* scripttempl/elf.sc: Discard sections with .gnu.lto_ prefix.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75
JB
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
8b93c638
JM
32
33#include "varobj.h"
28335dcc 34#include "vec.h"
6208b47d
VP
35#include "gdbthread.h"
36#include "inferior.h"
8b93c638 37
b6313243
TT
38#if HAVE_PYTHON
39#include "python/python.h"
40#include "python/python-internal.h"
41#else
42typedef int PyObject;
43#endif
44
8b93c638
JM
45/* Non-zero if we want to see trace of varobj level stuff. */
46
47int varobjdebug = 0;
920d2a44
AC
48static void
49show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51{
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53}
8b93c638
JM
54
55/* String representations of gdb's format codes */
56char *varobj_format_string[] =
72330bd6 57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
58
59/* String representations of gdb's known languages */
72330bd6 60char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638
JM
61
62/* Data structures */
63
64/* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66struct varobj_root
72330bd6 67{
8b93c638 68
72330bd6
AC
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
8b93c638 71
72330bd6
AC
72 /* Block for which this expression is valid */
73 struct block *valid_block;
8b93c638 74
44a67aa7
VP
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
e64d9b3d 77 struct frame_id frame;
8b93c638 78
c5b48eac
VP
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
a5defcdc
VP
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
73a93a32 90
8756216b
DP
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
72330bd6
AC
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
8b93c638 97
72330bd6
AC
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
8b93c638 100
72330bd6
AC
101 /* Next root variable */
102 struct varobj_root *next;
103};
8b93c638
JM
104
105/* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108struct varobj
72330bd6 109{
8b93c638 110
72330bd6
AC
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
8b93c638 116
02142340
VP
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
72330bd6
AC
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
8b93c638 124
72330bd6
AC
125 /* Index of this variable in its parent or -1 */
126 int index;
8b93c638 127
202ddcaa
VP
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
72330bd6 131 struct type *type;
8b93c638 132
b20d8971
VP
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
b2c2bd75
VP
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
30b28db1 137 struct value *value;
8b93c638 138
72330bd6
AC
139 /* The number of (immediate) children this variable has */
140 int num_children;
8b93c638 141
72330bd6
AC
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
8b93c638 144
28335dcc
VP
145 /* Children of this object. */
146 VEC (varobj_p) *children;
8b93c638 147
b6313243
TT
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
72330bd6
AC
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
8b93c638 156
72330bd6
AC
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
fb9b6b35
JJ
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
85265413
NR
162
163 /* Last print value. */
164 char *print_value;
25d5ea92
VP
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
b6313243
TT
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
72330bd6 179};
8b93c638 180
8b93c638 181struct cpstack
72330bd6
AC
182{
183 char *name;
184 struct cpstack *next;
185};
8b93c638
JM
186
187/* A list of varobjs */
188
189struct vlist
72330bd6
AC
190{
191 struct varobj *var;
192 struct vlist *next;
193};
8b93c638
JM
194
195/* Private function prototypes */
196
197/* Helper functions for the above subcommands. */
198
a14ed312 199static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 200
a14ed312
KB
201static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
8b93c638 203
a14ed312 204static int install_variable (struct varobj *);
8b93c638 205
a14ed312 206static void uninstall_variable (struct varobj *);
8b93c638 207
a14ed312 208static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 209
b6313243
TT
210static struct varobj *
211create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
8b93c638
JM
214/* Utility routines */
215
a14ed312 216static struct varobj *new_variable (void);
8b93c638 217
a14ed312 218static struct varobj *new_root_variable (void);
8b93c638 219
a14ed312 220static void free_variable (struct varobj *var);
8b93c638 221
74b7792f
AC
222static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
a14ed312 224static struct type *get_type (struct varobj *var);
8b93c638 225
6e2a9270
VP
226static struct type *get_value_type (struct varobj *var);
227
a14ed312 228static struct type *get_target_type (struct type *);
8b93c638 229
a14ed312 230static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 231
a14ed312 232static void cppush (struct cpstack **pstack, char *name);
8b93c638 233
a14ed312 234static char *cppop (struct cpstack **pstack);
8b93c638 235
acd65feb
VP
236static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
b6313243
TT
239static void install_default_visualizer (struct varobj *var);
240
8b93c638
JM
241/* Language-specific routines. */
242
a14ed312 243static enum varobj_languages variable_language (struct varobj *var);
8b93c638 244
a14ed312 245static int number_of_children (struct varobj *);
8b93c638 246
a14ed312 247static char *name_of_variable (struct varobj *);
8b93c638 248
a14ed312 249static char *name_of_child (struct varobj *, int);
8b93c638 250
30b28db1 251static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 252
30b28db1 253static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 254
de051565
MK
255static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
8b93c638 257
85265413 258static char *value_get_print_value (struct value *value,
b6313243 259 enum varobj_display_formats format,
d452c4bc 260 struct varobj *var);
85265413 261
b2c2bd75
VP
262static int varobj_value_is_changeable_p (struct varobj *var);
263
264static int is_root_p (struct varobj *var);
8b93c638 265
b6313243
TT
266static struct varobj *
267varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
8b93c638
JM
269/* C implementation */
270
a14ed312 271static int c_number_of_children (struct varobj *var);
8b93c638 272
a14ed312 273static char *c_name_of_variable (struct varobj *parent);
8b93c638 274
a14ed312 275static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 276
02142340
VP
277static char *c_path_expr_of_child (struct varobj *child);
278
30b28db1 279static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 280
30b28db1 281static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 282
a14ed312 283static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638
JM
287
288/* C++ implementation */
289
a14ed312 290static int cplus_number_of_children (struct varobj *var);
8b93c638 291
a14ed312 292static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 293
a14ed312 294static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 295
a14ed312 296static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 297
02142340
VP
298static char *cplus_path_expr_of_child (struct varobj *child);
299
30b28db1 300static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 301
30b28db1 302static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 303
a14ed312 304static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 305
de051565
MK
306static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
8b93c638
JM
308
309/* Java implementation */
310
a14ed312 311static int java_number_of_children (struct varobj *var);
8b93c638 312
a14ed312 313static char *java_name_of_variable (struct varobj *parent);
8b93c638 314
a14ed312 315static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 316
02142340
VP
317static char *java_path_expr_of_child (struct varobj *child);
318
30b28db1 319static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 320
30b28db1 321static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 322
a14ed312 323static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 324
de051565
MK
325static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
8b93c638
JM
327
328/* The language specific vector */
329
330struct language_specific
72330bd6 331{
8b93c638 332
72330bd6
AC
333 /* The language of this variable */
334 enum varobj_languages language;
8b93c638 335
72330bd6
AC
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
8b93c638 338
72330bd6
AC
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
8b93c638 341
72330bd6
AC
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 344
02142340
VP
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
30b28db1
AC
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 351
30b28db1
AC
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 354
72330bd6
AC
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 357
72330bd6 358 /* The current value of VAR. */
de051565
MK
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
72330bd6 361};
8b93c638
JM
362
363/* Array of known source language routines. */
d5d6fca5 364static struct language_specific languages[vlang_end] = {
8b93c638
JM
365 /* Unknown (try treating as C */
366 {
72330bd6
AC
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
02142340 371 c_path_expr_of_child,
72330bd6
AC
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
72330bd6 375 c_value_of_variable}
8b93c638
JM
376 ,
377 /* C */
378 {
72330bd6
AC
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
02142340 383 c_path_expr_of_child,
72330bd6
AC
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
72330bd6 387 c_value_of_variable}
8b93c638
JM
388 ,
389 /* C++ */
390 {
72330bd6
AC
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
02142340 395 cplus_path_expr_of_child,
72330bd6
AC
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
72330bd6 399 cplus_value_of_variable}
8b93c638
JM
400 ,
401 /* Java */
402 {
72330bd6
AC
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
02142340 407 java_path_expr_of_child,
72330bd6
AC
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
72330bd6 411 java_value_of_variable}
8b93c638
JM
412};
413
414/* A little convenience enum for dealing with C++/Java */
415enum vsections
72330bd6
AC
416{
417 v_public = 0, v_private, v_protected
418};
8b93c638
JM
419
420/* Private data */
421
422/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 423static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
424
425/* Header of the list of root variable objects */
426static struct varobj_root *rootlist;
8b93c638
JM
427
428/* Prime number indicating the number of buckets in the hash table */
429/* A prime large enough to avoid too many colisions */
430#define VAROBJ_TABLE_SIZE 227
431
432/* Pointer to the varobj hash table (built at run time) */
433static struct vlist **varobj_table;
434
8b93c638
JM
435/* Is the variable X one of our "fake" children? */
436#define CPLUS_FAKE_CHILD(x) \
437((x) != NULL && (x)->type == NULL && (x)->value == NULL)
438\f
439
440/* API Implementation */
b2c2bd75
VP
441static int
442is_root_p (struct varobj *var)
443{
444 return (var->root->rootvar == var);
445}
8b93c638 446
d452c4bc
UW
447#ifdef HAVE_PYTHON
448/* Helper function to install a Python environment suitable for
449 use during operations on VAR. */
450struct cleanup *
451varobj_ensure_python_env (struct varobj *var)
452{
453 return ensure_python_env (var->root->exp->gdbarch,
454 var->root->exp->language_defn);
455}
456#endif
457
8b93c638
JM
458/* Creates a varobj (not its children) */
459
7d8547c9
AC
460/* Return the full FRAME which corresponds to the given CORE_ADDR
461 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
462
463static struct frame_info *
464find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
465{
466 struct frame_info *frame = NULL;
467
468 if (frame_addr == (CORE_ADDR) 0)
469 return NULL;
470
9d49bdc2
PA
471 for (frame = get_current_frame ();
472 frame != NULL;
473 frame = get_prev_frame (frame))
7d8547c9 474 {
1fac167a
UW
475 /* The CORE_ADDR we get as argument was parsed from a string GDB
476 output as $fp. This output got truncated to gdbarch_addr_bit.
