Fix mingw compilation with --enable-targets=all.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 4 2009, 2010, 2011 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638 55
581e13c1 56/* String representations of gdb's format codes. */
8b93c638 57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 59
581e13c1 60/* String representations of gdb's known languages. */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
581e13c1 75 varobj. Members which must be free'd are noted. */
8b93c638 76struct varobj_root
72330bd6 77{
8b93c638 78
581e13c1 79 /* Alloc'd expression for this parent. */
72330bd6 80 struct expression *exp;
8b93c638 81
581e13c1 82 /* Block for which this expression is valid. */
72330bd6 83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac 89 /* The thread ID that this varobj_root belong to. This field
581e13c1 90 is only valid if valid_block is not NULL.
c5b48eac
VP
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
581e13c1 98 always updated in the specific scope/thread/frame. */
a5defcdc 99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
581e13c1 105 /* Language info for this variable and its children. */
72330bd6 106 struct language_specific *lang;
8b93c638 107
581e13c1 108 /* The varobj for this root node. */
72330bd6 109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
581e13c1
MS
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
8b93c638 118struct varobj
72330bd6 119{
8b93c638 120
581e13c1 121 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 122 child, then this name will be the child's source name.
581e13c1
MS
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
72330bd6 125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
581e13c1
MS
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
72330bd6 133 char *obj_name;
8b93c638 134
581e13c1 135 /* Index of this variable in its parent or -1. */
72330bd6 136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
581e13c1 149 /* The number of (immediate) children this variable has. */
72330bd6 150 int num_children;
8b93c638 151
581e13c1 152 /* If this object is a child, this points to its immediate parent. */
72330bd6 153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
581e13c1
MS
164 /* Description of the root variable. Points to root variable for
165 children. */
72330bd6 166 struct varobj_root *root;
8b93c638 167
581e13c1 168 /* The format of the output for this object. */
72330bd6 169 enum varobj_display_formats format;
fb9b6b35 170
581e13c1 171 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 172 int updated;
85265413
NR
173
174 /* Last print value. */
175 char *print_value;
25d5ea92
VP
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
b6313243 186
0cc7d26f
TT
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
b6313243
TT
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
0cc7d26f
TT
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
72330bd6 212};
8b93c638 213
8b93c638 214struct cpstack
72330bd6
AC
215{
216 char *name;
217 struct cpstack *next;
218};
8b93c638
JM
219
220/* A list of varobjs */
221
222struct vlist
72330bd6
AC
223{
224 struct varobj *var;
225 struct vlist *next;
226};
8b93c638
JM
227
228/* Private function prototypes */
229
581e13c1 230/* Helper functions for the above subcommands. */
8b93c638 231
a14ed312 232static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 233
a14ed312
KB
234static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
8b93c638 236
a14ed312 237static int install_variable (struct varobj *);
8b93c638 238
a14ed312 239static void uninstall_variable (struct varobj *);
8b93c638 240
a14ed312 241static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 242
b6313243
TT
243static struct varobj *
244create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
8b93c638
JM
247/* Utility routines */
248
a14ed312 249static struct varobj *new_variable (void);
8b93c638 250
a14ed312 251static struct varobj *new_root_variable (void);
8b93c638 252
a14ed312 253static void free_variable (struct varobj *var);
8b93c638 254
74b7792f
AC
255static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
a14ed312 257static struct type *get_type (struct varobj *var);
8b93c638 258
6e2a9270
VP
259static struct type *get_value_type (struct varobj *var);
260
a14ed312 261static struct type *get_target_type (struct type *);
8b93c638 262
a14ed312 263static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 264
a14ed312 265static void cppush (struct cpstack **pstack, char *name);
8b93c638 266
a14ed312 267static char *cppop (struct cpstack **pstack);
8b93c638 268
acd65feb
VP
269static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
581e13c1 272/* Language-specific routines. */
8b93c638 273
a14ed312 274static enum varobj_languages variable_language (struct varobj *var);
8b93c638 275
a14ed312 276static int number_of_children (struct varobj *);
8b93c638 277
a14ed312 278static char *name_of_variable (struct varobj *);
8b93c638 279
a14ed312 280static char *name_of_child (struct varobj *, int);
8b93c638 281
30b28db1 282static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 283
30b28db1 284static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 285
de051565
MK
286static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
8b93c638 288
85265413 289static char *value_get_print_value (struct value *value,
b6313243 290 enum varobj_display_formats format,
d452c4bc 291 struct varobj *var);
85265413 292
b2c2bd75
VP
293static int varobj_value_is_changeable_p (struct varobj *var);
294
295static int is_root_p (struct varobj *var);
8b93c638 296
d8b65138
JK
297#if HAVE_PYTHON
298
9a1edae6
PM
299static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
b6313243 302
d8b65138
JK
303#endif /* HAVE_PYTHON */
304
8b93c638
JM
305/* C implementation */
306
a14ed312 307static int c_number_of_children (struct varobj *var);
8b93c638 308
a14ed312 309static char *c_name_of_variable (struct varobj *parent);
8b93c638 310
a14ed312 311static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 312
02142340
VP
313static char *c_path_expr_of_child (struct varobj *child);
314
30b28db1 315static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 316
30b28db1 317static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 318
a14ed312 319static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 320
de051565
MK
321static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
8b93c638
JM
323
324/* C++ implementation */
325
a14ed312 326static int cplus_number_of_children (struct varobj *var);
8b93c638 327
a14ed312 328static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 329
a14ed312 330static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 331
a14ed312 332static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 333
02142340
VP
334static char *cplus_path_expr_of_child (struct varobj *child);
335
30b28db1 336static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 337
30b28db1 338static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 339
a14ed312 340static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 341
de051565
MK
342static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
8b93c638
JM
344
345/* Java implementation */
346
a14ed312 347static int java_number_of_children (struct varobj *var);
8b93c638 348
a14ed312 349static char *java_name_of_variable (struct varobj *parent);
8b93c638 350
a14ed312 351static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 352
02142340
VP
353static char *java_path_expr_of_child (struct varobj *child);
354
30b28db1 355static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 356
30b28db1 357static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 358
a14ed312 359static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 360
de051565
MK
361static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
8b93c638
JM
363
364/* The language specific vector */
365
366struct language_specific
72330bd6 367{
8b93c638 368
581e13c1 369 /* The language of this variable. */
72330bd6 370 enum varobj_languages language;
8b93c638 371
581e13c1 372 /* The number of children of PARENT. */
72330bd6 373 int (*number_of_children) (struct varobj * parent);
8b93c638 374
581e13c1 375 /* The name (expression) of a root varobj. */
72330bd6 376 char *(*name_of_variable) (struct varobj * parent);
8b93c638 377
581e13c1 378 /* The name of the INDEX'th child of PARENT. */
72330bd6 379 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 380
02142340
VP
381 /* Returns the rooted expression of CHILD, which is a variable
382 obtain that has some parent. */
383 char *(*path_expr_of_child) (struct varobj * child);
384
581e13c1 385 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 386 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 387
581e13c1 388 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 389 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 390
581e13c1 391 /* The type of the INDEX'th child of PARENT. */
72330bd6 392 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 393
581e13c1 394 /* The current value of VAR. */
de051565
MK
395 char *(*value_of_variable) (struct varobj * var,
396 enum varobj_display_formats format);
72330bd6 397};
8b93c638 398
581e13c1 399/* Array of known source language routines. */
d5d6fca5 400static struct language_specific languages[vlang_end] = {
581e13c1 401 /* Unknown (try treating as C). */
8b93c638 402 {
72330bd6
AC
403 vlang_unknown,
404 c_number_of_children,
405 c_name_of_variable,
406 c_name_of_child,
02142340 407 c_path_expr_of_child,
72330bd6
AC
408 c_value_of_root,
409 c_value_of_child,
410 c_type_of_child,
72330bd6 411 c_value_of_variable}
8b93c638
JM
412 ,
413 /* C */
414 {
72330bd6
AC
415 vlang_c,
416 c_number_of_children,
417 c_name_of_variable,
418 c_name_of_child,
02142340 419 c_path_expr_of_child,
72330bd6
AC
420 c_value_of_root,
421 c_value_of_child,
422 c_type_of_child,
72330bd6 423 c_value_of_variable}
8b93c638
JM
424 ,
425 /* C++ */
426 {
72330bd6
AC
427 vlang_cplus,
428 cplus_number_of_children,
429 cplus_name_of_variable,
430 cplus_name_of_child,
02142340 431 cplus_path_expr_of_child,
72330bd6
AC
432 cplus_value_of_root,
433 cplus_value_of_child,
434 cplus_type_of_child,
72330bd6 435 cplus_value_of_variable}
8b93c638
JM
436 ,
437 /* Java */
438 {
72330bd6
AC
439 vlang_java,
440 java_number_of_children,
441 java_name_of_variable,
442 java_name_of_child,
02142340 443 java_path_expr_of_child,
72330bd6
AC
444 java_value_of_root,
445 java_value_of_child,
446 java_type_of_child,
72330bd6 447 java_value_of_variable}
8b93c638
JM
448};
449
581e13c1 450/* A little convenience enum for dealing with C++/Java. */
8b93c638 451enum vsections
72330bd6
AC
452{
453 v_public = 0, v_private, v_protected
454};
8b93c638
JM
455
456/* Private data */
457
581e13c1 458/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 459static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 460
581e13c1 461/* Header of the list of root variable objects. */
8b93c638 462static struct varobj_root *rootlist;
8b93c638 463
581e13c1
MS
464/* Prime number indicating the number of buckets in the hash table. */
465/* A prime large enough to avoid too many colisions. */
8b93c638
JM
466#define VAROBJ_TABLE_SIZE 227
467
581e13c1 468/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
469static struct vlist **varobj_table;
470
581e13c1 471/* Is the variable X one of our "fake" children? */
8b93c638
JM
472#define CPLUS_FAKE_CHILD(x) \
473((x) != NULL && (x)->type == NULL && (x)->value == NULL)
474\f
475
476/* API Implementation */
b2c2bd75
VP
477static int
478is_root_p (struct varobj *var)
479{
480 return (var->root->rootvar == var);
481}
8b93c638 482
d452c4bc
UW
483#ifdef HAVE_PYTHON
484/* Helper function to install a Python environment suitable for
485 use during operations on VAR. */
486struct cleanup *
487varobj_ensure_python_env (struct varobj *var)
488{
489 return ensure_python_env (var->root->exp->gdbarch,
490 var->root->exp->language_defn);
491}
492#endif
493
581e13c1 494/* Creates a varobj (not its children). */
8b93c638 495
7d8547c9
AC
496/* Return the full FRAME which corresponds to the given CORE_ADDR
497 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
498
499static struct frame_info *
500find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
501{
502 struct frame_info *frame = NULL;
503
504 if (frame_addr == (CORE_ADDR) 0)
505 return NULL;
506
9d49bdc2
PA
507 for (frame = get_current_frame ();
508 frame != NULL;
509 frame = get_prev_frame (frame))
7d8547c9 510 {
1fac167a
UW
511 /* The CORE_ADDR we get as argument was parsed from a string GDB
512 output as $fp. This output got truncated to gdbarch_addr_bit.
513 Truncate the frame base address in the same manner before
514 comparing it against our argument. */
515 CORE_ADDR frame_base = get_frame_base_address (frame);
516 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 517
1fac167a
UW
518 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
519 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
520
521 if (frame_base == frame_addr)
7d8547c9
AC
522 return frame;
523 }
9d49bdc2
PA
524
525 return NULL;
7d8547c9
AC
526}
527
8b93c638
JM
528struct varobj *
529varobj_create (char *objname,
72330bd6 530 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
531{
532 struct varobj *var;
8b93c638
JM
533 struct cleanup *old_chain;
534
581e13c1 535 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 536 var = new_root_variable ();
74b7792f 537 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
538
539 if (expression != NULL)
540 {
e4195b40 541 struct frame_info *fi;
35633fef 542 struct frame_id old_id = null_frame_id;
e4195b40 543 struct block *block;
8b93c638
JM
544 char *p;
545 enum varobj_languages lang;
e55dccf0 546 struct value *value = NULL;
8b93c638 547
9d49bdc2
PA
548 /* Parse and evaluate the expression, filling in as much of the
549 variable's data as possible. */
550
551 if (has_stack_frames ())
552 {
581e13c1 553 /* Allow creator to specify context of variable. */
9d49bdc2
PA
554 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
555 fi = get_selected_frame (NULL);
556 else
557 /* FIXME: cagney/2002-11-23: This code should be doing a
558 lookup using the frame ID and not just the frame's
559 ``address''. This, of course, means an interface
560 change. However, with out that interface change ISAs,
561 such as the ia64 with its two stacks, won't work.
562 Similar goes for the case where there is a frameless
563 function. */
564 fi = find_frame_addr_in_frame_chain (frame);
565 }
8b93c638 566 else
9d49bdc2 567 fi = NULL;
8b93c638 568
581e13c1 569 /* frame = -2 means always use selected frame. */
73a93a32 570 if (type == USE_SELECTED_FRAME)
a5defcdc 571 var->root->floating = 1;
73a93a32 572
8b93c638
JM
573 block = NULL;
574 if (fi != NULL)
ae767bfb 575 block = get_frame_block (fi, 0);
8b93c638
JM
576
577 p = expression;
578 innermost_block = NULL;
73a93a32 579 /* Wrap the call to parse expression, so we can
581e13c1 580 return a sensible error. */
73a93a32
JI
581 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
582 {
583 return NULL;
584 }
8b93c638 585
581e13c1 586 /* Don't allow variables to be created for types. */
8b93c638
JM
587 if (var->root->exp->elts[0].opcode == OP_TYPE)
588 {
589 do_cleanups (old_chain);
bc8332bb
AC
590 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
591 " as an expression.\n");
8b93c638
JM
592 return NULL;
593 }
594
595 var->format = variable_default_display (var);
596 var->root->valid_block = innermost_block;
1b36a34b 597 var->name = xstrdup (expression);
02142340 598 /* For a root var, the name and the expr are the same. */
1b36a34b 599 var->path_expr = xstrdup (expression);
8b93c638
JM
600
601 /* When the frame is different from the current frame,
602 we must select the appropriate frame before parsing
603 the expression, otherwise the value will not be current.
