent is an invalid pointer. This is an
3142 error condition, so we should tell the caller. */
575bbeb6
KS
3143 return NULL;
3144 }
3145 else
3146 {
25d5ea92
VP
3147 if (var->not_fetched && value_lazy (var->value))
3148 /* Frozen variable and no value yet. We don't
3149 implicitly fetch the value. MI response will
3150 use empty string for the value, which is OK. */
3151 return NULL;
3152
b2c2bd75 3153 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3154 gdb_assert (!value_lazy (var->value));
de051565
MK
3155
3156 /* If the specified format is the current one,
581e13c1 3157 we can reuse print_value. */
de051565
MK
3158 if (format == var->format)
3159 return xstrdup (var->print_value);
3160 else
d452c4bc 3161 return value_get_print_value (var->value, format, var);
85265413 3162 }
e64d9b3d 3163 }
8b93c638
JM
3164 }
3165}
3166\f
3167
3168/* C++ */
3169
3170static int
fba45db2 3171cplus_number_of_children (struct varobj *var)
8b93c638
JM
3172{
3173 struct type *type;
3174 int children, dont_know;
3175
3176 dont_know = 1;
3177 children = 0;
3178
3179 if (!CPLUS_FAKE_CHILD (var))
3180 {
2024f65a 3181 type = get_value_type (var);
02142340 3182 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3183
3184 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3185 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3186 {
3187 int kids[3];
3188
3189 cplus_class_num_children (type, kids);
3190 if (kids[v_public] != 0)
3191 children++;
3192 if (kids[v_private] != 0)
3193 children++;
3194 if (kids[v_protected] != 0)
3195 children++;
3196
581e13c1 3197 /* Add any baseclasses. */
8b93c638
JM
3198 children += TYPE_N_BASECLASSES (type);
3199 dont_know = 0;
3200
581e13c1 3201 /* FIXME: save children in var. */
8b93c638
JM
3202 }
3203 }
3204 else
3205 {
3206 int kids[3];
3207
2024f65a 3208 type = get_value_type (var->parent);
02142340 3209 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3210
3211 cplus_class_num_children (type, kids);
6e382aa3 3212 if (strcmp (var->name, "public") == 0)
8b93c638 3213 children = kids[v_public];
6e382aa3 3214 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3215 children = kids[v_private];
3216 else
3217 children = kids[v_protected];
3218 dont_know = 0;
3219 }
3220
3221 if (dont_know)
3222 children = c_number_of_children (var);
3223
3224 return children;
3225}
3226
3227/* Compute # of public, private, and protected variables in this class.
3228 That means we need to descend into all baseclasses and find out
581e13c1 3229 how many are there, too. */
8b93c638 3230static void
1669605f 3231cplus_class_num_children (struct type *type, int children[3])
8b93c638 3232{
d48cc9dd
DJ
3233 int i, vptr_fieldno;
3234 struct type *basetype = NULL;
8b93c638
JM
3235
3236 children[v_public] = 0;
3237 children[v_private] = 0;
3238 children[v_protected] = 0;
3239
d48cc9dd 3240 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3241 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3242 {
d48cc9dd
DJ
3243 /* If we have a virtual table pointer, omit it. Even if virtual
3244 table pointers are not specifically marked in the debug info,
3245 they should be artificial. */
3246 if ((type == basetype && i == vptr_fieldno)
3247 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3248 continue;
3249
3250 if (TYPE_FIELD_PROTECTED (type, i))
3251 children[v_protected]++;
3252 else if (TYPE_FIELD_PRIVATE (type, i))
3253 children[v_private]++;
3254 else
3255 children[v_public]++;
3256 }
3257}
3258
3259static char *
fba45db2 3260cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3261{
3262 return c_name_of_variable (parent);
3263}
3264
2024f65a
VP
3265enum accessibility { private_field, protected_field, public_field };
3266
3267/* Check if field INDEX of TYPE has the specified accessibility.
