*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
c5a57081 3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
b66d6d2e 29#include "gdb_string.h"
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
181875a4
JB
36#include "ada-varobj.h"
37#include "ada-lang.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
85254831
KS
46/* The names of varobjs representing anonymous structs or unions. */
47#define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48#define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
8b93c638
JM
50/* Non-zero if we want to see trace of varobj level stuff. */
51
52int varobjdebug = 0;
920d2a44
AC
53static void
54show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56{
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58}
8b93c638 59
581e13c1 60/* String representations of gdb's format codes. */
8b93c638 61char *varobj_format_string[] =
72330bd6 62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 63
581e13c1 64/* String representations of gdb's known languages. */
72330bd6 65char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 66
0cc7d26f
TT
67/* True if we want to allow Python-based pretty-printing. */
68static int pretty_printing = 0;
69
70void
71varobj_enable_pretty_printing (void)
72{
73 pretty_printing = 1;
74}
75
8b93c638
JM
76/* Data structures */
77
78/* Every root variable has one of these structures saved in its
581e13c1 79 varobj. Members which must be free'd are noted. */
8b93c638 80struct varobj_root
72330bd6 81{
8b93c638 82
581e13c1 83 /* Alloc'd expression for this parent. */
72330bd6 84 struct expression *exp;
8b93c638 85
581e13c1 86 /* Block for which this expression is valid. */
72330bd6 87 struct block *valid_block;
8b93c638 88
44a67aa7
VP
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
e64d9b3d 91 struct frame_id frame;
8b93c638 92
c5b48eac 93 /* The thread ID that this varobj_root belong to. This field
581e13c1 94 is only valid if valid_block is not NULL.
c5b48eac
VP
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
a5defcdc
VP
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
581e13c1 102 always updated in the specific scope/thread/frame. */
a5defcdc 103 int floating;
73a93a32 104
8756216b
DP
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
581e13c1 109 /* Language info for this variable and its children. */
72330bd6 110 struct language_specific *lang;
8b93c638 111
581e13c1 112 /* The varobj for this root node. */
72330bd6 113 struct varobj *rootvar;
8b93c638 114
72330bd6
AC
115 /* Next root variable */
116 struct varobj_root *next;
117};
8b93c638
JM
118
119/* Every variable in the system has a structure of this type defined
581e13c1
MS
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
8b93c638 122struct varobj
72330bd6 123{
8b93c638 124
581e13c1 125 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 126 child, then this name will be the child's source name.
581e13c1
MS
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
72330bd6 129 char *name;
8b93c638 130
02142340
VP
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
581e13c1
MS
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
72330bd6 137 char *obj_name;
8b93c638 138
581e13c1 139 /* Index of this variable in its parent or -1. */
72330bd6 140 int index;
8b93c638 141
202ddcaa
VP
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
72330bd6 145 struct type *type;
8b93c638 146
b20d8971
VP
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
b2c2bd75
VP
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
30b28db1 151 struct value *value;
8b93c638 152
581e13c1 153 /* The number of (immediate) children this variable has. */
72330bd6 154 int num_children;
8b93c638 155
581e13c1 156 /* If this object is a child, this points to its immediate parent. */
72330bd6 157 struct varobj *parent;
8b93c638 158
28335dcc
VP
159 /* Children of this object. */
160 VEC (varobj_p) *children;
8b93c638 161
b6313243
TT
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
581e13c1
MS
168 /* Description of the root variable. Points to root variable for
169 children. */
72330bd6 170 struct varobj_root *root;
8b93c638 171
581e13c1 172 /* The format of the output for this object. */
72330bd6 173 enum varobj_display_formats format;
fb9b6b35 174
581e13c1 175 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 176 int updated;
85265413
NR
177
178 /* Last print value. */
179 char *print_value;
25d5ea92
VP
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
b6313243 190
0cc7d26f
TT
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
b6313243
TT
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
0cc7d26f
TT
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
72330bd6 216};
8b93c638 217
8b93c638 218struct cpstack
72330bd6
AC
219{
220 char *name;
221 struct cpstack *next;
222};
8b93c638
JM
223
224/* A list of varobjs */
225
226struct vlist
72330bd6
AC
227{
228 struct varobj *var;
229 struct vlist *next;
230};
8b93c638
JM
231
232/* Private function prototypes */
233
581e13c1 234/* Helper functions for the above subcommands. */
8b93c638 235
a14ed312 236static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 237
a14ed312
KB
238static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
8b93c638 240
a14ed312 241static int install_variable (struct varobj *);
8b93c638 242
a14ed312 243static void uninstall_variable (struct varobj *);
8b93c638 244
a14ed312 245static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 246
b6313243
TT
247static struct varobj *
248create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
8b93c638
JM
251/* Utility routines */
252
a14ed312 253static struct varobj *new_variable (void);
8b93c638 254
a14ed312 255static struct varobj *new_root_variable (void);
8b93c638 256
a14ed312 257static void free_variable (struct varobj *var);
8b93c638 258
74b7792f
AC
259static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
a14ed312 261static struct type *get_type (struct varobj *var);
8b93c638 262
6e2a9270
VP
263static struct type *get_value_type (struct varobj *var);
264
a14ed312 265static struct type *get_target_type (struct type *);
8b93c638 266
a14ed312 267static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 268
a14ed312 269static void cppush (struct cpstack **pstack, char *name);
8b93c638 270
a14ed312 271static char *cppop (struct cpstack **pstack);
8b93c638 272
8264ba82
AG
273static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
275
acd65feb
VP
276static int install_new_value (struct varobj *var, struct value *value,
277 int initial);
278
581e13c1 279/* Language-specific routines. */
8b93c638 280
a14ed312 281static enum varobj_languages variable_language (struct varobj *var);
8b93c638 282
a14ed312 283static int number_of_children (struct varobj *);
8b93c638 284
a14ed312 285static char *name_of_variable (struct varobj *);
8b93c638 286
a14ed312 287static char *name_of_child (struct varobj *, int);
8b93c638 288
30b28db1 289static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 290
30b28db1 291static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 292
de051565
MK
293static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
8b93c638 295
85265413 296static char *value_get_print_value (struct value *value,
b6313243 297 enum varobj_display_formats format,
d452c4bc 298 struct varobj *var);
85265413 299
b2c2bd75
VP
300static int varobj_value_is_changeable_p (struct varobj *var);
301
302static int is_root_p (struct varobj *var);
8b93c638 303
d8b65138
JK
304#if HAVE_PYTHON
305
9a1edae6
PM
306static struct varobj *varobj_add_child (struct varobj *var,
307 const char *name,
308 struct value *value);
b6313243 309
d8b65138
JK
310#endif /* HAVE_PYTHON */
311
d32cafc7
JB
312static int default_value_is_changeable_p (struct varobj *var);
313
8b93c638
JM
314/* C implementation */
315
a14ed312 316static int c_number_of_children (struct varobj *var);
8b93c638 317
a14ed312 318static char *c_name_of_variable (struct varobj *parent);
8b93c638 319
a14ed312 320static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 321
02142340
VP
322static char *c_path_expr_of_child (struct varobj *child);
323
30b28db1 324static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 325
30b28db1 326static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 327
a14ed312 328static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 329
de051565
MK
330static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
8b93c638
JM
332
333/* C++ implementation */
334
a14ed312 335static int cplus_number_of_children (struct varobj *var);
8b93c638 336
a14ed312 337static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 338
a14ed312 339static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 340
a14ed312 341static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 342
02142340
VP
343static char *cplus_path_expr_of_child (struct varobj *child);
344
30b28db1 345static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 346
30b28db1 347static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 348
a14ed312 349static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 350
de051565
MK
351static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
8b93c638
JM
353
354/* Java implementation */
355
a14ed312 356static int java_number_of_children (struct varobj *var);
8b93c638 357
a14ed312 358static char *java_name_of_variable (struct varobj *parent);
8b93c638 359
a14ed312 360static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 361
02142340
VP
362static char *java_path_expr_of_child (struct varobj *child);
363
30b28db1 364static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 365
30b28db1 366static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 367
a14ed312 368static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 369
de051565
MK
370static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
8b93c638 372
40591b7d
JCD
373/* Ada implementation */
374
375static int ada_number_of_children (struct varobj *var);
376
377static char *ada_name_of_variable (struct varobj *parent);
378
379static char *ada_name_of_child (struct varobj *parent, int index);
380
381static char *ada_path_expr_of_child (struct varobj *child);
382
383static struct value *ada_value_of_root (struct varobj **var_handle);
384
385static struct value *ada_value_of_child (struct varobj *parent, int index);
386
387static struct type *ada_type_of_child (struct varobj *parent, int index);
388
389static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
391
d32cafc7
JB
392static int ada_value_is_changeable_p (struct varobj *var);
393
7a290c40
JB
394static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
396
8b93c638
JM
397/* The language specific vector */
398
399struct language_specific
72330bd6 400{
8b93c638 401
581e13c1 402 /* The language of this variable. */
72330bd6 403 enum varobj_languages language;
8b93c638 404
581e13c1 405 /* The number of children of PARENT. */
72330bd6 406 int (*number_of_children) (struct varobj * parent);
8b93c638 407
581e13c1 408 /* The name (expression) of a root varobj. */
72330bd6 409 char *(*name_of_variable) (struct varobj * parent);
8b93c638 410
581e13c1 411 /* The name of the INDEX'th child of PARENT. */
72330bd6 412 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 413
02142340
VP
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
417
581e13c1 418 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 419 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 420
581e13c1 421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 422 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 423
581e13c1 424 /* The type of the INDEX'th child of PARENT. */
72330bd6 425 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 426
581e13c1 427 /* The current value of VAR. */
de051565
MK
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
7a290c40 430
d32cafc7
JB
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
436
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
440
7a290c40
JB
441 /* Return nonzero if the type of VAR has mutated.
442
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
448
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
451
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
72330bd6 455};
8b93c638 456
581e13c1 457/* Array of known source language routines. */
d5d6fca5 458static struct language_specific languages[vlang_end] = {
581e13c1 459 /* Unknown (try treating as C). */
8b93c638 460 {
72330bd6
AC
461 vlang_unknown,
462 c_number_of_children,
463 c_name_of_variable,
464 c_name_of_child,
02142340 465 c_path_expr_of_child,
72330bd6
AC
466 c_value_of_root,
467 c_value_of_child,
468 c_type_of_child,
7a290c40 469 c_value_of_variable,
d32cafc7 470 default_value_is_changeable_p,
7a290c40 471 NULL /* value_has_mutated */}
8b93c638
JM
472 ,
473 /* C */
474 {
72330bd6
AC
475 vlang_c,
476 c_number_of_children,
477 c_name_of_variable,
478 c_name_of_child,
02142340 479 c_path_expr_of_child,
72330bd6
AC
480 c_value_of_root,
481 c_value_of_child,
482 c_type_of_child,
7a290c40 483 c_value_of_variable,
d32cafc7 484 default_value_is_changeable_p,
7a290c40 485 NULL /* value_has_mutated */}
8b93c638
JM
486 ,
487 /* C++ */
488 {
72330bd6
AC
489 vlang_cplus,
490 cplus_number_of_children,
491 cplus_name_of_variable,
492 cplus_name_of_child,
02142340 493 cplus_path_expr_of_child,
72330bd6
AC
494 cplus_value_of_root,
495 cplus_value_of_child,
496 cplus_type_of_child,
7a290c40 497 cplus_value_of_variable,
d32cafc7 498 default_value_is_changeable_p,
7a290c40 499 NULL /* value_has_mutated */}
8b93c638
JM
500 ,
501 /* Java */
502 {
72330bd6
AC
503 vlang_java,
504 java_number_of_children,
505 java_name_of_variable,
506 java_name_of_child,
02142340 507 java_path_expr_of_child,
72330bd6
AC
508 java_value_of_root,
509 java_value_of_child,
510 java_type_of_child,
7a290c40 511 java_value_of_variable,
d32cafc7 512 default_value_is_changeable_p,
7a290c40 513 NULL /* value_has_mutated */},
40591b7d
JCD
514 /* Ada */
515 {
516 vlang_ada,
517 ada_number_of_children,
518 ada_name_of_variable,
519 ada_name_of_child,
520 ada_path_expr_of_child,
521 ada_value_of_root,
522 ada_value_of_child,
523 ada_type_of_child,
7a290c40 524 ada_value_of_variable,
d32cafc7 525 ada_value_is_changeable_p,
7a290c40 526 ada_value_has_mutated}
8b93c638
JM
527};
528
581e13c1 529/* A little convenience enum for dealing with C++/Java. */
8b93c638 530enum vsections
72330bd6
AC
531{
532 v_public = 0, v_private, v_protected
533};
8b93c638
JM
534
535/* Private data */
536
581e13c1 537/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 538static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 539
581e13c1 540/* Header of the list of root variable objects. */
8b93c638 541static struct varobj_root *rootlist;
8b93c638 542
581e13c1
MS
543/* Prime number indicating the number of buckets in the hash table. */
544/* A prime large enough to avoid too many colisions. */
8b93c638
JM
545#define VAROBJ_TABLE_SIZE 227
546
581e13c1 547/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
548static struct vlist **varobj_table;
549
581e13c1 550/* Is the variable X one of our "fake" children? */
8b93c638
JM
551#define CPLUS_FAKE_CHILD(x) \
552((x) != NULL && (x)->type == NULL && (x)->value == NULL)
553\f
554
555/* API Implementation */
b2c2bd75
VP
556static int
557is_root_p (struct varobj *var)
558{
559 return (var->root->rootvar == var);
560}
8b93c638 561
d452c4bc
UW
562#ifdef HAVE_PYTHON
563/* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
70221824 565static struct cleanup *
d452c4bc
UW
566varobj_ensure_python_env (struct varobj *var)
567{
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
570}
571#endif
572
581e13c1 573/* Creates a varobj (not its children). */
8b93c638 574
7d8547c9
AC
575/* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
577
578static struct frame_info *
579find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
580{
581 struct frame_info *frame = NULL;
582
583 if (frame_addr == (CORE_ADDR) 0)
584 return NULL;
585
9d49bdc2
PA
586 for (frame = get_current_frame ();
587 frame != NULL;
588 frame = get_prev_frame (frame))
7d8547c9 589 {
1fac167a
UW
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 596
1fac167a
UW
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
599
600 if (frame_base == frame_addr)
7d8547c9
AC
601 return frame;
602 }
9d49bdc2
PA
603
604 return NULL;
7d8547c9
AC
605}
606
8b93c638
JM
607struct varobj *
608varobj_create (char *objname,
72330bd6 609 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
610{
611 struct varobj *var;
8b93c638
JM
612 struct cleanup *old_chain;
613
581e13c1 614 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 615 var = new_root_variable ();
74b7792f 616 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
617
618 if (expression != NULL)
619 {
e4195b40 620 struct frame_info *fi;
35633fef 621 struct frame_id old_id = null_frame_id;
e4195b40 622 struct block *block;
8b93c638
JM
623 char *p;
624 enum varobj_languages lang;
e55dccf0 625 struct value *value = NULL;
8e7b59a5 626 volatile struct gdb_exception except;
1bb9788d 627 CORE_ADDR pc;
8b93c638 628
9d49bdc2
PA
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
631
632 if (has_stack_frames ())
633 {
581e13c1 634 /* Allow creator to specify context of variable. */
9d49bdc2
PA
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
637 else
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
644 function. */
645 fi = find_frame_addr_in_frame_chain (frame);
646 }
8b93c638 647 else
9d49bdc2 648 fi = NULL;
8b93c638 649
581e13c1 650 /* frame = -2 means always use selected frame. */
73a93a32 651 if (type == USE_SELECTED_FRAME)
a5defcdc 652 var->root->floating = 1;
73a93a32 653
1bb9788d 654 pc = 0;
8b93c638
JM
655 block = NULL;
656 if (fi != NULL)
1bb9788d
TT
657 {
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
660 }
8b93c638
JM
661
662 p = expression;
663 innermost_block = NULL;
73a93a32 664 /* Wrap the call to parse expression, so we can
581e13c1 665 return a sensible error. */
8e7b59a5
KS
666 TRY_CATCH (except, RETURN_MASK_ERROR)
667 {
1bb9788d 668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
669 }
670
671 if (except.reason < 0)
73a93a32 672 {
f748fb40 673 do_cleanups (old_chain);
73a93a32
JI
674 return NULL;
675 }
8b93c638 676
581e13c1 677 /* Don't allow variables to be created for types. */
608b4967
TT
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
681 {
682 do_cleanups (old_chain);
bc8332bb
AC
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
8b93c638
JM
685 return NULL;
686 }
687
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
1b36a34b 690 var->name = xstrdup (expression);
02142340 691 /* For a root var, the name and the expr are the same. */
1b36a34b 692 var->path_expr = xstrdup (expression);
8b93c638
JM
693
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
581e13c1 697 Since select_frame is so benign, just call it for all cases. */
4e22772d 698 if (innermost_block)
8b93c638 699 {
4e22772d
JK
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
704 if (fi == NULL)
705 error (_("Failed to find the specified frame"));
706
7a424e99 707 var->root->frame = get_frame_id (fi);
c5b48eac 708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 709 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 710 select_frame (fi);
8b93c638
JM
711 }
712
340a7723 713 /* We definitely need to catch errors here.