581e13c1 604 Since select_frame is so benign, just call it for all cases. */
4e22772d 605 if (innermost_block)
8b93c638 606 {
4e22772d
JK
607 /* User could specify explicit FRAME-ADDR which was not found but
608 EXPRESSION is frame specific and we would not be able to evaluate
609 it correctly next time. With VALID_BLOCK set we must also set
610 FRAME and THREAD_ID. */
611 if (fi == NULL)
612 error (_("Failed to find the specified frame"));
613
7a424e99 614 var->root->frame = get_frame_id (fi);
c5b48eac 615 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 616 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 617 select_frame (fi);
8b93c638
JM
618 }
619
340a7723 620 /* We definitely need to catch errors here.
8b93c638 621 If evaluate_expression succeeds we got the value we wanted.
581e13c1 622 But if it fails, we still go on with a call to evaluate_type(). */
acd65feb 623 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
624 {
625 /* Error getting the value. Try to at least get the
626 right type. */
627 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 628
e55dccf0
VP
629 var->type = value_type (type_only_value);
630 }
631 else
632 var->type = value_type (value);
acd65feb 633
acd65feb 634 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
635
636 /* Set language info */
637 lang = variable_language (var);
d5d6fca5 638 var->root->lang = &languages[lang];
8b93c638 639
581e13c1 640 /* Set ourselves as our root. */
8b93c638
JM
641 var->root->rootvar = var;
642
581e13c1 643 /* Reset the selected frame. */
35633fef
JK
644 if (frame_id_p (old_id))
645 select_frame (frame_find_by_id (old_id));
8b93c638
JM
646 }
647
73a93a32 648 /* If the variable object name is null, that means this
581e13c1 649 is a temporary variable, so don't install it. */
73a93a32
JI
650
651 if ((var != NULL) && (objname != NULL))
8b93c638 652 {
1b36a34b 653 var->obj_name = xstrdup (objname);
8b93c638
JM
654
655 /* If a varobj name is duplicated, the install will fail so
581e13c1 656 we must cleanup. */
8b93c638
JM
657 if (!install_variable (var))
658 {
659 do_cleanups (old_chain);
660 return NULL;
661 }
662 }
663
664 discard_cleanups (old_chain);
665 return var;
666}
667
581e13c1 668/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
669
670char *
671varobj_gen_name (void)
672{
673 static int id = 0;
e64d9b3d 674 char *obj_name;
8b93c638 675
581e13c1 676 /* Generate a name for this object. */
8b93c638 677 id++;
b435e160 678 obj_name = xstrprintf ("var%d", id);
8b93c638 679
e64d9b3d 680 return obj_name;
8b93c638
JM
681}
682
61d8f275
JK
683/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
684 error if OBJNAME cannot be found. */
8b93c638
JM
685
686struct varobj *
687varobj_get_handle (char *objname)
688{
689 struct vlist *cv;
690 const char *chp;
691 unsigned int index = 0;
692 unsigned int i = 1;
693
694 for (chp = objname; *chp; chp++)
695 {
696 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
697 }
698
699 cv = *(varobj_table + index);
700 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
701 cv = cv->next;
702
703 if (cv == NULL)
8a3fe4f8 704 error (_("Variable object not found"));
8b93c638
JM
705
706 return cv->var;
707}
708
581e13c1 709/* Given the handle, return the name of the object. */
8b93c638
JM
710
711char *
712varobj_get_objname (struct varobj *var)
713{
714 return var->obj_name;
715}
716
581e13c1 717/* Given the handle, return the expression represented by the object. */
8b93c638
JM
718
719char *
720varobj_get_expression (struct varobj *var)
721{
722 return name_of_variable (var);
723}
724
725/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
726 otherwise deletes only the children; returns a malloc'ed list of
727 all the (malloc'ed) names of the variables that have been deleted
581e13c1 728 (NULL terminated). */
8b93c638
JM
729
730int
731varobj_delete (struct varobj *var, char ***dellist, int only_children)
732{
733 int delcount;
734 int mycount;
735 struct cpstack *result = NULL;
736 char **cp;
737
581e13c1 738 /* Initialize a stack for temporary results. */
8b93c638
JM
739 cppush (&result, NULL);
740
741 if (only_children)
581e13c1 742 /* Delete only the variable children. */
8b93c638
JM
743 delcount = delete_variable (&result, var, 1 /* only the children */ );
744 else
581e13c1 745 /* Delete the variable and all its children. */
8b93c638
JM
746 delcount = delete_variable (&result, var, 0 /* parent+children */ );
747
581e13c1 748 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
749 if (dellist != NULL)
750 {
751 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
752
753 cp = *dellist;
754 mycount = delcount;
755 *cp = cppop (&result);
756 while ((*cp != NULL) && (mycount > 0))
757 {
758 mycount--;
759 cp++;
760 *cp = cppop (&result);
761 }
762
763 if (mycount || (*cp != NULL))
8a3fe4f8 764 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 765 mycount);
8b93c638
JM
766 }
767
768 return delcount;
769}
770
d8b65138
JK
771#if HAVE_PYTHON
772
b6313243
TT
773/* Convenience function for varobj_set_visualizer. Instantiate a
774 pretty-printer for a given value. */
775static PyObject *
776instantiate_pretty_printer (PyObject *constructor, struct value *value)
777{
b6313243
TT
778 PyObject *val_obj = NULL;
779 PyObject *printer;
b6313243 780
b6313243 781 val_obj = value_to_value_object (value);
b6313243
TT
782 if (! val_obj)
783 return NULL;
784
785 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
786 Py_DECREF (val_obj);
787 return printer;
b6313243
TT
788 return NULL;
789}
790
d8b65138
JK
791#endif
792
581e13c1 793/* Set/Get variable object display format. */
8b93c638
JM
794
795enum varobj_display_formats
796varobj_set_display_format (struct varobj *var,
797 enum varobj_display_formats format)
798{
799 switch (format)
800 {
801 case FORMAT_NATURAL:
802 case FORMAT_BINARY:
803 case FORMAT_DECIMAL:
804 case FORMAT_HEXADECIMAL:
805 case FORMAT_OCTAL:
806 var->format = format;
807 break;
808
809 default:
810 var->format = variable_default_display (var);
811 }
812
ae7d22a6
VP
813 if (varobj_value_is_changeable_p (var)
814 && var->value && !value_lazy (var->value))
815 {
6c761d9c 816 xfree (var->print_value);
d452c4bc 817 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
818 }
819
8b93c638
JM
820 return var->format;
821}
822
823enum varobj_display_formats
824varobj_get_display_format (struct varobj *var)
825{
826 return var->format;
827}
828
b6313243
TT
829char *
830varobj_get_display_hint (struct varobj *var)
831{
832 char *result = NULL;
833
834#if HAVE_PYTHON
d452c4bc
UW
835 struct cleanup *back_to = varobj_ensure_python_env (var);
836
b6313243
TT
837 if (var->pretty_printer)
838 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
839
840 do_cleanups (back_to);
b6313243
TT
841#endif
842
843 return result;
844}
845
0cc7d26f
TT
846/* Return true if the varobj has items after TO, false otherwise. */
847
848int
849varobj_has_more (struct varobj *var, int to)
850{
851 if (VEC_length (varobj_p, var->children) > to)
852 return 1;
853 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
854 && var->saved_item != NULL);
855}
856
c5b48eac
VP
857/* If the variable object is bound to a specific thread, that
858 is its evaluation can always be done in context of a frame
859 inside that thread, returns GDB id of the thread -- which
581e13c1 860 is always positive. Otherwise, returns -1. */
c5b48eac
VP
861int
862varobj_get_thread_id (struct varobj *var)
863{
864 if (var->root->valid_block && var->root->thread_id > 0)
865 return var->root->thread_id;
866 else
867 return -1;
868}
869
25d5ea92
VP
870void
871varobj_set_frozen (struct varobj *var, int frozen)
872{
873 /* When a variable is unfrozen, we don't fetch its value.
874 The 'not_fetched' flag remains set, so next -var-update
875 won't complain.
876
877 We don't fetch the value, because for structures the client
878 should do -var-update anyway. It would be bad to have different
879 client-size logic for structure and other types. */
880 var->frozen = frozen;
881}
882
883int
884varobj_get_frozen (struct varobj *var)
885{
886 return var->frozen;
887}
888
0cc7d26f
TT
889/* A helper function that restricts a range to what is actually
890 available in a VEC. This follows the usual rules for the meaning
891 of FROM and TO -- if either is negative, the entire range is
892 used. */
893
894static void
895restrict_range (VEC (varobj_p) *children, int *from, int *to)
896{
897 if (*from < 0 || *to < 0)
898 {
899 *from = 0;
900 *to = VEC_length (varobj_p, children);
901 }
902 else
903 {
904 if (*from > VEC_length (varobj_p, children))
905 *from = VEC_length (varobj_p, children);
906 if (*to > VEC_length (varobj_p, children))
907 *to = VEC_length (varobj_p, children);
908 if (*from > *to)
909 *from = *to;
910 }
911}
912
d8b65138
JK
913#if HAVE_PYTHON
914
0cc7d26f
TT
915/* A helper for update_dynamic_varobj_children that installs a new
916 child when needed. */
917
918static void
919install_dynamic_child (struct varobj *var,
920 VEC (varobj_p) **changed,
921 VEC (varobj_p) **new,
922 VEC (varobj_p) **unchanged,
923 int *cchanged,
924 int index,
925 const char *name,
926 struct value *value)
927{
928 if (VEC_length (varobj_p, var->children) < index + 1)
929 {
930 /* There's no child yet. */
931 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 932
0cc7d26f
TT
933 if (new)
934 {
935 VEC_safe_push (varobj_p, *new, child);
936 *cchanged = 1;
937 }
938 }
939 else
940 {
941 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 942
0cc7d26f
TT
943 if (install_new_value (existing, value, 0))
944 {
945 if (changed)
946 VEC_safe_push (varobj_p, *changed, existing);
947 }
948 else if (unchanged)
949 VEC_safe_push (varobj_p, *unchanged, existing);
950 }
951}
952
0cc7d26f
TT
953static int
954dynamic_varobj_has_child_method (struct varobj *var)
955{
956 struct cleanup *back_to;
957 PyObject *printer = var->pretty_printer;
958 int result;
959
960 back_to = varobj_ensure_python_env (var);
961 result = PyObject_HasAttr (printer, gdbpy_children_cst);
962 do_cleanups (back_to);
963 return result;
964}
965
966#endif
967
b6313243
TT
968static int
969update_dynamic_varobj_children (struct varobj *var,
970 VEC (varobj_p) **changed,
0cc7d26f
TT
971 VEC (varobj_p) **new,
972 VEC (varobj_p) **unchanged,
973 int *cchanged,
974 int update_children,
975 int from,
976 int to)
b6313243
TT
977{
978#if HAVE_PYTHON
b6313243
TT
979 struct cleanup *back_to;
980 PyObject *children;
b6313243 981 int i;
b6313243 982 PyObject *printer = var->pretty_printer;
b6313243 983
d452c4bc 984 back_to = varobj_ensure_python_env (var);
b6313243
TT
985
986 *cchanged = 0;
987 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
988 {
989 do_cleanups (back_to);
990 return 0;
991 }
992
0cc7d26f 993 if (update_children || !var->child_iter)
b6313243 994 {
0cc7d26f
TT
995 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
996 NULL);
b6313243 997
0cc7d26f
TT
998 if (!children)
999 {
1000 gdbpy_print_stack ();
1001 error (_("Null value returned for children"));
1002 }
b6313243 1003
0cc7d26f 1004 make_cleanup_py_decref (children);
b6313243 1005
0cc7d26f
TT
1006 if (!PyIter_Check (children))
1007 error (_("Returned value is not iterable"));
1008
1009 Py_XDECREF (var->child_iter);
1010 var->child_iter = PyObject_GetIter (children);
1011 if (!var->child_iter)
1012 {
1013 gdbpy_print_stack ();
1014 error (_("Could not get children iterator"));
1015 }
1016
1017 Py_XDECREF (var->saved_item);
1018 var->saved_item = NULL;
1019
1020 i = 0;
b6313243 1021 }
0cc7d26f
TT
1022 else
1023 i = VEC_length (varobj_p, var->children);
b6313243 1024
0cc7d26f
TT
1025 /* We ask for one extra child, so that MI can report whether there
1026 are more children. */
1027 for (; to < 0 || i < to + 1; ++i)
b6313243 1028 {
0cc7d26f 1029 PyObject *item;
b6313243 1030
0cc7d26f
TT
1031 /* See if there was a leftover from last time. */
1032 if (var->saved_item)
1033 {
1034 item = var->saved_item;
1035 var->saved_item = NULL;
1036 }
1037 else
1038 item = PyIter_Next (var->child_iter);
b6313243 1039
0cc7d26f
TT
1040 if (!item)
1041 break;
b6313243 1042
0cc7d26f
TT
1043 /* We don't want to push the extra child on any report list. */
1044 if (to < 0 || i < to)
b6313243 1045 {
0cc7d26f
TT
1046 PyObject *py_v;
1047 char *name;
1048 struct value *v;
1049 struct cleanup *inner;
1050 int can_mention = from < 0 || i >= from;
1051
1052 inner = make_cleanup_py_decref (item);
1053
1054 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1055 error (_("Invalid item from the child list"));
1056
1057 v = convert_value_from_python (py_v);
8dc78533
JK
1058 if (v == NULL)
1059 gdbpy_print_stack ();
0cc7d26f
TT
1060 install_dynamic_child (var, can_mention ? changed : NULL,
1061 can_mention ? new : NULL,
1062 can_mention ? unchanged : NULL,
1063 can_mention ? cchanged : NULL, i, name, v);
1064 do_cleanups (inner);
b6313243 1065 }
0cc7d26f 1066 else
b6313243 1067 {
0cc7d26f
TT
1068 Py_XDECREF (var->saved_item);
1069 var->saved_item = item;
b6313243 1070
0cc7d26f
TT
1071 /* We want to truncate the child list just before this
1072 element. */
1073 break;
1074 }
b6313243
TT
1075 }
1076
1077 if (i < VEC_length (varobj_p, var->children))
1078 {
0cc7d26f 1079 int j;
a109c7c1 1080
0cc7d26f
TT
1081 *cchanged = 1;
1082 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1083 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1084 VEC_truncate (varobj_p, var->children, i);
b6313243 1085 }
0cc7d26f
TT
1086
1087 /* If there are fewer children than requested, note that the list of
1088 children changed. */
1089 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1090 *cchanged = 1;
1091
b6313243
TT
1092 var->num_children = VEC_length (varobj_p, var->children);
1093
1094 do_cleanups (back_to);
1095
b6313243
TT
1096 return 1;
1097#else
1098 gdb_assert (0 && "should never be called if Python is not enabled");
1099#endif
1100}
25d5ea92 1101
8b93c638
JM
1102int
1103varobj_get_num_children (struct varobj *var)
1104{
1105 if (var->num_children == -1)
b6313243 1106 {
0cc7d26f
TT
1107 if (var->pretty_printer)
1108 {
1109 int dummy;
1110
1111 /* If we have a dynamic varobj, don't report -1 children.
