Document i386 XML target features.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 4 2009, 2010 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
42#else
43typedef int PyObject;
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638
JM
55
56/* String representations of gdb's format codes */
57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
59
60/* String representations of gdb's known languages */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
72330bd6 77{
8b93c638 78
72330bd6
AC
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
8b93c638 81
72330bd6
AC
82 /* Block for which this expression is valid */
83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac
VP
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
72330bd6
AC
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
8b93c638 107
72330bd6
AC
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
72330bd6 119{
8b93c638 120
72330bd6
AC
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
72330bd6
AC
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
8b93c638 134
72330bd6
AC
135 /* Index of this variable in its parent or -1 */
136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
72330bd6
AC
149 /* The number of (immediate) children this variable has */
150 int num_children;
8b93c638 151
72330bd6
AC
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
72330bd6
AC
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
8b93c638 166
72330bd6
AC
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
fb9b6b35
JJ
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
85265413
NR
172
173 /* Last print value. */
174 char *print_value;
25d5ea92
VP
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
b6313243 185
0cc7d26f
TT
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
b6313243
TT
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
0cc7d26f
TT
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
72330bd6 211};
8b93c638 212
8b93c638 213struct cpstack
72330bd6
AC
214{
215 char *name;
216 struct cpstack *next;
217};
8b93c638
JM
218
219/* A list of varobjs */
220
221struct vlist
72330bd6
AC
222{
223 struct varobj *var;
224 struct vlist *next;
225};
8b93c638
JM
226
227/* Private function prototypes */
228
229/* Helper functions for the above subcommands. */
230
a14ed312 231static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 232
a14ed312
KB
233static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
8b93c638 235
a14ed312 236static int install_variable (struct varobj *);
8b93c638 237
a14ed312 238static void uninstall_variable (struct varobj *);
8b93c638 239
a14ed312 240static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 241
b6313243
TT
242static struct varobj *
243create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
8b93c638
JM
246/* Utility routines */
247
a14ed312 248static struct varobj *new_variable (void);
8b93c638 249
a14ed312 250static struct varobj *new_root_variable (void);
8b93c638 251
a14ed312 252static void free_variable (struct varobj *var);
8b93c638 253
74b7792f
AC
254static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
a14ed312 256static struct type *get_type (struct varobj *var);
8b93c638 257
6e2a9270
VP
258static struct type *get_value_type (struct varobj *var);
259
a14ed312 260static struct type *get_target_type (struct type *);
8b93c638 261
a14ed312 262static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 263
a14ed312 264static void cppush (struct cpstack **pstack, char *name);
8b93c638 265
a14ed312 266static char *cppop (struct cpstack **pstack);
8b93c638 267
acd65feb
VP
268static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
8b93c638
JM
271/* Language-specific routines. */
272
a14ed312 273static enum varobj_languages variable_language (struct varobj *var);
8b93c638 274
a14ed312 275static int number_of_children (struct varobj *);
8b93c638 276
a14ed312 277static char *name_of_variable (struct varobj *);
8b93c638 278
a14ed312 279static char *name_of_child (struct varobj *, int);
8b93c638 280
30b28db1 281static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 282
30b28db1 283static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638 287
85265413 288static char *value_get_print_value (struct value *value,
b6313243 289 enum varobj_display_formats format,
d452c4bc 290 struct varobj *var);
85265413 291
b2c2bd75
VP
292static int varobj_value_is_changeable_p (struct varobj *var);
293
294static int is_root_p (struct varobj *var);
8b93c638 295
d8b65138
JK
296#if HAVE_PYTHON
297
b6313243
TT
298static struct varobj *
299varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
d8b65138
JK
301#endif /* HAVE_PYTHON */
302
8b93c638
JM
303/* C implementation */
304
a14ed312 305static int c_number_of_children (struct varobj *var);
8b93c638 306
a14ed312 307static char *c_name_of_variable (struct varobj *parent);
8b93c638 308
a14ed312 309static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 310
02142340
VP
311static char *c_path_expr_of_child (struct varobj *child);
312
30b28db1 313static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 314
30b28db1 315static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 316
a14ed312 317static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 318
de051565
MK
319static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
8b93c638
JM
321
322/* C++ implementation */
323
a14ed312 324static int cplus_number_of_children (struct varobj *var);
8b93c638 325
a14ed312 326static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 327
a14ed312 328static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 329
a14ed312 330static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 331
02142340
VP
332static char *cplus_path_expr_of_child (struct varobj *child);
333
30b28db1 334static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 335
30b28db1 336static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 337
a14ed312 338static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 339
de051565
MK
340static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
8b93c638
JM
342
343/* Java implementation */
344
a14ed312 345static int java_number_of_children (struct varobj *var);
8b93c638 346
a14ed312 347static char *java_name_of_variable (struct varobj *parent);
8b93c638 348
a14ed312 349static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 350
02142340
VP
351static char *java_path_expr_of_child (struct varobj *child);
352
30b28db1 353static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 354
30b28db1 355static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 356
a14ed312 357static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 358
de051565
MK
359static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
8b93c638
JM
361
362/* The language specific vector */
363
364struct language_specific
72330bd6 365{
8b93c638 366
72330bd6
AC
367 /* The language of this variable */
368 enum varobj_languages language;
8b93c638 369
72330bd6
AC
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
8b93c638 372
72330bd6
AC
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
8b93c638 375
72330bd6
AC
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 378
02142340
VP
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
30b28db1
AC
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 385
30b28db1
AC
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 388
72330bd6
AC
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 391
72330bd6 392 /* The current value of VAR. */
de051565
MK
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
72330bd6 395};
8b93c638
JM
396
397/* Array of known source language routines. */
d5d6fca5 398static struct language_specific languages[vlang_end] = {
8b93c638
JM
399 /* Unknown (try treating as C */
400 {
72330bd6
AC
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
02142340 405 c_path_expr_of_child,
72330bd6
AC
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
72330bd6 409 c_value_of_variable}
8b93c638
JM
410 ,
411 /* C */
412 {
72330bd6
AC
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
02142340 417 c_path_expr_of_child,
72330bd6
AC
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
72330bd6 421 c_value_of_variable}
8b93c638
JM
422 ,
423 /* C++ */
424 {
72330bd6
AC
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
02142340 429 cplus_path_expr_of_child,
72330bd6
AC
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
72330bd6 433 cplus_value_of_variable}
8b93c638
JM
434 ,
435 /* Java */
436 {
72330bd6
AC
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
02142340 441 java_path_expr_of_child,
72330bd6
AC
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
72330bd6 445 java_value_of_variable}
8b93c638
JM
446};
447
448/* A little convenience enum for dealing with C++/Java */
449enum vsections
72330bd6
AC
450{
451 v_public = 0, v_private, v_protected
452};
8b93c638
JM
453
454/* Private data */
455
456/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 457static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
458
459/* Header of the list of root variable objects */
460static struct varobj_root *rootlist;
8b93c638
JM
461
462/* Prime number indicating the number of buckets in the hash table */
463/* A prime large enough to avoid too many colisions */
464#define VAROBJ_TABLE_SIZE 227
465
466/* Pointer to the varobj hash table (built at run time) */
467static struct vlist **varobj_table;
468
8b93c638
JM
469/* Is the variable X one of our "fake" children? */
470#define CPLUS_FAKE_CHILD(x) \
471((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472\f
473
474/* API Implementation */
b2c2bd75
VP
475static int
476is_root_p (struct varobj *var)
477{
478 return (var->root->rootvar == var);
479}
8b93c638 480
d452c4bc
UW
481#ifdef HAVE_PYTHON
482/* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484struct cleanup *
485varobj_ensure_python_env (struct varobj *var)
486{
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489}
490#endif
491
8b93c638
JM
492/* Creates a varobj (not its children) */
493
7d8547c9
AC
494/* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497static struct frame_info *
498find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499{
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
9d49bdc2
PA
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
7d8547c9 508 {
1fac167a
UW
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
7d8547c9
AC
519 return frame;
520 }
9d49bdc2
PA
521
522 return NULL;
7d8547c9
AC
523}
524
8b93c638
JM
525struct varobj *
526varobj_create (char *objname,
72330bd6 527 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
528{
529 struct varobj *var;
2c67cb8b
AC
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
8b93c638
JM
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
74b7792f 537 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
e55dccf0 543 struct value *value = NULL;
8b93c638 544
9d49bdc2
PA
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
8b93c638 563 else
9d49bdc2 564 fi = NULL;
8b93c638 565
73a93a32
JI
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
a5defcdc 568 var->root->floating = 1;
73a93a32 569
8b93c638
JM
570 block = NULL;
571 if (fi != NULL)
ae767bfb 572 block = get_frame_block (fi, 0);
8b93c638
JM
573
574 p = expression;
575 innermost_block = NULL;
73a93a32
JI
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
8b93c638
JM
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
bc8332bb
AC
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
8b93c638
JM
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
1b36a34b 594 var->name = xstrdup (expression);
02142340 595 /* For a root var, the name and the expr are the same. */
1b36a34b 596 var->path_expr = xstrdup (expression);
8b93c638
JM
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
4e22772d 602 if (innermost_block)
8b93c638 603 {
4e22772d
JK
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
7a424e99 611 var->root->frame = get_frame_id (fi);
c5b48eac 612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
206415a3 613 old_fi = get_selected_frame (NULL);
c5b48eac 614 select_frame (fi);
8b93c638
JM
615 }
616
340a7723 617 /* We definitely need to catch errors here.