8b93c638 714 If evaluate_expression succeeds we got the value we wanted.
581e13c1 715 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
716 TRY_CATCH (except, RETURN_MASK_ERROR)
717 {
718 value = evaluate_expression (var->root->exp);
719 }
720
721 if (except.reason < 0)
e55dccf0
VP
722 {
723 /* Error getting the value. Try to at least get the
724 right type. */
725 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 726
e55dccf0
VP
727 var->type = value_type (type_only_value);
728 }
8264ba82
AG
729 else
730 {
731 int real_type_found = 0;
732
733 var->type = value_actual_type (value, 0, &real_type_found);
734 if (real_type_found)
735 value = value_cast (var->type, value);
736 }
acd65feb 737
8b93c638
JM
738 /* Set language info */
739 lang = variable_language (var);
d5d6fca5 740 var->root->lang = &languages[lang];
8b93c638 741
d32cafc7
JB
742 install_new_value (var, value, 1 /* Initial assignment */);
743
581e13c1 744 /* Set ourselves as our root. */
8b93c638
JM
745 var->root->rootvar = var;
746
581e13c1 747 /* Reset the selected frame. */
35633fef
JK
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
8b93c638
JM
750 }
751
73a93a32 752 /* If the variable object name is null, that means this
581e13c1 753 is a temporary variable, so don't install it. */
73a93a32
JI
754
755 if ((var != NULL) && (objname != NULL))
8b93c638 756 {
1b36a34b 757 var->obj_name = xstrdup (objname);
8b93c638
JM
758
759 /* If a varobj name is duplicated, the install will fail so
581e13c1 760 we must cleanup. */
8b93c638
JM
761 if (!install_variable (var))
762 {
763 do_cleanups (old_chain);
764 return NULL;
765 }
766 }
767
768 discard_cleanups (old_chain);
769 return var;
770}
771
581e13c1 772/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
773
774char *
775varobj_gen_name (void)
776{
777 static int id = 0;
e64d9b3d 778 char *obj_name;
8b93c638 779
581e13c1 780 /* Generate a name for this object. */
8b93c638 781 id++;
b435e160 782 obj_name = xstrprintf ("var%d", id);
8b93c638 783
e64d9b3d 784 return obj_name;
8b93c638
JM
785}
786
61d8f275
JK
787/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
8b93c638
JM
789
790struct varobj *
791varobj_get_handle (char *objname)
792{
793 struct vlist *cv;
794 const char *chp;
795 unsigned int index = 0;
796 unsigned int i = 1;
797
798 for (chp = objname; *chp; chp++)
799 {
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
801 }
802
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
805 cv = cv->next;
806
807 if (cv == NULL)
8a3fe4f8 808 error (_("Variable object not found"));
8b93c638
JM
809
810 return cv->var;
811}
812
581e13c1 813/* Given the handle, return the name of the object. */
8b93c638
JM
814
815char *
816varobj_get_objname (struct varobj *var)
817{
818 return var->obj_name;
819}
820
581e13c1 821/* Given the handle, return the expression represented by the object. */
8b93c638
JM
822
823char *
824varobj_get_expression (struct varobj *var)
825{
826 return name_of_variable (var);
827}
828
829/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
581e13c1 832 (NULL terminated). */
8b93c638
JM
833
834int
835varobj_delete (struct varobj *var, char ***dellist, int only_children)
836{
837 int delcount;
838 int mycount;
839 struct cpstack *result = NULL;
840 char **cp;
841
581e13c1 842 /* Initialize a stack for temporary results. */
8b93c638
JM
843 cppush (&result, NULL);
844
845 if (only_children)
581e13c1 846 /* Delete only the variable children. */
8b93c638
JM
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
848 else
581e13c1 849 /* Delete the variable and all its children. */
8b93c638
JM
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
851
581e13c1 852 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
853 if (dellist != NULL)
854 {
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
856
857 cp = *dellist;
858 mycount = delcount;
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
861 {
862 mycount--;
863 cp++;
864 *cp = cppop (&result);
865 }
866
867 if (mycount || (*cp != NULL))
8a3fe4f8 868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 869 mycount);
8b93c638
JM
870 }
871
872 return delcount;
873}
874
d8b65138
JK
875#if HAVE_PYTHON
876
b6313243
TT
877/* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
879static PyObject *
880instantiate_pretty_printer (PyObject *constructor, struct value *value)
881{
b6313243
TT
882 PyObject *val_obj = NULL;
883 PyObject *printer;
b6313243 884
b6313243 885 val_obj = value_to_value_object (value);
b6313243
TT
886 if (! val_obj)
887 return NULL;
888
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
890 Py_DECREF (val_obj);
891 return printer;
b6313243
TT
892}
893
d8b65138
JK
894#endif
895
581e13c1 896/* Set/Get variable object display format. */
8b93c638
JM
897
898enum varobj_display_formats
899varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
901{
902 switch (format)
903 {
904 case FORMAT_NATURAL:
905 case FORMAT_BINARY:
906 case FORMAT_DECIMAL:
907 case FORMAT_HEXADECIMAL:
908 case FORMAT_OCTAL:
909 var->format = format;
910 break;
911
912 default:
913 var->format = variable_default_display (var);
914 }
915
ae7d22a6
VP
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
918 {
6c761d9c 919 xfree (var->print_value);
d452c4bc 920 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
921 }
922
8b93c638
JM
923 return var->format;
924}
925
926enum varobj_display_formats
927varobj_get_display_format (struct varobj *var)
928{
929 return var->format;
930}
931
b6313243
TT
932char *
933varobj_get_display_hint (struct varobj *var)
934{
935 char *result = NULL;
936
937#if HAVE_PYTHON
d452c4bc
UW
938 struct cleanup *back_to = varobj_ensure_python_env (var);
939
b6313243
TT
940 if (var->pretty_printer)
941 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
942
943 do_cleanups (back_to);
b6313243
TT
944#endif
945
946 return result;
947}
948
0cc7d26f
TT
949/* Return true if the varobj has items after TO, false otherwise. */
950
951int
952varobj_has_more (struct varobj *var, int to)
953{
954 if (VEC_length (varobj_p, var->children) > to)
955 return 1;
956 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
957 && var->saved_item != NULL);
958}
959
c5b48eac
VP
960/* If the variable object is bound to a specific thread, that
961 is its evaluation can always be done in context of a frame
962 inside that thread, returns GDB id of the thread -- which
581e13c1 963 is always positive. Otherwise, returns -1. */
c5b48eac
VP
964int
965varobj_get_thread_id (struct varobj *var)
966{
967 if (var->root->valid_block && var->root->thread_id > 0)
968 return var->root->thread_id;
969 else
970 return -1;
971}
972
25d5ea92
VP
973void
974varobj_set_frozen (struct varobj *var, int frozen)
975{
976 /* When a variable is unfrozen, we don't fetch its value.
977 The 'not_fetched' flag remains set, so next -var-update
978 won't complain.
979
980 We don't fetch the value, because for structures the client
981 should do -var-update anyway. It would be bad to have different
982 client-size logic for structure and other types. */
983 var->frozen = frozen;
984}
985
986int
987varobj_get_frozen (struct varobj *var)
988{
989 return var->frozen;
990}
991
0cc7d26f
TT
992/* A helper function that restricts a range to what is actually
993 available in a VEC. This follows the usual rules for the meaning
994 of FROM and TO -- if either is negative, the entire range is
995 used. */
996
997static void
998restrict_range (VEC (varobj_p) *children, int *from, int *to)
999{
1000 if (*from < 0 || *to < 0)
1001 {
1002 *from = 0;
1003 *to = VEC_length (varobj_p, children);
1004 }
1005 else
1006 {
1007 if (*from > VEC_length (varobj_p, children))
1008 *from = VEC_length (varobj_p, children);
1009 if (*to > VEC_length (varobj_p, children))
1010 *to = VEC_length (varobj_p, children);
1011 if (*from > *to)
1012 *from = *to;
1013 }
1014}
1015
d8b65138
JK
1016#if HAVE_PYTHON
1017
0cc7d26f
TT
1018/* A helper for update_dynamic_varobj_children that installs a new
1019 child when needed. */
1020
1021static void
1022install_dynamic_child (struct varobj *var,
1023 VEC (varobj_p) **changed,
8264ba82 1024 VEC (varobj_p) **type_changed,
0cc7d26f
TT
1025 VEC (varobj_p) **new,
1026 VEC (varobj_p) **unchanged,
1027 int *cchanged,
1028 int index,
1029 const char *name,
1030 struct value *value)
1031{
1032 if (VEC_length (varobj_p, var->children) < index + 1)
1033 {
1034 /* There's no child yet. */
1035 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 1036
0cc7d26f
TT
1037 if (new)
1038 {
1039 VEC_safe_push (varobj_p, *new, child);
1040 *cchanged = 1;
1041 }
1042 }
1043 else
1044 {
1045 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 1046
8264ba82
AG
1047 int type_updated = update_type_if_necessary (existing, value);
1048 if (type_updated)
1049 {
1050 if (type_changed)
1051 VEC_safe_push (varobj_p, *type_changed, existing);
1052 }
0cc7d26f
TT
1053 if (install_new_value (existing, value, 0))
1054 {
8264ba82 1055 if (!type_updated && changed)
0cc7d26f
TT
1056 VEC_safe_push (varobj_p, *changed, existing);
1057 }
8264ba82 1058 else if (!type_updated && unchanged)
0cc7d26f
TT
1059 VEC_safe_push (varobj_p, *unchanged, existing);
1060 }
1061}
1062
0cc7d26f
TT
1063static int
1064dynamic_varobj_has_child_method (struct varobj *var)
1065{
1066 struct cleanup *back_to;
1067 PyObject *printer = var->pretty_printer;
1068 int result;
1069
1070 back_to = varobj_ensure_python_env (var);
1071 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1072 do_cleanups (back_to);
1073 return result;
1074}
1075
1076#endif
1077
b6313243
TT
1078static int
1079update_dynamic_varobj_children (struct varobj *var,
1080 VEC (varobj_p) **changed,
8264ba82 1081 VEC (varobj_p) **type_changed,
0cc7d26f
TT
1082 VEC (varobj_p) **new,
1083 VEC (varobj_p) **unchanged,
1084 int *cchanged,
1085 int update_children,
1086 int from,
1087 int to)
b6313243
TT
1088{
1089#if HAVE_PYTHON
b6313243
TT
1090 struct cleanup *back_to;
1091 PyObject *children;
b6313243 1092 int i;
b6313243 1093 PyObject *printer = var->pretty_printer;
b6313243 1094
d452c4bc 1095 back_to = varobj_ensure_python_env (var);
b6313243
TT
1096
1097 *cchanged = 0;
1098 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1099 {
1100 do_cleanups (back_to);
1101 return 0;
1102 }
1103
0cc7d26f 1104 if (update_children || !var->child_iter)
b6313243 1105 {
0cc7d26f
TT
1106 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1107 NULL);
b6313243 1108
0cc7d26f
TT
1109 if (!children)
1110 {
1111 gdbpy_print_stack ();
1112 error (_("Null value returned for children"));
1113 }
b6313243 1114
0cc7d26f 1115 make_cleanup_py_decref (children);
b6313243 1116
0cc7d26f
TT
1117 if (!PyIter_Check (children))
1118 error (_("Returned value is not iterable"));
1119
1120 Py_XDECREF (var->child_iter);
1121 var->child_iter = PyObject_GetIter (children);
1122 if (!var->child_iter)
1123 {
1124 gdbpy_print_stack ();
1125 error (_("Could not get children iterator"));
1126 }
1127
1128 Py_XDECREF (var->saved_item);
1129 var->saved_item = NULL;
1130
1131 i = 0;
b6313243 1132 }
0cc7d26f
TT
1133 else
1134 i = VEC_length (varobj_p, var->children);
b6313243 1135
0cc7d26f
TT
1136 /* We ask for one extra child, so that MI can report whether there
1137 are more children. */
1138 for (; to < 0 || i < to + 1; ++i)
b6313243 1139 {
0cc7d26f 1140 PyObject *item;
a4c8e806 1141 int force_done = 0;
b6313243 1142
0cc7d26f
TT
1143 /* See if there was a leftover from last time. */
1144 if (var->saved_item)
1145 {
1146 item = var->saved_item;
1147 var->saved_item = NULL;
1148 }
1149 else
1150 item = PyIter_Next (var->child_iter);
b6313243 1151
0cc7d26f 1152 if (!item)
a4c8e806
TT
1153 {
1154 /* Normal end of iteration. */
1155 if (!PyErr_Occurred ())
1156 break;
1157
1158 /* If we got a memory error, just use the text as the
1159 item. */
1160 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1161 {
1162 PyObject *type, *value, *trace;
1163 char *name_str, *value_str;
1164
1165 PyErr_Fetch (&type, &value, &trace);
1166 value_str = gdbpy_exception_to_string (type, value);
1167 Py_XDECREF (type);
1168 Py_XDECREF (value);
1169 Py_XDECREF (trace);
1170 if (!value_str)
1171 {
1172 gdbpy_print_stack ();
1173 break;
1174 }
1175
1176 name_str = xstrprintf ("<error at %d>", i);
1177 item = Py_BuildValue ("(ss)", name_str, value_str);
1178 xfree (name_str);
1179 xfree (value_str);
1180 if (!item)
1181 {
1182 gdbpy_print_stack ();
1183 break;
1184 }
1185
1186 force_done = 1;
1187 }
1188 else
1189 {
1190 /* Any other kind of error. */
1191 gdbpy_print_stack ();
1192 break;
1193 }
1194 }
b6313243 1195
0cc7d26f
TT
1196 /* We don't want to push the extra child on any report list. */
1197 if (to < 0 || i < to)
b6313243 1198 {
0cc7d26f 1199 PyObject *py_v;
ddd49eee 1200 const char *name;
0cc7d26f
TT
1201 struct value *v;
1202 struct cleanup *inner;
1203 int can_mention = from < 0 || i >= from;
1204
1205 inner = make_cleanup_py_decref (item);
1206
1207 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1208 {
1209 gdbpy_print_stack ();
1210 error (_("Invalid item from the child list"));
1211 }
0cc7d26f
TT
1212
1213 v = convert_value_from_python (py_v);
8dc78533
JK
1214 if (v == NULL)
1215 gdbpy_print_stack ();
0cc7d26f 1216 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 1217 can_mention ? type_changed : NULL,
0cc7d26f
TT
1218 can_mention ? new : NULL,
1219 can_mention ? unchanged : NULL,
1220 can_mention ? cchanged : NULL, i, name, v);
1221 do_cleanups (inner);
b6313243 1222 }
0cc7d26f 1223 else
b6313243 1224 {
0cc7d26f
TT
1225 Py_XDECREF (var->saved_item);
1226 var->saved_item = item;
b6313243 1227
0cc7d26f
TT
1228 /* We want to truncate the child list just before this
1229 element. */
1230 break;
1231 }
a4c8e806
TT
1232
1233 if (force_done)
1234 break;
b6313243
TT
1235 }
1236
1237 if (i < VEC_length (varobj_p, var->children))
1238 {
0cc7d26f 1239 int j;
a109c7c1 1240
0cc7d26f
TT
1241 *cchanged = 1;
1242 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1243 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1244 VEC_truncate (varobj_p, var->children, i);
b6313243 1245 }
0cc7d26f
TT
1246
1247 /* If there are fewer children than requested, note that the list of
1248 children changed. */
1249 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1250 *cchanged = 1;
1251
b6313243
TT
1252 var->num_children = VEC_length (varobj_p, var->children);
1253
1254 do_cleanups (back_to);
1255
b6313243
TT
1256 return 1;
1257#else
1258 gdb_assert (0 && "should never be called if Python is not enabled");
1259#endif
1260}
25d5ea92 1261
8b93c638
JM
1262int
1263varobj_get_num_children (struct varobj *var)
1264{
1265 if (var->num_children == -1)
b6313243 1266 {
0cc7d26f
TT
1267 if (var->pretty_printer)
1268 {
1269 int dummy;
1270
1271 /* If we have a dynamic varobj, don't report -1 children.