1112 So, try to fetch some children first. */
1113 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1114 0, 0, 0);
1115 }
1116 else
b6313243
TT
1117 var->num_children = number_of_children (var);
1118 }
8b93c638 1119
0cc7d26f 1120 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1121}
1122
1123/* Creates a list of the immediate children of a variable object;
581e13c1 1124 the return code is the number of such children or -1 on error. */
8b93c638 1125
d56d46f5 1126VEC (varobj_p)*
0cc7d26f 1127varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1128{
8b93c638 1129 char *name;
b6313243
TT
1130 int i, children_changed;
1131
1132 var->children_requested = 1;
1133
0cc7d26f
TT
1134 if (var->pretty_printer)
1135 {
b6313243
TT
1136 /* This, in theory, can result in the number of children changing without
1137 frontend noticing. But well, calling -var-list-children on the same
1138 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1139 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1140 0, 0, *to);
1141 restrict_range (var->children, from, to);
1142 return var->children;
1143 }
8b93c638 1144
8b93c638
JM
1145 if (var->num_children == -1)
1146 var->num_children = number_of_children (var);
1147
74a44383
DJ
1148 /* If that failed, give up. */
1149 if (var->num_children == -1)
d56d46f5 1150 return var->children;
74a44383 1151
28335dcc
VP
1152 /* If we're called when the list of children is not yet initialized,
1153 allocate enough elements in it. */
1154 while (VEC_length (varobj_p, var->children) < var->num_children)
1155 VEC_safe_push (varobj_p, var->children, NULL);
1156
8b93c638
JM
1157 for (i = 0; i < var->num_children; i++)
1158 {
d56d46f5 1159 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1160
1161 if (existing == NULL)
1162 {
1163 /* Either it's the first call to varobj_list_children for
1164 this variable object, and the child was never created,
1165 or it was explicitly deleted by the client. */
1166 name = name_of_child (var, i);
1167 existing = create_child (var, i, name);
1168 VEC_replace (varobj_p, var->children, i, existing);
1169 }
8b93c638
JM
1170 }
1171
0cc7d26f 1172 restrict_range (var->children, from, to);
d56d46f5 1173 return var->children;
8b93c638
JM
1174}
1175
d8b65138
JK
1176#if HAVE_PYTHON
1177
b6313243
TT
1178static struct varobj *
1179varobj_add_child (struct varobj *var, const char *name, struct value *value)
1180{
1181 varobj_p v = create_child_with_value (var,
1182 VEC_length (varobj_p, var->children),
1183 name, value);
a109c7c1 1184
b6313243 1185 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1186 return v;
1187}
1188
d8b65138
JK
1189#endif /* HAVE_PYTHON */
1190
8b93c638 1191/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1192 prints on the console. */
8b93c638
JM
1193
1194char *
1195varobj_get_type (struct varobj *var)
1196{
581e13c1 1197 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1198 NULL, too.)
1199 Do not return a type for invalid variables as well. */
1200 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1201 return NULL;
1202
1a4300e9 1203 return type_to_string (var->type);
8b93c638
JM
1204}
1205
1ecb4ee0
DJ
1206/* Obtain the type of an object variable. */
1207
1208struct type *
1209varobj_get_gdb_type (struct varobj *var)
1210{
1211 return var->type;
1212}
1213
02142340
VP
1214/* Return a pointer to the full rooted expression of varobj VAR.
1215 If it has not been computed yet, compute it. */
1216char *
1217varobj_get_path_expr (struct varobj *var)
1218{
1219 if (var->path_expr != NULL)
1220 return var->path_expr;
1221 else
1222 {
1223 /* For root varobjs, we initialize path_expr
1224 when creating varobj, so here it should be
1225 child varobj. */
1226 gdb_assert (!is_root_p (var));
1227 return (*var->root->lang->path_expr_of_child) (var);
1228 }
1229}
1230
8b93c638
JM
1231enum varobj_languages
1232varobj_get_language (struct varobj *var)
1233{
1234 return variable_language (var);
1235}
1236
1237int
1238varobj_get_attributes (struct varobj *var)
1239{
1240 int attributes = 0;
1241
340a7723 1242 if (varobj_editable_p (var))
581e13c1 1243 /* FIXME: define masks for attributes. */
8b93c638
JM
1244 attributes |= 0x00000001; /* Editable */
1245
1246 return attributes;
1247}
1248
0cc7d26f
TT
1249int
1250varobj_pretty_printed_p (struct varobj *var)
1251{
1252 return var->pretty_printer != NULL;
1253}
1254
de051565
MK
1255char *
1256varobj_get_formatted_value (struct varobj *var,
1257 enum varobj_display_formats format)
1258{
1259 return my_value_of_variable (var, format);
1260}
1261
8b93c638
JM
1262char *
1263varobj_get_value (struct varobj *var)
1264{
de051565 1265 return my_value_of_variable (var, var->format);
8b93c638
JM
1266}
1267
1268/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1269 value of the given expression. */
1270/* Note: Invokes functions that can call error(). */
8b93c638
JM
1271
1272int
1273varobj_set_value (struct varobj *var, char *expression)
1274{
30b28db1 1275 struct value *val;
8b93c638
JM
1276
1277 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1278 We need to first construct a legal expression for this -- ugh! */
1279 /* Does this cover all the bases? */
8b93c638 1280 struct expression *exp;
30b28db1 1281 struct value *value;
8b93c638 1282 int saved_input_radix = input_radix;
340a7723 1283 char *s = expression;
8b93c638 1284
340a7723 1285 gdb_assert (varobj_editable_p (var));
8b93c638 1286
581e13c1 1287 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
340a7723
NR
1288 exp = parse_exp_1 (&s, 0, 0);
1289 if (!gdb_evaluate_expression (exp, &value))
1290 {
581e13c1 1291 /* We cannot proceed without a valid expression. */
340a7723
NR
1292 xfree (exp);
1293 return 0;
8b93c638
JM
1294 }
1295
340a7723
NR
1296 /* All types that are editable must also be changeable. */
1297 gdb_assert (varobj_value_is_changeable_p (var));
1298
1299 /* The value of a changeable variable object must not be lazy. */
1300 gdb_assert (!value_lazy (var->value));
1301
1302 /* Need to coerce the input. We want to check if the
1303 value of the variable object will be different
1304 after assignment, and the first thing value_assign
1305 does is coerce the input.
1306 For example, if we are assigning an array to a pointer variable we
b021a221 1307 should compare the pointer with the array's address, not with the
340a7723
NR
1308 array's content. */
1309 value = coerce_array (value);
1310
1311 /* The new value may be lazy. gdb_value_assign, or
1312 rather value_contents, will take care of this.
1313 If fetching of the new value will fail, gdb_value_assign
1314 with catch the exception. */
1315 if (!gdb_value_assign (var->value, value, &val))
1316 return 0;
1317
1318 /* If the value has changed, record it, so that next -var-update can
1319 report this change. If a variable had a value of '1', we've set it
1320 to '333' and then set again to '1', when -var-update will report this
1321 variable as changed -- because the first assignment has set the
1322 'updated' flag. There's no need to optimize that, because return value
1323 of -var-update should be considered an approximation. */
581e13c1 1324 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1325 input_radix = saved_input_radix;
1326 return 1;
8b93c638
JM
1327}
1328
0cc7d26f
TT
1329#if HAVE_PYTHON
1330
1331/* A helper function to install a constructor function and visualizer
1332 in a varobj. */
1333
1334static void
1335install_visualizer (struct varobj *var, PyObject *constructor,
1336 PyObject *visualizer)
1337{
1338 Py_XDECREF (var->constructor);
1339 var->constructor = constructor;
1340
1341 Py_XDECREF (var->pretty_printer);
1342 var->pretty_printer = visualizer;
1343
1344 Py_XDECREF (var->child_iter);
1345 var->child_iter = NULL;
1346}
1347
1348/* Install the default visualizer for VAR. */
1349
1350static void
1351install_default_visualizer (struct varobj *var)
1352{
1353 if (pretty_printing)
1354 {
1355 PyObject *pretty_printer = NULL;
1356
1357 if (var->value)
1358 {
1359 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1360 if (! pretty_printer)
1361 {
1362 gdbpy_print_stack ();
1363 error (_("Cannot instantiate printer for default visualizer"));
1364 }
1365 }
1366
1367 if (pretty_printer == Py_None)
1368 {
1369 Py_DECREF (pretty_printer);
1370 pretty_printer = NULL;
1371 }
1372
1373 install_visualizer (var, NULL, pretty_printer);
1374 }
1375}
1376
1377/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1378 make a new object. */
1379
1380static void
1381construct_visualizer (struct varobj *var, PyObject *constructor)
1382{
1383 PyObject *pretty_printer;
1384
1385 Py_INCREF (constructor);
1386 if (constructor == Py_None)
1387 pretty_printer = NULL;
1388 else
1389 {
1390 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1391 if (! pretty_printer)
1392 {
1393 gdbpy_print_stack ();
1394 Py_DECREF (constructor);
1395 constructor = Py_None;
1396 Py_INCREF (constructor);
1397 }
1398
1399 if (pretty_printer == Py_None)
1400 {
1401 Py_DECREF (pretty_printer);
1402 pretty_printer = NULL;
1403 }
1404 }
1405
1406 install_visualizer (var, constructor, pretty_printer);
1407}
1408
1409#endif /* HAVE_PYTHON */
1410
1411/* A helper function for install_new_value. This creates and installs
1412 a visualizer for VAR, if appropriate. */
1413
1414static void
1415install_new_value_visualizer (struct varobj *var)
1416{
1417#if HAVE_PYTHON
1418 /* If the constructor is None, then we want the raw value. If VAR
1419 does not have a value, just skip this. */
1420 if (var->constructor != Py_None && var->value)
1421 {
1422 struct cleanup *cleanup;
0cc7d26f
TT
1423
1424 cleanup = varobj_ensure_python_env (var);
1425
1426 if (!var->constructor)
1427 install_default_visualizer (var);
1428 else
1429 construct_visualizer (var, var->constructor);
1430
1431 do_cleanups (cleanup);
1432 }
1433#else
1434 /* Do nothing. */
1435#endif
1436}
1437
acd65feb
VP
1438/* Assign a new value to a variable object. If INITIAL is non-zero,
1439 this is the first assignement after the variable object was just
1440 created, or changed type. In that case, just assign the value
1441 and return 0.