477 Truncate the frame base address in the same manner before
478 comparing it against our argument. */
479 CORE_ADDR frame_base = get_frame_base_address (frame);
480 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
481 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
482 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
483
484 if (frame_base == frame_addr)
7d8547c9
AC
485 return frame;
486 }
9d49bdc2
PA
487
488 return NULL;
7d8547c9
AC
489}
490
8b93c638
JM
491struct varobj *
492varobj_create (char *objname,
72330bd6 493 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
494{
495 struct varobj *var;
2c67cb8b
AC
496 struct frame_info *fi;
497 struct frame_info *old_fi = NULL;
8b93c638
JM
498 struct block *block;
499 struct cleanup *old_chain;
500
501 /* Fill out a varobj structure for the (root) variable being constructed. */
502 var = new_root_variable ();
74b7792f 503 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
504
505 if (expression != NULL)
506 {
507 char *p;
508 enum varobj_languages lang;
e55dccf0 509 struct value *value = NULL;
8b93c638 510
9d49bdc2
PA
511 /* Parse and evaluate the expression, filling in as much of the
512 variable's data as possible. */
513
514 if (has_stack_frames ())
515 {
516 /* Allow creator to specify context of variable */
517 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
518 fi = get_selected_frame (NULL);
519 else
520 /* FIXME: cagney/2002-11-23: This code should be doing a
521 lookup using the frame ID and not just the frame's
522 ``address''. This, of course, means an interface
523 change. However, with out that interface change ISAs,
524 such as the ia64 with its two stacks, won't work.
525 Similar goes for the case where there is a frameless
526 function. */
527 fi = find_frame_addr_in_frame_chain (frame);
528 }
8b93c638 529 else
9d49bdc2 530 fi = NULL;
8b93c638 531
73a93a32
JI
532 /* frame = -2 means always use selected frame */
533 if (type == USE_SELECTED_FRAME)
a5defcdc 534 var->root->floating = 1;
73a93a32 535
8b93c638
JM
536 block = NULL;
537 if (fi != NULL)
ae767bfb 538 block = get_frame_block (fi, 0);
8b93c638
JM
539
540 p = expression;
541 innermost_block = NULL;
73a93a32
JI
542 /* Wrap the call to parse expression, so we can
543 return a sensible error. */
544 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
545 {
546 return NULL;
547 }
8b93c638
JM
548
549 /* Don't allow variables to be created for types. */
550 if (var->root->exp->elts[0].opcode == OP_TYPE)
551 {
552 do_cleanups (old_chain);
bc8332bb
AC
553 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
554 " as an expression.\n");
8b93c638
JM
555 return NULL;
556 }
557
558 var->format = variable_default_display (var);
559 var->root->valid_block = innermost_block;
1b36a34b 560 var->name = xstrdup (expression);
02142340 561 /* For a root var, the name and the expr are the same. */
1b36a34b 562 var->path_expr = xstrdup (expression);
8b93c638
JM
563
564 /* When the frame is different from the current frame,
565 we must select the appropriate frame before parsing
566 the expression, otherwise the value will not be current.
567 Since select_frame is so benign, just call it for all cases. */
44a67aa7 568 if (innermost_block && fi != NULL)
8b93c638 569 {
7a424e99 570 var->root->frame = get_frame_id (fi);
c5b48eac 571 var->root->thread_id = pid_to_thread_id (inferior_ptid);
206415a3 572 old_fi = get_selected_frame (NULL);
c5b48eac 573 select_frame (fi);
8b93c638
JM
574 }
575
340a7723 576 /* We definitely need to catch errors here.
8b93c638
JM
577 If evaluate_expression succeeds we got the value we wanted.
578 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 579 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
580 {
581 /* Error getting the value. Try to at least get the
582 right type. */
583 struct value *type_only_value = evaluate_type (var->root->exp);
584 var->type = value_type (type_only_value);
585 }
586 else
587 var->type = value_type (value);
acd65feb 588
acd65feb 589 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
590
591 /* Set language info */
592 lang = variable_language (var);
d5d6fca5 593 var->root->lang = &languages[lang];
8b93c638
JM
594
595 /* Set ourselves as our root */
596 var->root->rootvar = var;
597
598 /* Reset the selected frame */
e21458b2 599 if (old_fi != NULL)
0f7d239c 600 select_frame (old_fi);
8b93c638
JM
601 }
602
73a93a32
JI
603 /* If the variable object name is null, that means this
604 is a temporary variable, so don't install it. */
605
606 if ((var != NULL) && (objname != NULL))
8b93c638 607 {
1b36a34b 608 var->obj_name = xstrdup (objname);
8b93c638
JM
609
610 /* If a varobj name is duplicated, the install will fail so
611 we must clenup */
612 if (!install_variable (var))
613 {
614 do_cleanups (old_chain);
615 return NULL;
616 }
617 }
618
b6313243 619 install_default_visualizer (var);
8b93c638
JM
620 discard_cleanups (old_chain);
621 return var;
622}
623
624/* Generates an unique name that can be used for a varobj */
625
626char *
627varobj_gen_name (void)
628{
629 static int id = 0;
e64d9b3d 630 char *obj_name;
8b93c638
JM
631
632 /* generate a name for this object */
633 id++;
b435e160 634 obj_name = xstrprintf ("var%d", id);
8b93c638 635
e64d9b3d 636 return obj_name;
8b93c638
JM
637}
638
61d8f275
JK
639/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
640 error if OBJNAME cannot be found. */
8b93c638
JM
641
642struct varobj *
643varobj_get_handle (char *objname)
644{
645 struct vlist *cv;
646 const char *chp;
647 unsigned int index = 0;
648 unsigned int i = 1;
649
650 for (chp = objname; *chp; chp++)
651 {
652 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
653 }
654
655 cv = *(varobj_table + index);
656 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
657 cv = cv->next;
658
659 if (cv == NULL)
8a3fe4f8 660 error (_("Variable object not found"));
8b93c638
JM
661
662 return cv->var;
663}
664
665/* Given the handle, return the name of the object */
666
667char *
668varobj_get_objname (struct varobj *var)
669{
670 return var->obj_name;
671}
672
673/* Given the handle, return the expression represented by the object */
674
675char *
676varobj_get_expression (struct varobj *var)
677{
678 return name_of_variable (var);
679}
680
681/* Deletes a varobj and all its children if only_children == 0,
682 otherwise deletes only the children; returns a malloc'ed list of all the
683 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
684
685int
686varobj_delete (struct varobj *var, char ***dellist, int only_children)
687{
688 int delcount;
689 int mycount;
690 struct cpstack *result = NULL;
691 char **cp;
692
693 /* Initialize a stack for temporary results */
694 cppush (&result, NULL);
695
696 if (only_children)
697 /* Delete only the variable children */
698 delcount = delete_variable (&result, var, 1 /* only the children */ );
699 else
700 /* Delete the variable and all its children */
701 delcount = delete_variable (&result, var, 0 /* parent+children */ );
702
703 /* We may have been asked to return a list of what has been deleted */
704 if (dellist != NULL)
705 {
706 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
707
708 cp = *dellist;
709 mycount = delcount;
710 *cp = cppop (&result);
711 while ((*cp != NULL) && (mycount > 0))
712 {
713 mycount--;
714 cp++;
715 *cp = cppop (&result);
716 }
717
718 if (mycount || (*cp != NULL))
8a3fe4f8 719 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 720 mycount);
8b93c638
JM
721 }
722
723 return delcount;
724}
725
b6313243
TT
726/* Convenience function for varobj_set_visualizer. Instantiate a
727 pretty-printer for a given value. */
728static PyObject *
729instantiate_pretty_printer (PyObject *constructor, struct value *value)
730{
731#if HAVE_PYTHON
732 PyObject *val_obj = NULL;
733 PyObject *printer;
734 volatile struct gdb_exception except;
735
736 TRY_CATCH (except, RETURN_MASK_ALL)
737 {
738 value = value_copy (value);
739 }
740 GDB_PY_HANDLE_EXCEPTION (except);
741 val_obj = value_to_value_object (value);
742
743 if (! val_obj)
744 return NULL;
745
746 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
747 Py_DECREF (val_obj);
748 return printer;
749#endif
750 return NULL;
751}
752
8b93c638
JM
753/* Set/Get variable object display format */
754
755enum varobj_display_formats
756varobj_set_display_format (struct varobj *var,
757 enum varobj_display_formats format)
758{
759 switch (format)
760 {
761 case FORMAT_NATURAL:
762 case FORMAT_BINARY:
763 case FORMAT_DECIMAL:
764 case FORMAT_HEXADECIMAL:
765 case FORMAT_OCTAL:
766 var->format = format;
767 break;
768
769 default:
770 var->format = variable_default_display (var);
771 }
772
ae7d22a6
VP
773 if (varobj_value_is_changeable_p (var)
774 && var->value && !value_lazy (var->value))
775 {
6c761d9c 776 xfree (var->print_value);
d452c4bc 777 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
778 }
779
8b93c638
JM
780 return var->format;
781}
782
783enum varobj_display_formats
784varobj_get_display_format (struct varobj *var)
785{
786 return var->format;
787}
788
b6313243
TT
789char *
790varobj_get_display_hint (struct varobj *var)
791{
792 char *result = NULL;
793
794#if HAVE_PYTHON
d452c4bc
UW
795 struct cleanup *back_to = varobj_ensure_python_env (var);
796
b6313243
TT
797 if (var->pretty_printer)
798 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
799
800 do_cleanups (back_to);
b6313243
TT
801#endif
802
803 return result;
804}
805
c5b48eac
VP
806/* If the variable object is bound to a specific thread, that
807 is its evaluation can always be done in context of a frame
808 inside that thread, returns GDB id of the thread -- which
809 is always positive. Otherwise, returns -1. */
810int
811varobj_get_thread_id (struct varobj *var)
812{
813 if (var->root->valid_block && var->root->thread_id > 0)
814 return var->root->thread_id;
815 else
816 return -1;
817}
818
25d5ea92
VP
819void
820varobj_set_frozen (struct varobj *var, int frozen)
821{
822 /* When a variable is unfrozen, we don't fetch its value.