1272 So, try to fetch some children first. */
8264ba82 1273 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
1274 0, 0, 0);
1275 }
1276 else
b6313243
TT
1277 var->num_children = number_of_children (var);
1278 }
8b93c638 1279
0cc7d26f 1280 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1281}
1282
1283/* Creates a list of the immediate children of a variable object;
581e13c1 1284 the return code is the number of such children or -1 on error. */
8b93c638 1285
d56d46f5 1286VEC (varobj_p)*
0cc7d26f 1287varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1288{
8b93c638 1289 char *name;
b6313243
TT
1290 int i, children_changed;
1291
1292 var->children_requested = 1;
1293
0cc7d26f
TT
1294 if (var->pretty_printer)
1295 {
b6313243
TT
1296 /* This, in theory, can result in the number of children changing without
1297 frontend noticing. But well, calling -var-list-children on the same
1298 varobj twice is not something a sane frontend would do. */
8264ba82
AG
1299 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1300 &children_changed, 0, 0, *to);
0cc7d26f
TT
1301 restrict_range (var->children, from, to);
1302 return var->children;
1303 }
8b93c638 1304
8b93c638
JM
1305 if (var->num_children == -1)
1306 var->num_children = number_of_children (var);
1307
74a44383
DJ
1308 /* If that failed, give up. */
1309 if (var->num_children == -1)
d56d46f5 1310 return var->children;
74a44383 1311
28335dcc
VP
1312 /* If we're called when the list of children is not yet initialized,
1313 allocate enough elements in it. */
1314 while (VEC_length (varobj_p, var->children) < var->num_children)
1315 VEC_safe_push (varobj_p, var->children, NULL);
1316
8b93c638
JM
1317 for (i = 0; i < var->num_children; i++)
1318 {
d56d46f5 1319 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1320
1321 if (existing == NULL)
1322 {
1323 /* Either it's the first call to varobj_list_children for
1324 this variable object, and the child was never created,
1325 or it was explicitly deleted by the client. */
1326 name = name_of_child (var, i);
1327 existing = create_child (var, i, name);
1328 VEC_replace (varobj_p, var->children, i, existing);
1329 }
8b93c638
JM
1330 }
1331
0cc7d26f 1332 restrict_range (var->children, from, to);
d56d46f5 1333 return var->children;
8b93c638
JM
1334}
1335
d8b65138
JK
1336#if HAVE_PYTHON
1337
b6313243
TT
1338static struct varobj *
1339varobj_add_child (struct varobj *var, const char *name, struct value *value)
1340{
1341 varobj_p v = create_child_with_value (var,
1342 VEC_length (varobj_p, var->children),
1343 name, value);
a109c7c1 1344
b6313243 1345 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1346 return v;
1347}
1348
d8b65138
JK
1349#endif /* HAVE_PYTHON */
1350
8b93c638 1351/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1352 prints on the console. */
8b93c638
JM
1353
1354char *
1355varobj_get_type (struct varobj *var)
1356{
581e13c1 1357 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1358 NULL, too.)
1359 Do not return a type for invalid variables as well. */
1360 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1361 return NULL;
1362
1a4300e9 1363 return type_to_string (var->type);
8b93c638
JM
1364}
1365
1ecb4ee0
DJ
1366/* Obtain the type of an object variable. */
1367
1368struct type *
1369varobj_get_gdb_type (struct varobj *var)
1370{
1371 return var->type;
1372}
1373
85254831
KS
1374/* Is VAR a path expression parent, i.e., can it be used to construct
1375 a valid path expression? */
1376
1377static int
1378is_path_expr_parent (struct varobj *var)
1379{
1380 struct type *type;
1381
1382 /* "Fake" children are not path_expr parents. */
1383 if (CPLUS_FAKE_CHILD (var))
1384 return 0;
1385
1386 type = get_value_type (var);
1387
1388 /* Anonymous unions and structs are also not path_expr parents. */
1389 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1390 || TYPE_CODE (type) == TYPE_CODE_UNION)
1391 && TYPE_NAME (type) == NULL);
1392}
1393
1394/* Return the path expression parent for VAR. */
1395
1396static struct varobj *
1397get_path_expr_parent (struct varobj *var)
1398{
1399 struct varobj *parent = var;
1400
1401 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1402 parent = parent->parent;
1403
1404 return parent;
1405}
1406
02142340
VP
1407/* Return a pointer to the full rooted expression of varobj VAR.
1408 If it has not been computed yet, compute it. */
1409char *
1410varobj_get_path_expr (struct varobj *var)
1411{
1412 if (var->path_expr != NULL)
1413 return var->path_expr;
1414 else
1415 {
1416 /* For root varobjs, we initialize path_expr
1417 when creating varobj, so here it should be
1418 child varobj. */
1419 gdb_assert (!is_root_p (var));
1420 return (*var->root->lang->path_expr_of_child) (var);
1421 }
1422}
1423
8b93c638
JM
1424enum varobj_languages
1425varobj_get_language (struct varobj *var)
1426{
1427 return variable_language (var);
1428}
1429
1430int
1431varobj_get_attributes (struct varobj *var)
1432{
1433 int attributes = 0;
1434
340a7723 1435 if (varobj_editable_p (var))
581e13c1 1436 /* FIXME: define masks for attributes. */
8b93c638
JM
1437 attributes |= 0x00000001; /* Editable */
1438
1439 return attributes;
1440}
1441
0cc7d26f
TT
1442int
1443varobj_pretty_printed_p (struct varobj *var)
1444{
1445 return var->pretty_printer != NULL;
1446}
1447
de051565
MK
1448char *
1449varobj_get_formatted_value (struct varobj *var,
1450 enum varobj_display_formats format)
1451{
1452 return my_value_of_variable (var, format);
1453}
1454
8b93c638
JM
1455char *
1456varobj_get_value (struct varobj *var)
1457{
de051565 1458 return my_value_of_variable (var, var->format);
8b93c638
JM
1459}
1460
1461/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1462 value of the given expression. */
1463/* Note: Invokes functions that can call error(). */
8b93c638
JM
1464
1465int
1466varobj_set_value (struct varobj *var, char *expression)
1467{
34365054 1468 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1469 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1470 We need to first construct a legal expression for this -- ugh! */
1471 /* Does this cover all the bases? */
8b93c638 1472 struct expression *exp;
34365054 1473 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1474 int saved_input_radix = input_radix;
340a7723 1475 char *s = expression;
8e7b59a5 1476 volatile struct gdb_exception except;
8b93c638 1477
340a7723 1478 gdb_assert (varobj_editable_p (var));
8b93c638 1479
581e13c1 1480 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1481 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1482 TRY_CATCH (except, RETURN_MASK_ERROR)
1483 {
1484 value = evaluate_expression (exp);
1485 }
1486
1487 if (except.reason < 0)
340a7723 1488 {
581e13c1 1489 /* We cannot proceed without a valid expression. */
340a7723
NR
1490 xfree (exp);
1491 return 0;
8b93c638
JM
1492 }
1493
340a7723
NR
1494 /* All types that are editable must also be changeable. */
1495 gdb_assert (varobj_value_is_changeable_p (var));
1496
1497 /* The value of a changeable variable object must not be lazy. */
1498 gdb_assert (!value_lazy (var->value));
1499
1500 /* Need to coerce the input. We want to check if the
1501 value of the variable object will be different
1502 after assignment, and the first thing value_assign
1503 does is coerce the input.
1504 For example, if we are assigning an array to a pointer variable we
b021a221 1505 should compare the pointer with the array's address, not with the
340a7723
NR
1506 array's content. */
1507 value = coerce_array (value);
1508
8e7b59a5
KS
1509 /* The new value may be lazy. value_assign, or
1510 rather value_contents, will take care of this. */
1511 TRY_CATCH (except, RETURN_MASK_ERROR)
1512 {
1513 val = value_assign (var->value, value);
1514 }
1515
1516 if (except.reason < 0)
340a7723 1517 return 0;
8e7b59a5 1518
340a7723
NR
1519 /* If the value has changed, record it, so that next -var-update can
1520 report this change. If a variable had a value of '1', we've set it
1521 to '333' and then set again to '1', when -var-update will report this
1522 variable as changed -- because the first assignment has set the
1523 'updated' flag. There's no need to optimize that, because return value
1524 of -var-update should be considered an approximation. */
581e13c1 1525 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1526 input_radix = saved_input_radix;
1527 return 1;
8b93c638
JM
1528}
1529
0cc7d26f
TT
1530#if HAVE_PYTHON
1531
1532/* A helper function to install a constructor function and visualizer
1533 in a varobj. */
1534
1535static void
1536install_visualizer (struct varobj *var, PyObject *constructor,
1537 PyObject *visualizer)
1538{
1539 Py_XDECREF (var->constructor);
1540 var->constructor = constructor;
1541
1542 Py_XDECREF (var->pretty_printer);
1543 var->pretty_printer = visualizer;
1544
1545 Py_XDECREF (var->child_iter);
1546 var->child_iter = NULL;
1547}
1548
1549/* Install the default visualizer for VAR. */
1550
1551static void
1552install_default_visualizer (struct varobj *var)
1553{
d65aec65
PM
1554 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1555 if (CPLUS_FAKE_CHILD (var))
1556 return;
1557
0cc7d26f
TT
1558 if (pretty_printing)
1559 {
1560 PyObject *pretty_printer = NULL;
1561
1562 if (var->value)
1563 {
1564 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1565 if (! pretty_printer)
1566 {
1567 gdbpy_print_stack ();
1568 error (_("Cannot instantiate printer for default visualizer"));
1569 }
1570 }
1571
1572 if (pretty_printer == Py_None)
1573 {
1574 Py_DECREF (pretty_printer);
1575 pretty_printer = NULL;
1576 }
1577
1578 install_visualizer (var, NULL, pretty_printer);
1579 }
1580}
1581
1582/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1583 make a new object. */
1584
1585static void
1586construct_visualizer (struct varobj *var, PyObject *constructor)
1587{
1588 PyObject *pretty_printer;
1589
d65aec65
PM
1590 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1591 if (CPLUS_FAKE_CHILD (var))
1592 return;
1593
0cc7d26f
TT
1594 Py_INCREF (constructor);
1595 if (constructor == Py_None)
1596 pretty_printer = NULL;
1597 else
1598 {
1599 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1600 if (! pretty_printer)
1601 {
1602 gdbpy_print_stack ();
1603 Py_DECREF (constructor);
1604 constructor = Py_None;
1605 Py_INCREF (constructor);
1606 }
1607
1608 if (pretty_printer == Py_None)
1609 {
1610 Py_DECREF (pretty_printer);
1611 pretty_printer = NULL;
1612 }
1613 }
1614
1615 install_visualizer (var, constructor, pretty_printer);
1616}
1617
1618#endif /* HAVE_PYTHON */
1619
1620/* A helper function for install_new_value. This creates and installs
1621 a visualizer for VAR, if appropriate. */
1622
1623static void
1624install_new_value_visualizer (struct varobj *var)
1625{
1626#if HAVE_PYTHON
1627 /* If the constructor is None, then we want the raw value. If VAR
1628 does not have a value, just skip this. */
1629 if (var->constructor != Py_None && var->value)
1630 {
1631 struct cleanup *cleanup;
0cc7d26f
TT
1632
1633 cleanup = varobj_ensure_python_env (var);
1634
1635 if (!var->constructor)
1636 install_default_visualizer (var);
1637 else
1638 construct_visualizer (var, var->constructor);
1639
1640 do_cleanups (cleanup);
1641 }
1642#else
1643 /* Do nothing. */
1644#endif
1645}
1646
8264ba82
AG
1647/* When using RTTI to determine variable type it may be changed in runtime when
1648 the variable value is changed. This function checks whether type of varobj
1649 VAR will change when a new value NEW_VALUE is assigned and if it is so
1650 updates the type of VAR. */
1651
1652static int
1653update_type_if_necessary (struct varobj *var, struct value *new_value)
1654{
1655 if (new_value)
1656 {
1657 struct value_print_options opts;
1658
1659 get_user_print_options (&opts);
1660 if (opts.objectprint)
1661 {
1662 struct type *new_type;
1663 char *curr_type_str, *new_type_str;
1664
1665 new_type = value_actual_type (new_value, 0, 0);
1666 new_type_str = type_to_string (new_type);
1667 curr_type_str = varobj_get_type (var);
1668 if (strcmp (curr_type_str, new_type_str) != 0)
1669 {
1670 var->type = new_type;
1671
1672 /* This information may be not valid for a new type. */
1673 varobj_delete (var, NULL, 1);
1674 VEC_free (varobj_p, var->children);
1675 var->num_children = -1;
1676 return 1;
1677 }
1678 }
1679 }
1680
1681 return 0;
1682}
1683
acd65feb
VP
1684/* Assign a new value to a variable object. If INITIAL is non-zero,
1685 this is the first assignement after the variable object was just
1686 created, or changed type. In that case, just assign the value
1687 and return 0.
581e13c1
MS
1688 Otherwise, assign the new value, and return 1 if the value is
1689 different from the current one, 0 otherwise. The comparison is
1690 done on textual representation of value. Therefore, some types
1691 need not be compared. E.g. for structures the reported value is
1692 always "{...}", so no comparison is necessary here. If the old
1693 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1694
1695 The VALUE parameter should not be released -- the function will
1696 take care of releasing it when needed. */
acd65feb
VP
1697static int
1698install_new_value (struct varobj *var, struct value *value, int initial)
1699{
1700 int changeable;
1701 int need_to_fetch;
1702 int changed = 0;
25d5ea92 1703 int intentionally_not_fetched = 0;
7a4d50bf 1704 char *print_value = NULL;
acd65feb 1705
acd65feb 1706 /* We need to know the varobj's type to decide if the value should
3e43a32a 1707 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1708 don't have a type. */
acd65feb 1709 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1710 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1711
1712 /* If the type has custom visualizer, we consider it to be always
581e13c1 1713 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1714 mess up read-sensitive values. */
1715 if (var->pretty_printer)
1716 changeable = 1;
1717
acd65feb
VP
1718 need_to_fetch = changeable;
1719
b26ed50d
VP
1720 /* We are not interested in the address of references, and given
1721 that in C++ a reference is not rebindable, it cannot
1722 meaningfully change. So, get hold of the real value. */
1723 if (value)
0cc7d26f 1724 value = coerce_ref (value);
b26ed50d 1725
acd65feb
VP
1726 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1727 /* For unions, we need to fetch the value implicitly because
1728 of implementation of union member fetch. When gdb
1729 creates a value for a field and the value of the enclosing
1730 structure is not lazy, it immediately copies the necessary
1731 bytes from the enclosing values. If the enclosing value is
1732 lazy, the call to value_fetch_lazy on the field will read
1733 the data from memory. For unions, that means we'll read the
1734 same memory more than once, which is not desirable. So
1735 fetch now. */
1736 need_to_fetch = 1;
1737
1738 /* The new value might be lazy. If the type is changeable,
1739 that is we'll be comparing values of this type, fetch the
1740 value now. Otherwise, on the next update the old value
1741 will be lazy, which means we've lost that old value. */
1742 if (need_to_fetch && value && value_lazy (value))
1743 {
25d5ea92
VP
1744 struct varobj *parent = var->parent;
1745 int frozen = var->frozen;
a109c7c1 1746
25d5ea92
VP
1747 for (; !frozen && parent; parent = parent->parent)
1748 frozen |= parent->frozen;
1749
1750 if (frozen && initial)
1751 {
1752 /* For variables that are frozen, or are children of frozen
1753 variables, we don't do fetch on initial assignment.