581e13c1
MS
1442 Otherwise, assign the new value, and return 1 if the value is
1443 different from the current one, 0 otherwise. The comparison is
1444 done on textual representation of value. Therefore, some types
1445 need not be compared. E.g. for structures the reported value is
1446 always "{...}", so no comparison is necessary here. If the old
1447 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1448
1449 The VALUE parameter should not be released -- the function will
1450 take care of releasing it when needed. */
acd65feb
VP
1451static int
1452install_new_value (struct varobj *var, struct value *value, int initial)
1453{
1454 int changeable;
1455 int need_to_fetch;
1456 int changed = 0;
25d5ea92 1457 int intentionally_not_fetched = 0;
7a4d50bf 1458 char *print_value = NULL;
acd65feb 1459
acd65feb 1460 /* We need to know the varobj's type to decide if the value should
3e43a32a 1461 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1462 don't have a type. */
acd65feb 1463 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1464 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1465
1466 /* If the type has custom visualizer, we consider it to be always
581e13c1 1467 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1468 mess up read-sensitive values. */
1469 if (var->pretty_printer)
1470 changeable = 1;
1471
acd65feb
VP
1472 need_to_fetch = changeable;
1473
b26ed50d
VP
1474 /* We are not interested in the address of references, and given
1475 that in C++ a reference is not rebindable, it cannot
1476 meaningfully change. So, get hold of the real value. */
1477 if (value)
0cc7d26f 1478 value = coerce_ref (value);
b26ed50d 1479
acd65feb
VP
1480 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1481 /* For unions, we need to fetch the value implicitly because
1482 of implementation of union member fetch. When gdb
1483 creates a value for a field and the value of the enclosing
1484 structure is not lazy, it immediately copies the necessary
1485 bytes from the enclosing values. If the enclosing value is
1486 lazy, the call to value_fetch_lazy on the field will read
1487 the data from memory. For unions, that means we'll read the
1488 same memory more than once, which is not desirable. So
1489 fetch now. */
1490 need_to_fetch = 1;
1491
1492 /* The new value might be lazy. If the type is changeable,
1493 that is we'll be comparing values of this type, fetch the
1494 value now. Otherwise, on the next update the old value
1495 will be lazy, which means we've lost that old value. */
1496 if (need_to_fetch && value && value_lazy (value))
1497 {
25d5ea92
VP
1498 struct varobj *parent = var->parent;
1499 int frozen = var->frozen;
a109c7c1 1500
25d5ea92
VP
1501 for (; !frozen && parent; parent = parent->parent)
1502 frozen |= parent->frozen;
1503
1504 if (frozen && initial)
1505 {
1506 /* For variables that are frozen, or are children of frozen
1507 variables, we don't do fetch on initial assignment.
1508 For non-initial assignemnt we do the fetch, since it means we're
1509 explicitly asked to compare the new value with the old one. */
1510 intentionally_not_fetched = 1;
1511 }
1512 else if (!gdb_value_fetch_lazy (value))
acd65feb 1513 {
acd65feb
VP
1514 /* Set the value to NULL, so that for the next -var-update,
1515 we don't try to compare the new value with this value,
1516 that we couldn't even read. */
1517 value = NULL;
1518 }
acd65feb
VP
1519 }
1520
b6313243 1521
7a4d50bf
VP
1522 /* Below, we'll be comparing string rendering of old and new
1523 values. Don't get string rendering if the value is
1524 lazy -- if it is, the code above has decided that the value
1525 should not be fetched. */
0cc7d26f 1526 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1527 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1528
acd65feb
VP
1529 /* If the type is changeable, compare the old and the new values.
1530 If this is the initial assignment, we don't have any old value
1531 to compare with. */
7a4d50bf 1532 if (!initial && changeable)
acd65feb 1533 {
3e43a32a
MS
1534 /* If the value of the varobj was changed by -var-set-value,
1535 then the value in the varobj and in the target is the same.
1536 However, that value is different from the value that the
581e13c1 1537 varobj had after the previous -var-update. So need to the
3e43a32a 1538 varobj as changed. */
acd65feb 1539 if (var->updated)
57e66780 1540 {
57e66780
DJ
1541 changed = 1;
1542 }
0cc7d26f 1543 else if (! var->pretty_printer)
acd65feb
VP
1544 {
1545 /* Try to compare the values. That requires that both
1546 values are non-lazy. */
25d5ea92
VP
1547 if (var->not_fetched && value_lazy (var->value))
1548 {
1549 /* This is a frozen varobj and the value was never read.
1550 Presumably, UI shows some "never read" indicator.
1551 Now that we've fetched the real value, we need to report
1552 this varobj as changed so that UI can show the real
1553 value. */
1554 changed = 1;
1555 }
1556 else if (var->value == NULL && value == NULL)
581e13c1 1557 /* Equal. */
acd65feb
VP
1558 ;
1559 else if (var->value == NULL || value == NULL)
57e66780 1560 {
57e66780
DJ
1561 changed = 1;
1562 }
acd65feb
VP
1563 else
1564 {
1565 gdb_assert (!value_lazy (var->value));
1566 gdb_assert (!value_lazy (value));
85265413 1567
57e66780 1568 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1569 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1570 changed = 1;
acd65feb
VP
1571 }
1572 }
1573 }
85265413 1574
ee342b23
VP
1575 if (!initial && !changeable)
1576 {
1577 /* For values that are not changeable, we don't compare the values.
1578 However, we want to notice if a value was not NULL and now is NULL,
1579 or vise versa, so that we report when top-level varobjs come in scope
1580 and leave the scope. */
1581 changed = (var->value != NULL) != (value != NULL);
1582 }
1583
acd65feb 1584 /* We must always keep the new value, since children depend on it. */
25d5ea92 1585 if (var->value != NULL && var->value != value)
acd65feb
VP
1586 value_free (var->value);
1587 var->value = value;
0cc7d26f
TT
1588 if (value != NULL)
1589 value_incref (value);
25d5ea92
VP
1590 if (value && value_lazy (value) && intentionally_not_fetched)
1591 var->not_fetched = 1;
1592 else
1593 var->not_fetched = 0;
acd65feb 1594 var->updated = 0;
85265413 1595
0cc7d26f
TT
1596 install_new_value_visualizer (var);
1597
1598 /* If we installed a pretty-printer, re-compare the printed version
1599 to see if the variable changed. */
1600 if (var->pretty_printer)
1601 {
1602 xfree (print_value);
1603 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1604 if ((var->print_value == NULL && print_value != NULL)
1605 || (var->print_value != NULL && print_value == NULL)
1606 || (var->print_value != NULL && print_value != NULL
1607 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1608 changed = 1;
1609 }
1610 if (var->print_value)
1611 xfree (var->print_value);
1612 var->print_value = print_value;
1613
b26ed50d 1614 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1615
1616 return changed;
1617}
acd65feb 1618
0cc7d26f
TT
1619/* Return the requested range for a varobj. VAR is the varobj. FROM
1620 and TO are out parameters; *FROM and *TO will be set to the
1621 selected sub-range of VAR. If no range was selected using
1622 -var-set-update-range, then both will be -1. */
1623void
1624varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1625{
0cc7d26f
TT
1626 *from = var->from;
1627 *to = var->to;
b6313243
TT
1628}
1629
0cc7d26f
TT
1630/* Set the selected sub-range of children of VAR to start at index
1631 FROM and end at index TO. If either FROM or TO is less than zero,
1632 this is interpreted as a request for all children. */
1633void
1634varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1635{
0cc7d26f
TT
1636 var->from = from;
1637 var->to = to;
b6313243
TT
1638}
1639
1640void
1641varobj_set_visualizer (struct varobj *var, const char *visualizer)
1642{
1643#if HAVE_PYTHON
34fa1d9d
MS
1644 PyObject *mainmod, *globals, *constructor;
1645 struct cleanup *back_to;
b6313243 1646
d452c4bc 1647 back_to = varobj_ensure_python_env (var);
b6313243
TT
1648
1649 mainmod = PyImport_AddModule ("__main__");
1650 globals = PyModule_GetDict (mainmod);
1651 Py_INCREF (globals);
1652 make_cleanup_py_decref (globals);
1653
1654 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1655
0cc7d26f 1656 if (! constructor)
b6313243
TT
1657 {
1658 gdbpy_print_stack ();
da1f2771 1659 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1660 }
1661
0cc7d26f
TT
1662 construct_visualizer (var, constructor);
1663 Py_XDECREF (constructor);
b6313243 1664
0cc7d26f
TT
1665 /* If there are any children now, wipe them. */
1666 varobj_delete (var, NULL, 1 /* children only */);
1667 var->num_children = -1;
b6313243
TT
1668
1669 do_cleanups (back_to);
1670#else
da1f2771 1671 error (_("Python support required"));
b6313243
TT
1672#endif
1673}
1674
8b93c638
JM
1675/* Update the values for a variable and its children. This is a
1676 two-pronged attack. First, re-parse the value for the root's
1677 expression to see if it's changed. Then go all the way
1678 through its children, reconstructing them and noting if they've
1679 changed.
1680
25d5ea92
VP
1681 The EXPLICIT parameter specifies if this call is result
1682 of MI request to update this specific variable, or
581e13c1 1683 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1684 update frozen variables.
705da579 1685
581e13c1 1686 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1687 returns TYPE_CHANGED, then it has done this and VARP will be modified
1688 to point to the new varobj. */
8b93c638 1689
f7f9ae2c 1690VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1691{
1692 int changed = 0;
25d5ea92 1693 int type_changed = 0;
8b93c638 1694 int i;
30b28db1 1695 struct value *new;
b6313243 1696 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1697 VEC (varobj_update_result) *result = NULL;
8b93c638 1698
25d5ea92
VP
1699 /* Frozen means frozen -- we don't check for any change in
1700 this varobj, including its going out of scope, or
1701 changing type. One use case for frozen varobjs is
1702 retaining previously evaluated expressions, and we don't
1703 want them to be reevaluated at all. */
1704 if (!explicit && (*varp)->frozen)
f7f9ae2c 1705 return result;
8756216b
DP
1706
1707 if (!(*varp)->root->is_valid)
f7f9ae2c 1708 {
cfce2ea2 1709 varobj_update_result r = {0};
a109c7c1 1710
cfce2ea2 1711 r.varobj = *varp;
f7f9ae2c
VP
1712 r.status = VAROBJ_INVALID;
1713 VEC_safe_push (varobj_update_result, result, &r);
1714 return result;
1715 }
8b93c638 1716
25d5ea92 1717 if ((*varp)->root->rootvar == *varp)
ae093f96 1718 {
cfce2ea2 1719 varobj_update_result r = {0};
a109c7c1 1720
cfce2ea2 1721 r.varobj = *varp;
f7f9ae2c
VP
1722 r.status = VAROBJ_IN_SCOPE;
1723
581e13c1 1724 /* Update the root variable. value_of_root can return NULL
25d5ea92 1725 if the variable is no longer around, i.e. we stepped out of
581e13c1 1726 the frame in which a local existed. We are letting the
25d5ea92
VP
1727 value_of_root variable dispose of the varobj if the type
1728 has changed. */
25d5ea92 1729 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1730 r.varobj = *varp;
1731
1732 r.type_changed = type_changed;
ea56f9c2 1733 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1734 r.changed = 1;
ea56f9c2 1735
25d5ea92 1736 if (new == NULL)
f7f9ae2c 1737 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1738 r.value_installed = 1;
f7f9ae2c
VP
1739
1740 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1741 {
0b4bc29a
JK
1742 if (r.type_changed || r.changed)
1743 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1744 return result;
1745 }
1746
1747 VEC_safe_push (varobj_update_result, stack, &r);
1748 }
1749 else
1750 {
cfce2ea2 1751 varobj_update_result r = {0};
a109c7c1 1752
cfce2ea2 1753 r.varobj = *varp;
b6313243 1754 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1755 }
8b93c638 1756
8756216b 1757 /* Walk through the children, reconstructing them all. */
b6313243 1758 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1759 {
b6313243
TT
1760 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1761 struct varobj *v = r.varobj;
1762
1763 VEC_pop (varobj_update_result, stack);
1764
1765 /* Update this variable, unless it's a root, which is already
1766 updated. */
1767 if (!r.value_installed)
1768 {
1769 new = value_of_child (v->parent, v->index);
1770 if (install_new_value (v, new, 0 /* type not changed */))
1771 {
1772 r.changed = 1;
1773 v->updated = 0;
1774 }
1775 }
1776
1777 /* We probably should not get children of a varobj that has a
1778 pretty-printer, but for which -var-list-children was never
581e13c1 1779 invoked. */
b6313243
TT
1780 if (v->pretty_printer)
1781 {
0cc7d26f 1782 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1783 int i, children_changed = 0;
b6313243
TT
1784
1785 if (v->frozen)
1786 continue;
1787
0cc7d26f
TT
1788 if (!v->children_requested)
1789 {
1790 int dummy;
1791
1792 /* If we initially did not have potential children, but
1793 now we do, consider the varobj as changed.