823 The 'not_fetched' flag remains set, so next -var-update
824 won't complain.
825
826 We don't fetch the value, because for structures the client
827 should do -var-update anyway. It would be bad to have different
828 client-size logic for structure and other types. */
829 var->frozen = frozen;
830}
831
832int
833varobj_get_frozen (struct varobj *var)
834{
835 return var->frozen;
836}
837
b6313243
TT
838static int
839update_dynamic_varobj_children (struct varobj *var,
840 VEC (varobj_p) **changed,
841 VEC (varobj_p) **new_and_unchanged,
842 int *cchanged)
843
844{
845#if HAVE_PYTHON
846 /* FIXME: we *might* want to provide this functionality as
847 a standalone function, so that other interested parties
848 than varobj code can benefit for this. */
849 struct cleanup *back_to;
850 PyObject *children;
851 PyObject *iterator;
852 int i;
853 int children_changed = 0;
854 PyObject *printer = var->pretty_printer;
b6313243 855
d452c4bc 856 back_to = varobj_ensure_python_env (var);
b6313243
TT
857
858 *cchanged = 0;
859 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
860 {
861 do_cleanups (back_to);
862 return 0;
863 }
864
865 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
866 NULL);
867
868 if (!children)
869 {
870 gdbpy_print_stack ();
da1f2771 871 error (_("Null value returned for children"));
b6313243
TT
872 }
873
874 make_cleanup_py_decref (children);
875
876 if (!PyIter_Check (children))
da1f2771 877 error (_("Returned value is not iterable"));
b6313243
TT
878
879 iterator = PyObject_GetIter (children);
880 if (!iterator)
881 {
882 gdbpy_print_stack ();
da1f2771 883 error (_("Could not get children iterator"));
b6313243
TT
884 }
885 make_cleanup_py_decref (iterator);
886
887 for (i = 0; ; ++i)
888 {
889 PyObject *item = PyIter_Next (iterator);
890 PyObject *py_v;
891 struct value *v;
892 char *name;
893 struct cleanup *inner;
894
895 if (!item)
896 break;
897 inner = make_cleanup_py_decref (item);
898
899 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
da1f2771 900 error (_("Invalid item from the child list"));
b6313243 901
4e7a5ef5 902 v = convert_value_from_python (py_v);
b6313243
TT
903
904 /* TODO: This assume the name of the i-th child never changes. */
905
906 /* Now see what to do here. */
907 if (VEC_length (varobj_p, var->children) < i + 1)
908 {
909 /* There's no child yet. */
910 struct varobj *child = varobj_add_child (var, name, v);
911 if (new_and_unchanged)
912 VEC_safe_push (varobj_p, *new_and_unchanged, child);
913 children_changed = 1;
914 }
915 else
916 {
917 varobj_p existing = VEC_index (varobj_p, var->children, i);
918 if (install_new_value (existing, v, 0) && changed)
919 {
920 if (changed)
921 VEC_safe_push (varobj_p, *changed, existing);
922 }
923 else
924 {
925 if (new_and_unchanged)
926 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
927 }
928 }
929
930 do_cleanups (inner);
931 }
932
933 if (i < VEC_length (varobj_p, var->children))
934 {
935 int i;
936 children_changed = 1;
937 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
938 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
939 }
940 VEC_truncate (varobj_p, var->children, i);
941 var->num_children = VEC_length (varobj_p, var->children);
942
943 do_cleanups (back_to);
944
945 *cchanged = children_changed;
946 return 1;
947#else
948 gdb_assert (0 && "should never be called if Python is not enabled");
949#endif
950}
25d5ea92 951
8b93c638
JM
952int
953varobj_get_num_children (struct varobj *var)
954{
955 if (var->num_children == -1)
b6313243
TT
956 {
957 int changed;
958 if (!var->pretty_printer
959 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
960 var->num_children = number_of_children (var);
961 }
8b93c638
JM
962
963 return var->num_children;
964}
965
966/* Creates a list of the immediate children of a variable object;
967 the return code is the number of such children or -1 on error */
968
d56d46f5
VP
969VEC (varobj_p)*
970varobj_list_children (struct varobj *var)
8b93c638
JM
971{
972 struct varobj *child;
973 char *name;
b6313243
TT
974 int i, children_changed;
975
976 var->children_requested = 1;
977
978 if (var->pretty_printer
979 /* This, in theory, can result in the number of children changing without
980 frontend noticing. But well, calling -var-list-children on the same
981 varobj twice is not something a sane frontend would do. */
982 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
983 return var->children;
8b93c638 984
8b93c638
JM
985 if (var->num_children == -1)
986 var->num_children = number_of_children (var);
987
74a44383
DJ
988 /* If that failed, give up. */
989 if (var->num_children == -1)
d56d46f5 990 return var->children;
74a44383 991
28335dcc
VP
992 /* If we're called when the list of children is not yet initialized,
993 allocate enough elements in it. */
994 while (VEC_length (varobj_p, var->children) < var->num_children)
995 VEC_safe_push (varobj_p, var->children, NULL);
996
8b93c638
JM
997 for (i = 0; i < var->num_children; i++)
998 {
d56d46f5 999 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1000
1001 if (existing == NULL)
1002 {
1003 /* Either it's the first call to varobj_list_children for
1004 this variable object, and the child was never created,
1005 or it was explicitly deleted by the client. */
1006 name = name_of_child (var, i);
1007 existing = create_child (var, i, name);
1008 VEC_replace (varobj_p, var->children, i, existing);
b6313243 1009 install_default_visualizer (existing);
28335dcc 1010 }
8b93c638
JM
1011 }
1012
d56d46f5 1013 return var->children;
8b93c638
JM
1014}
1015
b6313243
TT
1016static struct varobj *
1017varobj_add_child (struct varobj *var, const char *name, struct value *value)
1018{
1019 varobj_p v = create_child_with_value (var,
1020 VEC_length (varobj_p, var->children),
1021 name, value);
1022 VEC_safe_push (varobj_p, var->children, v);
1023 install_default_visualizer (v);
1024 return v;
1025}
1026
8b93c638
JM
1027/* Obtain the type of an object Variable as a string similar to the one gdb
1028 prints on the console */
1029
1030char *
1031varobj_get_type (struct varobj *var)
1032{
8b93c638 1033 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1034 NULL, too.)
1035 Do not return a type for invalid variables as well. */
1036 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1037 return NULL;
1038
1a4300e9 1039 return type_to_string (var->type);
8b93c638
JM
1040}
1041
1ecb4ee0
DJ
1042/* Obtain the type of an object variable. */
1043
1044struct type *
1045varobj_get_gdb_type (struct varobj *var)
1046{
1047 return var->type;
1048}
1049
02142340
VP
1050/* Return a pointer to the full rooted expression of varobj VAR.
1051 If it has not been computed yet, compute it. */
1052char *
1053varobj_get_path_expr (struct varobj *var)
1054{
1055 if (var->path_expr != NULL)
1056 return var->path_expr;
1057 else
1058 {
1059 /* For root varobjs, we initialize path_expr
1060 when creating varobj, so here it should be
1061 child varobj. */
1062 gdb_assert (!is_root_p (var));
1063 return (*var->root->lang->path_expr_of_child) (var);
1064 }
1065}
1066
8b93c638
JM
1067enum varobj_languages
1068varobj_get_language (struct varobj *var)
1069{
1070 return variable_language (var);
1071}
1072
1073int
1074varobj_get_attributes (struct varobj *var)
1075{
1076 int attributes = 0;
1077
340a7723 1078 if (varobj_editable_p (var))
8b93c638
JM
1079 /* FIXME: define masks for attributes */
1080 attributes |= 0x00000001; /* Editable */
1081
1082 return attributes;
1083}
1084
de051565
MK
1085char *
1086varobj_get_formatted_value (struct varobj *var,
1087 enum varobj_display_formats format)
1088{
1089 return my_value_of_variable (var, format);
1090}
1091
8b93c638
JM
1092char *
1093varobj_get_value (struct varobj *var)
1094{
de051565 1095 return my_value_of_variable (var, var->format);
8b93c638
JM
1096}
1097
1098/* Set the value of an object variable (if it is editable) to the
1099 value of the given expression */
1100/* Note: Invokes functions that can call error() */
1101
1102int
1103varobj_set_value (struct varobj *var, char *expression)
1104{
30b28db1 1105 struct value *val;
8b93c638 1106 int offset = 0;
a6c442d8 1107 int error = 0;
8b93c638
JM
1108
1109 /* The argument "expression" contains the variable's new value.
1110 We need to first construct a legal expression for this -- ugh! */
1111 /* Does this cover all the bases? */
1112 struct expression *exp;
30b28db1 1113 struct value *value;
8b93c638 1114 int saved_input_radix = input_radix;
340a7723
NR
1115 char *s = expression;
1116 int i;
8b93c638 1117
340a7723 1118 gdb_assert (varobj_editable_p (var));
8b93c638 1119
340a7723
NR
1120 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1121 exp = parse_exp_1 (&s, 0, 0);
1122 if (!gdb_evaluate_expression (exp, &value))
1123 {
1124 /* We cannot proceed without a valid expression. */
1125 xfree (exp);
1126 return 0;
8b93c638
JM
1127 }
1128
340a7723
NR
1129 /* All types that are editable must also be changeable. */
1130 gdb_assert (varobj_value_is_changeable_p (var));
1131
1132 /* The value of a changeable variable object must not be lazy. */
1133 gdb_assert (!value_lazy (var->value));
1134
1135 /* Need to coerce the input. We want to check if the
1136 value of the variable object will be different
1137 after assignment, and the first thing value_assign
1138 does is coerce the input.