1754 For non-initial assignemnt we do the fetch, since it means we're
1755 explicitly asked to compare the new value with the old one. */
1756 intentionally_not_fetched = 1;
1757 }
8e7b59a5 1758 else
acd65feb 1759 {
8e7b59a5
KS
1760 volatile struct gdb_exception except;
1761
1762 TRY_CATCH (except, RETURN_MASK_ERROR)
1763 {
1764 value_fetch_lazy (value);
1765 }
1766
1767 if (except.reason < 0)
1768 {
1769 /* Set the value to NULL, so that for the next -var-update,
1770 we don't try to compare the new value with this value,
1771 that we couldn't even read. */
1772 value = NULL;
1773 }
acd65feb 1774 }
acd65feb
VP
1775 }
1776
e848a8a5
TT
1777 /* Get a reference now, before possibly passing it to any Python
1778 code that might release it. */
1779 if (value != NULL)
1780 value_incref (value);
b6313243 1781
7a4d50bf
VP
1782 /* Below, we'll be comparing string rendering of old and new
1783 values. Don't get string rendering if the value is
1784 lazy -- if it is, the code above has decided that the value
1785 should not be fetched. */
0cc7d26f 1786 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1787 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1788
acd65feb
VP
1789 /* If the type is changeable, compare the old and the new values.
1790 If this is the initial assignment, we don't have any old value
1791 to compare with. */
7a4d50bf 1792 if (!initial && changeable)
acd65feb 1793 {
3e43a32a
MS
1794 /* If the value of the varobj was changed by -var-set-value,
1795 then the value in the varobj and in the target is the same.
1796 However, that value is different from the value that the
581e13c1 1797 varobj had after the previous -var-update. So need to the
3e43a32a 1798 varobj as changed. */
acd65feb 1799 if (var->updated)
57e66780 1800 {
57e66780
DJ
1801 changed = 1;
1802 }
0cc7d26f 1803 else if (! var->pretty_printer)
acd65feb
VP
1804 {
1805 /* Try to compare the values. That requires that both
1806 values are non-lazy. */
25d5ea92
VP
1807 if (var->not_fetched && value_lazy (var->value))
1808 {
1809 /* This is a frozen varobj and the value was never read.
1810 Presumably, UI shows some "never read" indicator.
1811 Now that we've fetched the real value, we need to report
1812 this varobj as changed so that UI can show the real
1813 value. */
1814 changed = 1;
1815 }
1816 else if (var->value == NULL && value == NULL)
581e13c1 1817 /* Equal. */
acd65feb
VP
1818 ;
1819 else if (var->value == NULL || value == NULL)
57e66780 1820 {
57e66780
DJ
1821 changed = 1;
1822 }
acd65feb
VP
1823 else
1824 {
1825 gdb_assert (!value_lazy (var->value));
1826 gdb_assert (!value_lazy (value));
85265413 1827
57e66780 1828 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1829 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1830 changed = 1;
acd65feb
VP
1831 }
1832 }
1833 }
85265413 1834
ee342b23
VP
1835 if (!initial && !changeable)
1836 {
1837 /* For values that are not changeable, we don't compare the values.
1838 However, we want to notice if a value was not NULL and now is NULL,
1839 or vise versa, so that we report when top-level varobjs come in scope
1840 and leave the scope. */
1841 changed = (var->value != NULL) != (value != NULL);
1842 }
1843
acd65feb 1844 /* We must always keep the new value, since children depend on it. */
25d5ea92 1845 if (var->value != NULL && var->value != value)
acd65feb
VP
1846 value_free (var->value);
1847 var->value = value;
25d5ea92
VP
1848 if (value && value_lazy (value) && intentionally_not_fetched)
1849 var->not_fetched = 1;
1850 else
1851 var->not_fetched = 0;
acd65feb 1852 var->updated = 0;
85265413 1853
0cc7d26f
TT
1854 install_new_value_visualizer (var);
1855
1856 /* If we installed a pretty-printer, re-compare the printed version
1857 to see if the variable changed. */
1858 if (var->pretty_printer)
1859 {
1860 xfree (print_value);
1861 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1862 if ((var->print_value == NULL && print_value != NULL)
1863 || (var->print_value != NULL && print_value == NULL)
1864 || (var->print_value != NULL && print_value != NULL
1865 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1866 changed = 1;
1867 }
1868 if (var->print_value)
1869 xfree (var->print_value);
1870 var->print_value = print_value;
1871
b26ed50d 1872 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1873
1874 return changed;
1875}
acd65feb 1876
0cc7d26f
TT
1877/* Return the requested range for a varobj. VAR is the varobj. FROM
1878 and TO are out parameters; *FROM and *TO will be set to the
1879 selected sub-range of VAR. If no range was selected using
1880 -var-set-update-range, then both will be -1. */
1881void
1882varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1883{
0cc7d26f
TT
1884 *from = var->from;
1885 *to = var->to;
b6313243
TT
1886}
1887
0cc7d26f
TT
1888/* Set the selected sub-range of children of VAR to start at index
1889 FROM and end at index TO. If either FROM or TO is less than zero,
1890 this is interpreted as a request for all children. */
1891void
1892varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1893{
0cc7d26f
TT
1894 var->from = from;
1895 var->to = to;
b6313243
TT
1896}
1897
1898void
1899varobj_set_visualizer (struct varobj *var, const char *visualizer)
1900{
1901#if HAVE_PYTHON
34fa1d9d
MS
1902 PyObject *mainmod, *globals, *constructor;
1903 struct cleanup *back_to;
b6313243 1904
d452c4bc 1905 back_to = varobj_ensure_python_env (var);
b6313243
TT
1906
1907 mainmod = PyImport_AddModule ("__main__");
1908 globals = PyModule_GetDict (mainmod);
1909 Py_INCREF (globals);
1910 make_cleanup_py_decref (globals);
1911
1912 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1913
0cc7d26f 1914 if (! constructor)
b6313243
TT
1915 {
1916 gdbpy_print_stack ();
da1f2771 1917 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1918 }
1919
0cc7d26f
TT
1920 construct_visualizer (var, constructor);
1921 Py_XDECREF (constructor);
b6313243 1922
0cc7d26f
TT
1923 /* If there are any children now, wipe them. */
1924 varobj_delete (var, NULL, 1 /* children only */);
1925 var->num_children = -1;
b6313243
TT
1926
1927 do_cleanups (back_to);
1928#else
da1f2771 1929 error (_("Python support required"));
b6313243
TT
1930#endif
1931}
1932
7a290c40
JB
1933/* If NEW_VALUE is the new value of the given varobj (var), return
1934 non-zero if var has mutated. In other words, if the type of
1935 the new value is different from the type of the varobj's old
1936 value.
1937
1938 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1939
1940static int
1941varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1942 struct type *new_type)
1943{
1944 /* If we haven't previously computed the number of children in var,
1945 it does not matter from the front-end's perspective whether
1946 the type has mutated or not. For all intents and purposes,
1947 it has not mutated. */
1948 if (var->num_children < 0)
1949 return 0;
1950
1951 if (var->root->lang->value_has_mutated)
1952 return var->root->lang->value_has_mutated (var, new_value, new_type);
1953 else
1954 return 0;
1955}
1956
8b93c638
JM
1957/* Update the values for a variable and its children. This is a
1958 two-pronged attack. First, re-parse the value for the root's
1959 expression to see if it's changed. Then go all the way
1960 through its children, reconstructing them and noting if they've
1961 changed.
1962
25d5ea92
VP
1963 The EXPLICIT parameter specifies if this call is result
1964 of MI request to update this specific variable, or
581e13c1 1965 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1966 update frozen variables.
705da579 1967
581e13c1 1968 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1969 returns TYPE_CHANGED, then it has done this and VARP will be modified
1970 to point to the new varobj. */
8b93c638 1971
1417b39d
JB
1972VEC(varobj_update_result) *
1973varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1974{
1975 int changed = 0;
25d5ea92 1976 int type_changed = 0;
8b93c638 1977 int i;
30b28db1 1978 struct value *new;
b6313243 1979 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1980 VEC (varobj_update_result) *result = NULL;
8b93c638 1981
25d5ea92
VP
1982 /* Frozen means frozen -- we don't check for any change in
1983 this varobj, including its going out of scope, or
1984 changing type. One use case for frozen varobjs is
1985 retaining previously evaluated expressions, and we don't
1986 want them to be reevaluated at all. */
1987 if (!explicit && (*varp)->frozen)
f7f9ae2c 1988 return result;
8756216b
DP
1989
1990 if (!(*varp)->root->is_valid)
f7f9ae2c 1991 {
cfce2ea2 1992 varobj_update_result r = {0};
a109c7c1 1993
cfce2ea2 1994 r.varobj = *varp;
f7f9ae2c
VP
1995 r.status = VAROBJ_INVALID;
1996 VEC_safe_push (varobj_update_result, result, &r);
1997 return result;
1998 }
8b93c638 1999
25d5ea92 2000 if ((*varp)->root->rootvar == *varp)
ae093f96 2001 {
cfce2ea2 2002 varobj_update_result r = {0};
a109c7c1 2003
cfce2ea2 2004 r.varobj = *varp;
f7f9ae2c
VP
2005 r.status = VAROBJ_IN_SCOPE;
2006
581e13c1 2007 /* Update the root variable. value_of_root can return NULL
25d5ea92 2008 if the variable is no longer around, i.e. we stepped out of
581e13c1 2009 the frame in which a local existed. We are letting the
25d5ea92
VP
2010 value_of_root variable dispose of the varobj if the type
2011 has changed. */
25d5ea92 2012 new = value_of_root (varp, &type_changed);
8264ba82
AG
2013 if (update_type_if_necessary(*varp, new))
2014 type_changed = 1;
f7f9ae2c 2015 r.varobj = *varp;
f7f9ae2c 2016 r.type_changed = type_changed;
ea56f9c2 2017 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 2018 r.changed = 1;
ea56f9c2 2019
25d5ea92 2020 if (new == NULL)
f7f9ae2c 2021 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 2022 r.value_installed = 1;
f7f9ae2c
VP
2023
2024 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 2025 {
0b4bc29a
JK
2026 if (r.type_changed || r.changed)
2027 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
2028 return result;
2029 }
2030
2031 VEC_safe_push (varobj_update_result, stack, &r);
2032 }
2033 else
2034 {
cfce2ea2 2035 varobj_update_result r = {0};
a109c7c1 2036
cfce2ea2 2037 r.varobj = *varp;
b6313243 2038 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 2039 }
8b93c638 2040
8756216b 2041 /* Walk through the children, reconstructing them all. */
b6313243 2042 while (!VEC_empty (varobj_update_result, stack))
8b93c638 2043 {
b6313243
TT
2044 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2045 struct varobj *v = r.varobj;
2046
2047 VEC_pop (varobj_update_result, stack);
2048
2049 /* Update this variable, unless it's a root, which is already
2050 updated. */
2051 if (!r.value_installed)
7a290c40
JB
2052 {
2053 struct type *new_type;
2054
b6313243 2055 new = value_of_child (v->parent, v->index);
8264ba82
AG
2056 if (update_type_if_necessary(v, new))
2057 r.type_changed = 1;
7a290c40
JB
2058 if (new)
2059 new_type = value_type (new);
2060 else
2061 new_type = v->root->lang->type_of_child (v->parent, v->index);
2062
2063 if (varobj_value_has_mutated (v, new, new_type))
2064 {
2065 /* The children are no longer valid; delete them now.
2066 Report the fact that its type changed as well. */
2067 varobj_delete (v, NULL, 1 /* only_children */);
2068 v->num_children = -1;
2069 v->to = -1;
2070 v->from = -1;
2071 v->type = new_type;
2072 r.type_changed = 1;
2073 }
2074
2075 if (install_new_value (v, new, r.type_changed))
b6313243
TT
2076 {
2077 r.changed = 1;
2078 v->updated = 0;
2079 }
2080 }
2081
2082 /* We probably should not get children of a varobj that has a
2083 pretty-printer, but for which -var-list-children was never
581e13c1 2084 invoked. */
b6313243
TT
2085 if (v->pretty_printer)
2086 {
8264ba82
AG
2087 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2088 VEC (varobj_p) *new = 0;
26f9bcee 2089 int i, children_changed = 0;
b6313243
TT
2090
2091 if (v->frozen)
2092 continue;
2093
0cc7d26f
TT
2094 if (!v->children_requested)
2095 {
2096 int dummy;
2097
2098 /* If we initially did not have potential children, but
2099 now we do, consider the varobj as changed.