1794 Otherwise, if children were never requested, consider
1795 it as unchanged -- presumably, such varobj is not yet
1796 expanded in the UI, so we need not bother getting
1797 it. */
1798 if (!varobj_has_more (v, 0))
1799 {
1800 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1801 &dummy, 0, 0, 0);
1802 if (varobj_has_more (v, 0))
1803 r.changed = 1;
1804 }
1805
1806 if (r.changed)
1807 VEC_safe_push (varobj_update_result, result, &r);
1808
1809 continue;
1810 }
1811
b6313243
TT
1812 /* If update_dynamic_varobj_children returns 0, then we have
1813 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1814 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1815 &children_changed, 1,
1816 v->from, v->to))
b6313243 1817 {
0cc7d26f 1818 if (children_changed || new)
b6313243 1819 {
0cc7d26f
TT
1820 r.children_changed = 1;
1821 r.new = new;
b6313243 1822 }
0cc7d26f
TT
1823 /* Push in reverse order so that the first child is
1824 popped from the work stack first, and so will be
1825 added to result first. This does not affect
1826 correctness, just "nicer". */
1827 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1828 {
0cc7d26f 1829 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1830 varobj_update_result r = {0};
a109c7c1 1831
cfce2ea2 1832 r.varobj = tmp;
0cc7d26f 1833 r.changed = 1;
b6313243
TT
1834 r.value_installed = 1;
1835 VEC_safe_push (varobj_update_result, stack, &r);
1836 }
0cc7d26f
TT
1837 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1838 {
1839 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1840
0cc7d26f
TT
1841 if (!tmp->frozen)
1842 {
cfce2ea2 1843 varobj_update_result r = {0};
a109c7c1 1844
cfce2ea2 1845 r.varobj = tmp;
0cc7d26f
TT
1846 r.value_installed = 1;
1847 VEC_safe_push (varobj_update_result, stack, &r);
1848 }
1849 }
b6313243
TT
1850 if (r.changed || r.children_changed)
1851 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1852
1853 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1854 has been put into the result vector. */
1855 VEC_free (varobj_p, changed);
1856 VEC_free (varobj_p, unchanged);
1857
b6313243
TT
1858 continue;
1859 }
1860 }
28335dcc
VP
1861
1862 /* Push any children. Use reverse order so that the first
1863 child is popped from the work stack first, and so
1864 will be added to result first. This does not
1865 affect correctness, just "nicer". */
1866 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1867 {
28335dcc 1868 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1869
28335dcc 1870 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1871 if (c != NULL && !c->frozen)
28335dcc 1872 {
cfce2ea2 1873 varobj_update_result r = {0};
a109c7c1 1874
cfce2ea2 1875 r.varobj = c;
b6313243 1876 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1877 }
8b93c638 1878 }
b6313243
TT
1879
1880 if (r.changed || r.type_changed)
1881 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1882 }
1883
b6313243
TT
1884 VEC_free (varobj_update_result, stack);
1885
f7f9ae2c 1886 return result;
8b93c638
JM
1887}
1888\f
1889
1890/* Helper functions */
1891
1892/*
1893 * Variable object construction/destruction
1894 */
1895
1896static int
fba45db2
KB
1897delete_variable (struct cpstack **resultp, struct varobj *var,
1898 int only_children_p)
8b93c638
JM
1899{
1900 int delcount = 0;
1901
1902 delete_variable_1 (resultp, &delcount, var,
1903 only_children_p, 1 /* remove_from_parent_p */ );
1904
1905 return delcount;
1906}
1907
581e13c1 1908/* Delete the variable object VAR and its children. */
8b93c638
JM
1909/* IMPORTANT NOTE: If we delete a variable which is a child
1910 and the parent is not removed we dump core. It must be always
581e13c1 1911 initially called with remove_from_parent_p set. */
8b93c638 1912static void
72330bd6
AC
1913delete_variable_1 (struct cpstack **resultp, int *delcountp,
1914 struct varobj *var, int only_children_p,
1915 int remove_from_parent_p)
8b93c638 1916{
28335dcc 1917 int i;
8b93c638 1918
581e13c1 1919 /* Delete any children of this variable, too. */
28335dcc
VP
1920 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1921 {
1922 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1923
214270ab
VP
1924 if (!child)
1925 continue;
8b93c638 1926 if (!remove_from_parent_p)
28335dcc
VP
1927 child->parent = NULL;
1928 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1929 }
28335dcc 1930 VEC_free (varobj_p, var->children);
8b93c638 1931
581e13c1 1932 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1933 if (only_children_p)
1934 return;
1935
581e13c1 1936 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1937 /* If the name is null, this is a temporary variable, that has not
581e13c1 1938 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1939 if (var->obj_name != NULL)
8b93c638 1940 {
5b616ba1 1941 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1942 *delcountp = *delcountp + 1;
1943 }
1944
581e13c1 1945 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1946 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1947 (as indicated by remove_from_parent_p) we don't bother doing an
1948 expensive list search to find the element to remove when we are
581e13c1 1949 discarding the list afterwards. */
72330bd6 1950 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1951 {
28335dcc 1952 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1953 }
72330bd6 1954
73a93a32
JI
1955 if (var->obj_name != NULL)
1956 uninstall_variable (var);
8b93c638 1957
581e13c1 1958 /* Free memory associated with this variable. */
8b93c638
JM
1959 free_variable (var);
1960}
1961
581e13c1 1962/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1963static int
fba45db2 1964install_variable (struct varobj *var)
8b93c638
JM
1965{
1966 struct vlist *cv;
1967 struct vlist *newvl;
1968 const char *chp;
1969 unsigned int index = 0;
1970 unsigned int i = 1;
1971
1972 for (chp = var->obj_name; *chp; chp++)
1973 {
1974 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1975 }
1976
1977 cv = *(varobj_table + index);
1978 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1979 cv = cv->next;
1980
1981 if (cv != NULL)
8a3fe4f8 1982 error (_("Duplicate variable object name"));
8b93c638 1983
581e13c1 1984 /* Add varobj to hash table. */
8b93c638
JM
1985 newvl = xmalloc (sizeof (struct vlist));
1986 newvl->next = *(varobj_table + index);
1987 newvl->var = var;
1988 *(varobj_table + index) = newvl;
1989
581e13c1 1990 /* If root, add varobj to root list. */
b2c2bd75 1991 if (is_root_p (var))
8b93c638 1992 {
581e13c1 1993 /* Add to list of root variables. */
8b93c638
JM
1994 if (rootlist == NULL)
1995 var->root->next = NULL;
1996 else
1997 var->root->next = rootlist;
1998 rootlist = var->root;
8b93c638
JM
1999 }
2000
2001 return 1; /* OK */
2002}
2003
581e13c1 2004/* Unistall the object VAR. */
8b93c638 2005static void
fba45db2 2006uninstall_variable (struct varobj *var)
8b93c638
JM
2007{
2008 struct vlist *cv;
2009 struct vlist *prev;
2010 struct varobj_root *cr;
2011 struct varobj_root *prer;
2012 const char *chp;
2013 unsigned int index = 0;
2014 unsigned int i = 1;
2015
581e13c1 2016 /* Remove varobj from hash table. */
8b93c638
JM
2017 for (chp = var->obj_name; *chp; chp++)
2018 {
2019 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2020 }
2021
2022 cv = *(varobj_table + index);
2023 prev = NULL;
2024 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2025 {
2026 prev = cv;
2027 cv = cv->next;
2028 }
2029
2030 if (varobjdebug)
2031 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2032
2033 if (cv == NULL)
2034 {
72330bd6
AC
2035 warning
2036 ("Assertion failed: Could not find variable object \"%s\" to delete",
2037 var->obj_name);
8b93c638
JM
2038 return;
2039 }
2040
2041 if (prev == NULL)
2042 *(varobj_table + index) = cv->next;
2043 else
2044 prev->next = cv->next;
2045
b8c9b27d 2046 xfree (cv);
8b93c638 2047
581e13c1 2048 /* If root, remove varobj from root list. */
b2c2bd75 2049 if (is_root_p (var))
8b93c638 2050 {
581e13c1 2051 /* Remove from list of root variables. */
8b93c638
JM
2052 if (rootlist == var->root)
2053 rootlist = var->root->next;
2054 else
2055 {
2056 prer = NULL;
2057 cr = rootlist;
2058 while ((cr != NULL) && (cr->rootvar != var))
2059 {
2060 prer = cr;
2061 cr = cr->next;
2062 }
2063 if (cr == NULL)
2064 {
8f7e195f
JB
2065 warning (_("Assertion failed: Could not find "
2066 "varobj \"%s\" in root list"),
3e43a32a 2067 var->obj_name);
8b93c638
JM
2068 return;
2069 }
2070 if (prer == NULL)
2071 rootlist = NULL;
2072 else
2073 prer->next = cr->next;
2074 }
8b93c638
JM
2075 }
2076
2077}
2078
581e13c1 2079/* Create and install a child of the parent of the given name. */
8b93c638 2080static struct varobj *
fba45db2 2081create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2082{
2083 return create_child_with_value (parent, index, name,
2084 value_of_child (parent, index));
2085}
2086
2087static struct varobj *
2088create_child_with_value (struct varobj *parent, int index, const char *name,
2089 struct value *value)
8b93c638
JM
2090{
2091 struct varobj *child;
2092 char *childs_name;
2093
2094 child = new_variable ();
2095
581e13c1 2096 /* Name is allocated by name_of_child. */
b6313243
TT
2097 /* FIXME: xstrdup should not be here. */
2098 child->name = xstrdup (name);
8b93c638 2099 child->index = index;
8b93c638
JM
2100 child->parent = parent;
2101 child->root = parent->root;
b435e160 2102 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2103 child->obj_name = childs_name;
2104 install_variable (child);
2105
acd65feb
VP
2106 /* Compute the type of the child. Must do this before
2107 calling install_new_value. */
2108 if (value != NULL)
2109 /* If the child had no evaluation errors, var->value
581e13c1 2110 will be non-NULL and contain a valid type. */
acd65feb
VP
2111 child->type = value_type (value);
2112 else
581e13c1 2113 /* Otherwise, we must compute the type. */
acd65feb
VP
2114 child->type = (*child->root->lang->type_of_child) (child->parent,
2115 child->index);
2116 install_new_value (child, value, 1);
2117
8b93c638
JM
2118 return child;
2119}
8b93c638
JM
2120\f
2121
2122/*
2123 * Miscellaneous utility functions.
2124 */
2125
581e13c1 2126/* Allocate memory and initialize a new variable. */
8b93c638
JM
2127static struct varobj *
2128new_variable (void)
2129{
2130 struct varobj *var;
2131
2132 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2133 var->name = NULL;
02142340 2134 var->path_expr = NULL;
8b93c638
JM
2135 var->obj_name = NULL;
2136 var->index = -1;
2137 var->type = NULL;
2138 var->value = NULL;
8b93c638
JM
2139 var->num_children = -1;
2140 var->parent = NULL;
2141 var->children = NULL;
2142 var->format = 0;
2143 var->root = NULL;
fb9b6b35 2144 var->updated = 0;
85265413 2145 var->print_value = NULL;
25d5ea92
VP
2146 var->frozen = 0;
2147 var->not_fetched = 0;
b6313243 2148 var->children_requested = 0;
0cc7d26f
TT
2149 var->from = -1;
2150 var->to = -1;
2151 var->constructor = 0;
b6313243 2152 var->pretty_printer = 0;
0cc7d26f
TT
2153 var->child_iter = 0;
2154 var->saved_item = 0;
8b93c638
JM
2155
2156 return var;
2157}
2158
581e13c1 2159/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2160static struct varobj *
2161new_root_variable (void)
2162{
2163 struct varobj *var = new_variable ();
a109c7c1 2164
3e43a32a 2165 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2166 var->root->lang = NULL;
2167 var->root->exp = NULL;
2168 var->root->valid_block = NULL;
7a424e99 2169 var->root->frame = null_frame_id;
a5defcdc 2170 var->root->floating = 0;
8b93c638 2171 var->root->rootvar = NULL;
8756216b 2172 var->root->is_valid = 1;
8b93c638
JM
2173
2174 return var;
2175}
2176
581e13c1 2177/* Free any allocated memory associated with VAR. */
8b93c638 2178static void
fba45db2 2179free_variable (struct varobj *var)
8b93c638 2180{
d452c4bc
UW
2181#if HAVE_PYTHON
2182 if (var->pretty_printer)
2183 {
2184 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2185 Py_XDECREF (var->constructor);
2186 Py_XDECREF (var->pretty_printer);
2187 Py_XDECREF (var->child_iter);
2188 Py_XDECREF (var->saved_item);
d452c4bc
UW
2189 do_cleanups (cleanup);
2190 }
2191#endif
2192
36746093
JK
2193 value_free (var->value);
2194
581e13c1 2195 /* Free the expression if this is a root variable. */
b2c2bd75 2196 if (is_root_p (var))
8b93c638 2197 {
3038237c 2198 xfree (var->root->exp);
8038e1e2 2199 xfree (var->root);
8b93c638
JM
2200 }
2201
8038e1e2
AC
2202 xfree (var->name);
2203 xfree (var->obj_name);
85265413 2204 xfree (var->print_value);
02142340 2205 xfree (var->path_expr);
8038e1e2 2206 xfree (var);
8b93c638
JM
2207}
2208
74b7792f
AC
2209static void
2210do_free_variable_cleanup (void *var)
2211{
2212 free_variable (var);
2213}
2214
2215static struct cleanup *
2216make_cleanup_free_variable (struct varobj *var)
2217{
2218 return make_cleanup (do_free_variable_cleanup, var);
2219}
2220
581e13c1 2221/* This returns the type of the variable. It also skips past typedefs
6766a268 2222 to return the real type of the variable.
94b66fa7
KS
2223
2224 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2225 except within get_target_type and get_type. */
8b93c638 2226static struct type *
fba45db2 2227get_type (struct varobj *var)
8b93c638
JM
2228{
2229 struct type *type;
8b93c638 2230
a109c7c1 2231 type = var->type;
6766a268
DJ
2232 if (type != NULL)
2233 type = check_typedef (type);
8b93c638
JM
2234
2235 return type;
2236}
2237
6e2a9270
VP
2238/* Return the type of the value that's stored in VAR,
2239 or that would have being stored there if the
581e13c1 2240 value were accessible.
6e2a9270
VP
2241
2242 This differs from VAR->type in that VAR->type is always
2243 the true type of the expession in the source language.
2244 The return value of this function is the type we're
2245 actually storing in varobj, and using for displaying
2246 the values and for comparing previous and new values.
2247
2248 For example, top-level references are always stripped. */
2249static struct type *
2250get_value_type (struct varobj *var)
2251{
2252 struct type *type;
2253
2254 if (var->value)
2255 type = value_type (var->value);
2256 else
2257 type = var->type;
2258
2259 type = check_typedef (type);
2260
2261 if (TYPE_CODE (type) == TYPE_CODE_REF)
2262 type = get_target_type (type);
2263
2264 type = check_typedef (type);
2265
2266 return type;
2267}
2268
8b93c638 2269/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2270 past typedefs, just like get_type ().