1139 For example, if we are assigning an array to a pointer variable we
1140 should compare the pointer with the the array's address, not with the
1141 array's content. */
1142 value = coerce_array (value);
1143
1144 /* The new value may be lazy. gdb_value_assign, or
1145 rather value_contents, will take care of this.
1146 If fetching of the new value will fail, gdb_value_assign
1147 with catch the exception. */
1148 if (!gdb_value_assign (var->value, value, &val))
1149 return 0;
1150
1151 /* If the value has changed, record it, so that next -var-update can
1152 report this change. If a variable had a value of '1', we've set it
1153 to '333' and then set again to '1', when -var-update will report this
1154 variable as changed -- because the first assignment has set the
1155 'updated' flag. There's no need to optimize that, because return value
1156 of -var-update should be considered an approximation. */
1157 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1158 input_radix = saved_input_radix;
1159 return 1;
8b93c638
JM
1160}
1161
acd65feb
VP
1162/* Assign a new value to a variable object. If INITIAL is non-zero,
1163 this is the first assignement after the variable object was just
1164 created, or changed type. In that case, just assign the value
1165 and return 0.
ee342b23
VP
1166 Otherwise, assign the new value, and return 1 if the value is different
1167 from the current one, 0 otherwise. The comparison is done on textual
1168 representation of value. Therefore, some types need not be compared. E.g.
1169 for structures the reported value is always "{...}", so no comparison is
1170 necessary here. If the old value was NULL and new one is not, or vice versa,
1171 we always return 1.
b26ed50d
VP
1172
1173 The VALUE parameter should not be released -- the function will
1174 take care of releasing it when needed. */
acd65feb
VP
1175static int
1176install_new_value (struct varobj *var, struct value *value, int initial)
1177{
1178 int changeable;
1179 int need_to_fetch;
1180 int changed = 0;
25d5ea92 1181 int intentionally_not_fetched = 0;
7a4d50bf 1182 char *print_value = NULL;
acd65feb 1183
acd65feb
VP
1184 /* We need to know the varobj's type to decide if the value should
1185 be fetched or not. C++ fake children (public/protected/private) don't have
1186 a type. */
1187 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1188 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1189
1190 /* If the type has custom visualizer, we consider it to be always
1191 changeable. FIXME: need to make sure this behaviour will not
1192 mess up read-sensitive values. */
1193 if (var->pretty_printer)
1194 changeable = 1;
1195
acd65feb
VP
1196 need_to_fetch = changeable;
1197
b26ed50d
VP
1198 /* We are not interested in the address of references, and given
1199 that in C++ a reference is not rebindable, it cannot
1200 meaningfully change. So, get hold of the real value. */
1201 if (value)
1202 {
1203 value = coerce_ref (value);
1204 release_value (value);
1205 }
1206
acd65feb
VP
1207 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1208 /* For unions, we need to fetch the value implicitly because
1209 of implementation of union member fetch. When gdb
1210 creates a value for a field and the value of the enclosing
1211 structure is not lazy, it immediately copies the necessary
1212 bytes from the enclosing values. If the enclosing value is
1213 lazy, the call to value_fetch_lazy on the field will read
1214 the data from memory. For unions, that means we'll read the
1215 same memory more than once, which is not desirable. So
1216 fetch now. */
1217 need_to_fetch = 1;
1218
1219 /* The new value might be lazy. If the type is changeable,
1220 that is we'll be comparing values of this type, fetch the
1221 value now. Otherwise, on the next update the old value
1222 will be lazy, which means we've lost that old value. */
1223 if (need_to_fetch && value && value_lazy (value))
1224 {
25d5ea92
VP
1225 struct varobj *parent = var->parent;
1226 int frozen = var->frozen;
1227 for (; !frozen && parent; parent = parent->parent)
1228 frozen |= parent->frozen;
1229
1230 if (frozen && initial)
1231 {
1232 /* For variables that are frozen, or are children of frozen
1233 variables, we don't do fetch on initial assignment.
1234 For non-initial assignemnt we do the fetch, since it means we're
1235 explicitly asked to compare the new value with the old one. */
1236 intentionally_not_fetched = 1;
1237 }
1238 else if (!gdb_value_fetch_lazy (value))
acd65feb 1239 {
acd65feb
VP
1240 /* Set the value to NULL, so that for the next -var-update,
1241 we don't try to compare the new value with this value,
1242 that we couldn't even read. */
1243 value = NULL;
1244 }
acd65feb
VP
1245 }
1246
b6313243 1247
7a4d50bf
VP
1248 /* Below, we'll be comparing string rendering of old and new
1249 values. Don't get string rendering if the value is
1250 lazy -- if it is, the code above has decided that the value
1251 should not be fetched. */
1252 if (value && !value_lazy (value))
d452c4bc 1253 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1254
acd65feb
VP
1255 /* If the type is changeable, compare the old and the new values.
1256 If this is the initial assignment, we don't have any old value
1257 to compare with. */
7a4d50bf 1258 if (!initial && changeable)
acd65feb
VP
1259 {
1260 /* If the value of the varobj was changed by -var-set-value, then the
1261 value in the varobj and in the target is the same. However, that value
1262 is different from the value that the varobj had after the previous
57e66780 1263 -var-update. So need to the varobj as changed. */
acd65feb 1264 if (var->updated)
57e66780 1265 {
57e66780
DJ
1266 changed = 1;
1267 }
acd65feb
VP
1268 else
1269 {
1270 /* Try to compare the values. That requires that both
1271 values are non-lazy. */
25d5ea92
VP
1272 if (var->not_fetched && value_lazy (var->value))
1273 {
1274 /* This is a frozen varobj and the value was never read.
1275 Presumably, UI shows some "never read" indicator.
1276 Now that we've fetched the real value, we need to report
1277 this varobj as changed so that UI can show the real
1278 value. */
1279 changed = 1;
1280 }
1281 else if (var->value == NULL && value == NULL)
acd65feb
VP
1282 /* Equal. */
1283 ;
1284 else if (var->value == NULL || value == NULL)
57e66780 1285 {
57e66780
DJ
1286 changed = 1;
1287 }
acd65feb
VP
1288 else
1289 {
1290 gdb_assert (!value_lazy (var->value));
1291 gdb_assert (!value_lazy (value));
85265413 1292
57e66780 1293 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1294 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1295 changed = 1;
acd65feb
VP
1296 }
1297 }
1298 }
85265413 1299
ee342b23
VP
1300 if (!initial && !changeable)
1301 {
1302 /* For values that are not changeable, we don't compare the values.
1303 However, we want to notice if a value was not NULL and now is NULL,
1304 or vise versa, so that we report when top-level varobjs come in scope
1305 and leave the scope. */
1306 changed = (var->value != NULL) != (value != NULL);
1307 }
1308
acd65feb 1309 /* We must always keep the new value, since children depend on it. */
25d5ea92 1310 if (var->value != NULL && var->value != value)
acd65feb
VP
1311 value_free (var->value);
1312 var->value = value;
7a4d50bf
VP
1313 if (var->print_value)
1314 xfree (var->print_value);
1315 var->print_value = print_value;
25d5ea92
VP
1316 if (value && value_lazy (value) && intentionally_not_fetched)
1317 var->not_fetched = 1;
1318 else
1319 var->not_fetched = 0;
acd65feb 1320 var->updated = 0;
85265413 1321
b26ed50d 1322 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1323
1324 return changed;
1325}
acd65feb 1326
b6313243
TT
1327static void
1328install_visualizer (struct varobj *var, PyObject *visualizer)
1329{
1330#if HAVE_PYTHON
1331 /* If there are any children now, wipe them. */
1332 varobj_delete (var, NULL, 1 /* children only */);
1333 var->num_children = -1;
1334
1335 Py_XDECREF (var->pretty_printer);
1336 var->pretty_printer = visualizer;
1337
1338 install_new_value (var, var->value, 1);
1339
1340 /* If we removed the visualizer, and the user ever requested the
1341 object's children, then we must compute the list of children.
1342 Note that we needn't do this when installing a visualizer,
1343 because updating will recompute dynamic children. */
1344 if (!visualizer && var->children_requested)
1345 varobj_list_children (var);
1346#else
da1f2771 1347 error (_("Python support required"));
b6313243
TT
1348#endif
1349}
1350
1351static void
1352install_default_visualizer (struct varobj *var)
1353{
1354#if HAVE_PYTHON
1355 struct cleanup *cleanup;
b6313243
TT
1356 PyObject *pretty_printer = NULL;
1357
d452c4bc 1358 cleanup = varobj_ensure_python_env (var);
b6313243
TT
1359
1360 if (var->value)
1361 {
1362 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1363 if (! pretty_printer)
1364 {
1365 gdbpy_print_stack ();
1366 error (_("Cannot instantiate printer for default visualizer"));
1367 }
1368 }
1369
1370 if (pretty_printer == Py_None)
1371 {
1372 Py_DECREF (pretty_printer);
1373 pretty_printer = NULL;
1374 }
1375
1376 install_visualizer (var, pretty_printer);
1377 do_cleanups (cleanup);
1378#else
1379 /* No error is right as this function is inserted just as a hook. */
1380#endif
1381}
1382
1383void
1384varobj_set_visualizer (struct varobj *var, const char *visualizer)
1385{
1386#if HAVE_PYTHON
1387 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1388 struct cleanup *back_to, *value;
b6313243 1389
d452c4bc 1390 back_to = varobj_ensure_python_env (var);
b6313243
TT
1391
1392 mainmod = PyImport_AddModule ("__main__");
1393 globals = PyModule_GetDict (mainmod);
1394 Py_INCREF (globals);
1395 make_cleanup_py_decref (globals);
1396
1397 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1398
1399 /* Do not instantiate NoneType. */
1400 if (constructor == Py_None)
1401 {
1402 pretty_printer = Py_None;
1403 Py_INCREF (pretty_printer);
1404 }
1405 else
1406 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1407
1408 Py_XDECREF (constructor);
1409
1410 if (! pretty_printer)
1411 {
1412 gdbpy_print_stack ();
da1f2771 1413 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1414 }
1415
1416 if (pretty_printer == Py_None)
1417 {
1418 Py_DECREF (pretty_printer);
1419 pretty_printer = NULL;
1420 }
1421
1422 install_visualizer (var, pretty_printer);
1423
1424 do_cleanups (back_to);
1425#else
da1f2771 1426 error (_("Python support required"));
b6313243
TT
1427#endif
1428}
1429
8b93c638
JM
1430/* Update the values for a variable and its children. This is a
1431 two-pronged attack. First, re-parse the value for the root's
1432 expression to see if it's changed. Then go all the way
1433 through its children, reconstructing them and noting if they've
1434 changed.