2100 Otherwise, if children were never requested, consider
2101 it as unchanged -- presumably, such varobj is not yet
2102 expanded in the UI, so we need not bother getting
2103 it. */
2104 if (!varobj_has_more (v, 0))
2105 {
8264ba82 2106 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
2107 &dummy, 0, 0, 0);
2108 if (varobj_has_more (v, 0))
2109 r.changed = 1;
2110 }
2111
2112 if (r.changed)
2113 VEC_safe_push (varobj_update_result, result, &r);
2114
2115 continue;
2116 }
2117
b6313243
TT
2118 /* If update_dynamic_varobj_children returns 0, then we have
2119 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
2120 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2121 &unchanged, &children_changed, 1,
0cc7d26f 2122 v->from, v->to))
b6313243 2123 {
0cc7d26f 2124 if (children_changed || new)
b6313243 2125 {
0cc7d26f
TT
2126 r.children_changed = 1;
2127 r.new = new;
b6313243 2128 }
0cc7d26f
TT
2129 /* Push in reverse order so that the first child is
2130 popped from the work stack first, and so will be
2131 added to result first. This does not affect
2132 correctness, just "nicer". */
8264ba82
AG
2133 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2134 {
2135 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2136 varobj_update_result r = {0};
2137
2138 /* Type may change only if value was changed. */
2139 r.varobj = tmp;
2140 r.changed = 1;
2141 r.type_changed = 1;
2142 r.value_installed = 1;
2143 VEC_safe_push (varobj_update_result, stack, &r);
2144 }
0cc7d26f 2145 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 2146 {
0cc7d26f 2147 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 2148 varobj_update_result r = {0};
a109c7c1 2149
cfce2ea2 2150 r.varobj = tmp;
0cc7d26f 2151 r.changed = 1;
b6313243
TT
2152 r.value_installed = 1;
2153 VEC_safe_push (varobj_update_result, stack, &r);
2154 }
0cc7d26f
TT
2155 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2156 {
2157 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 2158
0cc7d26f
TT
2159 if (!tmp->frozen)
2160 {
cfce2ea2 2161 varobj_update_result r = {0};
a109c7c1 2162
cfce2ea2 2163 r.varobj = tmp;
0cc7d26f
TT
2164 r.value_installed = 1;
2165 VEC_safe_push (varobj_update_result, stack, &r);
2166 }
2167 }
b6313243
TT
2168 if (r.changed || r.children_changed)
2169 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 2170
8264ba82
AG
2171 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2172 because NEW has been put into the result vector. */
0cc7d26f 2173 VEC_free (varobj_p, changed);
8264ba82 2174 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
2175 VEC_free (varobj_p, unchanged);
2176
b6313243
TT
2177 continue;
2178 }
2179 }
28335dcc
VP
2180
2181 /* Push any children. Use reverse order so that the first
2182 child is popped from the work stack first, and so
2183 will be added to result first. This does not
2184 affect correctness, just "nicer". */
2185 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 2186 {
28335dcc 2187 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 2188
28335dcc 2189 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 2190 if (c != NULL && !c->frozen)
28335dcc 2191 {
cfce2ea2 2192 varobj_update_result r = {0};
a109c7c1 2193
cfce2ea2 2194 r.varobj = c;
b6313243 2195 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 2196 }
8b93c638 2197 }
b6313243
TT
2198
2199 if (r.changed || r.type_changed)
2200 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
2201 }
2202
b6313243
TT
2203 VEC_free (varobj_update_result, stack);
2204
f7f9ae2c 2205 return result;
8b93c638
JM
2206}
2207\f
2208
2209/* Helper functions */
2210
2211/*
2212 * Variable object construction/destruction
2213 */
2214
2215static int
fba45db2
KB
2216delete_variable (struct cpstack **resultp, struct varobj *var,
2217 int only_children_p)
8b93c638
JM
2218{
2219 int delcount = 0;
2220
2221 delete_variable_1 (resultp, &delcount, var,
2222 only_children_p, 1 /* remove_from_parent_p */ );
2223
2224 return delcount;
2225}
2226
581e13c1 2227/* Delete the variable object VAR and its children. */
8b93c638
JM
2228/* IMPORTANT NOTE: If we delete a variable which is a child
2229 and the parent is not removed we dump core. It must be always
581e13c1 2230 initially called with remove_from_parent_p set. */
8b93c638 2231static void
72330bd6
AC
2232delete_variable_1 (struct cpstack **resultp, int *delcountp,
2233 struct varobj *var, int only_children_p,
2234 int remove_from_parent_p)
8b93c638 2235{
28335dcc 2236 int i;
8b93c638 2237
581e13c1 2238 /* Delete any children of this variable, too. */
28335dcc
VP
2239 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2240 {
2241 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 2242
214270ab
VP
2243 if (!child)
2244 continue;
8b93c638 2245 if (!remove_from_parent_p)
28335dcc
VP
2246 child->parent = NULL;
2247 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 2248 }
28335dcc 2249 VEC_free (varobj_p, var->children);
8b93c638 2250
581e13c1 2251 /* if we were called to delete only the children we are done here. */
8b93c638
JM
2252 if (only_children_p)
2253 return;
2254
581e13c1 2255 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 2256 /* If the name is null, this is a temporary variable, that has not
581e13c1 2257 yet been installed, don't report it, it belongs to the caller... */
73a93a32 2258 if (var->obj_name != NULL)
8b93c638 2259 {
5b616ba1 2260 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
2261 *delcountp = *delcountp + 1;
2262 }
2263
581e13c1 2264 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2265 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2266 (as indicated by remove_from_parent_p) we don't bother doing an
2267 expensive list search to find the element to remove when we are
581e13c1 2268 discarding the list afterwards. */
72330bd6 2269 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2270 {
28335dcc 2271 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2272 }
72330bd6 2273
73a93a32
JI
2274 if (var->obj_name != NULL)
2275 uninstall_variable (var);
8b93c638 2276
581e13c1 2277 /* Free memory associated with this variable. */
8b93c638
JM
2278 free_variable (var);
2279}
2280
581e13c1 2281/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2282static int
fba45db2 2283install_variable (struct varobj *var)
8b93c638
JM
2284{
2285 struct vlist *cv;
2286 struct vlist *newvl;
2287 const char *chp;
2288 unsigned int index = 0;
2289 unsigned int i = 1;
2290
2291 for (chp = var->obj_name; *chp; chp++)
2292 {
2293 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2294 }
2295
2296 cv = *(varobj_table + index);
2297 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2298 cv = cv->next;
2299
2300 if (cv != NULL)
8a3fe4f8 2301 error (_("Duplicate variable object name"));
8b93c638 2302
581e13c1 2303 /* Add varobj to hash table. */
8b93c638
JM
2304 newvl = xmalloc (sizeof (struct vlist));
2305 newvl->next = *(varobj_table + index);
2306 newvl->var = var;
2307 *(varobj_table + index) = newvl;
2308
581e13c1 2309 /* If root, add varobj to root list. */
b2c2bd75 2310 if (is_root_p (var))
8b93c638 2311 {
581e13c1 2312 /* Add to list of root variables. */
8b93c638
JM
2313 if (rootlist == NULL)
2314 var->root->next = NULL;
2315 else
2316 var->root->next = rootlist;
2317 rootlist = var->root;
8b93c638
JM
2318 }
2319
2320 return 1; /* OK */
2321}
2322
581e13c1 2323/* Unistall the object VAR. */
8b93c638 2324static void
fba45db2 2325uninstall_variable (struct varobj *var)
8b93c638
JM
2326{
2327 struct vlist *cv;
2328 struct vlist *prev;
2329 struct varobj_root *cr;
2330 struct varobj_root *prer;
2331 const char *chp;
2332 unsigned int index = 0;
2333 unsigned int i = 1;
2334
581e13c1 2335 /* Remove varobj from hash table. */
8b93c638
JM
2336 for (chp = var->obj_name; *chp; chp++)
2337 {
2338 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2339 }
2340
2341 cv = *(varobj_table + index);
2342 prev = NULL;
2343 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2344 {
2345 prev = cv;
2346 cv = cv->next;
2347 }
2348
2349 if (varobjdebug)
2350 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2351
2352 if (cv == NULL)
2353 {
72330bd6
AC
2354 warning
2355 ("Assertion failed: Could not find variable object \"%s\" to delete",
2356 var->obj_name);
8b93c638
JM
2357 return;
2358 }
2359
2360 if (prev == NULL)
2361 *(varobj_table + index) = cv->next;
2362 else
2363 prev->next = cv->next;
2364
b8c9b27d 2365 xfree (cv);
8b93c638 2366
581e13c1 2367 /* If root, remove varobj from root list. */
b2c2bd75 2368 if (is_root_p (var))
8b93c638 2369 {
581e13c1 2370 /* Remove from list of root variables. */
8b93c638
JM
2371 if (rootlist == var->root)
2372 rootlist = var->root->next;
2373 else
2374 {
2375 prer = NULL;
2376 cr = rootlist;
2377 while ((cr != NULL) && (cr->rootvar != var))
2378 {
2379 prer = cr;
2380 cr = cr->next;
2381 }
2382 if (cr == NULL)
2383 {
8f7e195f
JB
2384 warning (_("Assertion failed: Could not find "
2385 "varobj \"%s\" in root list"),
3e43a32a 2386 var->obj_name);
8b93c638
JM
2387 return;
2388 }
2389 if (prer == NULL)
2390 rootlist = NULL;
2391 else
2392 prer->next = cr->next;
2393 }
8b93c638
JM
2394 }
2395
2396}
2397
581e13c1 2398/* Create and install a child of the parent of the given name. */
8b93c638 2399static struct varobj *
fba45db2 2400create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2401{
2402 return create_child_with_value (parent, index, name,
2403 value_of_child (parent, index));
2404}
2405
85254831
KS
2406/* Does CHILD represent a child with no name? This happens when
2407 the child is an anonmous struct or union and it has no field name
2408 in its parent variable.
2409
2410 This has already been determined by *_describe_child. The easiest
2411 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2412
2413static int
2414is_anonymous_child (struct varobj *child)
2415{
2416 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2417 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2418}
2419
b6313243
TT
2420static struct varobj *
2421create_child_with_value (struct varobj *parent, int index, const char *name,
2422 struct value *value)
8b93c638
JM
2423{
2424 struct varobj *child;
2425 char *childs_name;
2426
2427 child = new_variable ();
2428
581e13c1 2429 /* Name is allocated by name_of_child. */
b6313243
TT
2430 /* FIXME: xstrdup should not be here. */
2431 child->name = xstrdup (name);
8b93c638 2432 child->index = index;
8b93c638
JM
2433 child->parent = parent;
2434 child->root = parent->root;
85254831
KS
2435
2436 if (is_anonymous_child (child))
2437 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2438 else
2439 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2440 child->obj_name = childs_name;
85254831 2441
8b93c638
JM
2442 install_variable (child);
2443
acd65feb
VP
2444 /* Compute the type of the child. Must do this before
2445 calling install_new_value. */
2446 if (value != NULL)
2447 /* If the child had no evaluation errors, var->value
581e13c1 2448 will be non-NULL and contain a valid type. */
8264ba82 2449 child->type = value_actual_type (value, 0, NULL);
acd65feb 2450 else
581e13c1 2451 /* Otherwise, we must compute the type. */
acd65feb
VP
2452 child->type = (*child->root->lang->type_of_child) (child->parent,
2453 child->index);
2454 install_new_value (child, value, 1);
2455
8b93c638
JM
2456 return child;
2457}
8b93c638
JM
2458\f
2459
2460/*
2461 * Miscellaneous utility functions.
2462 */
2463
581e13c1 2464/* Allocate memory and initialize a new variable. */
8b93c638
JM
2465static struct varobj *
2466new_variable (void)
2467{
2468 struct varobj *var;
2469
2470 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2471 var->name = NULL;
02142340 2472 var->path_expr = NULL;
8b93c638
JM
2473 var->obj_name = NULL;
2474 var->index = -1;
2475 var->type = NULL;
2476 var->value = NULL;
8b93c638
JM
2477 var->num_children = -1;
2478 var->parent = NULL;
2479 var->children = NULL;
2480 var->format = 0;
2481 var->root = NULL;
fb9b6b35 2482 var->updated = 0;
85265413 2483 var->print_value = NULL;
25d5ea92
VP
2484 var->frozen = 0;
2485 var->not_fetched = 0;
b6313243 2486 var->children_requested = 0;
0cc7d26f
TT
2487 var->from = -1;
2488 var->to = -1;
2489 var->constructor = 0;
b6313243 2490 var->pretty_printer = 0;
0cc7d26f
TT
2491 var->child_iter = 0;
2492 var->saved_item = 0;
8b93c638
JM
2493
2494 return var;
2495}
2496
581e13c1 2497/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2498static struct varobj *
2499new_root_variable (void)
2500{
2501 struct varobj *var = new_variable ();
a109c7c1 2502
3e43a32a 2503 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2504 var->root->lang = NULL;
2505 var->root->exp = NULL;
2506 var->root->valid_block = NULL;
7a424e99 2507 var->root->frame = null_frame_id;
a5defcdc 2508 var->root->floating = 0;
8b93c638 2509 var->root->rootvar = NULL;
8756216b 2510 var->root->is_valid = 1;
8b93c638
JM
2511
2512 return var;
2513}
2514
581e13c1 2515/* Free any allocated memory associated with VAR. */
8b93c638 2516static void
fba45db2 2517free_variable (struct varobj *var)
8b93c638 2518{
d452c4bc
UW
2519#if HAVE_PYTHON
2520 if (var->pretty_printer)
2521 {
2522 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2523 Py_XDECREF (var->constructor);
2524 Py_XDECREF (var->pretty_printer);
2525 Py_XDECREF (var->child_iter);
2526 Py_XDECREF (var->saved_item);
d452c4bc
UW
2527 do_cleanups (cleanup);
2528 }
2529#endif
2530
36746093
JK
2531 value_free (var->value);
2532
581e13c1 2533 /* Free the expression if this is a root variable. */
b2c2bd75 2534 if (is_root_p (var))
8b93c638 2535 {
3038237c 2536 xfree (var->root->exp);
8038e1e2 2537 xfree (var->root);
8b93c638
JM
2538 }
2539
8038e1e2
AC
2540 xfree (var->name);
2541 xfree (var->obj_name);
85265413 2542 xfree (var->print_value);
02142340 2543 xfree (var->path_expr);
8038e1e2 2544 xfree (var);
8b93c638
JM
2545}
2546
74b7792f
AC
2547static void
2548do_free_variable_cleanup (void *var)
2549{
2550 free_variable (var);
2551}
2552
2553static struct cleanup *
2554make_cleanup_free_variable (struct varobj *var)
2555{
2556 return make_cleanup (do_free_variable_cleanup, var);
2557}
2558
581e13c1 2559/* This returns the type of the variable. It also skips past typedefs
6766a268 2560 to return the real type of the variable.
94b66fa7
KS
2561
2562 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2563 except within get_target_type and get_type. */
8b93c638 2564static struct type *
fba45db2 2565get_type (struct varobj *var)
8b93c638
JM
2566{
2567 struct type *type;
8b93c638 2568
a109c7c1 2569 type = var->type;
6766a268
DJ
2570 if (type != NULL)
2571 type = check_typedef (type);
8b93c638
JM
2572
2573 return type;
2574}
2575
6e2a9270
VP
2576/* Return the type of the value that's stored in VAR,
2577 or that would have being stored there if the
581e13c1 2578 value were accessible.
6e2a9270
VP
2579
2580 This differs from VAR->type in that VAR->type is always
2581 the true type of the expession in the source language.
2582 The return value of this function is the type we're
2583 actually storing in varobj, and using for displaying
2584 the values and for comparing previous and new values.
2585
2586 For example, top-level references are always stripped. */
2587static struct type *
2588get_value_type (struct varobj *var)
2589{
2590 struct type *type;
2591
2592 if (var->value)
2593 type = value_type (var->value);
2594 else
2595 type = var->type;
2596
2597 type = check_typedef (type);
2598
2599 if (TYPE_CODE (type) == TYPE_CODE_REF)
2600 type = get_target_type (type);
2601
2602 type = check_typedef (type);
2603
2604 return type;
2605}
2606
8b93c638 2607/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2608 past typedefs, just like get_type ().
2609
2610 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2611 except within get_target_type and get_type. */
8b93c638 2612static struct type *
fba45db2 2613get_target_type (struct type *type)
8b93c638
JM
2614{
2615 if (type != NULL)
2616 {
2617 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2618 if (type != NULL)
2619 type = check_typedef (type);
8b93c638
JM
2620 }
2621
2622 return type;
2623}
2624
2625/* What is the default display for this variable? We assume that
581e13c1 2626 everything is "natural". Any exceptions? */
8b93c638 2627static enum varobj_display_formats
fba45db2 2628variable_default_display (struct varobj *var)
8b93c638
JM
2629{
2630 return FORMAT_NATURAL;
2631}
2632
581e13c1 2633/* FIXME: The following should be generic for any pointer. */
8b93c638 2634static void
fba45db2 2635cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2636{
2637 struct cpstack *s;
2638
2639 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2640 s->name = name;
2641 s->next = *pstack;
2642 *pstack = s;
2643}
2644
581e13c1 2645/* FIXME: The following should be generic for any pointer. */
8b93c638 2646static char *
fba45db2 2647cppop (struct cpstack **pstack)
8b93c638
JM
2648{
2649 struct cpstack *s;
2650 char *v;
2651
2652 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2653 return NULL;
2654
2655 s = *pstack;
2656 v = s->name;
2657 *pstack = (*pstack)->next;
b8c9b27d 2658 xfree (s);
8b93c638
JM
2659
2660 return v;
2661}
2662\f
2663/*
2664 * Language-dependencies
2665 */
2666
2667/* Common entry points */
2668
581e13c1 2669/* Get the language of variable VAR. */
8b93c638 2670static enum varobj_languages
fba45db2 2671variable_language (struct varobj *var)
8b93c638
JM
2672{
2673 enum varobj_languages lang;
2674
2675 switch (var->root->exp->language_defn->la_language)
2676 {
2677 default:
2678 case language_c:
2679 lang = vlang_c;
2680 break;
2681 case language_cplus:
2682 lang = vlang_cplus;
2683 break;
2684 case language_java:
2685 lang = vlang_java;
2686 break;
40591b7d
JCD
2687 case language_ada:
2688 lang = vlang_ada;
2689 break;
8b93c638
JM
2690 }
2691
2692 return lang;
2693}
2694
2695/* Return the number of children for a given variable.