8b93c638
JM
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 620 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
acd65feb 629
acd65feb 630 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
631
632 /* Set language info */
633 lang = variable_language (var);
d5d6fca5 634 var->root->lang = &languages[lang];
8b93c638
JM
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
e21458b2 640 if (old_fi != NULL)
0f7d239c 641 select_frame (old_fi);
8b93c638
JM
642 }
643
73a93a32
JI
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
8b93c638 648 {
1b36a34b 649 var->obj_name = xstrdup (objname);
8b93c638
JM
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662}
663
664/* Generates an unique name that can be used for a varobj */
665
666char *
667varobj_gen_name (void)
668{
669 static int id = 0;
e64d9b3d 670 char *obj_name;
8b93c638
JM
671
672 /* generate a name for this object */
673 id++;
b435e160 674 obj_name = xstrprintf ("var%d", id);
8b93c638 675
e64d9b3d 676 return obj_name;
8b93c638
JM
677}
678
61d8f275
JK
679/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
8b93c638
JM
681
682struct varobj *
683varobj_get_handle (char *objname)
684{
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
8a3fe4f8 700 error (_("Variable object not found"));
8b93c638
JM
701
702 return cv->var;
703}
704
705/* Given the handle, return the name of the object */
706
707char *
708varobj_get_objname (struct varobj *var)
709{
710 return var->obj_name;
711}
712
713/* Given the handle, return the expression represented by the object */
714
715char *
716varobj_get_expression (struct varobj *var)
717{
718 return name_of_variable (var);
719}
720
721/* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725int
726varobj_delete (struct varobj *var, char ***dellist, int only_children)
727{
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
8a3fe4f8 759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 760 mycount);
8b93c638
JM
761 }
762
763 return delcount;
764}
765
d8b65138
JK
766#if HAVE_PYTHON
767
b6313243
TT
768/* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770static PyObject *
771instantiate_pretty_printer (PyObject *constructor, struct value *value)
772{
b6313243
TT
773 PyObject *val_obj = NULL;
774 PyObject *printer;
b6313243 775
b6313243 776 val_obj = value_to_value_object (value);
b6313243
TT
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
b6313243
TT
783 return NULL;
784}
785
d8b65138
JK
786#endif
787
8b93c638
JM
788/* Set/Get variable object display format */
789
790enum varobj_display_formats
791varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793{
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
ae7d22a6
VP
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
6c761d9c 811 xfree (var->print_value);
d452c4bc 812 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
813 }
814
8b93c638
JM
815 return var->format;
816}
817
818enum varobj_display_formats
819varobj_get_display_format (struct varobj *var)
820{
821 return var->format;
822}
823
b6313243
TT
824char *
825varobj_get_display_hint (struct varobj *var)
826{
827 char *result = NULL;
828
829#if HAVE_PYTHON
d452c4bc
UW
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
b6313243
TT
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
834
835 do_cleanups (back_to);
b6313243
TT
836#endif
837
838 return result;
839}
840
0cc7d26f
TT
841/* Return true if the varobj has items after TO, false otherwise. */
842
843int
844varobj_has_more (struct varobj *var, int to)
845{
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850}
851
c5b48eac
VP
852/* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856int
857varobj_get_thread_id (struct varobj *var)
858{
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863}
864
25d5ea92
VP
865void
866varobj_set_frozen (struct varobj *var, int frozen)
867{
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876}
877
878int
879varobj_get_frozen (struct varobj *var)
880{
881 return var->frozen;
882}
883
0cc7d26f
TT
884/* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889static void
890restrict_range (VEC (varobj_p) *children, int *from, int *to)
891{
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906}
907
d8b65138
JK
908#if HAVE_PYTHON
909
0cc7d26f
TT
910/* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913static void
914install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922{
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944}
945
0cc7d26f
TT
946static int
947dynamic_varobj_has_child_method (struct varobj *var)
948{
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957}
958
959#endif
960
b6313243
TT
961static int
962update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
0cc7d26f
TT
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
b6313243
TT
970{
971#if HAVE_PYTHON
b6313243
TT
972 struct cleanup *back_to;
973 PyObject *children;
b6313243 974 int i;
b6313243 975 PyObject *printer = var->pretty_printer;
b6313243 976
d452c4bc 977 back_to = varobj_ensure_python_env (var);
b6313243
TT
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
0cc7d26f 986 if (update_children || !var->child_iter)
b6313243 987 {
0cc7d26f
TT
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
b6313243 990
0cc7d26f
TT
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
b6313243 996
0cc7d26f 997 make_cleanup_py_decref (children);
b6313243 998
0cc7d26f
TT
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
b6313243 1014 }
0cc7d26f
TT
1015 else
1016 i = VEC_length (varobj_p, var->children);
b6313243 1017
0cc7d26f
TT
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
b6313243 1021 {
0cc7d26f 1022 PyObject *item;
b6313243 1023
0cc7d26f
TT
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
b6313243 1032
0cc7d26f
TT
1033 if (!item)
1034 break;
b6313243 1035
0cc7d26f
TT
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
b6313243 1038 {
0cc7d26f
TT
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
b6313243 1056 }
0cc7d26f 1057 else
b6313243 1058 {
0cc7d26f
TT
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
b6313243 1061
0cc7d26f
TT
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
b6313243
TT
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
0cc7d26f
TT
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
b6313243 1075 }
0cc7d26f
TT
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
b6313243
TT
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
b6313243
TT
1086 return 1;
1087#else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089#endif
1090}
25d5ea92 1091
8b93c638
JM
1092int
1093varobj_get_num_children (struct varobj *var)
1094{
1095 if (var->num_children == -1)
b6313243 1096 {
0cc7d26f
TT
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
b6313243
TT
1107 var->num_children = number_of_children (var);
1108 }
8b93c638 1109
0cc7d26f 1110 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1111}
1112
1113/* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
d56d46f5 1116VEC (varobj_p)*
0cc7d26f 1117varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638
JM
1118{
1119 struct varobj *child;
1120 char *name;
b6313243
TT
1121 int i, children_changed;
1122
1123 var->children_requested = 1;
1124
0cc7d26f
TT
1125 if (var->pretty_printer)
1126 {
b6313243
TT
1127 /* This, in theory, can result in the number of children changing without
1128 frontend noticing. But well, calling -var-list-children on the same
1129 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1130 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1131 0, 0, *to);
1132 restrict_range (var->children, from, to);
1133 return var->children;
1134 }
8b93c638 1135
8b93c638
JM
1136 if (var->num_children == -1)
1137 var->num_children = number_of_children (var);
1138
74a44383
DJ
1139 /* If that failed, give up. */
1140 if (var->num_children == -1)
d56d46f5 1141 return var->children;
74a44383 1142
28335dcc
VP
1143 /* If we're called when the list of children is not yet initialized,
1144 allocate enough elements in it. */
1145 while (VEC_length (varobj_p, var->children) < var->num_children)
1146 VEC_safe_push (varobj_p, var->children, NULL);
1147
8b93c638
JM
1148 for (i = 0; i < var->num_children; i++)
1149 {
d56d46f5 1150 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1151
1152 if (existing == NULL)
1153 {
1154 /* Either it's the first call to varobj_list_children for
1155 this variable object, and the child was never created,
1156 or it was explicitly deleted by the client. */
1157 name = name_of_child (var, i);
1158 existing = create_child (var, i, name);
1159 VEC_replace (varobj_p, var->children, i, existing);
1160 }
8b93c638
JM
1161 }
1162
0cc7d26f 1163 restrict_range (var->children, from, to);
d56d46f5 1164 return var->children;
8b93c638
JM
1165}
1166
d8b65138
JK
1167#if HAVE_PYTHON
1168
b6313243
TT
1169static struct varobj *
1170varobj_add_child (struct varobj *var, const char *name, struct value *value)
1171{
1172 varobj_p v = create_child_with_value (var,
1173 VEC_length (varobj_p, var->children),
1174 name, value);
1175 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1176 return v;
1177}
1178
d8b65138
JK
1179#endif /* HAVE_PYTHON */
1180
8b93c638
JM
1181/* Obtain the type of an object Variable as a string similar to the one gdb
1182 prints on the console */
1183
1184char *
1185varobj_get_type (struct varobj *var)
1186{
8b93c638 1187 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1188 NULL, too.)
1189 Do not return a type for invalid variables as well. */
1190 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1191 return NULL;
1192
1a4300e9 1193 return type_to_string (var->type);
8b93c638
JM
1194}
1195
1ecb4ee0
DJ
1196/* Obtain the type of an object variable. */
1197
1198struct type *
1199varobj_get_gdb_type (struct varobj *var)
1200{
1201 return var->type;
1202}
1203
02142340
VP
1204/* Return a pointer to the full rooted expression of varobj VAR.
1205 If it has not been computed yet, compute it. */
1206char *
1207varobj_get_path_expr (struct varobj *var)
1208{
1209 if (var->path_expr != NULL)
1210 return var->path_expr;
1211 else
1212 {
1213 /* For root varobjs, we initialize path_expr
1214 when creating varobj, so here it should be
1215 child varobj. */
1216 gdb_assert (!is_root_p (var));
1217 return (*var->root->lang->path_expr_of_child) (var);
1218 }
1219}
1220
8b93c638
JM
1221enum varobj_languages
1222varobj_get_language (struct varobj *var)
1223{
1224 return variable_language (var);
1225}
1226
1227int
1228varobj_get_attributes (struct varobj *var)
1229{
1230 int attributes = 0;
1231
340a7723 1232 if (varobj_editable_p (var))
8b93c638
JM
1233 /* FIXME: define masks for attributes */
1234 attributes |= 0x00000001; /* Editable */
1235
1236 return attributes;
1237}
1238
0cc7d26f
TT
1239int
1240varobj_pretty_printed_p (struct varobj *var)
1241{
1242 return var->pretty_printer != NULL;
1243}
1244
de051565
MK
1245char *
1246varobj_get_formatted_value (struct varobj *var,
1247 enum varobj_display_formats format)
1248{
1249 return my_value_of_variable (var, format);
1250}
1251
8b93c638
JM
1252char *
1253varobj_get_value (struct varobj *var)
1254{
de051565 1255 return my_value_of_variable (var, var->format);
8b93c638
JM
1256}
1257
1258/* Set the value of an object variable (if it is editable) to the
1259 value of the given expression */
1260/* Note: Invokes functions that can call error() */
1261
1262int
1263varobj_set_value (struct varobj *var, char *expression)
1264{
30b28db1 1265 struct value *val;
8b93c638 1266 int offset = 0;
a6c442d8 1267 int error = 0;
8b93c638
JM
1268
1269 /* The argument "expression" contains the variable's new value.
1270 We need to first construct a legal expression for this -- ugh! */
1271 /* Does this cover all the bases? */
1272 struct expression *exp;
30b28db1 1273 struct value *value;
8b93c638 1274 int saved_input_radix = input_radix;
340a7723
NR
1275 char *s = expression;
1276 int i;
8b93c638 1277
340a7723 1278 gdb_assert (varobj_editable_p (var));
8b93c638 1279
340a7723
NR
1280 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1281 exp = parse_exp_1 (&s, 0, 0);
1282 if (!gdb_evaluate_expression (exp, &value))
1283 {
1284 /* We cannot proceed without a valid expression. */
1285 xfree (exp);
1286 return 0;
8b93c638
JM
1287 }
1288
340a7723
NR
1289 /* All types that are editable must also be changeable. */
1290 gdb_assert (varobj_value_is_changeable_p (var));
1291
1292 /* The value of a changeable variable object must not be lazy. */
1293 gdb_assert (!value_lazy (var->value));
1294
1295 /* Need to coerce the input. We want to check if the
1296 value of the variable object will be different
1297 after assignment, and the first thing value_assign
1298 does is coerce the input.
1299 For example, if we are assigning an array to a pointer variable we
1300 should compare the pointer with the the array's address, not with the
1301 array's content. */
1302 value = coerce_array (value);
1303
1304 /* The new value may be lazy. gdb_value_assign, or
1305 rather value_contents, will take care of this.