3268 Return 0 if so and 1 otherwise. */
3269static int
3270match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3271{
2024f65a
VP
3272 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3273 return 1;
3274 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3275 return 1;
3276 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3277 && !TYPE_FIELD_PROTECTED (type, index))
3278 return 1;
3279 else
3280 return 0;
3281}
3282
3283static void
3284cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3285 char **cname, struct value **cvalue, struct type **ctype,
3286 char **cfull_expression)
2024f65a 3287{
2024f65a 3288 struct value *value;
8b93c638 3289 struct type *type;
02142340
VP
3290 int was_ptr;
3291 char *parent_expression = NULL;
8b93c638 3292
2024f65a
VP
3293 if (cname)
3294 *cname = NULL;
3295 if (cvalue)
3296 *cvalue = NULL;
3297 if (ctype)
3298 *ctype = NULL;
02142340
VP
3299 if (cfull_expression)
3300 *cfull_expression = NULL;
2024f65a 3301
8b93c638
JM
3302 if (CPLUS_FAKE_CHILD (parent))
3303 {
2024f65a
VP
3304 value = parent->parent->value;
3305 type = get_value_type (parent->parent);
02142340
VP
3306 if (cfull_expression)
3307 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3308 }
3309 else
2024f65a
VP
3310 {
3311 value = parent->value;
3312 type = get_value_type (parent);
02142340
VP
3313 if (cfull_expression)
3314 parent_expression = varobj_get_path_expr (parent);
2024f65a 3315 }
8b93c638 3316
02142340 3317 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3318
3319 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3320 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3321 {
02142340 3322 char *join = was_ptr ? "->" : ".";
a109c7c1 3323
8b93c638
JM
3324 if (CPLUS_FAKE_CHILD (parent))
3325 {
6e382aa3
JJ
3326 /* The fields of the class type are ordered as they
3327 appear in the class. We are given an index for a
3328 particular access control type ("public","protected",
3329 or "private"). We must skip over fields that don't
3330 have the access control we are looking for to properly
581e13c1 3331 find the indexed field. */
6e382aa3 3332 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3333 enum accessibility acc = public_field;
d48cc9dd
DJ
3334 int vptr_fieldno;
3335 struct type *basetype = NULL;
3336
3337 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3338 if (strcmp (parent->name, "private") == 0)
2024f65a 3339 acc = private_field;
6e382aa3 3340 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3341 acc = protected_field;
3342
3343 while (index >= 0)
6e382aa3 3344 {
d48cc9dd
DJ
3345 if ((type == basetype && type_index == vptr_fieldno)
3346 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3347 ; /* ignore vptr */
3348 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3349 --index;
3350 ++type_index;
6e382aa3 3351 }
2024f65a
VP
3352 --type_index;
3353
3354 if (cname)
3355 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3356
3357 if (cvalue && value)
3358 *cvalue = value_struct_element_index (value, type_index);
3359
3360 if (ctype)
3361 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3362
3363 if (cfull_expression)
3e43a32a
MS
3364 *cfull_expression
3365 = xstrprintf ("((%s)%s%s)", parent_expression,
3366 join,
3367 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3368 }
3369 else if (index < TYPE_N_BASECLASSES (type))
3370 {
3371 /* This is a baseclass. */
3372 if (cname)
3373 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3374
3375 if (cvalue && value)
0cc7d26f 3376 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3377
2024f65a
VP
3378 if (ctype)
3379 {
3380 *ctype = TYPE_FIELD_TYPE (type, index);
3381 }
02142340
VP
3382
3383 if (cfull_expression)
3384 {
3385 char *ptr = was_ptr ? "*" : "";
a109c7c1 3386
581e13c1 3387 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3388 expression like
3389 (Base1)d
3390 will create an lvalue, for all appearences, so we don't
3391 need to use more fancy:
3392 *(Base1*)(&d)
3393 construct. */
3394 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3395 ptr,
3396 TYPE_FIELD_NAME (type, index),
3397 ptr,