2696 The result of this function is defined by the language
581e13c1 2697 implementation. The number of children returned by this function
8b93c638 2698 is the number of children that the user will see in the variable
581e13c1 2699 display. */
8b93c638 2700static int
fba45db2 2701number_of_children (struct varobj *var)
8b93c638 2702{
82ae4854 2703 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2704}
2705
3e43a32a 2706/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2707 string. */
8b93c638 2708static char *
fba45db2 2709name_of_variable (struct varobj *var)
8b93c638
JM
2710{
2711 return (*var->root->lang->name_of_variable) (var);
2712}
2713
3e43a32a 2714/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2715 string. */
8b93c638 2716static char *
fba45db2 2717name_of_child (struct varobj *var, int index)
8b93c638
JM
2718{
2719 return (*var->root->lang->name_of_child) (var, index);
2720}
2721
a5defcdc
VP
2722/* What is the ``struct value *'' of the root variable VAR?
2723 For floating variable object, evaluation can get us a value
2724 of different type from what is stored in varobj already. In
2725 that case:
2726 - *type_changed will be set to 1
2727 - old varobj will be freed, and new one will be
2728 created, with the same name.
2729 - *var_handle will be set to the new varobj
2730 Otherwise, *type_changed will be set to 0. */
30b28db1 2731static struct value *
fba45db2 2732value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2733{
73a93a32
JI
2734 struct varobj *var;
2735
2736 if (var_handle == NULL)
2737 return NULL;
2738
2739 var = *var_handle;
2740
2741 /* This should really be an exception, since this should
581e13c1 2742 only get called with a root variable. */
73a93a32 2743
b2c2bd75 2744 if (!is_root_p (var))
73a93a32
JI
2745 return NULL;
2746
a5defcdc 2747 if (var->root->floating)
73a93a32
JI
2748 {
2749 struct varobj *tmp_var;
2750 char *old_type, *new_type;
6225abfa 2751
73a93a32
JI
2752 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2753 USE_SELECTED_FRAME);
2754 if (tmp_var == NULL)
2755 {
2756 return NULL;
2757 }
6225abfa 2758 old_type = varobj_get_type (var);
73a93a32 2759 new_type = varobj_get_type (tmp_var);
72330bd6 2760 if (strcmp (old_type, new_type) == 0)
73a93a32 2761 {
fcacd99f
VP
2762 /* The expression presently stored inside var->root->exp
2763 remembers the locations of local variables relatively to
2764 the frame where the expression was created (in DWARF location
2765 button, for example). Naturally, those locations are not
2766 correct in other frames, so update the expression. */
2767
2768 struct expression *tmp_exp = var->root->exp;
a109c7c1 2769
fcacd99f
VP
2770 var->root->exp = tmp_var->root->exp;
2771 tmp_var->root->exp = tmp_exp;
2772
73a93a32
JI
2773 varobj_delete (tmp_var, NULL, 0);
2774 *type_changed = 0;
2775 }
2776 else
2777 {
1b36a34b 2778 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2779 tmp_var->from = var->from;
2780 tmp_var->to = var->to;
a5defcdc
VP
2781 varobj_delete (var, NULL, 0);
2782
73a93a32
JI
2783 install_variable (tmp_var);
2784 *var_handle = tmp_var;
705da579 2785 var = *var_handle;
73a93a32
JI
2786 *type_changed = 1;
2787 }
74dddad3
MS
2788 xfree (old_type);
2789 xfree (new_type);
73a93a32
JI
2790 }
2791 else
2792 {
2793 *type_changed = 0;
2794 }
2795
7a290c40
JB
2796 {
2797 struct value *value;
2798
2799 value = (*var->root->lang->value_of_root) (var_handle);
2800 if (var->value == NULL || value == NULL)
2801 {
2802 /* For root varobj-s, a NULL value indicates a scoping issue.
2803 So, nothing to do in terms of checking for mutations. */
2804 }
2805 else if (varobj_value_has_mutated (var, value, value_type (value)))
2806 {
2807 /* The type has mutated, so the children are no longer valid.
2808 Just delete them, and tell our caller that the type has
2809 changed. */
2810 varobj_delete (var, NULL, 1 /* only_children */);
2811 var->num_children = -1;
2812 var->to = -1;
2813 var->from = -1;
2814 *type_changed = 1;
2815 }
2816 return value;
2817 }
8b93c638
JM
2818}
2819
581e13c1 2820/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2821static struct value *
fba45db2 2822value_of_child (struct varobj *parent, int index)
8b93c638 2823{
30b28db1 2824 struct value *value;
8b93c638
JM
2825
2826 value = (*parent->root->lang->value_of_child) (parent, index);
2827
8b93c638
JM
2828 return value;
2829}
2830
581e13c1 2831/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2832static char *
de051565 2833my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2834{
8756216b 2835 if (var->root->is_valid)
0cc7d26f
TT
2836 {
2837 if (var->pretty_printer)
2838 return value_get_print_value (var->value, var->format, var);
2839 return (*var->root->lang->value_of_variable) (var, format);
2840 }
8756216b
DP
2841 else
2842 return NULL;
8b93c638
JM
2843}
2844
85265413 2845static char *
b6313243 2846value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2847 struct varobj *var)
85265413 2848{
57e66780 2849 struct ui_file *stb;
621c8364 2850 struct cleanup *old_chain;
fbb8f299 2851 gdb_byte *thevalue = NULL;
79a45b7d 2852 struct value_print_options opts;
be759fcf
PM
2853 struct type *type = NULL;
2854 long len = 0;
2855 char *encoding = NULL;
2856 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2857 /* Initialize it just to avoid a GCC false warning. */
2858 CORE_ADDR str_addr = 0;
09ca9e2e 2859 int string_print = 0;
57e66780
DJ
2860
2861 if (value == NULL)
2862 return NULL;
2863
621c8364
TT
2864 stb = mem_fileopen ();
2865 old_chain = make_cleanup_ui_file_delete (stb);
2866
be759fcf 2867 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2868#if HAVE_PYTHON
2869 {
d452c4bc
UW
2870 PyObject *value_formatter = var->pretty_printer;
2871
09ca9e2e
TT
2872 varobj_ensure_python_env (var);
2873
0cc7d26f 2874 if (value_formatter)
b6313243 2875 {
0cc7d26f
TT
2876 /* First check to see if we have any children at all. If so,
2877 we simply return {...}. */
2878 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2879 {
2880 do_cleanups (old_chain);
2881 return xstrdup ("{...}");
2882 }
b6313243 2883
0cc7d26f 2884 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2885 {
0cc7d26f 2886 struct value *replacement;
0cc7d26f
TT
2887 PyObject *output = NULL;
2888
0cc7d26f 2889 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2890 &replacement,
2891 stb);
00bd41d6
PM
2892
2893 /* If we have string like output ... */
0cc7d26f
TT
2894 if (output)
2895 {
09ca9e2e
TT
2896 make_cleanup_py_decref (output);
2897
00bd41d6
PM
2898 /* If this is a lazy string, extract it. For lazy
2899 strings we always print as a string, so set
2900 string_print. */
be759fcf 2901 if (gdbpy_is_lazy_string (output))
0cc7d26f 2902 {
09ca9e2e
TT
2903 gdbpy_extract_lazy_string (output, &str_addr, &type,
2904 &len, &encoding);
2905 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2906 string_print = 1;
2907 }
2908 else
2909 {
00bd41d6
PM
2910 /* If it is a regular (non-lazy) string, extract
2911 it and copy the contents into THEVALUE. If the
2912 hint says to print it as a string, set
2913 string_print. Otherwise just return the extracted
2914 string as a value. */
2915
be759fcf
PM
2916 PyObject *py_str
2917 = python_string_to_target_python_string (output);
a109c7c1 2918
be759fcf
PM
2919 if (py_str)
2920 {
2921 char *s = PyString_AsString (py_str);
00bd41d6
PM
2922 char *hint;
2923
2924 hint = gdbpy_get_display_hint (value_formatter);
2925 if (hint)
2926 {
2927 if (!strcmp (hint, "string"))
2928 string_print = 1;
2929 xfree (hint);
2930 }
a109c7c1 2931
be759fcf
PM
2932 len = PyString_Size (py_str);
2933 thevalue = xmemdup (s, len + 1, len + 1);
2934 type = builtin_type (gdbarch)->builtin_char;
2935 Py_DECREF (py_str);
09ca9e2e
TT
2936
2937 if (!string_print)
2938 {
2939 do_cleanups (old_chain);
2940 return thevalue;
2941 }
2942
2943 make_cleanup (xfree, thevalue);
be759fcf 2944 }
8dc78533
JK
2945 else
2946 gdbpy_print_stack ();
0cc7d26f 2947 }
0cc7d26f 2948 }
00bd41d6
PM
2949 /* If the printer returned a replacement value, set VALUE
2950 to REPLACEMENT. If there is not a replacement value,
2951 just use the value passed to this function. */
0cc7d26f
TT
2952 if (replacement)
2953 value = replacement;
b6313243 2954 }
b6313243 2955 }
b6313243
TT
2956 }
2957#endif
2958
79a45b7d
TT
2959 get_formatted_print_options (&opts, format_code[(int) format]);
2960 opts.deref_ref = 0;
b6313243 2961 opts.raw = 1;
00bd41d6
PM
2962
2963 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2964 if (thevalue)
09ca9e2e
TT
2965 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2966 else if (string_print)
00bd41d6
PM
2967 /* Otherwise, if string_print is set, and it is not a regular
2968 string, it is a lazy string. */
09ca9e2e 2969 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2970 else
00bd41d6 2971 /* All other cases. */
b6313243 2972 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2973
759ef836 2974 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2975
85265413
NR
2976 do_cleanups (old_chain);
2977 return thevalue;
2978}
2979
340a7723
NR
2980int
2981varobj_editable_p (struct varobj *var)
2982{
2983 struct type *type;
340a7723
NR
2984
2985 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2986 return 0;
2987
2988 type = get_value_type (var);
2989
2990 switch (TYPE_CODE (type))
2991 {
2992 case TYPE_CODE_STRUCT:
2993 case TYPE_CODE_UNION:
2994 case TYPE_CODE_ARRAY:
2995 case TYPE_CODE_FUNC:
2996 case TYPE_CODE_METHOD:
2997 return 0;
2998 break;
2999
3000 default:
3001 return 1;
3002 break;
3003 }
3004}
3005
d32cafc7 3006/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 3007
8b93c638 3008static int
b2c2bd75 3009varobj_value_is_changeable_p (struct varobj *var)
8b93c638 3010{
d32cafc7 3011 return var->root->lang->value_is_changeable_p (var);
8b93c638
JM
3012}
3013
5a413362
VP
3014/* Return 1 if that varobj is floating, that is is always evaluated in the
3015 selected frame, and not bound to thread/frame. Such variable objects
3016 are created using '@' as frame specifier to -var-create. */
3017int
3018varobj_floating_p (struct varobj *var)
3019{
3020 return var->root->floating;
3021}
3022
2024f65a
VP
3023/* Given the value and the type of a variable object,
3024 adjust the value and type to those necessary
3025 for getting children of the variable object.
3026 This includes dereferencing top-level references
3027 to all types and dereferencing pointers to
581e13c1 3028 structures.
2024f65a 3029
8264ba82
AG
3030 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3031 value will be fetched and if it differs from static type
3032 the value will be casted to it.
3033
581e13c1 3034 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
3035 can be null if we want to only translate type.
3036 *VALUE can be null as well -- if the parent
581e13c1 3037 value is not known.
02142340
VP
3038
3039 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 3040 depending on whether pointer was dereferenced
02142340 3041 in this function. */
2024f65a
VP
3042static void
3043adjust_value_for_child_access (struct value **value,
02142340 3044 struct type **type,
8264ba82
AG
3045 int *was_ptr,
3046 int lookup_actual_type)
2024f65a
VP
3047{
3048 gdb_assert (type && *type);
3049
02142340
VP
3050 if (was_ptr)
3051 *was_ptr = 0;
3052
2024f65a
VP
3053 *type = check_typedef (*type);
3054
3055 /* The type of value stored in varobj, that is passed
3056 to us, is already supposed to be
3057 reference-stripped. */
3058
3059 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3060
3061 /* Pointers to structures are treated just like
3062 structures when accessing children. Don't
3063 dererences pointers to other types. */
3064 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3065 {
3066 struct type *target_type = get_target_type (*type);
3067 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3068 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3069 {
3070 if (value && *value)
3f4178d6 3071 {
8e7b59a5 3072 volatile struct gdb_exception except;
a109c7c1 3073
8e7b59a5
KS
3074 TRY_CATCH (except, RETURN_MASK_ERROR)
3075 {
3076 *value = value_ind (*value);
3077 }
3078
3079 if (except.reason < 0)
3f4178d6
DJ
3080 *value = NULL;
3081 }
2024f65a 3082 *type = target_type;
02142340
VP
3083 if (was_ptr)
3084 *was_ptr = 1;
2024f65a
VP
3085 }
3086 }
3087
3088 /* The 'get_target_type' function calls check_typedef on
3089 result, so we can immediately check type code. No
3090 need to call check_typedef here. */
8264ba82
AG
3091
3092 /* Access a real type of the value (if necessary and possible). */
3093 if (value && *value && lookup_actual_type)
3094 {
3095 struct type *enclosing_type;
3096 int real_type_found = 0;
3097
3098 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3099 if (real_type_found)
3100 {
3101 *type = enclosing_type;
3102 *value = value_cast (enclosing_type, *value);
3103 }
3104 }
2024f65a
VP
3105}
3106
d32cafc7
JB
3107/* Implement the "value_is_changeable_p" varobj callback for most
3108 languages. */
3109
3110static int
3111default_value_is_changeable_p (struct varobj *var)
3112{
3113 int r;
3114 struct type *type;
3115
3116 if (CPLUS_FAKE_CHILD (var))
3117 return 0;
3118
3119 type = get_value_type (var);
3120
3121 switch (TYPE_CODE (type))
3122 {
3123 case TYPE_CODE_STRUCT:
3124 case TYPE_CODE_UNION:
3125 case TYPE_CODE_ARRAY:
3126 r = 0;
3127 break;
3128
3129 default:
3130 r = 1;
3131 }
3132
3133 return r;
3134}
3135
8b93c638 3136/* C */
d32cafc7 3137
8b93c638 3138static int
fba45db2 3139c_number_of_children (struct varobj *var)
8b93c638 3140{
2024f65a
VP
3141 struct type *type = get_value_type (var);
3142 int children = 0;
8b93c638 3143 struct type *target;
8b93c638 3144
8264ba82 3145 adjust_value_for_child_access (NULL, &type, NULL, 0);
8b93c638 3146 target = get_target_type (type);
8b93c638
JM
3147
3148 switch (TYPE_CODE (type))
3149 {
3150 case TYPE_CODE_ARRAY:
3151 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 3152 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
3153 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3154 else
74a44383
DJ
3155 /* If we don't know how many elements there are, don't display
3156 any. */
3157 children = 0;
8b93c638
JM
3158 break;
3159
3160 case TYPE_CODE_STRUCT:
3161 case TYPE_CODE_UNION:
3162 children = TYPE_NFIELDS (type);
3163 break;
3164
3165 case TYPE_CODE_PTR:
581e13c1 3166 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
3167 have one child, except for function ptrs, which have no children,
3168 and except for void*, as we don't know what to show.