1306 If fetching of the new value will fail, gdb_value_assign
1307 with catch the exception. */
1308 if (!gdb_value_assign (var->value, value, &val))
1309 return 0;
1310
1311 /* If the value has changed, record it, so that next -var-update can
1312 report this change. If a variable had a value of '1', we've set it
1313 to '333' and then set again to '1', when -var-update will report this
1314 variable as changed -- because the first assignment has set the
1315 'updated' flag. There's no need to optimize that, because return value
1316 of -var-update should be considered an approximation. */
1317 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1318 input_radix = saved_input_radix;
1319 return 1;
8b93c638
JM
1320}
1321
0cc7d26f
TT
1322#if HAVE_PYTHON
1323
1324/* A helper function to install a constructor function and visualizer
1325 in a varobj. */
1326
1327static void
1328install_visualizer (struct varobj *var, PyObject *constructor,
1329 PyObject *visualizer)
1330{
1331 Py_XDECREF (var->constructor);
1332 var->constructor = constructor;
1333
1334 Py_XDECREF (var->pretty_printer);
1335 var->pretty_printer = visualizer;
1336
1337 Py_XDECREF (var->child_iter);
1338 var->child_iter = NULL;
1339}
1340
1341/* Install the default visualizer for VAR. */
1342
1343static void
1344install_default_visualizer (struct varobj *var)
1345{
1346 if (pretty_printing)
1347 {
1348 PyObject *pretty_printer = NULL;
1349
1350 if (var->value)
1351 {
1352 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1353 if (! pretty_printer)
1354 {
1355 gdbpy_print_stack ();
1356 error (_("Cannot instantiate printer for default visualizer"));
1357 }
1358 }
1359
1360 if (pretty_printer == Py_None)
1361 {
1362 Py_DECREF (pretty_printer);
1363 pretty_printer = NULL;
1364 }
1365
1366 install_visualizer (var, NULL, pretty_printer);
1367 }
1368}
1369
1370/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1371 make a new object. */
1372
1373static void
1374construct_visualizer (struct varobj *var, PyObject *constructor)
1375{
1376 PyObject *pretty_printer;
1377
1378 Py_INCREF (constructor);
1379 if (constructor == Py_None)
1380 pretty_printer = NULL;
1381 else
1382 {
1383 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1384 if (! pretty_printer)
1385 {
1386 gdbpy_print_stack ();
1387 Py_DECREF (constructor);
1388 constructor = Py_None;
1389 Py_INCREF (constructor);
1390 }
1391
1392 if (pretty_printer == Py_None)
1393 {
1394 Py_DECREF (pretty_printer);
1395 pretty_printer = NULL;
1396 }
1397 }
1398
1399 install_visualizer (var, constructor, pretty_printer);
1400}
1401
1402#endif /* HAVE_PYTHON */
1403
1404/* A helper function for install_new_value. This creates and installs
1405 a visualizer for VAR, if appropriate. */
1406
1407static void
1408install_new_value_visualizer (struct varobj *var)
1409{
1410#if HAVE_PYTHON
1411 /* If the constructor is None, then we want the raw value. If VAR
1412 does not have a value, just skip this. */
1413 if (var->constructor != Py_None && var->value)
1414 {
1415 struct cleanup *cleanup;
1416 PyObject *pretty_printer = NULL;
1417
1418 cleanup = varobj_ensure_python_env (var);
1419
1420 if (!var->constructor)
1421 install_default_visualizer (var);
1422 else
1423 construct_visualizer (var, var->constructor);
1424
1425 do_cleanups (cleanup);
1426 }
1427#else
1428 /* Do nothing. */
1429#endif
1430}
1431
acd65feb
VP
1432/* Assign a new value to a variable object. If INITIAL is non-zero,
1433 this is the first assignement after the variable object was just
1434 created, or changed type. In that case, just assign the value
1435 and return 0.
ee342b23
VP
1436 Otherwise, assign the new value, and return 1 if the value is different
1437 from the current one, 0 otherwise. The comparison is done on textual
1438 representation of value. Therefore, some types need not be compared. E.g.
1439 for structures the reported value is always "{...}", so no comparison is
1440 necessary here. If the old value was NULL and new one is not, or vice versa,
1441 we always return 1.
b26ed50d
VP
1442
1443 The VALUE parameter should not be released -- the function will
1444 take care of releasing it when needed. */
acd65feb
VP
1445static int
1446install_new_value (struct varobj *var, struct value *value, int initial)
1447{
1448 int changeable;
1449 int need_to_fetch;
1450 int changed = 0;
25d5ea92 1451 int intentionally_not_fetched = 0;
7a4d50bf 1452 char *print_value = NULL;
acd65feb 1453
acd65feb
VP
1454 /* We need to know the varobj's type to decide if the value should
1455 be fetched or not. C++ fake children (public/protected/private) don't have
1456 a type. */
1457 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1458 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1459
1460 /* If the type has custom visualizer, we consider it to be always
1461 changeable. FIXME: need to make sure this behaviour will not
1462 mess up read-sensitive values. */
1463 if (var->pretty_printer)
1464 changeable = 1;
1465
acd65feb
VP
1466 need_to_fetch = changeable;
1467
b26ed50d
VP
1468 /* We are not interested in the address of references, and given
1469 that in C++ a reference is not rebindable, it cannot
1470 meaningfully change. So, get hold of the real value. */
1471 if (value)
0cc7d26f 1472 value = coerce_ref (value);
b26ed50d 1473
acd65feb
VP
1474 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1475 /* For unions, we need to fetch the value implicitly because
1476 of implementation of union member fetch. When gdb
1477 creates a value for a field and the value of the enclosing
1478 structure is not lazy, it immediately copies the necessary
1479 bytes from the enclosing values. If the enclosing value is
1480 lazy, the call to value_fetch_lazy on the field will read
1481 the data from memory. For unions, that means we'll read the
1482 same memory more than once, which is not desirable. So
1483 fetch now. */
1484 need_to_fetch = 1;
1485
1486 /* The new value might be lazy. If the type is changeable,
1487 that is we'll be comparing values of this type, fetch the
1488 value now. Otherwise, on the next update the old value
1489 will be lazy, which means we've lost that old value. */
1490 if (need_to_fetch && value && value_lazy (value))
1491 {
25d5ea92
VP
1492 struct varobj *parent = var->parent;
1493 int frozen = var->frozen;
1494 for (; !frozen && parent; parent = parent->parent)
1495 frozen |= parent->frozen;
1496
1497 if (frozen && initial)
1498 {
1499 /* For variables that are frozen, or are children of frozen
1500 variables, we don't do fetch on initial assignment.
1501 For non-initial assignemnt we do the fetch, since it means we're
1502 explicitly asked to compare the new value with the old one. */
1503 intentionally_not_fetched = 1;
1504 }
1505 else if (!gdb_value_fetch_lazy (value))
acd65feb 1506 {
acd65feb
VP
1507 /* Set the value to NULL, so that for the next -var-update,
1508 we don't try to compare the new value with this value,
1509 that we couldn't even read. */
1510 value = NULL;
1511 }
acd65feb
VP
1512 }
1513
b6313243 1514
7a4d50bf
VP
1515 /* Below, we'll be comparing string rendering of old and new
1516 values. Don't get string rendering if the value is
1517 lazy -- if it is, the code above has decided that the value
1518 should not be fetched. */
0cc7d26f 1519 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1520 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1521
acd65feb
VP
1522 /* If the type is changeable, compare the old and the new values.
1523 If this is the initial assignment, we don't have any old value
1524 to compare with. */
7a4d50bf 1525 if (!initial && changeable)
acd65feb
VP
1526 {
1527 /* If the value of the varobj was changed by -var-set-value, then the
1528 value in the varobj and in the target is the same. However, that value
1529 is different from the value that the varobj had after the previous
57e66780 1530 -var-update. So need to the varobj as changed. */
acd65feb 1531 if (var->updated)
57e66780 1532 {
57e66780
DJ
1533 changed = 1;
1534 }
0cc7d26f 1535 else if (! var->pretty_printer)
acd65feb
VP
1536 {
1537 /* Try to compare the values. That requires that both
1538 values are non-lazy. */
25d5ea92
VP
1539 if (var->not_fetched && value_lazy (var->value))
1540 {
1541 /* This is a frozen varobj and the value was never read.
1542 Presumably, UI shows some "never read" indicator.
1543 Now that we've fetched the real value, we need to report
1544 this varobj as changed so that UI can show the real
1545 value. */
1546 changed = 1;
1547 }
1548 else if (var->value == NULL && value == NULL)
acd65feb
VP
1549 /* Equal. */
1550 ;
1551 else if (var->value == NULL || value == NULL)
57e66780 1552 {
57e66780
DJ
1553 changed = 1;
1554 }
acd65feb
VP
1555 else
1556 {
1557 gdb_assert (!value_lazy (var->value));
1558 gdb_assert (!value_lazy (value));
85265413 1559
57e66780 1560 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1561 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1562 changed = 1;
acd65feb
VP
1563 }
1564 }
1565 }
85265413 1566
ee342b23
VP
1567 if (!initial && !changeable)
1568 {
1569 /* For values that are not changeable, we don't compare the values.
1570 However, we want to notice if a value was not NULL and now is NULL,
1571 or vise versa, so that we report when top-level varobjs come in scope
1572 and leave the scope. */
1573 changed = (var->value != NULL) != (value != NULL);
1574 }
1575
acd65feb 1576 /* We must always keep the new value, since children depend on it. */
25d5ea92 1577 if (var->value != NULL && var->value != value)
acd65feb
VP
1578 value_free (var->value);
1579 var->value = value;
0cc7d26f
TT
1580 if (value != NULL)
1581 value_incref (value);
25d5ea92
VP
1582 if (value && value_lazy (value) && intentionally_not_fetched)
1583 var->not_fetched = 1;
1584 else
1585 var->not_fetched = 0;
acd65feb 1586 var->updated = 0;
85265413 1587
0cc7d26f
TT
1588 install_new_value_visualizer (var);
1589
1590 /* If we installed a pretty-printer, re-compare the printed version
1591 to see if the variable changed. */
1592 if (var->pretty_printer)
1593 {
1594 xfree (print_value);
1595 print_value = value_get_print_value (var->value, var->format, var);
1596 if (!var->print_value || strcmp (var->print_value, print_value) != 0)
1597 changed = 1;
1598 }
1599 if (var->print_value)
1600 xfree (var->print_value);
1601 var->print_value = print_value;
1602
b26ed50d 1603 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1604
1605 return changed;
1606}
acd65feb 1607
0cc7d26f
TT
1608/* Return the requested range for a varobj. VAR is the varobj. FROM
1609 and TO are out parameters; *FROM and *TO will be set to the
1610 selected sub-range of VAR. If no range was selected using
1611 -var-set-update-range, then both will be -1. */
1612void
1613varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1614{
0cc7d26f
TT
1615 *from = var->from;
1616 *to = var->to;
b6313243
TT
1617}
1618
0cc7d26f
TT
1619/* Set the selected sub-range of children of VAR to start at index
1620 FROM and end at index TO. If either FROM or TO is less than zero,
1621 this is interpreted as a request for all children. */
1622void
1623varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1624{
0cc7d26f
TT
1625 var->from = from;
1626 var->to = to;
b6313243
TT
1627}
1628
1629void
1630varobj_set_visualizer (struct varobj *var, const char *visualizer)
1631{
1632#if HAVE_PYTHON
1633 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1634 struct cleanup *back_to, *value;
b6313243 1635
d452c4bc 1636 back_to = varobj_ensure_python_env (var);
b6313243
TT
1637
1638 mainmod = PyImport_AddModule ("__main__");
1639 globals = PyModule_GetDict (mainmod);
1640 Py_INCREF (globals);
1641 make_cleanup_py_decref (globals);
1642
1643 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1644
0cc7d26f 1645 if (! constructor)
b6313243
TT
1646 {
1647 gdbpy_print_stack ();
da1f2771 1648 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1649 }
1650
0cc7d26f
TT
1651 construct_visualizer (var, constructor);
1652 Py_XDECREF (constructor);
b6313243 1653
0cc7d26f
TT
1654 /* If there are any children now, wipe them. */
1655 varobj_delete (var, NULL, 1 /* children only */);
1656 var->num_children = -1;
b6313243
TT
1657
1658 do_cleanups (back_to);
1659#else
da1f2771 1660 error (_("Python support required"));
b6313243
TT
1661#endif
1662}
1663
8b93c638
JM
1664/* Update the values for a variable and its children. This is a
1665 two-pronged attack. First, re-parse the value for the root's
1666 expression to see if it's changed. Then go all the way
1667 through its children, reconstructing them and noting if they've
1668 changed.
1669
25d5ea92
VP
1670 The EXPLICIT parameter specifies if this call is result
1671 of MI request to update this specific variable, or
1672 result of implicit -var-update *. For implicit request, we don't
1673 update frozen variables.