2271
2272 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2273 except within get_target_type and get_type. */
8b93c638 2274static struct type *
fba45db2 2275get_target_type (struct type *type)
8b93c638
JM
2276{
2277 if (type != NULL)
2278 {
2279 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2280 if (type != NULL)
2281 type = check_typedef (type);
8b93c638
JM
2282 }
2283
2284 return type;
2285}
2286
2287/* What is the default display for this variable? We assume that
581e13c1 2288 everything is "natural". Any exceptions? */
8b93c638 2289static enum varobj_display_formats
fba45db2 2290variable_default_display (struct varobj *var)
8b93c638
JM
2291{
2292 return FORMAT_NATURAL;
2293}
2294
581e13c1 2295/* FIXME: The following should be generic for any pointer. */
8b93c638 2296static void
fba45db2 2297cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2298{
2299 struct cpstack *s;
2300
2301 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2302 s->name = name;
2303 s->next = *pstack;
2304 *pstack = s;
2305}
2306
581e13c1 2307/* FIXME: The following should be generic for any pointer. */
8b93c638 2308static char *
fba45db2 2309cppop (struct cpstack **pstack)
8b93c638
JM
2310{
2311 struct cpstack *s;
2312 char *v;
2313
2314 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2315 return NULL;
2316
2317 s = *pstack;
2318 v = s->name;
2319 *pstack = (*pstack)->next;
b8c9b27d 2320 xfree (s);
8b93c638
JM
2321
2322 return v;
2323}
2324\f
2325/*
2326 * Language-dependencies
2327 */
2328
2329/* Common entry points */
2330
581e13c1 2331/* Get the language of variable VAR. */
8b93c638 2332static enum varobj_languages
fba45db2 2333variable_language (struct varobj *var)
8b93c638
JM
2334{
2335 enum varobj_languages lang;
2336
2337 switch (var->root->exp->language_defn->la_language)
2338 {
2339 default:
2340 case language_c:
2341 lang = vlang_c;
2342 break;
2343 case language_cplus:
2344 lang = vlang_cplus;
2345 break;
2346 case language_java:
2347 lang = vlang_java;
2348 break;
2349 }
2350
2351 return lang;
2352}
2353
2354/* Return the number of children for a given variable.
2355 The result of this function is defined by the language
581e13c1 2356 implementation. The number of children returned by this function
8b93c638 2357 is the number of children that the user will see in the variable
581e13c1 2358 display. */
8b93c638 2359static int
fba45db2 2360number_of_children (struct varobj *var)
8b93c638 2361{
82ae4854 2362 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2363}
2364
3e43a32a 2365/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2366 string. */
8b93c638 2367static char *
fba45db2 2368name_of_variable (struct varobj *var)
8b93c638
JM
2369{
2370 return (*var->root->lang->name_of_variable) (var);
2371}
2372
3e43a32a 2373/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2374 string. */
8b93c638 2375static char *
fba45db2 2376name_of_child (struct varobj *var, int index)
8b93c638
JM
2377{
2378 return (*var->root->lang->name_of_child) (var, index);
2379}
2380
a5defcdc
VP
2381/* What is the ``struct value *'' of the root variable VAR?
2382 For floating variable object, evaluation can get us a value
2383 of different type from what is stored in varobj already. In
2384 that case:
2385 - *type_changed will be set to 1
2386 - old varobj will be freed, and new one will be
2387 created, with the same name.
2388 - *var_handle will be set to the new varobj
2389 Otherwise, *type_changed will be set to 0. */
30b28db1 2390static struct value *
fba45db2 2391value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2392{
73a93a32
JI
2393 struct varobj *var;
2394
2395 if (var_handle == NULL)
2396 return NULL;
2397
2398 var = *var_handle;
2399
2400 /* This should really be an exception, since this should
581e13c1 2401 only get called with a root variable. */
73a93a32 2402
b2c2bd75 2403 if (!is_root_p (var))
73a93a32
JI
2404 return NULL;
2405
a5defcdc 2406 if (var->root->floating)
73a93a32
JI
2407 {
2408 struct varobj *tmp_var;
2409 char *old_type, *new_type;
6225abfa 2410
73a93a32
JI
2411 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2412 USE_SELECTED_FRAME);
2413 if (tmp_var == NULL)
2414 {
2415 return NULL;
2416 }
6225abfa 2417 old_type = varobj_get_type (var);
73a93a32 2418 new_type = varobj_get_type (tmp_var);
72330bd6 2419 if (strcmp (old_type, new_type) == 0)
73a93a32 2420 {
fcacd99f
VP
2421 /* The expression presently stored inside var->root->exp
2422 remembers the locations of local variables relatively to
2423 the frame where the expression was created (in DWARF location
2424 button, for example). Naturally, those locations are not
2425 correct in other frames, so update the expression. */
2426
2427 struct expression *tmp_exp = var->root->exp;
a109c7c1 2428
fcacd99f
VP
2429 var->root->exp = tmp_var->root->exp;
2430 tmp_var->root->exp = tmp_exp;
2431
73a93a32
JI
2432 varobj_delete (tmp_var, NULL, 0);
2433 *type_changed = 0;
2434 }
2435 else
2436 {
1b36a34b 2437 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2438 tmp_var->from = var->from;
2439 tmp_var->to = var->to;
a5defcdc
VP
2440 varobj_delete (var, NULL, 0);
2441
73a93a32
JI
2442 install_variable (tmp_var);
2443 *var_handle = tmp_var;
705da579 2444 var = *var_handle;
73a93a32
JI
2445 *type_changed = 1;
2446 }
74dddad3
MS
2447 xfree (old_type);
2448 xfree (new_type);
73a93a32
JI
2449 }
2450 else
2451 {
2452 *type_changed = 0;
2453 }
2454
2455 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2456}
2457
581e13c1 2458/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2459static struct value *
fba45db2 2460value_of_child (struct varobj *parent, int index)
8b93c638 2461{
30b28db1 2462 struct value *value;
8b93c638
JM
2463
2464 value = (*parent->root->lang->value_of_child) (parent, index);
2465
8b93c638
JM
2466 return value;
2467}
2468
581e13c1 2469/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2470static char *
de051565 2471my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2472{
8756216b 2473 if (var->root->is_valid)
0cc7d26f
TT
2474 {
2475 if (var->pretty_printer)
2476 return value_get_print_value (var->value, var->format, var);
2477 return (*var->root->lang->value_of_variable) (var, format);
2478 }
8756216b
DP
2479 else
2480 return NULL;
8b93c638
JM
2481}
2482
85265413 2483static char *
b6313243 2484value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2485 struct varobj *var)
85265413 2486{
57e66780 2487 struct ui_file *stb;
621c8364 2488 struct cleanup *old_chain;
fbb8f299 2489 gdb_byte *thevalue = NULL;
79a45b7d 2490 struct value_print_options opts;
be759fcf
PM
2491 struct type *type = NULL;
2492 long len = 0;
2493 char *encoding = NULL;
2494 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2495 /* Initialize it just to avoid a GCC false warning. */
2496 CORE_ADDR str_addr = 0;
09ca9e2e 2497 int string_print = 0;
57e66780
DJ
2498
2499 if (value == NULL)
2500 return NULL;
2501
621c8364
TT
2502 stb = mem_fileopen ();
2503 old_chain = make_cleanup_ui_file_delete (stb);
2504
be759fcf 2505 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2506#if HAVE_PYTHON
2507 {
d452c4bc
UW
2508 PyObject *value_formatter = var->pretty_printer;
2509
09ca9e2e
TT
2510 varobj_ensure_python_env (var);
2511
0cc7d26f 2512 if (value_formatter)
b6313243 2513 {
0cc7d26f
TT
2514 /* First check to see if we have any children at all. If so,
2515 we simply return {...}. */
2516 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2517 {
2518 do_cleanups (old_chain);
2519 return xstrdup ("{...}");
2520 }
b6313243 2521
0cc7d26f 2522 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2523 {
0cc7d26f
TT
2524 char *hint;
2525 struct value *replacement;
0cc7d26f
TT
2526 PyObject *output = NULL;
2527
2528 hint = gdbpy_get_display_hint (value_formatter);
2529 if (hint)
2530 {
2531 if (!strcmp (hint, "string"))
2532 string_print = 1;
2533 xfree (hint);
2534 }
b6313243 2535
0cc7d26f 2536 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2537 &replacement,
2538 stb);
0cc7d26f
TT
2539 if (output)
2540 {
09ca9e2e
TT
2541 make_cleanup_py_decref (output);
2542
be759fcf 2543 if (gdbpy_is_lazy_string (output))
0cc7d26f 2544 {
09ca9e2e
TT
2545 gdbpy_extract_lazy_string (output, &str_addr, &type,
2546 &len, &encoding);
2547 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2548 string_print = 1;
2549 }
2550 else
2551 {
2552 PyObject *py_str
2553 = python_string_to_target_python_string (output);
a109c7c1 2554
be759fcf
PM
2555 if (py_str)
2556 {
2557 char *s = PyString_AsString (py_str);
a109c7c1 2558
be759fcf
PM
2559 len = PyString_Size (py_str);
2560 thevalue = xmemdup (s, len + 1, len + 1);
2561 type = builtin_type (gdbarch)->builtin_char;
2562 Py_DECREF (py_str);
09ca9e2e
TT
2563
2564 if (!string_print)
2565 {
2566 do_cleanups (old_chain);
2567 return thevalue;
2568 }
2569
2570 make_cleanup (xfree, thevalue);
be759fcf 2571 }
8dc78533
JK
2572 else
2573 gdbpy_print_stack ();
0cc7d26f 2574 }
0cc7d26f
TT
2575 }
2576 if (replacement)
2577 value = replacement;
b6313243 2578 }
b6313243 2579 }
b6313243
TT
2580 }
2581#endif
2582
79a45b7d
TT
2583 get_formatted_print_options (&opts, format_code[(int) format]);
2584 opts.deref_ref = 0;
b6313243
TT
2585 opts.raw = 1;
2586 if (thevalue)
09ca9e2e
TT
2587 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2588 else if (string_print)
2589 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243
TT
2590 else
2591 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2592 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2593
85265413
NR
2594 do_cleanups (old_chain);
2595 return thevalue;
2596}
2597
340a7723
NR
2598int
2599varobj_editable_p (struct varobj *var)
2600{
2601 struct type *type;
340a7723
NR
2602
2603 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2604 return 0;
2605
2606 type = get_value_type (var);
2607
2608 switch (TYPE_CODE (type))
2609 {
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_ARRAY:
2613 case TYPE_CODE_FUNC:
2614 case TYPE_CODE_METHOD:
2615 return 0;
2616 break;
2617
2618 default:
2619 return 1;
2620 break;
2621 }
2622}
2623
acd65feb
VP
2624/* Return non-zero if changes in value of VAR
2625 must be detected and reported by -var-update.
2626 Return zero is -var-update should never report
2627 changes of such values. This makes sense for structures
2628 (since the changes in children values will be reported separately),
2629 or for artifical objects (like 'public' pseudo-field in C++).
2630
2631 Return value of 0 means that gdb need not call value_fetch_lazy
2632 for the value of this variable object. */
8b93c638 2633static int
b2c2bd75 2634varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2635{
2636 int r;
2637 struct type *type;
2638
2639 if (CPLUS_FAKE_CHILD (var))
2640 return 0;
2641
6e2a9270 2642 type = get_value_type (var);
8b93c638
JM
2643
2644 switch (TYPE_CODE (type))
2645 {
72330bd6
AC
2646 case TYPE_CODE_STRUCT:
2647 case TYPE_CODE_UNION:
2648 case TYPE_CODE_ARRAY:
2649 r = 0;
2650 break;
8b93c638 2651
72330bd6
AC
2652 default:
2653 r = 1;
8b93c638
JM
2654 }
2655
2656 return r;
2657}
2658
5a413362
VP
2659/* Return 1 if that varobj is floating, that is is always evaluated in the
2660 selected frame, and not bound to thread/frame. Such variable objects
2661 are created using '@' as frame specifier to -var-create. */
2662int
2663varobj_floating_p (struct varobj *var)
2664{
2665 return var->root->floating;
2666}
2667
2024f65a
VP
2668/* Given the value and the type of a variable object,
2669 adjust the value and type to those necessary
2670 for getting children of the variable object.
2671 This includes dereferencing top-level references
2672 to all types and dereferencing pointers to
581e13c1 2673 structures.
2024f65a 2674
581e13c1 2675 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
2676 can be null if we want to only translate type.
2677 *VALUE can be null as well -- if the parent
581e13c1 2678 value is not known.