3169
0755e6c1
FN
3170 We can show char* so we allow it to be dereferenced. If you decide
3171 to test for it, please mind that a little magic is necessary to
3172 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 3173 TYPE_NAME == "char". */
2024f65a
VP
3174 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3175 || TYPE_CODE (target) == TYPE_CODE_VOID)
3176 children = 0;
3177 else
3178 children = 1;
8b93c638
JM
3179 break;
3180
3181 default:
581e13c1 3182 /* Other types have no children. */
8b93c638
JM
3183 break;
3184 }
3185
3186 return children;
3187}
3188
3189static char *
fba45db2 3190c_name_of_variable (struct varobj *parent)
8b93c638 3191{
1b36a34b 3192 return xstrdup (parent->name);
8b93c638
JM
3193}
3194
bbec2603
VP
3195/* Return the value of element TYPE_INDEX of a structure
3196 value VALUE. VALUE's type should be a structure,
581e13c1 3197 or union, or a typedef to struct/union.
bbec2603
VP
3198
3199 Returns NULL if getting the value fails. Never throws. */
3200static struct value *
3201value_struct_element_index (struct value *value, int type_index)
8b93c638 3202{
bbec2603
VP
3203 struct value *result = NULL;
3204 volatile struct gdb_exception e;
bbec2603 3205 struct type *type = value_type (value);
a109c7c1 3206
bbec2603
VP
3207 type = check_typedef (type);
3208
3209 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3210 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 3211
bbec2603
VP
3212 TRY_CATCH (e, RETURN_MASK_ERROR)
3213 {
d6a843b5 3214 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
3215 result = value_static_field (type, type_index);
3216 else
3217 result = value_primitive_field (value, 0, type_index, type);
3218 }
3219 if (e.reason < 0)
3220 {
3221 return NULL;
3222 }
3223 else
3224 {
3225 return result;
3226 }
3227}
3228
3229/* Obtain the information about child INDEX of the variable
581e13c1 3230 object PARENT.
bbec2603
VP
3231 If CNAME is not null, sets *CNAME to the name of the child relative
3232 to the parent.
3233 If CVALUE is not null, sets *CVALUE to the value of the child.
3234 If CTYPE is not null, sets *CTYPE to the type of the child.
3235
3236 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3237 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3238 to NULL. */
3239static void
3240c_describe_child (struct varobj *parent, int index,
02142340
VP
3241 char **cname, struct value **cvalue, struct type **ctype,
3242 char **cfull_expression)
bbec2603
VP
3243{
3244 struct value *value = parent->value;
2024f65a 3245 struct type *type = get_value_type (parent);
02142340
VP
3246 char *parent_expression = NULL;
3247 int was_ptr;
8e7b59a5 3248 volatile struct gdb_exception except;
bbec2603
VP
3249
3250 if (cname)
3251 *cname = NULL;
3252 if (cvalue)
3253 *cvalue = NULL;
3254 if (ctype)
3255 *ctype = NULL;
02142340
VP
3256 if (cfull_expression)
3257 {
3258 *cfull_expression = NULL;
85254831 3259 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
02142340 3260 }
8264ba82 3261 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
bbec2603 3262
8b93c638
JM
3263 switch (TYPE_CODE (type))
3264 {
3265 case TYPE_CODE_ARRAY:
bbec2603 3266 if (cname)
3e43a32a
MS
3267 *cname
3268 = xstrdup (int_string (index
3269 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3270 10, 1, 0, 0));
bbec2603
VP
3271
3272 if (cvalue && value)
3273 {
3274 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 3275
8e7b59a5
KS
3276 TRY_CATCH (except, RETURN_MASK_ERROR)
3277 {
3278 *cvalue = value_subscript (value, real_index);
3279 }
bbec2603
VP
3280 }
3281
3282 if (ctype)
3283 *ctype = get_target_type (type);
3284
02142340 3285 if (cfull_expression)
43bbcdc2
PH
3286 *cfull_expression =
3287 xstrprintf ("(%s)[%s]", parent_expression,
3288 int_string (index
3289 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3290 10, 1, 0, 0));
02142340
VP
3291
3292
8b93c638
JM
3293 break;
3294
3295 case TYPE_CODE_STRUCT:
3296 case TYPE_CODE_UNION:
85254831 3297 {
0d5cff50 3298 const char *field_name;
bbec2603 3299
85254831
KS
3300 /* If the type is anonymous and the field has no name,
3301 set an appropriate name. */
3302 field_name = TYPE_FIELD_NAME (type, index);
3303 if (field_name == NULL || *field_name == '\0')
3304 {
3305 if (cname)
3306 {
3307 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3308 == TYPE_CODE_STRUCT)
3309 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3310 else
3311 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3312 }
bbec2603 3313
85254831
KS
3314 if (cfull_expression)
3315 *cfull_expression = xstrdup ("");
3316 }
3317 else
3318 {
3319 if (cname)
3320 *cname = xstrdup (field_name);
bbec2603 3321
85254831
KS
3322 if (cfull_expression)
3323 {
3324 char *join = was_ptr ? "->" : ".";
a109c7c1 3325
85254831
KS
3326 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3327 join, field_name);
3328 }
3329 }
02142340 3330
85254831
KS
3331 if (cvalue && value)
3332 {
3333 /* For C, varobj index is the same as type index. */
3334 *cvalue = value_struct_element_index (value, index);
3335 }
3336
3337 if (ctype)
3338 *ctype = TYPE_FIELD_TYPE (type, index);
3339 }
8b93c638
JM
3340 break;
3341
3342 case TYPE_CODE_PTR:
bbec2603
VP
3343 if (cname)
3344 *cname = xstrprintf ("*%s", parent->name);
8b93c638 3345
bbec2603 3346 if (cvalue && value)
3f4178d6 3347 {
8e7b59a5
KS
3348 TRY_CATCH (except, RETURN_MASK_ERROR)
3349 {
3350 *cvalue = value_ind (value);
3351 }
a109c7c1 3352
8e7b59a5 3353 if (except.reason < 0)
3f4178d6
DJ
3354 *cvalue = NULL;
3355 }
bbec2603 3356
2024f65a
VP
3357 /* Don't use get_target_type because it calls
3358 check_typedef and here, we want to show the true
3359 declared type of the variable. */
bbec2603 3360 if (ctype)
2024f65a 3361 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
3362
3363 if (cfull_expression)
3364 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 3365
8b93c638
JM
3366 break;
3367
3368 default:
581e13c1 3369 /* This should not happen. */
bbec2603
VP
3370 if (cname)
3371 *cname = xstrdup ("???");
02142340
VP
3372 if (cfull_expression)
3373 *cfull_expression = xstrdup ("???");
581e13c1 3374 /* Don't set value and type, we don't know then. */
8b93c638 3375 }
bbec2603 3376}
8b93c638 3377
bbec2603
VP
3378static char *
3379c_name_of_child (struct varobj *parent, int index)
3380{
3381 char *name;
a109c7c1 3382
02142340 3383 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3384 return name;
3385}
3386
02142340
VP
3387static char *
3388c_path_expr_of_child (struct varobj *child)
3389{
3390 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3391 &child->path_expr);
3392 return child->path_expr;
3393}
3394
c5b48eac
VP
3395/* If frame associated with VAR can be found, switch
3396 to it and return 1. Otherwise, return 0. */
3397static int
3398check_scope (struct varobj *var)
3399{
3400 struct frame_info *fi;
3401 int scope;
3402
3403 fi = frame_find_by_id (var->root->frame);
3404 scope = fi != NULL;
3405
3406 if (fi)
3407 {
3408 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3409
c5b48eac
VP
3410 if (pc < BLOCK_START (var->root->valid_block) ||
3411 pc >= BLOCK_END (var->root->valid_block))
3412 scope = 0;
3413 else
3414 select_frame (fi);
3415 }
3416 return scope;
3417}
3418
30b28db1 3419static struct value *
fba45db2 3420c_value_of_root (struct varobj **var_handle)
8b93c638 3421{
5e572bb4 3422 struct value *new_val = NULL;
73a93a32 3423 struct varobj *var = *var_handle;
c5b48eac 3424 int within_scope = 0;
6208b47d
VP
3425 struct cleanup *back_to;
3426
581e13c1 3427 /* Only root variables can be updated... */
b2c2bd75 3428 if (!is_root_p (var))
581e13c1 3429 /* Not a root var. */
73a93a32
JI
3430 return NULL;
3431
4f8d22e3 3432 back_to = make_cleanup_restore_current_thread ();
72330bd6 3433
581e13c1 3434 /* Determine whether the variable is still around. */
a5defcdc 3435 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3436 within_scope = 1;
c5b48eac
VP
3437 else if (var->root->thread_id == 0)
3438 {
3439 /* The program was single-threaded when the variable object was
3440 created. Technically, it's possible that the program became
3441 multi-threaded since then, but we don't support such
3442 scenario yet. */
3443 within_scope = check_scope (var);
3444 }
8b93c638
JM
3445 else
3446 {
c5b48eac
VP
3447 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3448 if (in_thread_list (ptid))
d2353924 3449 {
c5b48eac
VP
3450 switch_to_thread (ptid);
3451 within_scope = check_scope (var);
3452 }
8b93c638 3453 }
72330bd6 3454
8b93c638
JM
3455 if (within_scope)
3456 {
8e7b59a5
KS
3457 volatile struct gdb_exception except;
3458
73a93a32 3459 /* We need to catch errors here, because if evaluate
85d93f1d 3460 expression fails we want to just return NULL. */
8e7b59a5
KS
3461 TRY_CATCH (except, RETURN_MASK_ERROR)
3462 {
3463 new_val = evaluate_expression (var->root->exp);
3464 }
3465
8b93c638
JM
3466 return new_val;
3467 }
3468
6208b47d
VP
3469 do_cleanups (back_to);
3470
8b93c638
JM
3471 return NULL;
3472}
3473
30b28db1 3474static struct value *
fba45db2 3475c_value_of_child (struct varobj *parent, int index)
8b93c638 3476{
bbec2603 3477 struct value *value = NULL;
8b93c638 3478
a109c7c1 3479 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3480 return value;
3481}
3482
3483static struct type *
fba45db2 3484c_type_of_child (struct varobj *parent, int index)
8b93c638 3485{
bbec2603 3486 struct type *type = NULL;
a109c7c1 3487
02142340 3488 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3489 return type;
3490}
3491
8b93c638 3492static char *
de051565 3493c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3494{
14b3d9c9
JB
3495 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3496 it will print out its children instead of "{...}". So we need to
3497 catch that case explicitly. */
3498 struct type *type = get_type (var);
e64d9b3d 3499
581e13c1 3500 /* Strip top-level references. */
14b3d9c9
JB
3501 while (TYPE_CODE (type) == TYPE_CODE_REF)
3502 type = check_typedef (TYPE_TARGET_TYPE (type));
3503
3504 switch (TYPE_CODE (type))
8b93c638
JM
3505 {
3506 case TYPE_CODE_STRUCT:
3507 case TYPE_CODE_UNION:
3508 return xstrdup ("{...}");
3509 /* break; */
3510
3511 case TYPE_CODE_ARRAY:
3512 {
e64d9b3d 3513 char *number;
a109c7c1 3514
b435e160 3515 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3516 return (number);
8b93c638
JM
3517 }
3518 /* break; */
3519
3520 default:
3521 {
575bbeb6
KS
3522 if (var->value == NULL)
3523 {
3524 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3525 member when the parent is an invalid pointer. This is an
3526 error condition, so we should tell the caller. */
575bbeb6
KS
3527 return NULL;
3528 }
3529 else
3530 {
25d5ea92
VP
3531 if (var->not_fetched && value_lazy (var->value))
3532 /* Frozen variable and no value yet. We don't
3533 implicitly fetch the value. MI response will
3534 use empty string for the value, which is OK. */
3535 return NULL;
3536
b2c2bd75 3537 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3538 gdb_assert (!value_lazy (var->value));
de051565
MK
3539
3540 /* If the specified format is the current one,
581e13c1 3541 we can reuse print_value. */
de051565
MK
3542 if (format == var->format)
3543 return xstrdup (var->print_value);
3544 else
d452c4bc 3545 return value_get_print_value (var->value, format, var);
85265413 3546 }
e64d9b3d 3547 }
8b93c638
JM
3548 }
3549}
3550\f
3551
3552/* C++ */
3553
3554static int
fba45db2 3555cplus_number_of_children (struct varobj *var)
8b93c638 3556{
8264ba82 3557 struct value *value = NULL;
8b93c638
JM
3558 struct type *type;
3559 int children, dont_know;
8264ba82
AG
3560 int lookup_actual_type = 0;
3561 struct value_print_options opts;
8b93c638
JM
3562
3563 dont_know = 1;
3564 children = 0;
3565
8264ba82
AG
3566 get_user_print_options (&opts);
3567
8b93c638
JM
3568 if (!CPLUS_FAKE_CHILD (var))
3569 {
2024f65a 3570 type = get_value_type (var);
8264ba82
AG
3571
3572 /* It is necessary to access a real type (via RTTI). */
3573 if (opts.objectprint)
3574 {
3575 value = var->value;
3576 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3577 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3578 }
3579 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
8b93c638
JM
3580
3581 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3582 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3583 {
3584 int kids[3];
3585
3586 cplus_class_num_children (type, kids);
3587 if (kids[v_public] != 0)
3588 children++;
3589 if (kids[v_private] != 0)
3590 children++;
3591 if (kids[v_protected] != 0)
3592 children++;
3593
581e13c1 3594 /* Add any baseclasses. */
8b93c638
JM
3595 children += TYPE_N_BASECLASSES (type);
3596 dont_know = 0;
3597
581e13c1 3598 /* FIXME: save children in var. */
8b93c638
JM
3599 }
3600 }
3601 else
3602 {
3603 int kids[3];
3604
2024f65a 3605 type = get_value_type (var->parent);
8264ba82
AG
3606
3607 /* It is necessary to access a real type (via RTTI). */
3608 if (opts.objectprint)
3609 {
3610 struct varobj *parent = var->parent;
3611
3612 value = parent->value;
3613 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3614 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3615 }
3616 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
8b93c638
JM
3617
3618 cplus_class_num_children (type, kids);
6e382aa3 3619 if (strcmp (var->name, "public") == 0)
8b93c638 3620 children = kids[v_public];
6e382aa3 3621 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3622 children = kids[v_private];
3623 else
3624 children = kids[v_protected];
3625 dont_know = 0;
3626 }
3627
3628 if (dont_know)
3629 children = c_number_of_children (var);
3630
3631 return children;
3632}
3633
3634/* Compute # of public, private, and protected variables in this class.
3635 That means we need to descend into all baseclasses and find out
581e13c1 3636 how many are there, too. */
8b93c638 3637static void
1669605f 3638cplus_class_num_children (struct type *type, int children[3])
8b93c638 3639{
d48cc9dd
DJ
3640 int i, vptr_fieldno;
3641 struct type *basetype = NULL;
8b93c638
JM
3642
3643 children[v_public] = 0;
3644 children[v_private] = 0;
3645 children[v_protected] = 0;
3646
d48cc9dd 3647 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3648 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3649 {
d48cc9dd
DJ
3650 /* If we have a virtual table pointer, omit it. Even if virtual
3651 table pointers are not specifically marked in the debug info,
3652 they should be artificial. */
3653 if ((type == basetype && i == vptr_fieldno)
3654 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3655 continue;
3656
3657 if (TYPE_FIELD_PROTECTED (type, i))
3658 children[v_protected]++;
3659 else if (TYPE_FIELD_PRIVATE (type, i))
3660 children[v_private]++;
3661 else
3662 children[v_public]++;
3663 }
3664}
3665
3666static char *
fba45db2 3667cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3668{
3669 return c_name_of_variable (parent);
3670}
3671
2024f65a
VP
3672enum accessibility { private_field, protected_field, public_field };
3673
3674/* Check if field INDEX of TYPE has the specified accessibility.