705da579
KS
1674
1675 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1676 returns TYPE_CHANGED, then it has done this and VARP will be modified
1677 to point to the new varobj. */
8b93c638 1678
f7f9ae2c 1679VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1680{
1681 int changed = 0;
25d5ea92 1682 int type_changed = 0;
8b93c638
JM
1683 int i;
1684 int vleft;
8b93c638
JM
1685 struct varobj *v;
1686 struct varobj **cv;
2c67cb8b 1687 struct varobj **templist = NULL;
30b28db1 1688 struct value *new;
b6313243 1689 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1690 VEC (varobj_update_result) *result = NULL;
e64d9b3d 1691 struct frame_info *fi;
8b93c638 1692
25d5ea92
VP
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
f7f9ae2c 1699 return result;
8756216b
DP
1700
1701 if (!(*varp)->root->is_valid)
f7f9ae2c
VP
1702 {
1703 varobj_update_result r = {*varp};
1704 r.status = VAROBJ_INVALID;
1705 VEC_safe_push (varobj_update_result, result, &r);
1706 return result;
1707 }
8b93c638 1708
25d5ea92 1709 if ((*varp)->root->rootvar == *varp)
ae093f96 1710 {
f7f9ae2c
VP
1711 varobj_update_result r = {*varp};
1712 r.status = VAROBJ_IN_SCOPE;
1713
25d5ea92
VP
1714 /* Update the root variable. value_of_root can return NULL
1715 if the variable is no longer around, i.e. we stepped out of
1716 the frame in which a local existed. We are letting the
1717 value_of_root variable dispose of the varobj if the type
1718 has changed. */
25d5ea92 1719 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1720 r.varobj = *varp;
1721
1722 r.type_changed = type_changed;
ea56f9c2 1723 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1724 r.changed = 1;
ea56f9c2 1725
25d5ea92 1726 if (new == NULL)
f7f9ae2c 1727 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1728 r.value_installed = 1;
f7f9ae2c
VP
1729
1730 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1731 {
0b4bc29a
JK
1732 if (r.type_changed || r.changed)
1733 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1734 return result;
1735 }
1736
1737 VEC_safe_push (varobj_update_result, stack, &r);
1738 }
1739 else
1740 {
1741 varobj_update_result r = {*varp};
1742 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1743 }
8b93c638 1744
8756216b 1745 /* Walk through the children, reconstructing them all. */
b6313243 1746 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1747 {
b6313243
TT
1748 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1749 struct varobj *v = r.varobj;
1750
1751 VEC_pop (varobj_update_result, stack);
1752
1753 /* Update this variable, unless it's a root, which is already
1754 updated. */
1755 if (!r.value_installed)
1756 {
1757 new = value_of_child (v->parent, v->index);
1758 if (install_new_value (v, new, 0 /* type not changed */))
1759 {
1760 r.changed = 1;
1761 v->updated = 0;
1762 }
1763 }
1764
1765 /* We probably should not get children of a varobj that has a
1766 pretty-printer, but for which -var-list-children was never
0cc7d26f 1767 invoked. */
b6313243
TT
1768 if (v->pretty_printer)
1769 {
0cc7d26f 1770 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1771 int i, children_changed = 0;
b6313243
TT
1772
1773 if (v->frozen)
1774 continue;
1775
0cc7d26f
TT
1776 if (!v->children_requested)
1777 {
1778 int dummy;
1779
1780 /* If we initially did not have potential children, but
1781 now we do, consider the varobj as changed.
1782 Otherwise, if children were never requested, consider
1783 it as unchanged -- presumably, such varobj is not yet
1784 expanded in the UI, so we need not bother getting
1785 it. */
1786 if (!varobj_has_more (v, 0))
1787 {
1788 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1789 &dummy, 0, 0, 0);
1790 if (varobj_has_more (v, 0))
1791 r.changed = 1;
1792 }
1793
1794 if (r.changed)
1795 VEC_safe_push (varobj_update_result, result, &r);
1796
1797 continue;
1798 }
1799
b6313243
TT
1800 /* If update_dynamic_varobj_children returns 0, then we have
1801 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1802 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1803 &children_changed, 1,
1804 v->from, v->to))
b6313243 1805 {
0cc7d26f 1806 if (children_changed || new)
b6313243 1807 {
0cc7d26f
TT
1808 r.children_changed = 1;
1809 r.new = new;
b6313243 1810 }
0cc7d26f
TT
1811 /* Push in reverse order so that the first child is
1812 popped from the work stack first, and so will be
1813 added to result first. This does not affect
1814 correctness, just "nicer". */
1815 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1816 {
0cc7d26f 1817 varobj_p tmp = VEC_index (varobj_p, changed, i);
b6313243 1818 varobj_update_result r = {tmp};
0cc7d26f 1819 r.changed = 1;
b6313243
TT
1820 r.value_installed = 1;
1821 VEC_safe_push (varobj_update_result, stack, &r);
1822 }
0cc7d26f
TT
1823 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1824 {
1825 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1826 if (!tmp->frozen)
1827 {
1828 varobj_update_result r = {tmp};
1829 r.value_installed = 1;
1830 VEC_safe_push (varobj_update_result, stack, &r);
1831 }
1832 }
b6313243
TT
1833 if (r.changed || r.children_changed)
1834 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1835
1836 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1837 has been put into the result vector. */
1838 VEC_free (varobj_p, changed);
1839 VEC_free (varobj_p, unchanged);
1840
b6313243
TT
1841 continue;
1842 }
1843 }
28335dcc
VP
1844
1845 /* Push any children. Use reverse order so that the first
1846 child is popped from the work stack first, and so
1847 will be added to result first. This does not
1848 affect correctness, just "nicer". */
1849 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1850 {
28335dcc
VP
1851 varobj_p c = VEC_index (varobj_p, v->children, i);
1852 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1853 if (c != NULL && !c->frozen)
28335dcc 1854 {
b6313243
TT
1855 varobj_update_result r = {c};
1856 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1857 }
8b93c638 1858 }
b6313243
TT
1859
1860 if (r.changed || r.type_changed)
1861 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1862 }
1863
b6313243
TT
1864 VEC_free (varobj_update_result, stack);
1865
f7f9ae2c 1866 return result;
8b93c638
JM
1867}
1868\f
1869
1870/* Helper functions */
1871
1872/*
1873 * Variable object construction/destruction
1874 */
1875
1876static int
fba45db2
KB
1877delete_variable (struct cpstack **resultp, struct varobj *var,
1878 int only_children_p)
8b93c638
JM
1879{
1880 int delcount = 0;
1881
1882 delete_variable_1 (resultp, &delcount, var,
1883 only_children_p, 1 /* remove_from_parent_p */ );
1884
1885 return delcount;
1886}
1887
1888/* Delete the variable object VAR and its children */
1889/* IMPORTANT NOTE: If we delete a variable which is a child
1890 and the parent is not removed we dump core. It must be always
1891 initially called with remove_from_parent_p set */
1892static void
72330bd6
AC
1893delete_variable_1 (struct cpstack **resultp, int *delcountp,
1894 struct varobj *var, int only_children_p,
1895 int remove_from_parent_p)
8b93c638 1896{
28335dcc 1897 int i;
8b93c638
JM
1898
1899 /* Delete any children of this variable, too. */
28335dcc
VP
1900 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1901 {
1902 varobj_p child = VEC_index (varobj_p, var->children, i);
214270ab
VP
1903 if (!child)
1904 continue;
8b93c638 1905 if (!remove_from_parent_p)
28335dcc
VP
1906 child->parent = NULL;
1907 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1908 }
28335dcc 1909 VEC_free (varobj_p, var->children);
8b93c638
JM
1910
1911 /* if we were called to delete only the children we are done here */
1912 if (only_children_p)
1913 return;
1914
1915 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1916 /* If the name is null, this is a temporary variable, that has not
1917 yet been installed, don't report it, it belongs to the caller... */
1918 if (var->obj_name != NULL)
8b93c638 1919 {
5b616ba1 1920 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1921 *delcountp = *delcountp + 1;
1922 }
1923
1924 /* If this variable has a parent, remove it from its parent's list */
1925 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1926 (as indicated by remove_from_parent_p) we don't bother doing an
1927 expensive list search to find the element to remove when we are
1928 discarding the list afterwards */
72330bd6 1929 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1930 {
28335dcc 1931 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1932 }
72330bd6 1933
73a93a32
JI
1934 if (var->obj_name != NULL)
1935 uninstall_variable (var);
8b93c638
JM
1936
1937 /* Free memory associated with this variable */
1938 free_variable (var);
1939}
1940
1941/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1942static int
fba45db2 1943install_variable (struct varobj *var)
8b93c638
JM
1944{
1945 struct vlist *cv;
1946 struct vlist *newvl;
1947 const char *chp;
1948 unsigned int index = 0;
1949 unsigned int i = 1;
1950
1951 for (chp = var->obj_name; *chp; chp++)
1952 {
1953 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1954 }
1955
1956 cv = *(varobj_table + index);
1957 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1958 cv = cv->next;
1959
1960 if (cv != NULL)
8a3fe4f8 1961 error (_("Duplicate variable object name"));
8b93c638
JM
1962
1963 /* Add varobj to hash table */
1964 newvl = xmalloc (sizeof (struct vlist));
1965 newvl->next = *(varobj_table + index);
1966 newvl->var = var;
1967 *(varobj_table + index) = newvl;
1968
1969 /* If root, add varobj to root list */
b2c2bd75 1970 if (is_root_p (var))
8b93c638
JM
1971 {
1972 /* Add to list of root variables */
1973 if (rootlist == NULL)
1974 var->root->next = NULL;
1975 else
1976 var->root->next = rootlist;
1977 rootlist = var->root;
8b93c638
JM
1978 }
1979
1980 return 1; /* OK */
1981}
1982
1983/* Unistall the object VAR. */
1984static void
fba45db2 1985uninstall_variable (struct varobj *var)
8b93c638
JM
1986{
1987 struct vlist *cv;
1988 struct vlist *prev;
1989 struct varobj_root *cr;
1990 struct varobj_root *prer;
1991 const char *chp;
1992 unsigned int index = 0;
1993 unsigned int i = 1;
1994
1995 /* Remove varobj from hash table */
1996 for (chp = var->obj_name; *chp; chp++)
1997 {
1998 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1999 }
2000
2001 cv = *(varobj_table + index);
2002 prev = NULL;
2003 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2004 {
2005 prev = cv;
2006 cv = cv->next;
2007 }
2008
2009 if (varobjdebug)
2010 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2011
2012 if (cv == NULL)
2013 {
72330bd6
AC
2014 warning
2015 ("Assertion failed: Could not find variable object \"%s\" to delete",
2016 var->obj_name);
8b93c638
JM
2017 return;
2018 }
2019
2020 if (prev == NULL)
2021 *(varobj_table + index) = cv->next;
2022 else
2023 prev->next = cv->next;
2024
b8c9b27d 2025 xfree (cv);
8b93c638
JM
2026
2027 /* If root, remove varobj from root list */
b2c2bd75 2028 if (is_root_p (var))
8b93c638
JM
2029 {
2030 /* Remove from list of root variables */
2031 if (rootlist == var->root)
2032 rootlist = var->root->next;
2033 else
2034 {
2035 prer = NULL;
2036 cr = rootlist;
2037 while ((cr != NULL) && (cr->rootvar != var))
2038 {
2039 prer = cr;
2040 cr = cr->next;
2041 }
2042 if (cr == NULL)
2043 {
72330bd6
AC
2044 warning
2045 ("Assertion failed: Could not find varobj \"%s\" in root list",
2046 var->obj_name);
8b93c638
JM
2047 return;
2048 }
2049 if (prer == NULL)
2050 rootlist = NULL;
2051 else
2052 prer->next = cr->next;
2053 }
8b93c638
JM
2054 }
2055
2056}
2057
8b93c638
JM
2058/* Create and install a child of the parent of the given name */
2059static struct varobj *
fba45db2 2060create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2061{
2062 return create_child_with_value (parent, index, name,
2063 value_of_child (parent, index));
2064}
2065
2066static struct varobj *
2067create_child_with_value (struct varobj *parent, int index, const char *name,
2068 struct value *value)
8b93c638
JM
2069{
2070 struct varobj *child;
2071 char *childs_name;
2072
2073 child = new_variable ();
2074
2075 /* name is allocated by name_of_child */
b6313243
TT
2076 /* FIXME: xstrdup should not be here. */
2077 child->name = xstrdup (name);
8b93c638 2078 child->index = index;
8b93c638
JM
2079 child->parent = parent;
2080 child->root = parent->root;
b435e160 2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2082 child->obj_name = childs_name;
2083 install_variable (child);
2084
acd65feb
VP
2085 /* Compute the type of the child. Must do this before
2086 calling install_new_value. */
2087 if (value != NULL)
2088 /* If the child had no evaluation errors, var->value
2089 will be non-NULL and contain a valid type. */
2090 child->type = value_type (value);
2091 else
2092 /* Otherwise, we must compute the type. */
2093 child->type = (*child->root->lang->type_of_child) (child->parent,
2094 child->index);
2095 install_new_value (child, value, 1);
2096
8b93c638
JM
2097 return child;
2098}
8b93c638
JM
2099\f
2100
2101/*
2102 * Miscellaneous utility functions.