02142340
VP
2679
2680 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2681 depending on whether pointer was dereferenced
02142340 2682 in this function. */
2024f65a
VP
2683static void
2684adjust_value_for_child_access (struct value **value,
02142340
VP
2685 struct type **type,
2686 int *was_ptr)
2024f65a
VP
2687{
2688 gdb_assert (type && *type);
2689
02142340
VP
2690 if (was_ptr)
2691 *was_ptr = 0;
2692
2024f65a
VP
2693 *type = check_typedef (*type);
2694
2695 /* The type of value stored in varobj, that is passed
2696 to us, is already supposed to be
2697 reference-stripped. */
2698
2699 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2700
2701 /* Pointers to structures are treated just like
2702 structures when accessing children. Don't
2703 dererences pointers to other types. */
2704 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2705 {
2706 struct type *target_type = get_target_type (*type);
2707 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2708 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2709 {
2710 if (value && *value)
3f4178d6 2711 {
a109c7c1
MS
2712 int success = gdb_value_ind (*value, value);
2713
3f4178d6
DJ
2714 if (!success)
2715 *value = NULL;
2716 }
2024f65a 2717 *type = target_type;
02142340
VP
2718 if (was_ptr)
2719 *was_ptr = 1;
2024f65a
VP
2720 }
2721 }
2722
2723 /* The 'get_target_type' function calls check_typedef on
2724 result, so we can immediately check type code. No
2725 need to call check_typedef here. */
2726}
2727
8b93c638
JM
2728/* C */
2729static int
fba45db2 2730c_number_of_children (struct varobj *var)
8b93c638 2731{
2024f65a
VP
2732 struct type *type = get_value_type (var);
2733 int children = 0;
8b93c638 2734 struct type *target;
8b93c638 2735
02142340 2736 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2737 target = get_target_type (type);
8b93c638
JM
2738
2739 switch (TYPE_CODE (type))
2740 {
2741 case TYPE_CODE_ARRAY:
2742 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2743 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2744 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2745 else
74a44383
DJ
2746 /* If we don't know how many elements there are, don't display
2747 any. */
2748 children = 0;
8b93c638
JM
2749 break;
2750
2751 case TYPE_CODE_STRUCT:
2752 case TYPE_CODE_UNION:
2753 children = TYPE_NFIELDS (type);
2754 break;
2755
2756 case TYPE_CODE_PTR:
581e13c1 2757 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
2758 have one child, except for function ptrs, which have no children,
2759 and except for void*, as we don't know what to show.
2760
0755e6c1
FN
2761 We can show char* so we allow it to be dereferenced. If you decide
2762 to test for it, please mind that a little magic is necessary to
2763 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 2764 TYPE_NAME == "char". */
2024f65a
VP
2765 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2766 || TYPE_CODE (target) == TYPE_CODE_VOID)
2767 children = 0;
2768 else
2769 children = 1;
8b93c638
JM
2770 break;
2771
2772 default:
581e13c1 2773 /* Other types have no children. */
8b93c638
JM
2774 break;
2775 }
2776
2777 return children;
2778}
2779
2780static char *
fba45db2 2781c_name_of_variable (struct varobj *parent)
8b93c638 2782{
1b36a34b 2783 return xstrdup (parent->name);
8b93c638
JM
2784}
2785
bbec2603
VP
2786/* Return the value of element TYPE_INDEX of a structure
2787 value VALUE. VALUE's type should be a structure,
581e13c1 2788 or union, or a typedef to struct/union.
bbec2603
VP
2789
2790 Returns NULL if getting the value fails. Never throws. */
2791static struct value *
2792value_struct_element_index (struct value *value, int type_index)
8b93c638 2793{
bbec2603
VP
2794 struct value *result = NULL;
2795 volatile struct gdb_exception e;
bbec2603 2796 struct type *type = value_type (value);
a109c7c1 2797
bbec2603
VP
2798 type = check_typedef (type);
2799
2800 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2801 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2802
bbec2603
VP
2803 TRY_CATCH (e, RETURN_MASK_ERROR)
2804 {
d6a843b5 2805 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2806 result = value_static_field (type, type_index);
2807 else
2808 result = value_primitive_field (value, 0, type_index, type);
2809 }
2810 if (e.reason < 0)
2811 {
2812 return NULL;
2813 }
2814 else
2815 {
2816 return result;
2817 }
2818}
2819
2820/* Obtain the information about child INDEX of the variable
581e13c1 2821 object PARENT.
bbec2603
VP
2822 If CNAME is not null, sets *CNAME to the name of the child relative
2823 to the parent.
2824 If CVALUE is not null, sets *CVALUE to the value of the child.
2825 If CTYPE is not null, sets *CTYPE to the type of the child.
2826
2827 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2828 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2829 to NULL. */
2830static void
2831c_describe_child (struct varobj *parent, int index,
02142340
VP
2832 char **cname, struct value **cvalue, struct type **ctype,
2833 char **cfull_expression)
bbec2603
VP
2834{
2835 struct value *value = parent->value;
2024f65a 2836 struct type *type = get_value_type (parent);
02142340
VP
2837 char *parent_expression = NULL;
2838 int was_ptr;
bbec2603
VP
2839
2840 if (cname)
2841 *cname = NULL;
2842 if (cvalue)
2843 *cvalue = NULL;
2844 if (ctype)
2845 *ctype = NULL;
02142340
VP
2846 if (cfull_expression)
2847 {
2848 *cfull_expression = NULL;
2849 parent_expression = varobj_get_path_expr (parent);
2850 }
2851 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2852
8b93c638
JM
2853 switch (TYPE_CODE (type))
2854 {
2855 case TYPE_CODE_ARRAY:
bbec2603 2856 if (cname)
3e43a32a
MS
2857 *cname
2858 = xstrdup (int_string (index
2859 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2860 10, 1, 0, 0));
bbec2603
VP
2861
2862 if (cvalue && value)
2863 {
2864 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2865
2497b498 2866 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2867 }
2868
2869 if (ctype)
2870 *ctype = get_target_type (type);
2871
02142340 2872 if (cfull_expression)
43bbcdc2
PH
2873 *cfull_expression =
2874 xstrprintf ("(%s)[%s]", parent_expression,
2875 int_string (index
2876 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2877 10, 1, 0, 0));
02142340
VP
2878
2879
8b93c638
JM
2880 break;
2881
2882 case TYPE_CODE_STRUCT:
2883 case TYPE_CODE_UNION:
bbec2603 2884 if (cname)
1b36a34b 2885 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2886
2887 if (cvalue && value)
2888 {
2889 /* For C, varobj index is the same as type index. */
2890 *cvalue = value_struct_element_index (value, index);
2891 }
2892
2893 if (ctype)
2894 *ctype = TYPE_FIELD_TYPE (type, index);
2895
02142340
VP
2896 if (cfull_expression)
2897 {
2898 char *join = was_ptr ? "->" : ".";
a109c7c1 2899
02142340
VP
2900 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2901 TYPE_FIELD_NAME (type, index));
2902 }
2903
8b93c638
JM
2904 break;
2905
2906 case TYPE_CODE_PTR:
bbec2603
VP
2907 if (cname)
2908 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2909
bbec2603 2910 if (cvalue && value)
3f4178d6
DJ
2911 {
2912 int success = gdb_value_ind (value, cvalue);
a109c7c1 2913
3f4178d6
DJ
2914 if (!success)
2915 *cvalue = NULL;
2916 }
bbec2603 2917
2024f65a
VP
2918 /* Don't use get_target_type because it calls
2919 check_typedef and here, we want to show the true
2920 declared type of the variable. */
bbec2603 2921 if (ctype)
2024f65a 2922 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2923
2924 if (cfull_expression)
2925 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2926
8b93c638
JM
2927 break;
2928
2929 default:
581e13c1 2930 /* This should not happen. */
bbec2603
VP
2931 if (cname)
2932 *cname = xstrdup ("???");
02142340
VP
2933 if (cfull_expression)
2934 *cfull_expression = xstrdup ("???");
581e13c1 2935 /* Don't set value and type, we don't know then. */
8b93c638 2936 }
bbec2603 2937}
8b93c638 2938
bbec2603
VP
2939static char *
2940c_name_of_child (struct varobj *parent, int index)
2941{
2942 char *name;
a109c7c1 2943
02142340 2944 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2945 return name;
2946}
2947
02142340
VP
2948static char *
2949c_path_expr_of_child (struct varobj *child)
2950{
2951 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2952 &child->path_expr);
2953 return child->path_expr;
2954}
2955
c5b48eac
VP
2956/* If frame associated with VAR can be found, switch
2957 to it and return 1. Otherwise, return 0. */
2958static int
2959check_scope (struct varobj *var)
2960{
2961 struct frame_info *fi;
2962 int scope;
2963
2964 fi = frame_find_by_id (var->root->frame);
2965 scope = fi != NULL;
2966
2967 if (fi)
2968 {
2969 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 2970
c5b48eac
VP
2971 if (pc < BLOCK_START (var->root->valid_block) ||
2972 pc >= BLOCK_END (var->root->valid_block))
2973 scope = 0;
2974 else
2975 select_frame (fi);
2976 }
2977 return scope;
2978}
2979
30b28db1 2980static struct value *
fba45db2 2981c_value_of_root (struct varobj **var_handle)
8b93c638 2982{
5e572bb4 2983 struct value *new_val = NULL;
73a93a32 2984 struct varobj *var = *var_handle;
c5b48eac 2985 int within_scope = 0;
6208b47d
VP
2986 struct cleanup *back_to;
2987
581e13c1 2988 /* Only root variables can be updated... */
b2c2bd75 2989 if (!is_root_p (var))
581e13c1 2990 /* Not a root var. */
73a93a32
JI
2991 return NULL;
2992
4f8d22e3 2993 back_to = make_cleanup_restore_current_thread ();
72330bd6 2994
581e13c1 2995 /* Determine whether the variable is still around. */
a5defcdc 2996 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2997 within_scope = 1;
c5b48eac
VP
2998 else if (var->root->thread_id == 0)
2999 {
3000 /* The program was single-threaded when the variable object was
3001 created. Technically, it's possible that the program became
3002 multi-threaded since then, but we don't support such
3003 scenario yet. */
3004 within_scope = check_scope (var);
3005 }
8b93c638
JM
3006 else
3007 {
c5b48eac
VP
3008 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3009 if (in_thread_list (ptid))
d2353924 3010 {
c5b48eac
VP
3011 switch_to_thread (ptid);
3012 within_scope = check_scope (var);
3013 }
8b93c638 3014 }
72330bd6 3015
8b93c638
JM
3016 if (within_scope)
3017 {
73a93a32 3018 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3019 expression fails we want to just return NULL. */
3020 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3021 return new_val;
3022 }
3023
6208b47d
VP
3024 do_cleanups (back_to);
3025
8b93c638
JM
3026 return NULL;
3027}
3028
30b28db1 3029static struct value *
fba45db2 3030c_value_of_child (struct varobj *parent, int index)
8b93c638 3031{
bbec2603 3032 struct value *value = NULL;
8b93c638 3033
a109c7c1 3034 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3035 return value;
3036}
3037
3038static struct type *
fba45db2 3039c_type_of_child (struct varobj *parent, int index)
8b93c638 3040{
bbec2603 3041 struct type *type = NULL;
a109c7c1 3042
02142340 3043 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3044 return type;
3045}
3046
8b93c638 3047static char *
de051565 3048c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3049{
14b3d9c9
JB
3050 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3051 it will print out its children instead of "{...}". So we need to
3052 catch that case explicitly. */
3053 struct type *type = get_type (var);
e64d9b3d 3054
b6313243
TT
3055 /* If we have a custom formatter, return whatever string it has
3056 produced. */
3057 if (var->pretty_printer && var->print_value)
3058 return xstrdup (var->print_value);
3059
581e13c1 3060 /* Strip top-level references. */
14b3d9c9
JB
3061 while (TYPE_CODE (type) == TYPE_CODE_REF)
3062 type = check_typedef (TYPE_TARGET_TYPE (type));
3063
3064 switch (TYPE_CODE (type))
8b93c638
JM
3065 {
3066 case TYPE_CODE_STRUCT:
3067 case TYPE_CODE_UNION:
3068 return xstrdup ("{...}");
3069 /* break; */
3070
3071 case TYPE_CODE_ARRAY:
3072 {
e64d9b3d 3073 char *number;
a109c7c1 3074
b435e160 3075 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3076 return (number);
8b93c638
JM
3077 }
3078 /* break; */
3079
3080 default:
3081 {
575bbeb6
KS
3082 if (var->value == NULL)
3083 {
3084 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3085 member when the parent is an invalid pointer. This is an
3086 error condition, so we should tell the caller. */
575bbeb6
KS
3087 return NULL;
3088 }
3089 else
3090 {
25d5ea92
VP
3091 if (var->not_fetched && value_lazy (var->value))
3092 /* Frozen variable and no value yet. We don't
3093 implicitly fetch the value. MI response will
3094 use empty string for the value, which is OK. */
3095 return NULL;
3096
b2c2bd75 3097 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3098 gdb_assert (!value_lazy (var->value));
de051565
MK
3099
3100 /* If the specified format is the current one,
581e13c1 3101 we can reuse print_value. */
de051565
MK
3102 if (format == var->format)
3103 return xstrdup (var->print_value);
3104 else
d452c4bc 3105 return value_get_print_value (var->value, format, var);
85265413 3106 }
e64d9b3d 3107 }
8b93c638
JM
3108 }
3109}
3110\f
3111
3112/* C++ */
3113
3114static int
fba45db2 3115cplus_number_of_children (struct varobj *var)
8b93c638
JM
3116{
3117 struct type *type;
3118 int children, dont_know;
3119
3120 dont_know = 1;
3121 children = 0;
3122
3123 if (!CPLUS_FAKE_CHILD (var))
3124 {
2024f65a 3125 type = get_value_type (var);
02142340 3126 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3127
3128 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3129 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3130 {
3131 int kids[3];
3132
3133 cplus_class_num_children (type, kids);
3134 if (kids[v_public] != 0)
3135 children++;
3136 if (kids[v_private] != 0)
3137 children++;
3138 if (kids[v_protected] != 0)
3139 children++;
3140
581e13c1 3141 /* Add any baseclasses. */
8b93c638
JM
3142 children += TYPE_N_BASECLASSES (type);
3143 dont_know = 0;
3144
581e13c1 3145 /* FIXME: save children in var. */
8b93c638
JM
3146 }
3147 }
3148 else
3149 {
3150 int kids[3];
3151
2024f65a 3152 type = get_value_type (var->parent);
02142340 3153 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3154
3155 cplus_class_num_children (type, kids);
6e382aa3 3156 if (strcmp (var->name, "public") == 0)
8b93c638 3157 children = kids[v_public];
6e382aa3 3158 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3159 children = kids[v_private];
3160 else
3161 children = kids[v_protected];
3162 dont_know = 0;
3163 }
3164
3165 if (dont_know)
3166 children = c_number_of_children (var);
3167
3168 return children;
3169}
3170
3171/* Compute # of public, private, and protected variables in this class.