1435
25d5ea92
VP
1436 The EXPLICIT parameter specifies if this call is result
1437 of MI request to update this specific variable, or
1438 result of implicit -var-update *. For implicit request, we don't
1439 update frozen variables.
705da579
KS
1440
1441 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1442 returns TYPE_CHANGED, then it has done this and VARP will be modified
1443 to point to the new varobj. */
8b93c638 1444
f7f9ae2c 1445VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1446{
1447 int changed = 0;
25d5ea92 1448 int type_changed = 0;
8b93c638
JM
1449 int i;
1450 int vleft;
8b93c638
JM
1451 struct varobj *v;
1452 struct varobj **cv;
2c67cb8b 1453 struct varobj **templist = NULL;
30b28db1 1454 struct value *new;
b6313243 1455 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1456 VEC (varobj_update_result) *result = NULL;
e64d9b3d 1457 struct frame_info *fi;
8b93c638 1458
25d5ea92
VP
1459 /* Frozen means frozen -- we don't check for any change in
1460 this varobj, including its going out of scope, or
1461 changing type. One use case for frozen varobjs is
1462 retaining previously evaluated expressions, and we don't
1463 want them to be reevaluated at all. */
1464 if (!explicit && (*varp)->frozen)
f7f9ae2c 1465 return result;
8756216b
DP
1466
1467 if (!(*varp)->root->is_valid)
f7f9ae2c
VP
1468 {
1469 varobj_update_result r = {*varp};
1470 r.status = VAROBJ_INVALID;
1471 VEC_safe_push (varobj_update_result, result, &r);
1472 return result;
1473 }
8b93c638 1474
25d5ea92 1475 if ((*varp)->root->rootvar == *varp)
ae093f96 1476 {
f7f9ae2c
VP
1477 varobj_update_result r = {*varp};
1478 r.status = VAROBJ_IN_SCOPE;
1479
25d5ea92
VP
1480 /* Update the root variable. value_of_root can return NULL
1481 if the variable is no longer around, i.e. we stepped out of
1482 the frame in which a local existed. We are letting the
1483 value_of_root variable dispose of the varobj if the type
1484 has changed. */
25d5ea92 1485 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1486 r.varobj = *varp;
1487
1488 r.type_changed = type_changed;
ea56f9c2 1489 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1490 r.changed = 1;
ea56f9c2 1491
25d5ea92 1492 if (new == NULL)
f7f9ae2c 1493 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1494 r.value_installed = 1;
f7f9ae2c
VP
1495
1496 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1497 {
0b4bc29a
JK
1498 if (r.type_changed || r.changed)
1499 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1500 return result;
1501 }
1502
1503 VEC_safe_push (varobj_update_result, stack, &r);
1504 }
1505 else
1506 {
1507 varobj_update_result r = {*varp};
1508 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1509 }
8b93c638 1510
8756216b 1511 /* Walk through the children, reconstructing them all. */
b6313243 1512 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1513 {
b6313243
TT
1514 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1515 struct varobj *v = r.varobj;
1516
1517 VEC_pop (varobj_update_result, stack);
1518
1519 /* Update this variable, unless it's a root, which is already
1520 updated. */
1521 if (!r.value_installed)
1522 {
1523 new = value_of_child (v->parent, v->index);
1524 if (install_new_value (v, new, 0 /* type not changed */))
1525 {
1526 r.changed = 1;
1527 v->updated = 0;
1528 }
1529 }
1530
1531 /* We probably should not get children of a varobj that has a
1532 pretty-printer, but for which -var-list-children was never
1533 invoked. Presumably, such varobj is not yet expanded in the
1534 UI, so we need not bother getting it. */
1535 if (v->pretty_printer)
1536 {
1537 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1538 int i, children_changed;
1539 varobj_p tmp;
1540
1541 if (!v->children_requested)
1542 continue;
1543
1544 if (v->frozen)
1545 continue;
1546
1547 /* If update_dynamic_varobj_children returns 0, then we have
1548 a non-conforming pretty-printer, so we skip it. */
1549 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1550 &children_changed))
1551 {
1552 if (children_changed)
1553 r.children_changed = 1;
1554 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1555 {
1556 varobj_update_result r = {tmp};
1557 r.changed = 1;
1558 r.value_installed = 1;
1559 VEC_safe_push (varobj_update_result, stack, &r);
1560 }
1561 for (i = 0;
1562 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1563 ++i)
1564 {
1565 varobj_update_result r = {tmp};
1566 r.value_installed = 1;
1567 VEC_safe_push (varobj_update_result, stack, &r);
1568 }
1569 if (r.changed || r.children_changed)
1570 VEC_safe_push (varobj_update_result, result, &r);
1571 continue;
1572 }
1573 }
28335dcc
VP
1574
1575 /* Push any children. Use reverse order so that the first
1576 child is popped from the work stack first, and so
1577 will be added to result first. This does not
1578 affect correctness, just "nicer". */
1579 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1580 {
28335dcc
VP
1581 varobj_p c = VEC_index (varobj_p, v->children, i);
1582 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1583 if (c != NULL && !c->frozen)
28335dcc 1584 {
b6313243
TT
1585 varobj_update_result r = {c};
1586 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1587 }
8b93c638 1588 }
b6313243
TT
1589
1590 if (r.changed || r.type_changed)
1591 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1592 }
1593
b6313243
TT
1594 VEC_free (varobj_update_result, stack);
1595
f7f9ae2c 1596 return result;
8b93c638
JM
1597}
1598\f
1599
1600/* Helper functions */
1601
1602/*
1603 * Variable object construction/destruction
1604 */
1605
1606static int
fba45db2
KB
1607delete_variable (struct cpstack **resultp, struct varobj *var,
1608 int only_children_p)
8b93c638
JM
1609{
1610 int delcount = 0;
1611
1612 delete_variable_1 (resultp, &delcount, var,
1613 only_children_p, 1 /* remove_from_parent_p */ );
1614
1615 return delcount;
1616}
1617
1618/* Delete the variable object VAR and its children */
1619/* IMPORTANT NOTE: If we delete a variable which is a child
1620 and the parent is not removed we dump core. It must be always
1621 initially called with remove_from_parent_p set */
1622static void
72330bd6
AC
1623delete_variable_1 (struct cpstack **resultp, int *delcountp,
1624 struct varobj *var, int only_children_p,
1625 int remove_from_parent_p)
8b93c638 1626{
28335dcc 1627 int i;
8b93c638
JM
1628
1629 /* Delete any children of this variable, too. */
28335dcc
VP
1630 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1631 {
1632 varobj_p child = VEC_index (varobj_p, var->children, i);
214270ab
VP
1633 if (!child)
1634 continue;
8b93c638 1635 if (!remove_from_parent_p)
28335dcc
VP
1636 child->parent = NULL;
1637 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1638 }
28335dcc 1639 VEC_free (varobj_p, var->children);
8b93c638
JM
1640
1641 /* if we were called to delete only the children we are done here */
1642 if (only_children_p)
1643 return;
1644
1645 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1646 /* If the name is null, this is a temporary variable, that has not
1647 yet been installed, don't report it, it belongs to the caller... */
1648 if (var->obj_name != NULL)
8b93c638 1649 {
5b616ba1 1650 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1651 *delcountp = *delcountp + 1;
1652 }
1653
1654 /* If this variable has a parent, remove it from its parent's list */
1655 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1656 (as indicated by remove_from_parent_p) we don't bother doing an
1657 expensive list search to find the element to remove when we are
1658 discarding the list afterwards */
72330bd6 1659 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1660 {
28335dcc 1661 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1662 }
72330bd6 1663
73a93a32
JI
1664 if (var->obj_name != NULL)
1665 uninstall_variable (var);
8b93c638
JM
1666
1667 /* Free memory associated with this variable */
1668 free_variable (var);
1669}
1670
1671/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1672static int
fba45db2 1673install_variable (struct varobj *var)
8b93c638
JM
1674{
1675 struct vlist *cv;
1676 struct vlist *newvl;
1677 const char *chp;
1678 unsigned int index = 0;
1679 unsigned int i = 1;
1680
1681 for (chp = var->obj_name; *chp; chp++)
1682 {
1683 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1684 }
1685
1686 cv = *(varobj_table + index);
1687 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1688 cv = cv->next;
1689
1690 if (cv != NULL)
8a3fe4f8 1691 error (_("Duplicate variable object name"));
8b93c638
JM
1692
1693 /* Add varobj to hash table */
1694 newvl = xmalloc (sizeof (struct vlist));
1695 newvl->next = *(varobj_table + index);
1696 newvl->var = var;
1697 *(varobj_table + index) = newvl;
1698
1699 /* If root, add varobj to root list */
b2c2bd75 1700 if (is_root_p (var))
8b93c638
JM
1701 {
1702 /* Add to list of root variables */
1703 if (rootlist == NULL)
1704 var->root->next = NULL;
1705 else
1706 var->root->next = rootlist;
1707 rootlist = var->root;
8b93c638
JM
1708 }
1709
1710 return 1; /* OK */
1711}
1712
1713/* Unistall the object VAR. */
1714static void
fba45db2 1715uninstall_variable (struct varobj *var)