2103 */
2104
2105/* Allocate memory and initialize a new variable */
2106static struct varobj *
2107new_variable (void)
2108{
2109 struct varobj *var;
2110
2111 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2112 var->name = NULL;
02142340 2113 var->path_expr = NULL;
8b93c638
JM
2114 var->obj_name = NULL;
2115 var->index = -1;
2116 var->type = NULL;
2117 var->value = NULL;
8b93c638
JM
2118 var->num_children = -1;
2119 var->parent = NULL;
2120 var->children = NULL;
2121 var->format = 0;
2122 var->root = NULL;
fb9b6b35 2123 var->updated = 0;
85265413 2124 var->print_value = NULL;
25d5ea92
VP
2125 var->frozen = 0;
2126 var->not_fetched = 0;
b6313243 2127 var->children_requested = 0;
0cc7d26f
TT
2128 var->from = -1;
2129 var->to = -1;
2130 var->constructor = 0;
b6313243 2131 var->pretty_printer = 0;
0cc7d26f
TT
2132 var->child_iter = 0;
2133 var->saved_item = 0;
8b93c638
JM
2134
2135 return var;
2136}
2137
2138/* Allocate memory and initialize a new root variable */
2139static struct varobj *
2140new_root_variable (void)
2141{
2142 struct varobj *var = new_variable ();
2143 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2144 var->root->lang = NULL;
2145 var->root->exp = NULL;
2146 var->root->valid_block = NULL;
7a424e99 2147 var->root->frame = null_frame_id;
a5defcdc 2148 var->root->floating = 0;
8b93c638 2149 var->root->rootvar = NULL;
8756216b 2150 var->root->is_valid = 1;
8b93c638
JM
2151
2152 return var;
2153}
2154
2155/* Free any allocated memory associated with VAR. */
2156static void
fba45db2 2157free_variable (struct varobj *var)
8b93c638 2158{
d452c4bc
UW
2159#if HAVE_PYTHON
2160 if (var->pretty_printer)
2161 {
2162 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2163 Py_XDECREF (var->constructor);
2164 Py_XDECREF (var->pretty_printer);
2165 Py_XDECREF (var->child_iter);
2166 Py_XDECREF (var->saved_item);
d452c4bc
UW
2167 do_cleanups (cleanup);
2168 }
2169#endif
2170
36746093
JK
2171 value_free (var->value);
2172
8b93c638 2173 /* Free the expression if this is a root variable. */
b2c2bd75 2174 if (is_root_p (var))
8b93c638 2175 {
3038237c 2176 xfree (var->root->exp);
8038e1e2 2177 xfree (var->root);
8b93c638
JM
2178 }
2179
8038e1e2
AC
2180 xfree (var->name);
2181 xfree (var->obj_name);
85265413 2182 xfree (var->print_value);
02142340 2183 xfree (var->path_expr);
8038e1e2 2184 xfree (var);
8b93c638
JM
2185}
2186
74b7792f
AC
2187static void
2188do_free_variable_cleanup (void *var)
2189{
2190 free_variable (var);
2191}
2192
2193static struct cleanup *
2194make_cleanup_free_variable (struct varobj *var)
2195{
2196 return make_cleanup (do_free_variable_cleanup, var);
2197}
2198
6766a268
DJ
2199/* This returns the type of the variable. It also skips past typedefs
2200 to return the real type of the variable.
94b66fa7
KS
2201
2202 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2203 except within get_target_type and get_type. */
8b93c638 2204static struct type *
fba45db2 2205get_type (struct varobj *var)
8b93c638
JM
2206{
2207 struct type *type;
2208 type = var->type;
2209
6766a268
DJ
2210 if (type != NULL)
2211 type = check_typedef (type);
8b93c638
JM
2212
2213 return type;
2214}
2215
6e2a9270
VP
2216/* Return the type of the value that's stored in VAR,
2217 or that would have being stored there if the
2218 value were accessible.
2219
2220 This differs from VAR->type in that VAR->type is always
2221 the true type of the expession in the source language.
2222 The return value of this function is the type we're
2223 actually storing in varobj, and using for displaying
2224 the values and for comparing previous and new values.
2225
2226 For example, top-level references are always stripped. */
2227static struct type *
2228get_value_type (struct varobj *var)
2229{
2230 struct type *type;
2231
2232 if (var->value)
2233 type = value_type (var->value);
2234 else
2235 type = var->type;
2236
2237 type = check_typedef (type);
2238
2239 if (TYPE_CODE (type) == TYPE_CODE_REF)
2240 type = get_target_type (type);
2241
2242 type = check_typedef (type);
2243
2244 return type;
2245}
2246
8b93c638 2247/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2248 past typedefs, just like get_type ().
2249
2250 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2251 except within get_target_type and get_type. */
8b93c638 2252static struct type *
fba45db2 2253get_target_type (struct type *type)
8b93c638
JM
2254{
2255 if (type != NULL)
2256 {
2257 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2258 if (type != NULL)
2259 type = check_typedef (type);
8b93c638
JM
2260 }
2261
2262 return type;
2263}
2264
2265/* What is the default display for this variable? We assume that
2266 everything is "natural". Any exceptions? */
2267static enum varobj_display_formats
fba45db2 2268variable_default_display (struct varobj *var)
8b93c638
JM
2269{
2270 return FORMAT_NATURAL;
2271}
2272
8b93c638
JM
2273/* FIXME: The following should be generic for any pointer */
2274static void
fba45db2 2275cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2276{
2277 struct cpstack *s;
2278
2279 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2280 s->name = name;
2281 s->next = *pstack;
2282 *pstack = s;
2283}
2284
2285/* FIXME: The following should be generic for any pointer */
2286static char *
fba45db2 2287cppop (struct cpstack **pstack)
8b93c638
JM
2288{
2289 struct cpstack *s;
2290 char *v;
2291
2292 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2293 return NULL;
2294
2295 s = *pstack;
2296 v = s->name;
2297 *pstack = (*pstack)->next;
b8c9b27d 2298 xfree (s);
8b93c638
JM
2299
2300 return v;
2301}
2302\f
2303/*
2304 * Language-dependencies
2305 */
2306
2307/* Common entry points */
2308
2309/* Get the language of variable VAR. */
2310static enum varobj_languages
fba45db2 2311variable_language (struct varobj *var)
8b93c638
JM
2312{
2313 enum varobj_languages lang;
2314
2315 switch (var->root->exp->language_defn->la_language)
2316 {
2317 default:
2318 case language_c:
2319 lang = vlang_c;
2320 break;
2321 case language_cplus:
2322 lang = vlang_cplus;
2323 break;
2324 case language_java:
2325 lang = vlang_java;
2326 break;
2327 }
2328
2329 return lang;
2330}
2331
2332/* Return the number of children for a given variable.
2333 The result of this function is defined by the language
2334 implementation. The number of children returned by this function
2335 is the number of children that the user will see in the variable
2336 display. */
2337static int
fba45db2 2338number_of_children (struct varobj *var)
8b93c638
JM
2339{
2340 return (*var->root->lang->number_of_children) (var);;
2341}
2342
2343/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2344static char *
fba45db2 2345name_of_variable (struct varobj *var)
8b93c638
JM
2346{
2347 return (*var->root->lang->name_of_variable) (var);
2348}
2349
2350/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2351static char *
fba45db2 2352name_of_child (struct varobj *var, int index)
8b93c638
JM
2353{
2354 return (*var->root->lang->name_of_child) (var, index);
2355}
2356
a5defcdc
VP
2357/* What is the ``struct value *'' of the root variable VAR?
2358 For floating variable object, evaluation can get us a value
2359 of different type from what is stored in varobj already. In
2360 that case:
2361 - *type_changed will be set to 1
2362 - old varobj will be freed, and new one will be
2363 created, with the same name.