3172 That means we need to descend into all baseclasses and find out
581e13c1 3173 how many are there, too. */
8b93c638 3174static void
1669605f 3175cplus_class_num_children (struct type *type, int children[3])
8b93c638 3176{
d48cc9dd
DJ
3177 int i, vptr_fieldno;
3178 struct type *basetype = NULL;
8b93c638
JM
3179
3180 children[v_public] = 0;
3181 children[v_private] = 0;
3182 children[v_protected] = 0;
3183
d48cc9dd 3184 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3185 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3186 {
d48cc9dd
DJ
3187 /* If we have a virtual table pointer, omit it. Even if virtual
3188 table pointers are not specifically marked in the debug info,
3189 they should be artificial. */
3190 if ((type == basetype && i == vptr_fieldno)
3191 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3192 continue;
3193
3194 if (TYPE_FIELD_PROTECTED (type, i))
3195 children[v_protected]++;
3196 else if (TYPE_FIELD_PRIVATE (type, i))
3197 children[v_private]++;
3198 else
3199 children[v_public]++;
3200 }
3201}
3202
3203static char *
fba45db2 3204cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3205{
3206 return c_name_of_variable (parent);
3207}
3208
2024f65a
VP
3209enum accessibility { private_field, protected_field, public_field };
3210
3211/* Check if field INDEX of TYPE has the specified accessibility.
3212 Return 0 if so and 1 otherwise. */
3213static int
3214match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3215{
2024f65a
VP
3216 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3217 return 1;
3218 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3219 return 1;
3220 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3221 && !TYPE_FIELD_PROTECTED (type, index))
3222 return 1;
3223 else
3224 return 0;
3225}
3226
3227static void
3228cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3229 char **cname, struct value **cvalue, struct type **ctype,
3230 char **cfull_expression)
2024f65a 3231{
2024f65a 3232 struct value *value;
8b93c638 3233 struct type *type;
02142340
VP
3234 int was_ptr;
3235 char *parent_expression = NULL;
8b93c638 3236
2024f65a
VP
3237 if (cname)
3238 *cname = NULL;
3239 if (cvalue)
3240 *cvalue = NULL;
3241 if (ctype)
3242 *ctype = NULL;
02142340
VP
3243 if (cfull_expression)
3244 *cfull_expression = NULL;
2024f65a 3245
8b93c638
JM
3246 if (CPLUS_FAKE_CHILD (parent))
3247 {
2024f65a
VP
3248 value = parent->parent->value;
3249 type = get_value_type (parent->parent);
02142340
VP
3250 if (cfull_expression)
3251 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3252 }
3253 else
2024f65a
VP
3254 {
3255 value = parent->value;
3256 type = get_value_type (parent);
02142340
VP
3257 if (cfull_expression)
3258 parent_expression = varobj_get_path_expr (parent);
2024f65a 3259 }
8b93c638 3260
02142340 3261 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3262
3263 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3264 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3265 {
02142340 3266 char *join = was_ptr ? "->" : ".";
a109c7c1 3267
8b93c638
JM
3268 if (CPLUS_FAKE_CHILD (parent))
3269 {
6e382aa3
JJ
3270 /* The fields of the class type are ordered as they
3271 appear in the class. We are given an index for a
3272 particular access control type ("public","protected",
3273 or "private"). We must skip over fields that don't
3274 have the access control we are looking for to properly
581e13c1 3275 find the indexed field. */
6e382aa3 3276 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3277 enum accessibility acc = public_field;
d48cc9dd
DJ
3278 int vptr_fieldno;
3279 struct type *basetype = NULL;
3280
3281 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3282 if (strcmp (parent->name, "private") == 0)
2024f65a 3283 acc = private_field;
6e382aa3 3284 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3285 acc = protected_field;
3286
3287 while (index >= 0)
6e382aa3 3288 {
d48cc9dd
DJ
3289 if ((type == basetype && type_index == vptr_fieldno)
3290 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3291 ; /* ignore vptr */
3292 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3293 --index;
3294 ++type_index;
6e382aa3 3295 }
2024f65a
VP
3296 --type_index;
3297
3298 if (cname)
3299 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3300
3301 if (cvalue && value)
3302 *cvalue = value_struct_element_index (value, type_index);
3303
3304 if (ctype)
3305 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3306
3307 if (cfull_expression)
3e43a32a
MS
3308 *cfull_expression
3309 = xstrprintf ("((%s)%s%s)", parent_expression,
3310 join,
3311 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3312 }
3313 else if (index < TYPE_N_BASECLASSES (type))
3314 {
3315 /* This is a baseclass. */
3316 if (cname)
3317 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3318
3319 if (cvalue && value)
0cc7d26f 3320 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3321
2024f65a
VP
3322 if (ctype)
3323 {
3324 *ctype = TYPE_FIELD_TYPE (type, index);
3325 }
02142340
VP
3326
3327 if (cfull_expression)
3328 {
3329 char *ptr = was_ptr ? "*" : "";
a109c7c1 3330
581e13c1 3331 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3332 expression like
3333 (Base1)d
3334 will create an lvalue, for all appearences, so we don't
3335 need to use more fancy:
3336 *(Base1*)(&d)
3337 construct. */
3338 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3339 ptr,
3340 TYPE_FIELD_NAME (type, index),
3341 ptr,
3342 parent_expression);
3343 }
8b93c638 3344 }
8b93c638
JM
3345 else
3346 {
348144ba 3347 char *access = NULL;
6e382aa3 3348 int children[3];
a109c7c1 3349
2024f65a 3350 cplus_class_num_children (type, children);
6e382aa3 3351
8b93c638 3352 /* Everything beyond the baseclasses can
6e382aa3
JJ
3353 only be "public", "private", or "protected"
3354
3355 The special "fake" children are always output by varobj in
581e13c1 3356 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3357 index -= TYPE_N_BASECLASSES (type);
3358 switch (index)
3359 {
3360 case 0:
6e382aa3 3361 if (children[v_public] > 0)
2024f65a 3362 access = "public";
6e382aa3 3363 else if (children[v_private] > 0)
2024f65a 3364 access = "private";
6e382aa3 3365 else
2024f65a 3366 access = "protected";
6e382aa3 3367 break;
8b93c638 3368 case 1:
6e382aa3 3369 if (children[v_public] > 0)
8b93c638 3370 {
6e382aa3 3371 if (children[v_private] > 0)
2024f65a 3372 access = "private";
6e382aa3 3373 else
2024f65a 3374 access = "protected";
8b93c638 3375 }
6e382aa3 3376 else if (children[v_private] > 0)
2024f65a 3377 access = "protected";
6e382aa3 3378 break;
8b93c638 3379 case 2:
581e13c1 3380 /* Must be protected. */
2024f65a 3381 access = "protected";
6e382aa3 3382 break;
8b93c638 3383 default:
581e13c1 3384 /* error! */
8b93c638
JM
3385 break;
3386 }
348144ba
MS
3387
3388 gdb_assert (access);
2024f65a
VP
3389 if (cname)
3390 *cname = xstrdup (access);
8b93c638 3391
02142340 3392 /* Value and type and full expression are null here. */
2024f65a 3393 }
8b93c638 3394 }
8b93c638
JM
3395 else
3396 {
02142340 3397 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3398 }
3399}
8b93c638 3400
2024f65a
VP
3401static char *
3402cplus_name_of_child (struct varobj *parent, int index)
3403{
3404 char *name = NULL;
a109c7c1 3405
02142340 3406 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3407 return name;
3408}
3409
02142340
VP
3410static char *
3411cplus_path_expr_of_child (struct varobj *child)
3412{
3413 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3414 &child->path_expr);
3415 return child->path_expr;
3416}
3417
30b28db1 3418static struct value *
fba45db2 3419cplus_value_of_root (struct varobj **var_handle)
8b93c638 3420{
73a93a32 3421 return c_value_of_root (var_handle);
8b93c638
JM
3422}
3423
30b28db1 3424static struct value *
fba45db2 3425cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3426{
2024f65a 3427 struct value *value = NULL;
a109c7c1 3428
02142340 3429 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3430 return value;
3431}
3432
3433static struct type *
fba45db2 3434cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3435{
2024f65a 3436 struct type *type = NULL;
a109c7c1 3437
02142340 3438 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3439 return type;
3440}
3441
8b93c638 3442static char *
a109c7c1
MS
3443cplus_value_of_variable (struct varobj *var,
3444 enum varobj_display_formats format)
8b93c638
JM
3445{
3446
3447 /* If we have one of our special types, don't print out
581e13c1 3448 any value. */
8b93c638
JM
3449 if (CPLUS_FAKE_CHILD (var))
3450 return xstrdup ("");
3451
de051565 3452 return c_value_of_variable (var, format);
8b93c638
JM
3453}
3454\f
3455/* Java */
3456
3457static int
fba45db2 3458java_number_of_children (struct varobj *var)
8b93c638
JM
3459{
3460 return cplus_number_of_children (var);
3461}
3462
3463static char *
fba45db2 3464java_name_of_variable (struct varobj *parent)
8b93c638
JM
3465{
3466 char *p, *name;
3467
3468 name = cplus_name_of_variable (parent);
3469 /* If the name has "-" in it, it is because we
581e13c1 3470 needed to escape periods in the name... */
8b93c638
JM
3471 p = name;
3472
3473 while (*p != '\000')
3474 {
3475 if (*p == '-')
3476 *p = '.';
3477 p++;
3478 }
3479
3480 return name;
3481}
3482
3483static char *
fba45db2 3484java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3485{
3486 char *name, *p;
3487
3488 name = cplus_name_of_child (parent, index);
581e13c1 3489 /* Escape any periods in the name... */
8b93c638
JM
3490 p = name;
3491
3492 while (*p != '\000')
3493 {
3494 if (*p == '.')
3495 *p = '-';
3496 p++;
3497 }
3498
3499 return name;
3500}
3501
02142340
VP
3502static char *
3503java_path_expr_of_child (struct varobj *child)
3504{
3505 return NULL;
3506}
3507
30b28db1 3508static struct value *
fba45db2 3509java_value_of_root (struct varobj **var_handle)
8b93c638 3510{
73a93a32 3511 return cplus_value_of_root (var_handle);
8b93c638
JM
3512}
3513
30b28db1 3514static struct value *
fba45db2 3515java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3516{
3517 return cplus_value_of_child (parent, index);
3518}
3519
3520static struct type *
fba45db2 3521java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3522{
3523 return cplus_type_of_child (parent, index);
3524}
3525
8b93c638 3526static char *
de051565 3527java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3528{
de051565 3529 return cplus_value_of_variable (var, format);
8b93c638 3530}
54333c3b
JK
3531
3532/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3533 with an arbitrary caller supplied DATA pointer. */
3534
3535void
3536all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3537{
3538 struct varobj_root *var_root, *var_root_next;
3539
3540 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3541
3542 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3543 {
3544 var_root_next = var_root->next;
3545
3546 (*func) (var_root->rootvar, data);
3547 }
3548}
8b93c638
JM
3549\f
3550extern void _initialize_varobj (void);
3551void
3552_initialize_varobj (void)
3553{
3554 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3555
3556 varobj_table = xmalloc (sizeof_table);
3557 memset (varobj_table, 0, sizeof_table);
3558
85c07804 3559 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
3560 &varobjdebug,
3561 _("Set varobj debugging."),
3562 _("Show varobj debugging."),
3563 _("When non-zero, varobj debugging is enabled."),
3564 NULL, show_varobjdebug,
85c07804 3565 &setlist, &showlist);
8b93c638 3566}
8756216b 3567
54333c3b
JK
3568/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3569 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3570
54333c3b
JK
3571static void
3572varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3573{
54333c3b
JK
3574 /* Floating varobjs are reparsed on each stop, so we don't care if the
3575 presently parsed expression refers to something that's gone. */
3576 if (var->root->floating)
3577 return;
8756216b 3578
54333c3b
JK
3579 /* global var must be re-evaluated. */
3580 if (var->root->valid_block == NULL)
2dbd25e5 3581 {
54333c3b 3582 struct varobj *tmp_var;
2dbd25e5 3583
54333c3b
JK
3584 /* Try to create a varobj with same expression. If we succeed
3585 replace the old varobj, otherwise invalidate it. */
3586 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3587 USE_CURRENT_FRAME);
3588 if (tmp_var != NULL)
3589 {
3590 tmp_var->obj_name = xstrdup (var->obj_name);
3591 varobj_delete (var, NULL, 0);
3592 install_variable (tmp_var);
2dbd25e5 3593 }
54333c3b
JK
3594 else
3595 var->root->is_valid = 0;
2dbd25e5 3596 }
54333c3b
JK
3597 else /* locals must be invalidated. */
3598 var->root->is_valid = 0;
3599}
3600
3601/* Invalidate the varobjs that are tied to locals and re-create the ones that
3602 are defined on globals.
3603 Invalidated varobjs will be always printed in_scope="invalid". */
3604
3605void
3606varobj_invalidate (void)
3607{
3608 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3609}
This page took 1.355753 seconds and 4 git commands to generate.