3398 parent_expression);
3399 }
8b93c638 3400 }
8b93c638
JM
3401 else
3402 {
348144ba 3403 char *access = NULL;
6e382aa3 3404 int children[3];
a109c7c1 3405
2024f65a 3406 cplus_class_num_children (type, children);
6e382aa3 3407
8b93c638 3408 /* Everything beyond the baseclasses can
6e382aa3
JJ
3409 only be "public", "private", or "protected"
3410
3411 The special "fake" children are always output by varobj in
581e13c1 3412 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3413 index -= TYPE_N_BASECLASSES (type);
3414 switch (index)
3415 {
3416 case 0:
6e382aa3 3417 if (children[v_public] > 0)
2024f65a 3418 access = "public";
6e382aa3 3419 else if (children[v_private] > 0)
2024f65a 3420 access = "private";
6e382aa3 3421 else
2024f65a 3422 access = "protected";
6e382aa3 3423 break;
8b93c638 3424 case 1:
6e382aa3 3425 if (children[v_public] > 0)
8b93c638 3426 {
6e382aa3 3427 if (children[v_private] > 0)
2024f65a 3428 access = "private";
6e382aa3 3429 else
2024f65a 3430 access = "protected";
8b93c638 3431 }
6e382aa3 3432 else if (children[v_private] > 0)
2024f65a 3433 access = "protected";
6e382aa3 3434 break;
8b93c638 3435 case 2:
581e13c1 3436 /* Must be protected. */
2024f65a 3437 access = "protected";
6e382aa3 3438 break;
8b93c638 3439 default:
581e13c1 3440 /* error! */
8b93c638
JM
3441 break;
3442 }
348144ba
MS
3443
3444 gdb_assert (access);
2024f65a
VP
3445 if (cname)
3446 *cname = xstrdup (access);
8b93c638 3447
02142340 3448 /* Value and type and full expression are null here. */
2024f65a 3449 }
8b93c638 3450 }
8b93c638
JM
3451 else
3452 {
02142340 3453 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3454 }
3455}
8b93c638 3456
2024f65a
VP
3457static char *
3458cplus_name_of_child (struct varobj *parent, int index)
3459{
3460 char *name = NULL;
a109c7c1 3461
02142340 3462 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3463 return name;
3464}
3465
02142340
VP
3466static char *
3467cplus_path_expr_of_child (struct varobj *child)
3468{
3469 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3470 &child->path_expr);
3471 return child->path_expr;
3472}
3473
30b28db1 3474static struct value *
fba45db2 3475cplus_value_of_root (struct varobj **var_handle)
8b93c638 3476{
73a93a32 3477 return c_value_of_root (var_handle);
8b93c638
JM
3478}
3479
30b28db1 3480static struct value *
fba45db2 3481cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3482{
2024f65a 3483 struct value *value = NULL;
a109c7c1 3484
02142340 3485 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3486 return value;
3487}
3488
3489static struct type *
fba45db2 3490cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3491{
2024f65a 3492 struct type *type = NULL;
a109c7c1 3493
02142340 3494 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3495 return type;
3496}
3497
8b93c638 3498static char *
a109c7c1
MS
3499cplus_value_of_variable (struct varobj *var,
3500 enum varobj_display_formats format)
8b93c638
JM
3501{
3502
3503 /* If we have one of our special types, don't print out
581e13c1 3504 any value. */
8b93c638
JM
3505 if (CPLUS_FAKE_CHILD (var))
3506 return xstrdup ("");
3507
de051565 3508 return c_value_of_variable (var, format);
8b93c638
JM
3509}
3510\f
3511/* Java */
3512
3513static int
fba45db2 3514java_number_of_children (struct varobj *var)
8b93c638
JM
3515{
3516 return cplus_number_of_children (var);
3517}
3518
3519static char *
fba45db2 3520java_name_of_variable (struct varobj *parent)
8b93c638
JM
3521{
3522 char *p, *name;
3523
3524 name = cplus_name_of_variable (parent);
3525 /* If the name has "-" in it, it is because we
581e13c1 3526 needed to escape periods in the name... */
8b93c638
JM
3527 p = name;
3528
3529 while (*p != '\000')
3530 {
3531 if (*p == '-')
3532 *p = '.';
3533 p++;
3534 }
3535
3536 return name;
3537}
3538
3539static char *
fba45db2 3540java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3541{
3542 char *name, *p;
3543
3544 name = cplus_name_of_child (parent, index);
581e13c1 3545 /* Escape any periods in the name... */
8b93c638
JM
3546 p = name;
3547
3548 while (*p != '\000')
3549 {
3550 if (*p == '.')