2364 - *var_handle will be set to the new varobj
2365 Otherwise, *type_changed will be set to 0. */
30b28db1 2366static struct value *
fba45db2 2367value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2368{
73a93a32
JI
2369 struct varobj *var;
2370
2371 if (var_handle == NULL)
2372 return NULL;
2373
2374 var = *var_handle;
2375
2376 /* This should really be an exception, since this should
2377 only get called with a root variable. */
2378
b2c2bd75 2379 if (!is_root_p (var))
73a93a32
JI
2380 return NULL;
2381
a5defcdc 2382 if (var->root->floating)
73a93a32
JI
2383 {
2384 struct varobj *tmp_var;
2385 char *old_type, *new_type;
6225abfa 2386
73a93a32
JI
2387 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2388 USE_SELECTED_FRAME);
2389 if (tmp_var == NULL)
2390 {
2391 return NULL;
2392 }
6225abfa 2393 old_type = varobj_get_type (var);
73a93a32 2394 new_type = varobj_get_type (tmp_var);
72330bd6 2395 if (strcmp (old_type, new_type) == 0)
73a93a32 2396 {
fcacd99f
VP
2397 /* The expression presently stored inside var->root->exp
2398 remembers the locations of local variables relatively to
2399 the frame where the expression was created (in DWARF location
2400 button, for example). Naturally, those locations are not
2401 correct in other frames, so update the expression. */
2402
2403 struct expression *tmp_exp = var->root->exp;
2404 var->root->exp = tmp_var->root->exp;
2405 tmp_var->root->exp = tmp_exp;
2406
73a93a32
JI
2407 varobj_delete (tmp_var, NULL, 0);
2408 *type_changed = 0;
2409 }
2410 else
2411 {
1b36a34b 2412 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2413 tmp_var->from = var->from;
2414 tmp_var->to = var->to;
a5defcdc
VP
2415 varobj_delete (var, NULL, 0);
2416
73a93a32
JI
2417 install_variable (tmp_var);
2418 *var_handle = tmp_var;
705da579 2419 var = *var_handle;
73a93a32
JI
2420 *type_changed = 1;
2421 }
74dddad3
MS
2422 xfree (old_type);
2423 xfree (new_type);
73a93a32
JI
2424 }
2425 else
2426 {
2427 *type_changed = 0;
2428 }
2429
2430 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2431}
2432
30b28db1
AC
2433/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2434static struct value *
fba45db2 2435value_of_child (struct varobj *parent, int index)
8b93c638 2436{
30b28db1 2437 struct value *value;
8b93c638
JM
2438
2439 value = (*parent->root->lang->value_of_child) (parent, index);
2440
8b93c638
JM
2441 return value;
2442}
2443
8b93c638
JM
2444/* GDB already has a command called "value_of_variable". Sigh. */
2445static char *
de051565 2446my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2447{
8756216b 2448 if (var->root->is_valid)
0cc7d26f
TT
2449 {
2450 if (var->pretty_printer)
2451 return value_get_print_value (var->value, var->format, var);
2452 return (*var->root->lang->value_of_variable) (var, format);
2453 }
8756216b
DP
2454 else
2455 return NULL;
8b93c638
JM
2456}
2457
85265413 2458static char *
b6313243 2459value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2460 struct varobj *var)
85265413 2461{
57e66780
DJ
2462 struct ui_file *stb;
2463 struct cleanup *old_chain;
fbb8f299 2464 gdb_byte *thevalue = NULL;
79a45b7d 2465 struct value_print_options opts;
be759fcf
PM
2466 struct type *type = NULL;
2467 long len = 0;
2468 char *encoding = NULL;
2469 struct gdbarch *gdbarch = NULL;
57e66780
DJ
2470
2471 if (value == NULL)
2472 return NULL;
2473
be759fcf 2474 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2475#if HAVE_PYTHON
2476 {
d452c4bc
UW
2477 struct cleanup *back_to = varobj_ensure_python_env (var);
2478 PyObject *value_formatter = var->pretty_printer;
2479
0cc7d26f 2480 if (value_formatter)
b6313243 2481 {
0cc7d26f
TT
2482 /* First check to see if we have any children at all. If so,
2483 we simply return {...}. */
2484 if (dynamic_varobj_has_child_method (var))
2485 return xstrdup ("{...}");
b6313243 2486
0cc7d26f 2487 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2488 {
0cc7d26f
TT
2489 char *hint;
2490 struct value *replacement;
2491 int string_print = 0;
2492 PyObject *output = NULL;
2493
2494 hint = gdbpy_get_display_hint (value_formatter);
2495 if (hint)
2496 {
2497 if (!strcmp (hint, "string"))
2498 string_print = 1;
2499 xfree (hint);
2500 }
b6313243 2501
0cc7d26f
TT
2502 output = apply_varobj_pretty_printer (value_formatter,
2503 &replacement);
2504 if (output)
2505 {
be759fcf 2506 if (gdbpy_is_lazy_string (output))
0cc7d26f 2507 {
be759fcf
PM
2508 thevalue = gdbpy_extract_lazy_string (output, &type,
2509 &len, &encoding);
2510 string_print = 1;
2511 }
2512 else
2513 {
2514 PyObject *py_str
2515 = python_string_to_target_python_string (output);
2516 if (py_str)
2517 {
2518 char *s = PyString_AsString (py_str);
2519 len = PyString_Size (py_str);
2520 thevalue = xmemdup (s, len + 1, len + 1);
2521 type = builtin_type (gdbarch)->builtin_char;
2522 Py_DECREF (py_str);
2523 }
0cc7d26f
TT
2524 }
2525 Py_DECREF (output);
fbb8f299 2526 }
0cc7d26f
TT
2527 if (thevalue && !string_print)
2528 {
2529 do_cleanups (back_to);
be759fcf 2530 xfree (encoding);
0cc7d26f
TT
2531 return thevalue;
2532 }
2533 if (replacement)
2534 value = replacement;
b6313243 2535 }
b6313243 2536 }
d452c4bc 2537 do_cleanups (back_to);
b6313243
TT
2538 }
2539#endif
2540
57e66780
DJ
2541 stb = mem_fileopen ();
2542 old_chain = make_cleanup_ui_file_delete (stb);
2543
79a45b7d
TT
2544 get_formatted_print_options (&opts, format_code[(int) format]);
2545 opts.deref_ref = 0;
b6313243
TT
2546 opts.raw = 1;
2547 if (thevalue)
2548 {
2549 make_cleanup (xfree, thevalue);
be759fcf
PM
2550 make_cleanup (xfree, encoding);
2551 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
b6313243
TT
2552 }
2553 else
2554 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2555 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2556
85265413
NR
2557 do_cleanups (old_chain);
2558 return thevalue;
2559}
2560
340a7723
NR
2561int
2562varobj_editable_p (struct varobj *var)
2563{
2564 struct type *type;
2565 struct value *value;
2566
2567 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2568 return 0;
2569
2570 type = get_value_type (var);
2571
2572 switch (TYPE_CODE (type))
2573 {
2574 case TYPE_CODE_STRUCT:
2575 case TYPE_CODE_UNION:
2576 case TYPE_CODE_ARRAY:
2577 case TYPE_CODE_FUNC:
2578 case TYPE_CODE_METHOD:
2579 return 0;
2580 break;
2581
2582 default:
2583 return 1;
2584 break;
2585 }
2586}
2587
acd65feb
VP
2588/* Return non-zero if changes in value of VAR
2589 must be detected and reported by -var-update.
2590 Return zero is -var-update should never report
2591 changes of such values. This makes sense for structures
2592 (since the changes in children values will be reported separately),
2593 or for artifical objects (like 'public' pseudo-field in C++).
2594
2595 Return value of 0 means that gdb need not call value_fetch_lazy
2596 for the value of this variable object. */
8b93c638 2597static int
b2c2bd75 2598varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2599{
2600 int r;
2601 struct type *type;
2602
2603 if (CPLUS_FAKE_CHILD (var))
2604 return 0;
2605
6e2a9270 2606 type = get_value_type (var);
8b93c638
JM
2607
2608 switch (TYPE_CODE (type))
2609 {
72330bd6
AC
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_ARRAY:
2613 r = 0;
2614 break;
8b93c638 2615
72330bd6
AC
2616 default:
2617 r = 1;
8b93c638
JM
2618 }
2619
2620 return r;
2621}
2622
5a413362
VP
2623/* Return 1 if that varobj is floating, that is is always evaluated in the
2624 selected frame, and not bound to thread/frame. Such variable objects
2625 are created using '@' as frame specifier to -var-create. */
2626int
2627varobj_floating_p (struct varobj *var)
2628{
2629 return var->root->floating;
2630}
2631
2024f65a
VP
2632/* Given the value and the type of a variable object,
2633 adjust the value and type to those necessary
2634 for getting children of the variable object.
2635 This includes dereferencing top-level references
2636 to all types and dereferencing pointers to
2637 structures.
2638
2639 Both TYPE and *TYPE should be non-null. VALUE
2640 can be null if we want to only translate type.
2641 *VALUE can be null as well -- if the parent
02142340
VP
2642 value is not known.
2643
2644 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2645 depending on whether pointer was dereferenced
02142340 2646 in this function. */
2024f65a
VP
2647static void
2648adjust_value_for_child_access (struct value **value,
02142340
VP
2649 struct type **type,
2650 int *was_ptr)
2024f65a
VP
2651{
2652 gdb_assert (type && *type);
2653
02142340
VP
2654 if (was_ptr)
2655 *was_ptr = 0;
2656
2024f65a
VP
2657 *type = check_typedef (*type);
2658
2659 /* The type of value stored in varobj, that is passed
2660 to us, is already supposed to be
2661 reference-stripped. */
2662
2663 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2664
2665 /* Pointers to structures are treated just like
2666 structures when accessing children. Don't
2667 dererences pointers to other types. */
2668 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2669 {
2670 struct type *target_type = get_target_type (*type);
2671 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2672 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2673 {
2674 if (value && *value)
3f4178d6
DJ
2675 {
2676 int success = gdb_value_ind (*value, value);
2677 if (!success)
2678 *value = NULL;
2679 }
2024f65a 2680 *type = target_type;
02142340
VP
2681 if (was_ptr)
2682 *was_ptr = 1;
2024f65a
VP
2683 }
2684 }
2685
2686 /* The 'get_target_type' function calls check_typedef on
2687 result, so we can immediately check type code. No
2688 need to call check_typedef here. */
2689}
2690
8b93c638
JM
2691/* C */
2692static int
fba45db2 2693c_number_of_children (struct varobj *var)
8b93c638 2694{
2024f65a
VP
2695 struct type *type = get_value_type (var);
2696 int children = 0;
8b93c638 2697 struct type *target;
8b93c638 2698
02142340 2699 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2700 target = get_target_type (type);
8b93c638
JM
2701
2702 switch (TYPE_CODE (type))
2703 {
2704 case TYPE_CODE_ARRAY:
2705 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2706 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2707 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2708 else
74a44383
DJ
2709 /* If we don't know how many elements there are, don't display
2710 any. */
2711 children = 0;
8b93c638
JM
2712 break;
2713
2714 case TYPE_CODE_STRUCT:
2715 case TYPE_CODE_UNION:
2716 children = TYPE_NFIELDS (type);
2717 break;
2718
2719 case TYPE_CODE_PTR:
2024f65a
VP
2720 /* The type here is a pointer to non-struct. Typically, pointers
2721 have one child, except for function ptrs, which have no children,
2722 and except for void*, as we don't know what to show.
2723
0755e6c1
FN
2724 We can show char* so we allow it to be dereferenced. If you decide
2725 to test for it, please mind that a little magic is necessary to
2726 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2727 TYPE_NAME == "char" */
2024f65a
VP
2728 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2729 || TYPE_CODE (target) == TYPE_CODE_VOID)
2730 children = 0;
2731 else
2732 children = 1;
8b93c638
JM
2733 break;
2734
2735 default:
2736 /* Other types have no children */
2737 break;
2738 }
2739
2740 return children;
2741}
2742
2743static char *
fba45db2 2744c_name_of_variable (struct varobj *parent)
8b93c638 2745{
1b36a34b 2746 return xstrdup (parent->name);
8b93c638
JM
2747}
2748
bbec2603
VP
2749/* Return the value of element TYPE_INDEX of a structure
2750 value VALUE. VALUE's type should be a structure,
2751 or union, or a typedef to struct/union.
2752
2753 Returns NULL if getting the value fails. Never throws. */
2754static struct value *
2755value_struct_element_index (struct value *value, int type_index)
8b93c638 2756{
bbec2603
VP
2757 struct value *result = NULL;
2758 volatile struct gdb_exception e;
8b93c638 2759
bbec2603
VP
2760 struct type *type = value_type (value);
2761 type = check_typedef (type);
2762
2763 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2764 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2765
bbec2603
VP
2766 TRY_CATCH (e, RETURN_MASK_ERROR)
2767 {
d6a843b5 2768 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2769 result = value_static_field (type, type_index);
2770 else
2771 result = value_primitive_field (value, 0, type_index, type);
2772 }
2773 if (e.reason < 0)
2774 {
2775 return NULL;
2776 }
2777 else
2778 {
2779 return result;
2780 }
2781}
2782
2783/* Obtain the information about child INDEX of the variable
2784 object PARENT.
2785 If CNAME is not null, sets *CNAME to the name of the child relative
2786 to the parent.