8b93c638
JM
1716{
1717 struct vlist *cv;
1718 struct vlist *prev;
1719 struct varobj_root *cr;
1720 struct varobj_root *prer;
1721 const char *chp;
1722 unsigned int index = 0;
1723 unsigned int i = 1;
1724
1725 /* Remove varobj from hash table */
1726 for (chp = var->obj_name; *chp; chp++)
1727 {
1728 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1729 }
1730
1731 cv = *(varobj_table + index);
1732 prev = NULL;
1733 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1734 {
1735 prev = cv;
1736 cv = cv->next;
1737 }
1738
1739 if (varobjdebug)
1740 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1741
1742 if (cv == NULL)
1743 {
72330bd6
AC
1744 warning
1745 ("Assertion failed: Could not find variable object \"%s\" to delete",
1746 var->obj_name);
8b93c638
JM
1747 return;
1748 }
1749
1750 if (prev == NULL)
1751 *(varobj_table + index) = cv->next;
1752 else
1753 prev->next = cv->next;
1754
b8c9b27d 1755 xfree (cv);
8b93c638
JM
1756
1757 /* If root, remove varobj from root list */
b2c2bd75 1758 if (is_root_p (var))
8b93c638
JM
1759 {
1760 /* Remove from list of root variables */
1761 if (rootlist == var->root)
1762 rootlist = var->root->next;
1763 else
1764 {
1765 prer = NULL;
1766 cr = rootlist;
1767 while ((cr != NULL) && (cr->rootvar != var))
1768 {
1769 prer = cr;
1770 cr = cr->next;
1771 }
1772 if (cr == NULL)
1773 {
72330bd6
AC
1774 warning
1775 ("Assertion failed: Could not find varobj \"%s\" in root list",
1776 var->obj_name);
8b93c638
JM
1777 return;
1778 }
1779 if (prer == NULL)
1780 rootlist = NULL;
1781 else
1782 prer->next = cr->next;
1783 }
8b93c638
JM
1784 }
1785
1786}
1787
8b93c638
JM
1788/* Create and install a child of the parent of the given name */
1789static struct varobj *
fba45db2 1790create_child (struct varobj *parent, int index, char *name)
b6313243
TT
1791{
1792 return create_child_with_value (parent, index, name,
1793 value_of_child (parent, index));
1794}
1795
1796static struct varobj *
1797create_child_with_value (struct varobj *parent, int index, const char *name,
1798 struct value *value)
8b93c638
JM
1799{
1800 struct varobj *child;
1801 char *childs_name;
1802
1803 child = new_variable ();
1804
1805 /* name is allocated by name_of_child */
b6313243
TT
1806 /* FIXME: xstrdup should not be here. */
1807 child->name = xstrdup (name);
8b93c638 1808 child->index = index;
8b93c638
JM
1809 child->parent = parent;
1810 child->root = parent->root;
b435e160 1811 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
1812 child->obj_name = childs_name;
1813 install_variable (child);
1814
acd65feb
VP
1815 /* Compute the type of the child. Must do this before
1816 calling install_new_value. */
1817 if (value != NULL)
1818 /* If the child had no evaluation errors, var->value
1819 will be non-NULL and contain a valid type. */
1820 child->type = value_type (value);
1821 else
1822 /* Otherwise, we must compute the type. */
1823 child->type = (*child->root->lang->type_of_child) (child->parent,
1824 child->index);
1825 install_new_value (child, value, 1);
1826
8b93c638
JM
1827 return child;
1828}
8b93c638
JM
1829\f
1830
1831/*
1832 * Miscellaneous utility functions.
1833 */
1834
1835/* Allocate memory and initialize a new variable */
1836static struct varobj *
1837new_variable (void)
1838{
1839 struct varobj *var;
1840
1841 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1842 var->name = NULL;
02142340 1843 var->path_expr = NULL;
8b93c638
JM
1844 var->obj_name = NULL;
1845 var->index = -1;
1846 var->type = NULL;
1847 var->value = NULL;
8b93c638
JM
1848 var->num_children = -1;
1849 var->parent = NULL;
1850 var->children = NULL;
1851 var->format = 0;
1852 var->root = NULL;
fb9b6b35 1853 var->updated = 0;
85265413 1854 var->print_value = NULL;
25d5ea92
VP
1855 var->frozen = 0;
1856 var->not_fetched = 0;
b6313243
TT
1857 var->children_requested = 0;
1858 var->pretty_printer = 0;
8b93c638
JM
1859
1860 return var;
1861}
1862
1863/* Allocate memory and initialize a new root variable */
1864static struct varobj *
1865new_root_variable (void)
1866{
1867 struct varobj *var = new_variable ();
1868 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1869 var->root->lang = NULL;
1870 var->root->exp = NULL;
1871 var->root->valid_block = NULL;
7a424e99 1872 var->root->frame = null_frame_id;
a5defcdc 1873 var->root->floating = 0;
8b93c638 1874 var->root->rootvar = NULL;
8756216b 1875 var->root->is_valid = 1;
8b93c638
JM
1876
1877 return var;
1878}
1879
1880/* Free any allocated memory associated with VAR. */
1881static void
fba45db2 1882free_variable (struct varobj *var)
8b93c638 1883{
d452c4bc
UW
1884#if HAVE_PYTHON
1885 if (var->pretty_printer)
1886 {
1887 struct cleanup *cleanup = varobj_ensure_python_env (var);
1888 Py_DECREF (var->pretty_printer);
1889 do_cleanups (cleanup);
1890 }
1891#endif
1892
36746093
JK
1893 value_free (var->value);
1894
8b93c638 1895 /* Free the expression if this is a root variable. */
b2c2bd75 1896 if (is_root_p (var))
8b93c638 1897 {
3038237c 1898 xfree (var->root->exp);
8038e1e2 1899 xfree (var->root);
8b93c638
JM
1900 }
1901
8038e1e2
AC
1902 xfree (var->name);
1903 xfree (var->obj_name);
85265413 1904 xfree (var->print_value);
02142340 1905 xfree (var->path_expr);
8038e1e2 1906 xfree (var);
8b93c638
JM
1907}
1908
74b7792f
AC
1909static void
1910do_free_variable_cleanup (void *var)
1911{
1912 free_variable (var);
1913}
1914
1915static struct cleanup *
1916make_cleanup_free_variable (struct varobj *var)
1917{
1918 return make_cleanup (do_free_variable_cleanup, var);
1919}
1920
6766a268
DJ
1921/* This returns the type of the variable. It also skips past typedefs
1922 to return the real type of the variable.
94b66fa7
KS
1923
1924 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1925 except within get_target_type and get_type. */
8b93c638 1926static struct type *
fba45db2 1927get_type (struct varobj *var)
8b93c638
JM
1928{
1929 struct type *type;
1930 type = var->type;
1931
6766a268
DJ
1932 if (type != NULL)
1933 type = check_typedef (type);
8b93c638
JM
1934
1935 return type;
1936}
1937
6e2a9270
VP
1938/* Return the type of the value that's stored in VAR,
1939 or that would have being stored there if the
1940 value were accessible.
1941
1942 This differs from VAR->type in that VAR->type is always
1943 the true type of the expession in the source language.
1944 The return value of this function is the type we're
1945 actually storing in varobj, and using for displaying
1946 the values and for comparing previous and new values.
1947
1948 For example, top-level references are always stripped. */
1949static struct type *
1950get_value_type (struct varobj *var)
1951{
1952 struct type *type;
1953
1954 if (var->value)
1955 type = value_type (var->value);
1956 else
1957 type = var->type;
1958
1959 type = check_typedef (type);
1960
1961 if (TYPE_CODE (type) == TYPE_CODE_REF)
1962 type = get_target_type (type);
1963
1964 type = check_typedef (type);
1965
1966 return type;
1967}
1968
8b93c638 1969/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
1970 past typedefs, just like get_type ().
1971
1972 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1973 except within get_target_type and get_type. */
8b93c638 1974static struct type *
fba45db2 1975get_target_type (struct type *type)
8b93c638
JM
1976{
1977 if (type != NULL)
1978 {
1979 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
1980 if (type != NULL)
1981 type = check_typedef (type);
8b93c638
JM
1982 }
1983
1984 return type;
1985}
1986
1987/* What is the default display for this variable? We assume that
1988 everything is "natural". Any exceptions? */
1989static enum varobj_display_formats
fba45db2 1990variable_default_display (struct varobj *var)
8b93c638
JM
1991{
1992 return FORMAT_NATURAL;
1993}
1994
8b93c638
JM
1995/* FIXME: The following should be generic for any pointer */
1996static void
fba45db2 1997cppush (struct cpstack **pstack, char *name)
8b93c638
JM
1998{
1999 struct cpstack *s;
2000
2001 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2002 s->name = name;
2003 s->next = *pstack;
2004 *pstack = s;
2005}
2006
2007/* FIXME: The following should be generic for any pointer */
2008static char *
fba45db2 2009cppop (struct cpstack **pstack)
8b93c638
JM
2010{
2011 struct cpstack *s;
2012 char *v;
2013
2014 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2015 return NULL;
2016
2017 s = *pstack;
2018 v = s->name;
2019 *pstack = (*pstack)->next;
b8c9b27d 2020 xfree (s);
8b93c638
JM
2021
2022 return v;
2023}
2024\f
2025/*
2026 * Language-dependencies
2027 */
2028
2029/* Common entry points */
2030
2031/* Get the language of variable VAR. */
2032static enum varobj_languages
fba45db2 2033variable_language (struct varobj *var)
8b93c638
JM
2034{
2035 enum varobj_languages lang;
2036
2037 switch (var->root->exp->language_defn->la_language)
2038 {
2039 default:
2040 case language_c:
2041 lang = vlang_c;
2042 break;
2043 case language_cplus:
2044 lang = vlang_cplus;
2045 break;
2046 case language_java:
2047 lang = vlang_java;
2048 break;
2049 }
2050
2051 return lang;
2052}
2053
2054/* Return the number of children for a given variable.