3551 *p = '-';
3552 p++;
3553 }
3554
3555 return name;
3556}
3557
02142340
VP
3558static char *
3559java_path_expr_of_child (struct varobj *child)
3560{
3561 return NULL;
3562}
3563
30b28db1 3564static struct value *
fba45db2 3565java_value_of_root (struct varobj **var_handle)
8b93c638 3566{
73a93a32 3567 return cplus_value_of_root (var_handle);
8b93c638
JM
3568}
3569
30b28db1 3570static struct value *
fba45db2 3571java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3572{
3573 return cplus_value_of_child (parent, index);
3574}
3575
3576static struct type *
fba45db2 3577java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3578{
3579 return cplus_type_of_child (parent, index);
3580}
3581
8b93c638 3582static char *
de051565 3583java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3584{
de051565 3585 return cplus_value_of_variable (var, format);
8b93c638 3586}
54333c3b
JK
3587
3588/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3589 with an arbitrary caller supplied DATA pointer. */
3590
3591void
3592all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3593{
3594 struct varobj_root *var_root, *var_root_next;
3595
3596 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3597
3598 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3599 {
3600 var_root_next = var_root->next;
3601
3602 (*func) (var_root->rootvar, data);
3603 }
3604}
8b93c638
JM
3605\f
3606extern void _initialize_varobj (void);
3607void
3608_initialize_varobj (void)
3609{
3610 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3611
3612 varobj_table = xmalloc (sizeof_table);
3613 memset (varobj_table, 0, sizeof_table);
3614
85c07804 3615 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
3616 &varobjdebug,
3617 _("Set varobj debugging."),
3618 _("Show varobj debugging."),
3619 _("When non-zero, varobj debugging is enabled."),
3620 NULL, show_varobjdebug,
85c07804 3621 &setlist, &showlist);
8b93c638 3622}
8756216b 3623
54333c3b
JK
3624/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3625 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3626
54333c3b
JK
3627static void
3628varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3629{
54333c3b
JK
3630 /* Floating varobjs are reparsed on each stop, so we don't care if the
3631 presently parsed expression refers to something that's gone. */
3632 if (var->root->floating)
3633 return;
8756216b 3634
54333c3b
JK
3635 /* global var must be re-evaluated. */
3636 if (var->root->valid_block == NULL)
2dbd25e5 3637 {
54333c3b 3638 struct varobj *tmp_var;
2dbd25e5 3639
54333c3b
JK
3640 /* Try to create a varobj with same expression. If we succeed
3641 replace the old varobj, otherwise invalidate it. */
3642 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3643 USE_CURRENT_FRAME);
3644 if (tmp_var != NULL)
3645 {
3646 tmp_var->obj_name = xstrdup (var->obj_name);
3647 varobj_delete (var, NULL, 0);
3648 install_variable (tmp_var);
2dbd25e5 3649 }
54333c3b
JK
3650 else
3651 var->root->is_valid = 0;
2dbd25e5 3652 }
54333c3b
JK
3653 else /* locals must be invalidated. */
3654 var->root->is_valid = 0;
3655}
3656
3657/* Invalidate the varobjs that are tied to locals and re-create the ones that
3658 are defined on globals.
3659 Invalidated varobjs will be always printed in_scope="invalid". */
3660
3661void
3662varobj_invalidate (void)
3663{
3664 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3665}
This page took 1.597658 seconds and 4 git commands to generate.