3675 Return 0 if so and 1 otherwise. */
3676static int
3677match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3678{
2024f65a
VP
3679 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3680 return 1;
3681 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3682 return 1;
3683 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3684 && !TYPE_FIELD_PROTECTED (type, index))
3685 return 1;
3686 else
3687 return 0;
3688}
3689
3690static void
3691cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3692 char **cname, struct value **cvalue, struct type **ctype,
3693 char **cfull_expression)
2024f65a 3694{
2024f65a 3695 struct value *value;
8b93c638 3696 struct type *type;
02142340 3697 int was_ptr;
8264ba82 3698 int lookup_actual_type = 0;
02142340 3699 char *parent_expression = NULL;
8264ba82
AG
3700 struct varobj *var;
3701 struct value_print_options opts;
8b93c638 3702
2024f65a
VP
3703 if (cname)
3704 *cname = NULL;
3705 if (cvalue)
3706 *cvalue = NULL;
3707 if (ctype)
3708 *ctype = NULL;
02142340
VP
3709 if (cfull_expression)
3710 *cfull_expression = NULL;
2024f65a 3711
8264ba82
AG
3712 get_user_print_options (&opts);
3713
3714 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3715 if (opts.objectprint)
3716 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3717 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3718 value = var->value;
3719 type = get_value_type (var);
3720 if (cfull_expression)
3721 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
8b93c638 3722
8264ba82 3723 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
2024f65a
VP
3724
3725 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3726 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3727 {
02142340 3728 char *join = was_ptr ? "->" : ".";
a109c7c1 3729
8b93c638
JM
3730 if (CPLUS_FAKE_CHILD (parent))
3731 {
6e382aa3
JJ
3732 /* The fields of the class type are ordered as they
3733 appear in the class. We are given an index for a
3734 particular access control type ("public","protected",
3735 or "private"). We must skip over fields that don't
3736 have the access control we are looking for to properly
581e13c1 3737 find the indexed field. */
6e382aa3 3738 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3739 enum accessibility acc = public_field;
d48cc9dd
DJ
3740 int vptr_fieldno;
3741 struct type *basetype = NULL;
0d5cff50 3742 const char *field_name;
d48cc9dd
DJ
3743
3744 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3745 if (strcmp (parent->name, "private") == 0)
2024f65a 3746 acc = private_field;
6e382aa3 3747 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3748 acc = protected_field;
3749
3750 while (index >= 0)
6e382aa3 3751 {
d48cc9dd
DJ
3752 if ((type == basetype && type_index == vptr_fieldno)
3753 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3754 ; /* ignore vptr */
3755 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3756 --index;
3757 ++type_index;
6e382aa3 3758 }
2024f65a
VP
3759 --type_index;
3760
85254831
KS
3761 /* If the type is anonymous and the field has no name,
3762 set an appopriate name. */
3763 field_name = TYPE_FIELD_NAME (type, type_index);
3764 if (field_name == NULL || *field_name == '\0')
3765 {
3766 if (cname)
3767 {
3768 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3769 == TYPE_CODE_STRUCT)
3770 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3771 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3772 == TYPE_CODE_UNION)
3773 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3774 }
3775
3776 if (cfull_expression)
3777 *cfull_expression = xstrdup ("");
3778 }
3779 else
3780 {
3781 if (cname)
3782 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3783
3784 if (cfull_expression)
3785 *cfull_expression
3786 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3787 field_name);
3788 }
2024f65a
VP
3789
3790 if (cvalue && value)
3791 *cvalue = value_struct_element_index (value, type_index);
3792
3793 if (ctype)
3794 *ctype = TYPE_FIELD_TYPE (type, type_index);
3795 }
3796 else if (index < TYPE_N_BASECLASSES (type))
3797 {
3798 /* This is a baseclass. */
3799 if (cname)
3800 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3801
3802 if (cvalue && value)
0cc7d26f 3803 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3804
2024f65a
VP
3805 if (ctype)
3806 {
3807 *ctype = TYPE_FIELD_TYPE (type, index);
3808 }
02142340
VP
3809
3810 if (cfull_expression)
3811 {
3812 char *ptr = was_ptr ? "*" : "";
a109c7c1 3813
581e13c1 3814 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3815 expression like
3816 (Base1)d
3817 will create an lvalue, for all appearences, so we don't
3818 need to use more fancy:
3819 *(Base1*)(&d)
0d932b2f
MK
3820 construct.
3821
3822 When we are in the scope of the base class or of one
3823 of its children, the type field name will be interpreted
3824 as a constructor, if it exists. Therefore, we must
3825 indicate that the name is a class name by using the
3826 'class' keyword. See PR mi/11912 */
3827 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
02142340
VP
3828 ptr,
3829 TYPE_FIELD_NAME (type, index),
3830 ptr,
3831 parent_expression);
3832 }
8b93c638 3833 }
8b93c638
JM
3834 else
3835 {
348144ba 3836 char *access = NULL;
6e382aa3 3837 int children[3];
a109c7c1 3838
2024f65a 3839 cplus_class_num_children (type, children);
6e382aa3 3840
8b93c638 3841 /* Everything beyond the baseclasses can
6e382aa3
JJ
3842 only be "public", "private", or "protected"
3843
3844 The special "fake" children are always output by varobj in
581e13c1 3845 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3846 index -= TYPE_N_BASECLASSES (type);
3847 switch (index)
3848 {
3849 case 0:
6e382aa3 3850 if (children[v_public] > 0)
2024f65a 3851 access = "public";
6e382aa3 3852 else if (children[v_private] > 0)
2024f65a 3853 access = "private";
6e382aa3 3854 else
2024f65a 3855 access = "protected";
6e382aa3 3856 break;
8b93c638 3857 case 1:
6e382aa3 3858 if (children[v_public] > 0)
8b93c638 3859 {
6e382aa3 3860 if (children[v_private] > 0)
2024f65a 3861 access = "private";
6e382aa3 3862 else
2024f65a 3863 access = "protected";
8b93c638 3864 }
6e382aa3 3865 else if (children[v_private] > 0)
2024f65a 3866 access = "protected";
6e382aa3 3867 break;
8b93c638 3868 case 2:
581e13c1 3869 /* Must be protected. */
2024f65a 3870 access = "protected";
6e382aa3 3871 break;
8b93c638 3872 default:
581e13c1 3873 /* error! */
8b93c638
JM
3874 break;
3875 }
348144ba
MS
3876
3877 gdb_assert (access);
2024f65a
VP
3878 if (cname)
3879 *cname = xstrdup (access);
8b93c638 3880
02142340 3881 /* Value and type and full expression are null here. */
2024f65a 3882 }
8b93c638 3883 }
8b93c638
JM
3884 else
3885 {
02142340 3886 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3887 }
3888}
8b93c638 3889
2024f65a
VP
3890static char *
3891cplus_name_of_child (struct varobj *parent, int index)
3892{
3893 char *name = NULL;
a109c7c1 3894
02142340 3895 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3896 return name;
3897}
3898
02142340
VP
3899static char *
3900cplus_path_expr_of_child (struct varobj *child)
3901{
3902 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3903 &child->path_expr);
3904 return child->path_expr;
3905}
3906
30b28db1 3907static struct value *
fba45db2 3908cplus_value_of_root (struct varobj **var_handle)
8b93c638 3909{
73a93a32 3910 return c_value_of_root (var_handle);
8b93c638
JM
3911}
3912
30b28db1 3913static struct value *
fba45db2 3914cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3915{
2024f65a 3916 struct value *value = NULL;
a109c7c1 3917
02142340 3918 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3919 return value;
3920}
3921
3922static struct type *
fba45db2 3923cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3924{
2024f65a 3925 struct type *type = NULL;
a109c7c1 3926
02142340 3927 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3928 return type;
3929}
3930
8b93c638 3931static char *
a109c7c1
MS
3932cplus_value_of_variable (struct varobj *var,
3933 enum varobj_display_formats format)
8b93c638
JM
3934{
3935
3936 /* If we have one of our special types, don't print out
581e13c1 3937 any value. */
8b93c638
JM
3938 if (CPLUS_FAKE_CHILD (var))
3939 return xstrdup ("");
3940
de051565 3941 return c_value_of_variable (var, format);
8b93c638
JM
3942}
3943\f
3944/* Java */
3945
3946static int
fba45db2 3947java_number_of_children (struct varobj *var)
8b93c638
JM
3948{
3949 return cplus_number_of_children (var);
3950}
3951
3952static char *
fba45db2 3953java_name_of_variable (struct varobj *parent)
8b93c638
JM
3954{
3955 char *p, *name;
3956
3957 name = cplus_name_of_variable (parent);
3958 /* If the name has "-" in it, it is because we
581e13c1 3959 needed to escape periods in the name... */
8b93c638
JM
3960 p = name;
3961
3962 while (*p != '\000')
3963 {
3964 if (*p == '-')
3965 *p = '.';
3966 p++;
3967 }
3968
3969 return name;
3970}
3971
3972static char *
fba45db2 3973java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3974{
3975 char *name, *p;
3976
3977 name = cplus_name_of_child (parent, index);
581e13c1 3978 /* Escape any periods in the name... */
8b93c638
JM
3979 p = name;
3980
3981 while (*p != '\000')
3982 {
3983 if (*p == '.')
3984 *p = '-';
3985 p++;
3986 }
3987
3988 return name;
3989}
3990
02142340
VP
3991static char *
3992java_path_expr_of_child (struct varobj *child)
3993{
3994 return NULL;
3995}
3996
30b28db1 3997static struct value *
fba45db2 3998java_value_of_root (struct varobj **var_handle)
8b93c638 3999{
73a93a32 4000 return cplus_value_of_root (var_handle);
8b93c638
JM
4001}
4002
30b28db1 4003static struct value *
fba45db2 4004java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
4005{
4006 return cplus_value_of_child (parent, index);
4007}
4008
4009static struct type *
fba45db2 4010java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
4011{
4012 return cplus_type_of_child (parent, index);
4013}
4014
8b93c638 4015static char *
de051565 4016java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 4017{
de051565 4018 return cplus_value_of_variable (var, format);
8b93c638 4019}
54333c3b 4020
40591b7d
JCD
4021/* Ada specific callbacks for VAROBJs. */
4022
4023static int
4024ada_number_of_children (struct varobj *var)
4025{
181875a4 4026 return ada_varobj_get_number_of_children (var->value, var->type);
40591b7d
JCD
4027}
4028
4029static char *
4030ada_name_of_variable (struct varobj *parent)
4031{
4032 return c_name_of_variable (parent);
4033}
4034
4035static char *
4036ada_name_of_child (struct varobj *parent, int index)
4037{
181875a4
JB
4038 return ada_varobj_get_name_of_child (parent->value, parent->type,
4039 parent->name, index);
40591b7d
JCD
4040}
4041
4042static char*
4043ada_path_expr_of_child (struct varobj *child)
4044{
181875a4
JB
4045 struct varobj *parent = child->parent;
4046 const char *parent_path_expr = varobj_get_path_expr (parent);
4047
4048 return ada_varobj_get_path_expr_of_child (parent->value,
4049 parent->type,
4050 parent->name,
4051 parent_path_expr,
4052 child->index);
40591b7d
JCD
4053}
4054
4055static struct value *
4056ada_value_of_root (struct varobj **var_handle)
4057{
4058 return c_value_of_root (var_handle);
4059}
4060
4061static struct value *
4062ada_value_of_child (struct varobj *parent, int index)
4063{
181875a4
JB
4064 return ada_varobj_get_value_of_child (parent->value, parent->type,
4065 parent->name, index);
40591b7d
JCD
4066}
4067
4068static struct type *
4069ada_type_of_child (struct varobj *parent, int index)
4070{
181875a4
JB
4071 return ada_varobj_get_type_of_child (parent->value, parent->type,
4072 index);
40591b7d
JCD
4073}
4074
4075static char *
4076ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4077{
181875a4
JB
4078 struct value_print_options opts;
4079
4080 get_formatted_print_options (&opts, format_code[(int) format]);
4081 opts.deref_ref = 0;
4082 opts.raw = 1;
4083
4084 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
40591b7d
JCD
4085}
4086
d32cafc7
JB
4087/* Implement the "value_is_changeable_p" routine for Ada. */
4088
4089static int
4090ada_value_is_changeable_p (struct varobj *var)
4091{
4092 struct type *type = var->value ? value_type (var->value) : var->type;
4093
4094 if (ada_is_array_descriptor_type (type)
4095 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4096 {
4097 /* This is in reality a pointer to an unconstrained array.
4098 its value is changeable. */
4099 return 1;
4100 }
4101
4102 if (ada_is_string_type (type))
4103 {
4104 /* We display the contents of the string in the array's
4105 "value" field. The contents can change, so consider
4106 that the array is changeable. */
4107 return 1;
4108 }
4109
4110 return default_value_is_changeable_p (var);
4111}
4112
7a290c40
JB
4113/* Implement the "value_has_mutated" routine for Ada. */
4114
4115static int
4116ada_value_has_mutated (struct varobj *var, struct value *new_val,
4117 struct type *new_type)
4118{
181875a4
JB
4119 int i;
4120 int from = -1;
4121 int to = -1;
4122
4123 /* If the number of fields have changed, then for sure the type
4124 has mutated. */
4125 if (ada_varobj_get_number_of_children (new_val, new_type)
4126 != var->num_children)
4127 return 1;
4128
4129 /* If the number of fields have remained the same, then we need
4130 to check the name of each field. If they remain the same,
4131 then chances are the type hasn't mutated. This is technically
4132 an incomplete test, as the child's type might have changed
4133 despite the fact that the name remains the same. But we'll
4134 handle this situation by saying that the child has mutated,
4135 not this value.
4136
4137 If only part (or none!) of the children have been fetched,
4138 then only check the ones we fetched. It does not matter
4139 to the frontend whether a child that it has not fetched yet
4140 has mutated or not. So just assume it hasn't. */
4141
4142 restrict_range (var->children, &from, &to);
4143 for (i = from; i < to; i++)
4144 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4145 var->name, i),
4146 VEC_index (varobj_p, var->children, i)->name) != 0)
4147 return 1;
4148
7a290c40
JB
4149 return 0;
4150}
4151
54333c3b
JK
4152/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4153 with an arbitrary caller supplied DATA pointer. */
4154
4155void
4156all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4157{
4158 struct varobj_root *var_root, *var_root_next;
4159
4160 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4161
4162 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4163 {
4164 var_root_next = var_root->next;
4165
4166 (*func) (var_root->rootvar, data);
4167 }
4168}
8b93c638
JM
4169\f
4170extern void _initialize_varobj (void);
4171void
4172_initialize_varobj (void)
4173{
4174 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4175
4176 varobj_table = xmalloc (sizeof_table);
4177 memset (varobj_table, 0, sizeof_table);
4178
85c07804 4179 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
4180 &varobjdebug,
4181 _("Set varobj debugging."),
4182 _("Show varobj debugging."),
4183 _("When non-zero, varobj debugging is enabled."),
4184 NULL, show_varobjdebug,
85c07804 4185 &setlist, &showlist);
8b93c638 4186}
8756216b 4187
54333c3b
JK
4188/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4189 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 4190
54333c3b
JK
4191static void
4192varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 4193{
54333c3b
JK
4194 /* Floating varobjs are reparsed on each stop, so we don't care if the
4195 presently parsed expression refers to something that's gone. */
4196 if (var->root->floating)
4197 return;
8756216b 4198
54333c3b
JK
4199 /* global var must be re-evaluated. */
4200 if (var->root->valid_block == NULL)
2dbd25e5 4201 {
54333c3b 4202 struct varobj *tmp_var;
2dbd25e5 4203
54333c3b
JK
4204 /* Try to create a varobj with same expression. If we succeed
4205 replace the old varobj, otherwise invalidate it. */
4206 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4207 USE_CURRENT_FRAME);
4208 if (tmp_var != NULL)
4209 {
4210 tmp_var->obj_name = xstrdup (var->obj_name);
4211 varobj_delete (var, NULL, 0);
4212 install_variable (tmp_var);
2dbd25e5 4213 }
54333c3b
JK
4214 else
4215 var->root->is_valid = 0;
2dbd25e5 4216 }
54333c3b
JK
4217 else /* locals must be invalidated. */
4218 var->root->is_valid = 0;
4219}
4220
4221/* Invalidate the varobjs that are tied to locals and re-create the ones that
4222 are defined on globals.
4223 Invalidated varobjs will be always printed in_scope="invalid". */
4224
4225void
4226varobj_invalidate (void)
4227{
4228 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 4229}
This page took 1.688268 seconds and 4 git commands to generate.