2055 The result of this function is defined by the language
2056 implementation. The number of children returned by this function
2057 is the number of children that the user will see in the variable
2058 display. */
2059static int
fba45db2 2060number_of_children (struct varobj *var)
8b93c638
JM
2061{
2062 return (*var->root->lang->number_of_children) (var);;
2063}
2064
2065/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2066static char *
fba45db2 2067name_of_variable (struct varobj *var)
8b93c638
JM
2068{
2069 return (*var->root->lang->name_of_variable) (var);
2070}
2071
2072/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2073static char *
fba45db2 2074name_of_child (struct varobj *var, int index)
8b93c638
JM
2075{
2076 return (*var->root->lang->name_of_child) (var, index);
2077}
2078
a5defcdc
VP
2079/* What is the ``struct value *'' of the root variable VAR?
2080 For floating variable object, evaluation can get us a value
2081 of different type from what is stored in varobj already. In
2082 that case:
2083 - *type_changed will be set to 1
2084 - old varobj will be freed, and new one will be
2085 created, with the same name.
2086 - *var_handle will be set to the new varobj
2087 Otherwise, *type_changed will be set to 0. */
30b28db1 2088static struct value *
fba45db2 2089value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2090{
73a93a32
JI
2091 struct varobj *var;
2092
2093 if (var_handle == NULL)
2094 return NULL;
2095
2096 var = *var_handle;
2097
2098 /* This should really be an exception, since this should
2099 only get called with a root variable. */
2100
b2c2bd75 2101 if (!is_root_p (var))
73a93a32
JI
2102 return NULL;
2103
a5defcdc 2104 if (var->root->floating)
73a93a32
JI
2105 {
2106 struct varobj *tmp_var;
2107 char *old_type, *new_type;
6225abfa 2108
73a93a32
JI
2109 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2110 USE_SELECTED_FRAME);
2111 if (tmp_var == NULL)
2112 {
2113 return NULL;
2114 }
6225abfa 2115 old_type = varobj_get_type (var);
73a93a32 2116 new_type = varobj_get_type (tmp_var);
72330bd6 2117 if (strcmp (old_type, new_type) == 0)
73a93a32 2118 {
fcacd99f
VP
2119 /* The expression presently stored inside var->root->exp
2120 remembers the locations of local variables relatively to
2121 the frame where the expression was created (in DWARF location
2122 button, for example). Naturally, those locations are not
2123 correct in other frames, so update the expression. */
2124
2125 struct expression *tmp_exp = var->root->exp;
2126 var->root->exp = tmp_var->root->exp;
2127 tmp_var->root->exp = tmp_exp;
2128
73a93a32
JI
2129 varobj_delete (tmp_var, NULL, 0);
2130 *type_changed = 0;
2131 }
2132 else
2133 {
1b36a34b 2134 tmp_var->obj_name = xstrdup (var->obj_name);
a5defcdc
VP
2135 varobj_delete (var, NULL, 0);
2136
73a93a32
JI
2137 install_variable (tmp_var);
2138 *var_handle = tmp_var;
705da579 2139 var = *var_handle;
73a93a32
JI
2140 *type_changed = 1;
2141 }
74dddad3
MS
2142 xfree (old_type);
2143 xfree (new_type);
73a93a32
JI
2144 }
2145 else
2146 {
2147 *type_changed = 0;
2148 }
2149
2150 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2151}
2152
30b28db1
AC
2153/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2154static struct value *
fba45db2 2155value_of_child (struct varobj *parent, int index)
8b93c638 2156{
30b28db1 2157 struct value *value;
8b93c638
JM
2158
2159 value = (*parent->root->lang->value_of_child) (parent, index);
2160
8b93c638
JM
2161 return value;
2162}
2163
8b93c638
JM
2164/* GDB already has a command called "value_of_variable". Sigh. */
2165static char *
de051565 2166my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2167{
8756216b 2168 if (var->root->is_valid)
de051565 2169 return (*var->root->lang->value_of_variable) (var, format);
8756216b
DP
2170 else
2171 return NULL;
8b93c638
JM
2172}
2173
85265413 2174static char *
b6313243 2175value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2176 struct varobj *var)
85265413 2177{
57e66780
DJ
2178 struct ui_file *stb;
2179 struct cleanup *old_chain;
fbb8f299 2180 gdb_byte *thevalue = NULL;
79a45b7d 2181 struct value_print_options opts;
fbb8f299 2182 int len = 0;
57e66780
DJ
2183
2184 if (value == NULL)
2185 return NULL;
2186
b6313243
TT
2187#if HAVE_PYTHON
2188 {
d452c4bc
UW
2189 struct cleanup *back_to = varobj_ensure_python_env (var);
2190 PyObject *value_formatter = var->pretty_printer;
2191
b6313243
TT
2192 if (value_formatter && PyObject_HasAttr (value_formatter,
2193 gdbpy_to_string_cst))
2194 {
2195 char *hint;
2196 struct value *replacement;
2197 int string_print = 0;
fbb8f299 2198 PyObject *output = NULL;
b6313243
TT
2199
2200 hint = gdbpy_get_display_hint (value_formatter);
2201 if (hint)
2202 {
2203 if (!strcmp (hint, "string"))
2204 string_print = 1;
2205 xfree (hint);
2206 }
2207
fbb8f299
PM
2208 output = apply_varobj_pretty_printer (value_formatter,
2209 &replacement);
2210 if (output)
2211 {
2212 PyObject *py_str = python_string_to_target_python_string (output);
2213 if (py_str)
2214 {
2215 char *s = PyString_AsString (py_str);
2216 len = PyString_Size (py_str);
2217 thevalue = xmemdup (s, len + 1, len + 1);
2218 Py_DECREF (py_str);
2219 }
2220 Py_DECREF (output);
2221 }
b6313243
TT
2222 if (thevalue && !string_print)
2223 {
d452c4bc 2224 do_cleanups (back_to);
b6313243
TT
2225 return thevalue;
2226 }
2227 if (replacement)
2228 value = replacement;
2229 }
d452c4bc 2230 do_cleanups (back_to);
b6313243
TT
2231 }
2232#endif
2233
57e66780
DJ
2234 stb = mem_fileopen ();
2235 old_chain = make_cleanup_ui_file_delete (stb);
2236
79a45b7d
TT
2237 get_formatted_print_options (&opts, format_code[(int) format]);
2238 opts.deref_ref = 0;
b6313243
TT
2239 opts.raw = 1;
2240 if (thevalue)
2241 {
50810684 2242 struct gdbarch *gdbarch = get_type_arch (value_type (value));
b6313243 2243 make_cleanup (xfree, thevalue);
50810684 2244 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
fbb8f299 2245 thevalue, len, 0, &opts);
b6313243
TT
2246 }
2247 else
2248 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2249 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2250
85265413
NR
2251 do_cleanups (old_chain);
2252 return thevalue;
2253}
2254
340a7723
NR
2255int
2256varobj_editable_p (struct varobj *var)
2257{
2258 struct type *type;
2259 struct value *value;
2260
2261 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2262 return 0;
2263
2264 type = get_value_type (var);
2265
2266 switch (TYPE_CODE (type))
2267 {
2268 case TYPE_CODE_STRUCT:
2269 case TYPE_CODE_UNION:
2270 case TYPE_CODE_ARRAY:
2271 case TYPE_CODE_FUNC:
2272 case TYPE_CODE_METHOD:
2273 return 0;
2274 break;
2275
2276 default:
2277 return 1;
2278 break;
2279 }
2280}
2281
acd65feb
VP
2282/* Return non-zero if changes in value of VAR
2283 must be detected and reported by -var-update.
2284 Return zero is -var-update should never report
2285 changes of such values. This makes sense for structures
2286 (since the changes in children values will be reported separately),
2287 or for artifical objects (like 'public' pseudo-field in C++).
2288
2289 Return value of 0 means that gdb need not call value_fetch_lazy
2290 for the value of this variable object. */
8b93c638 2291static int
b2c2bd75 2292varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2293{
2294 int r;
2295 struct type *type;
2296
2297 if (CPLUS_FAKE_CHILD (var))
2298 return 0;
2299
6e2a9270 2300 type = get_value_type (var);
8b93c638
JM
2301
2302 switch (TYPE_CODE (type))
2303 {
72330bd6
AC
2304 case TYPE_CODE_STRUCT:
2305 case TYPE_CODE_UNION:
2306 case TYPE_CODE_ARRAY:
2307 r = 0;
2308 break;
8b93c638 2309
72330bd6
AC
2310 default:
2311 r = 1;
8b93c638
JM
2312 }
2313
2314 return r;
2315}
2316
5a413362
VP
2317/* Return 1 if that varobj is floating, that is is always evaluated in the
2318 selected frame, and not bound to thread/frame. Such variable objects
2319 are created using '@' as frame specifier to -var-create. */
2320int
2321varobj_floating_p (struct varobj *var)
2322{
2323 return var->root->floating;
2324}
2325
2024f65a
VP
2326/* Given the value and the type of a variable object,
2327 adjust the value and type to those necessary
2328 for getting children of the variable object.
2329 This includes dereferencing top-level references
2330 to all types and dereferencing pointers to
2331 structures.
2332
2333 Both TYPE and *TYPE should be non-null. VALUE
2334 can be null if we want to only translate type.