2787 If CVALUE is not null, sets *CVALUE to the value of the child.
2788 If CTYPE is not null, sets *CTYPE to the type of the child.
2789
2790 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2791 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2792 to NULL. */
2793static void
2794c_describe_child (struct varobj *parent, int index,
02142340
VP
2795 char **cname, struct value **cvalue, struct type **ctype,
2796 char **cfull_expression)
bbec2603
VP
2797{
2798 struct value *value = parent->value;
2024f65a 2799 struct type *type = get_value_type (parent);
02142340
VP
2800 char *parent_expression = NULL;
2801 int was_ptr;
bbec2603
VP
2802
2803 if (cname)
2804 *cname = NULL;
2805 if (cvalue)
2806 *cvalue = NULL;
2807 if (ctype)
2808 *ctype = NULL;
02142340
VP
2809 if (cfull_expression)
2810 {
2811 *cfull_expression = NULL;
2812 parent_expression = varobj_get_path_expr (parent);
2813 }
2814 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2815
8b93c638
JM
2816 switch (TYPE_CODE (type))
2817 {
2818 case TYPE_CODE_ARRAY:
bbec2603 2819 if (cname)
43bbcdc2
PH
2820 *cname = xstrdup (int_string (index
2821 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2822 10, 1, 0, 0));
bbec2603
VP
2823
2824 if (cvalue && value)
2825 {
2826 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2497b498 2827 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2828 }
2829
2830 if (ctype)
2831 *ctype = get_target_type (type);
2832
02142340 2833 if (cfull_expression)
43bbcdc2
PH
2834 *cfull_expression =
2835 xstrprintf ("(%s)[%s]", parent_expression,
2836 int_string (index
2837 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2838 10, 1, 0, 0));
02142340
VP
2839
2840
8b93c638
JM
2841 break;
2842
2843 case TYPE_CODE_STRUCT:
2844 case TYPE_CODE_UNION:
bbec2603 2845 if (cname)
1b36a34b 2846 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2847
2848 if (cvalue && value)
2849 {
2850 /* For C, varobj index is the same as type index. */
2851 *cvalue = value_struct_element_index (value, index);
2852 }
2853
2854 if (ctype)
2855 *ctype = TYPE_FIELD_TYPE (type, index);
2856
02142340
VP
2857 if (cfull_expression)
2858 {
2859 char *join = was_ptr ? "->" : ".";
2860 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2861 TYPE_FIELD_NAME (type, index));
2862 }
2863
8b93c638
JM
2864 break;
2865
2866 case TYPE_CODE_PTR:
bbec2603
VP
2867 if (cname)
2868 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2869
bbec2603 2870 if (cvalue && value)
3f4178d6
DJ
2871 {
2872 int success = gdb_value_ind (value, cvalue);
2873 if (!success)
2874 *cvalue = NULL;
2875 }
bbec2603 2876
2024f65a
VP
2877 /* Don't use get_target_type because it calls
2878 check_typedef and here, we want to show the true
2879 declared type of the variable. */
bbec2603 2880 if (ctype)
2024f65a 2881 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2882
2883 if (cfull_expression)
2884 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2885
8b93c638
JM
2886 break;
2887
2888 default:
2889 /* This should not happen */
bbec2603
VP
2890 if (cname)
2891 *cname = xstrdup ("???");
02142340
VP
2892 if (cfull_expression)
2893 *cfull_expression = xstrdup ("???");
bbec2603 2894 /* Don't set value and type, we don't know then. */
8b93c638 2895 }
bbec2603 2896}
8b93c638 2897
bbec2603
VP
2898static char *
2899c_name_of_child (struct varobj *parent, int index)
2900{
2901 char *name;
02142340 2902 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2903 return name;
2904}
2905
02142340
VP
2906static char *
2907c_path_expr_of_child (struct varobj *child)
2908{
2909 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2910 &child->path_expr);
2911 return child->path_expr;
2912}
2913
c5b48eac
VP
2914/* If frame associated with VAR can be found, switch
2915 to it and return 1. Otherwise, return 0. */
2916static int
2917check_scope (struct varobj *var)
2918{
2919 struct frame_info *fi;
2920 int scope;
2921
2922 fi = frame_find_by_id (var->root->frame);
2923 scope = fi != NULL;
2924
2925 if (fi)
2926 {
2927 CORE_ADDR pc = get_frame_pc (fi);
2928 if (pc < BLOCK_START (var->root->valid_block) ||
2929 pc >= BLOCK_END (var->root->valid_block))
2930 scope = 0;
2931 else
2932 select_frame (fi);
2933 }
2934 return scope;
2935}
2936
30b28db1 2937static struct value *
fba45db2 2938c_value_of_root (struct varobj **var_handle)
8b93c638 2939{
5e572bb4 2940 struct value *new_val = NULL;
73a93a32 2941 struct varobj *var = *var_handle;
8b93c638 2942 struct frame_info *fi;
c5b48eac 2943 int within_scope = 0;
6208b47d
VP
2944 struct cleanup *back_to;
2945
73a93a32 2946 /* Only root variables can be updated... */
b2c2bd75 2947 if (!is_root_p (var))
73a93a32
JI
2948 /* Not a root var */
2949 return NULL;
2950
4f8d22e3 2951 back_to = make_cleanup_restore_current_thread ();
72330bd6 2952
8b93c638 2953 /* Determine whether the variable is still around. */
a5defcdc 2954 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2955 within_scope = 1;
c5b48eac
VP
2956 else if (var->root->thread_id == 0)
2957 {
2958 /* The program was single-threaded when the variable object was
2959 created. Technically, it's possible that the program became
2960 multi-threaded since then, but we don't support such
2961 scenario yet. */
2962 within_scope = check_scope (var);
2963 }
8b93c638
JM
2964 else
2965 {
c5b48eac
VP
2966 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2967 if (in_thread_list (ptid))
d2353924 2968 {
c5b48eac
VP
2969 switch_to_thread (ptid);
2970 within_scope = check_scope (var);
2971 }
8b93c638 2972 }
72330bd6 2973
8b93c638
JM
2974 if (within_scope)
2975 {
73a93a32 2976 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2977 expression fails we want to just return NULL. */
2978 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2979 return new_val;
2980 }
2981
6208b47d
VP
2982 do_cleanups (back_to);
2983
8b93c638
JM
2984 return NULL;
2985}
2986
30b28db1 2987static struct value *
fba45db2 2988c_value_of_child (struct varobj *parent, int index)
8b93c638 2989{
bbec2603 2990 struct value *value = NULL;
02142340 2991 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2992
2993 return value;
2994}
2995
2996static struct type *
fba45db2 2997c_type_of_child (struct varobj *parent, int index)
8b93c638 2998{
bbec2603 2999 struct type *type = NULL;
02142340 3000 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3001 return type;
3002}
3003
8b93c638 3004static char *
de051565 3005c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3006{
14b3d9c9
JB
3007 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3008 it will print out its children instead of "{...}". So we need to
3009 catch that case explicitly. */
3010 struct type *type = get_type (var);
e64d9b3d 3011
b6313243
TT
3012 /* If we have a custom formatter, return whatever string it has
3013 produced. */
3014 if (var->pretty_printer && var->print_value)
3015 return xstrdup (var->print_value);
3016
14b3d9c9
JB
3017 /* Strip top-level references. */
3018 while (TYPE_CODE (type) == TYPE_CODE_REF)
3019 type = check_typedef (TYPE_TARGET_TYPE (type));
3020
3021 switch (TYPE_CODE (type))
8b93c638
JM
3022 {
3023 case TYPE_CODE_STRUCT:
3024 case TYPE_CODE_UNION:
3025 return xstrdup ("{...}");
3026 /* break; */
3027
3028 case TYPE_CODE_ARRAY:
3029 {
e64d9b3d 3030 char *number;
b435e160 3031 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3032 return (number);
8b93c638
JM
3033 }
3034 /* break; */
3035
3036 default:
3037 {
575bbeb6
KS
3038 if (var->value == NULL)
3039 {
3040 /* This can happen if we attempt to get the value of a struct
3041 member when the parent is an invalid pointer. This is an
3042 error condition, so we should tell the caller. */
3043 return NULL;
3044 }
3045 else
3046 {
25d5ea92
VP
3047 if (var->not_fetched && value_lazy (var->value))
3048 /* Frozen variable and no value yet. We don't
3049 implicitly fetch the value. MI response will
3050 use empty string for the value, which is OK. */
3051 return NULL;
3052
b2c2bd75 3053 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3054 gdb_assert (!value_lazy (var->value));
de051565
MK
3055
3056 /* If the specified format is the current one,
3057 we can reuse print_value */
3058 if (format == var->format)
3059 return xstrdup (var->print_value);
3060 else
d452c4bc 3061 return value_get_print_value (var->value, format, var);
85265413 3062 }
e64d9b3d 3063 }
8b93c638
JM
3064 }
3065}
3066\f
3067
3068/* C++ */
3069
3070static int
fba45db2 3071cplus_number_of_children (struct varobj *var)
8b93c638
JM
3072{
3073 struct type *type;
3074 int children, dont_know;
3075
3076 dont_know = 1;
3077 children = 0;
3078
3079 if (!CPLUS_FAKE_CHILD (var))
3080 {
2024f65a 3081 type = get_value_type (var);
02142340 3082 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3083
3084 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3085 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3086 {
3087 int kids[3];
3088
3089 cplus_class_num_children (type, kids);
3090 if (kids[v_public] != 0)
3091 children++;
3092 if (kids[v_private] != 0)
3093 children++;
3094 if (kids[v_protected] != 0)
3095 children++;
3096
3097 /* Add any baseclasses */
3098 children += TYPE_N_BASECLASSES (type);
3099 dont_know = 0;
3100
3101 /* FIXME: save children in var */
3102 }
3103 }
3104 else
3105 {
3106 int kids[3];
3107
2024f65a 3108 type = get_value_type (var->parent);
02142340 3109 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3110
3111 cplus_class_num_children (type, kids);
6e382aa3 3112 if (strcmp (var->name, "public") == 0)
8b93c638 3113 children = kids[v_public];
6e382aa3 3114 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3115 children = kids[v_private];
3116 else
3117 children = kids[v_protected];
3118 dont_know = 0;
3119 }
3120
3121 if (dont_know)
3122 children = c_number_of_children (var);
3123
3124 return children;
3125}
3126
3127/* Compute # of public, private, and protected variables in this class.
3128 That means we need to descend into all baseclasses and find out
3129 how many are there, too. */
3130static void
1669605f 3131cplus_class_num_children (struct type *type, int children[3])
8b93c638 3132{
d48cc9dd
DJ
3133 int i, vptr_fieldno;
3134 struct type *basetype = NULL;
8b93c638
JM
3135
3136 children[v_public] = 0;
3137 children[v_private] = 0;
3138 children[v_protected] = 0;
3139
d48cc9dd 3140 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3141 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3142 {
d48cc9dd
DJ
3143 /* If we have a virtual table pointer, omit it. Even if virtual
3144 table pointers are not specifically marked in the debug info,
3145 they should be artificial. */
3146 if ((type == basetype && i == vptr_fieldno)
3147 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3148 continue;
3149
3150 if (TYPE_FIELD_PROTECTED (type, i))
3151 children[v_protected]++;
3152 else if (TYPE_FIELD_PRIVATE (type, i))
3153 children[v_private]++;
3154 else
3155 children[v_public]++;
3156 }
3157}
3158
3159static char *
fba45db2 3160cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3161{
3162 return c_name_of_variable (parent);
3163}
3164
2024f65a
VP
3165enum accessibility { private_field, protected_field, public_field };
3166
3167/* Check if field INDEX of TYPE has the specified accessibility.
3168 Return 0 if so and 1 otherwise. */
3169static int
3170match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3171{
2024f65a
VP
3172 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3173 return 1;
3174 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3175 return 1;
3176 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3177 && !TYPE_FIELD_PROTECTED (type, index))
3178 return 1;
3179 else
3180 return 0;
3181}
3182
3183static void
3184cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3185 char **cname, struct value **cvalue, struct type **ctype,
3186 char **cfull_expression)
2024f65a 3187{
348144ba 3188 char *name = NULL;
2024f65a 3189 struct value *value;
8b93c638 3190 struct type *type;
02142340
VP
3191 int was_ptr;
3192 char *parent_expression = NULL;
8b93c638 3193
2024f65a
VP
3194 if (cname)
3195 *cname = NULL;
3196 if (cvalue)
3197 *cvalue = NULL;
3198 if (ctype)
3199 *ctype = NULL;
02142340
VP
3200 if (cfull_expression)
3201 *cfull_expression = NULL;
2024f65a 3202
8b93c638
JM
3203 if (CPLUS_FAKE_CHILD (parent))
3204 {
2024f65a
VP
3205 value = parent->parent->value;
3206 type = get_value_type (parent->parent);
02142340
VP
3207 if (cfull_expression)
3208 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3209 }
3210 else
2024f65a
VP
3211 {
3212 value = parent->value;
3213 type = get_value_type (parent);
02142340
VP
3214 if (cfull_expression)
3215 parent_expression = varobj_get_path_expr (parent);
2024f65a 3216 }
8b93c638 3217
02142340 3218 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3219
3220 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3221 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3222 {
02142340 3223 char *join = was_ptr ? "->" : ".";
8b93c638
JM
3224 if (CPLUS_FAKE_CHILD (parent))
3225 {
6e382aa3
JJ
3226 /* The fields of the class type are ordered as they
3227 appear in the class. We are given an index for a
3228 particular access control type ("public","protected",
3229 or "private"). We must skip over fields that don't
3230 have the access control we are looking for to properly
3231 find the indexed field. */
3232 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3233 enum accessibility acc = public_field;
d48cc9dd
DJ
3234 int vptr_fieldno;
3235 struct type *basetype = NULL;
3236
3237 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3238 if (strcmp (parent->name, "private") == 0)
2024f65a 3239 acc = private_field;
6e382aa3 3240 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3241 acc = protected_field;
3242
3243 while (index >= 0)
6e382aa3 3244 {
d48cc9dd
DJ
3245 if ((type == basetype && type_index == vptr_fieldno)
3246 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3247 ; /* ignore vptr */
3248 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3249 --index;
3250 ++type_index;
6e382aa3 3251 }
2024f65a
VP
3252 --type_index;
3253
3254 if (cname)
3255 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3256
3257 if (cvalue && value)
3258 *cvalue = value_struct_element_index (value, type_index);
3259
3260 if (ctype)
3261 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3262
3263 if (cfull_expression)
3264 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3265 join,
3266 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3267 }
3268 else if (index < TYPE_N_BASECLASSES (type))
3269 {
3270 /* This is a baseclass. */
3271 if (cname)
3272 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3273
3274 if (cvalue && value)
0cc7d26f 3275 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3276
2024f65a
VP
3277 if (ctype)
3278 {
3279 *ctype = TYPE_FIELD_TYPE (type, index);
3280 }
02142340
VP
3281
3282 if (cfull_expression)
3283 {
3284 char *ptr = was_ptr ? "*" : "";
3285 /* Cast the parent to the base' type. Note that in gdb,
3286 expression like
3287 (Base1)d
3288 will create an lvalue, for all appearences, so we don't
3289 need to use more fancy:
3290 *(Base1*)(&d)
3291 construct. */
3292 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3293 ptr,
3294 TYPE_FIELD_NAME (type, index),
3295 ptr,
3296 parent_expression);
3297 }
8b93c638 3298 }
8b93c638
JM
3299 else
3300 {
348144ba 3301 char *access = NULL;
6e382aa3 3302 int children[3];
2024f65a 3303 cplus_class_num_children (type, children);
6e382aa3 3304
8b93c638 3305 /* Everything beyond the baseclasses can
6e382aa3
JJ
3306 only be "public", "private", or "protected"
3307
3308 The special "fake" children are always output by varobj in
3309 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3310 index -= TYPE_N_BASECLASSES (type);
3311 switch (index)
3312 {
3313 case 0:
6e382aa3 3314 if (children[v_public] > 0)
2024f65a 3315 access = "public";
6e382aa3 3316 else if (children[v_private] > 0)
2024f65a 3317 access = "private";
6e382aa3 3318 else
2024f65a 3319 access = "protected";
6e382aa3 3320 break;
8b93c638 3321 case 1:
6e382aa3 3322 if (children[v_public] > 0)
8b93c638 3323 {
6e382aa3 3324 if (children[v_private] > 0)
2024f65a 3325 access = "private";
6e382aa3 3326 else
2024f65a 3327 access = "protected";
8b93c638 3328 }
6e382aa3 3329 else if (children[v_private] > 0)
2024f65a 3330 access = "protected";
6e382aa3 3331 break;
8b93c638 3332 case 2:
6e382aa3 3333 /* Must be protected */
2024f65a 3334 access = "protected";
6e382aa3 3335 break;
8b93c638
JM
3336 default:
3337 /* error! */
3338 break;
3339 }
348144ba
MS
3340
3341 gdb_assert (access);
2024f65a
VP
3342 if (cname)
3343 *cname = xstrdup (access);
8b93c638 3344
02142340 3345 /* Value and type and full expression are null here. */
2024f65a 3346 }
8b93c638 3347 }
8b93c638
JM
3348 else
3349 {
02142340 3350 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3351 }
3352}
8b93c638 3353
2024f65a
VP
3354static char *
3355cplus_name_of_child (struct varobj *parent, int index)
3356{
3357 char *name = NULL;
02142340 3358 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3359 return name;
3360}
3361
02142340
VP
3362static char *
3363cplus_path_expr_of_child (struct varobj *child)
3364{
3365 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3366 &child->path_expr);
3367 return child->path_expr;
3368}
3369
30b28db1 3370static struct value *
fba45db2 3371cplus_value_of_root (struct varobj **var_handle)
8b93c638 3372{
73a93a32 3373 return c_value_of_root (var_handle);
8b93c638
JM
3374}
3375
30b28db1 3376static struct value *
fba45db2 3377cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3378{
2024f65a 3379 struct value *value = NULL;
02142340 3380 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3381 return value;
3382}
3383
3384static struct type *
fba45db2 3385cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3386{
2024f65a 3387 struct type *type = NULL;
02142340 3388 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3389 return type;
3390}
3391
8b93c638 3392static char *
de051565 3393cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638
JM
3394{
3395
3396 /* If we have one of our special types, don't print out
3397 any value. */
3398 if (CPLUS_FAKE_CHILD (var))
3399 return xstrdup ("");
3400
de051565 3401 return c_value_of_variable (var, format);
8b93c638
JM
3402}
3403\f
3404/* Java */
3405
3406static int
fba45db2 3407java_number_of_children (struct varobj *var)
8b93c638
JM
3408{
3409 return cplus_number_of_children (var);
3410}
3411
3412static char *
fba45db2 3413java_name_of_variable (struct varobj *parent)
8b93c638
JM
3414{
3415 char *p, *name;
3416
3417 name = cplus_name_of_variable (parent);
3418 /* If the name has "-" in it, it is because we
3419 needed to escape periods in the name... */
3420 p = name;
3421
3422 while (*p != '\000')
3423 {
3424 if (*p == '-')
3425 *p = '.';
3426 p++;
3427 }
3428
3429 return name;
3430}
3431
3432static char *
fba45db2 3433java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3434{
3435 char *name, *p;
3436
3437 name = cplus_name_of_child (parent, index);
3438 /* Escape any periods in the name... */
3439 p = name;
3440
3441 while (*p != '\000')
3442 {
3443 if (*p == '.')
3444 *p = '-';
3445 p++;
3446 }
3447
3448 return name;
3449}
3450
02142340
VP
3451static char *
3452java_path_expr_of_child (struct varobj *child)
3453{
3454 return NULL;
3455}
3456
30b28db1 3457static struct value *
fba45db2 3458java_value_of_root (struct varobj **var_handle)
8b93c638 3459{
73a93a32 3460 return cplus_value_of_root (var_handle);
8b93c638
JM
3461}
3462
30b28db1 3463static struct value *
fba45db2 3464java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3465{
3466 return cplus_value_of_child (parent, index);
3467}
3468
3469static struct type *
fba45db2 3470java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3471{
3472 return cplus_type_of_child (parent, index);
3473}
3474
8b93c638 3475static char *
de051565 3476java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3477{
de051565 3478 return cplus_value_of_variable (var, format);
8b93c638 3479}
54333c3b
JK
3480
3481/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3482 with an arbitrary caller supplied DATA pointer. */
3483
3484void
3485all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3486{
3487 struct varobj_root *var_root, *var_root_next;
3488
3489 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3490
3491 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3492 {
3493 var_root_next = var_root->next;
3494
3495 (*func) (var_root->rootvar, data);
3496 }
3497}
8b93c638
JM
3498\f
3499extern void _initialize_varobj (void);
3500void
3501_initialize_varobj (void)
3502{
3503 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3504
3505 varobj_table = xmalloc (sizeof_table);
3506 memset (varobj_table, 0, sizeof_table);
3507
85c07804
AC
3508 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3509 &varobjdebug, _("\
3510Set varobj debugging."), _("\
3511Show varobj debugging."), _("\
3512When non-zero, varobj debugging is enabled."),
3513 NULL,
920d2a44 3514 show_varobjdebug,
85c07804 3515 &setlist, &showlist);
8b93c638 3516}
8756216b 3517
54333c3b
JK
3518/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3519 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3520
54333c3b
JK
3521static void
3522varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3523{
54333c3b
JK
3524 /* Floating varobjs are reparsed on each stop, so we don't care if the
3525 presently parsed expression refers to something that's gone. */
3526 if (var->root->floating)
3527 return;
8756216b 3528
54333c3b
JK
3529 /* global var must be re-evaluated. */
3530 if (var->root->valid_block == NULL)
2dbd25e5 3531 {
54333c3b 3532 struct varobj *tmp_var;
2dbd25e5 3533
54333c3b
JK
3534 /* Try to create a varobj with same expression. If we succeed
3535 replace the old varobj, otherwise invalidate it. */
3536 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3537 USE_CURRENT_FRAME);
3538 if (tmp_var != NULL)
3539 {
3540 tmp_var->obj_name = xstrdup (var->obj_name);
3541 varobj_delete (var, NULL, 0);
3542 install_variable (tmp_var);
2dbd25e5 3543 }
54333c3b
JK
3544 else
3545 var->root->is_valid = 0;
2dbd25e5 3546 }
54333c3b
JK
3547 else /* locals must be invalidated. */
3548 var->root->is_valid = 0;
3549}
3550
3551/* Invalidate the varobjs that are tied to locals and re-create the ones that
3552 are defined on globals.
3553 Invalidated varobjs will be always printed in_scope="invalid". */
3554
3555void
3556varobj_invalidate (void)
3557{
3558 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3559}
This page took 1.194943 seconds and 4 git commands to generate.