2335 *VALUE can be null as well -- if the parent
02142340
VP
2336 value is not known.
2337
2338 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2339 depending on whether pointer was dereferenced
02142340 2340 in this function. */
2024f65a
VP
2341static void
2342adjust_value_for_child_access (struct value **value,
02142340
VP
2343 struct type **type,
2344 int *was_ptr)
2024f65a
VP
2345{
2346 gdb_assert (type && *type);
2347
02142340
VP
2348 if (was_ptr)
2349 *was_ptr = 0;
2350
2024f65a
VP
2351 *type = check_typedef (*type);
2352
2353 /* The type of value stored in varobj, that is passed
2354 to us, is already supposed to be
2355 reference-stripped. */
2356
2357 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2358
2359 /* Pointers to structures are treated just like
2360 structures when accessing children. Don't
2361 dererences pointers to other types. */
2362 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2363 {
2364 struct type *target_type = get_target_type (*type);
2365 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2366 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2367 {
2368 if (value && *value)
3f4178d6
DJ
2369 {
2370 int success = gdb_value_ind (*value, value);
2371 if (!success)
2372 *value = NULL;
2373 }
2024f65a 2374 *type = target_type;
02142340
VP
2375 if (was_ptr)
2376 *was_ptr = 1;
2024f65a
VP
2377 }
2378 }
2379
2380 /* The 'get_target_type' function calls check_typedef on
2381 result, so we can immediately check type code. No
2382 need to call check_typedef here. */
2383}
2384
8b93c638
JM
2385/* C */
2386static int
fba45db2 2387c_number_of_children (struct varobj *var)
8b93c638 2388{
2024f65a
VP
2389 struct type *type = get_value_type (var);
2390 int children = 0;
8b93c638 2391 struct type *target;
8b93c638 2392
02142340 2393 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2394 target = get_target_type (type);
8b93c638
JM
2395
2396 switch (TYPE_CODE (type))
2397 {
2398 case TYPE_CODE_ARRAY:
2399 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2400 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2401 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2402 else
74a44383
DJ
2403 /* If we don't know how many elements there are, don't display
2404 any. */
2405 children = 0;
8b93c638
JM
2406 break;
2407
2408 case TYPE_CODE_STRUCT:
2409 case TYPE_CODE_UNION:
2410 children = TYPE_NFIELDS (type);
2411 break;
2412
2413 case TYPE_CODE_PTR:
2024f65a
VP
2414 /* The type here is a pointer to non-struct. Typically, pointers
2415 have one child, except for function ptrs, which have no children,
2416 and except for void*, as we don't know what to show.
2417
0755e6c1
FN
2418 We can show char* so we allow it to be dereferenced. If you decide
2419 to test for it, please mind that a little magic is necessary to
2420 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2421 TYPE_NAME == "char" */
2024f65a
VP
2422 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2423 || TYPE_CODE (target) == TYPE_CODE_VOID)
2424 children = 0;
2425 else
2426 children = 1;
8b93c638
JM
2427 break;
2428
2429 default:
2430 /* Other types have no children */
2431 break;
2432 }
2433
2434 return children;
2435}
2436
2437static char *
fba45db2 2438c_name_of_variable (struct varobj *parent)
8b93c638 2439{
1b36a34b 2440 return xstrdup (parent->name);
8b93c638
JM
2441}
2442
bbec2603
VP
2443/* Return the value of element TYPE_INDEX of a structure
2444 value VALUE. VALUE's type should be a structure,
2445 or union, or a typedef to struct/union.
2446
2447 Returns NULL if getting the value fails. Never throws. */
2448static struct value *
2449value_struct_element_index (struct value *value, int type_index)
8b93c638 2450{
bbec2603
VP
2451 struct value *result = NULL;
2452 volatile struct gdb_exception e;
8b93c638 2453
bbec2603
VP
2454 struct type *type = value_type (value);
2455 type = check_typedef (type);
2456
2457 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2458 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2459
bbec2603
VP
2460 TRY_CATCH (e, RETURN_MASK_ERROR)
2461 {
d6a843b5 2462 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2463 result = value_static_field (type, type_index);
2464 else
2465 result = value_primitive_field (value, 0, type_index, type);
2466 }
2467 if (e.reason < 0)
2468 {
2469 return NULL;
2470 }
2471 else
2472 {
2473 return result;
2474 }
2475}
2476
2477/* Obtain the information about child INDEX of the variable
2478 object PARENT.
2479 If CNAME is not null, sets *CNAME to the name of the child relative
2480 to the parent.
2481 If CVALUE is not null, sets *CVALUE to the value of the child.
2482 If CTYPE is not null, sets *CTYPE to the type of the child.
2483
2484 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2485 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2486 to NULL. */
2487static void
2488c_describe_child (struct varobj *parent, int index,
02142340
VP
2489 char **cname, struct value **cvalue, struct type **ctype,
2490 char **cfull_expression)
bbec2603
VP
2491{
2492 struct value *value = parent->value;
2024f65a 2493 struct type *type = get_value_type (parent);
02142340
VP
2494 char *parent_expression = NULL;
2495 int was_ptr;
bbec2603
VP
2496
2497 if (cname)
2498 *cname = NULL;
2499 if (cvalue)
2500 *cvalue = NULL;
2501 if (ctype)
2502 *ctype = NULL;
02142340
VP
2503 if (cfull_expression)
2504 {
2505 *cfull_expression = NULL;
2506 parent_expression = varobj_get_path_expr (parent);
2507 }
2508 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2509
8b93c638
JM
2510 switch (TYPE_CODE (type))
2511 {
2512 case TYPE_CODE_ARRAY:
bbec2603
VP
2513 if (cname)
2514 *cname = xstrprintf ("%d", index
2515 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2516
2517 if (cvalue && value)
2518 {
2519 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2497b498 2520 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2521 }
2522
2523 if (ctype)
2524 *ctype = get_target_type (type);
2525
02142340
VP
2526 if (cfull_expression)
2527 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2528 index
2529 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2530
2531
8b93c638
JM
2532 break;
2533
2534 case TYPE_CODE_STRUCT:
2535 case TYPE_CODE_UNION:
bbec2603 2536 if (cname)
1b36a34b 2537 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2538
2539 if (cvalue && value)
2540 {
2541 /* For C, varobj index is the same as type index. */
2542 *cvalue = value_struct_element_index (value, index);
2543 }
2544
2545 if (ctype)
2546 *ctype = TYPE_FIELD_TYPE (type, index);
2547
02142340
VP
2548 if (cfull_expression)
2549 {
2550 char *join = was_ptr ? "->" : ".";
2551 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2552 TYPE_FIELD_NAME (type, index));
2553 }
2554
8b93c638
JM
2555 break;
2556
2557 case TYPE_CODE_PTR:
bbec2603
VP
2558 if (cname)
2559 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2560
bbec2603 2561 if (cvalue && value)
3f4178d6
DJ
2562 {
2563 int success = gdb_value_ind (value, cvalue);
2564 if (!success)
2565 *cvalue = NULL;
2566 }
bbec2603 2567
2024f65a
VP
2568 /* Don't use get_target_type because it calls
2569 check_typedef and here, we want to show the true
2570 declared type of the variable. */
bbec2603 2571 if (ctype)
2024f65a 2572 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2573
2574 if (cfull_expression)
2575 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2576
8b93c638
JM
2577 break;
2578
2579 default:
2580 /* This should not happen */
bbec2603
VP
2581 if (cname)
2582 *cname = xstrdup ("???");
02142340
VP
2583 if (cfull_expression)
2584 *cfull_expression = xstrdup ("???");
bbec2603 2585 /* Don't set value and type, we don't know then. */
8b93c638 2586 }
bbec2603 2587}
8b93c638 2588
bbec2603
VP
2589static char *
2590c_name_of_child (struct varobj *parent, int index)
2591{
2592 char *name;
02142340 2593 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2594 return name;
2595}
2596
02142340
VP
2597static char *
2598c_path_expr_of_child (struct varobj *child)
2599{
2600 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2601 &child->path_expr);
2602 return child->path_expr;
2603}
2604
c5b48eac
VP
2605/* If frame associated with VAR can be found, switch
2606 to it and return 1. Otherwise, return 0. */
2607static int
2608check_scope (struct varobj *var)
2609{
2610 struct frame_info *fi;
2611 int scope;
2612
2613 fi = frame_find_by_id (var->root->frame);
2614 scope = fi != NULL;
2615
2616 if (fi)
2617 {
2618 CORE_ADDR pc = get_frame_pc (fi);
2619 if (pc < BLOCK_START (var->root->valid_block) ||
2620 pc >= BLOCK_END (var->root->valid_block))
2621 scope = 0;
2622 else
2623 select_frame (fi);
2624 }
2625 return scope;
2626}
2627
30b28db1 2628static struct value *
fba45db2 2629c_value_of_root (struct varobj **var_handle)
8b93c638 2630{
5e572bb4 2631 struct value *new_val = NULL;
73a93a32 2632 struct varobj *var = *var_handle;
8b93c638 2633 struct frame_info *fi;
c5b48eac 2634 int within_scope = 0;
6208b47d
VP
2635 struct cleanup *back_to;
2636
73a93a32 2637 /* Only root variables can be updated... */
b2c2bd75 2638 if (!is_root_p (var))
73a93a32
JI
2639 /* Not a root var */
2640 return NULL;
2641
4f8d22e3 2642 back_to = make_cleanup_restore_current_thread ();
72330bd6 2643
8b93c638 2644 /* Determine whether the variable is still around. */
a5defcdc 2645 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2646 within_scope = 1;
c5b48eac
VP
2647 else if (var->root->thread_id == 0)
2648 {
2649 /* The program was single-threaded when the variable object was
2650 created. Technically, it's possible that the program became
2651 multi-threaded since then, but we don't support such
2652 scenario yet. */
2653 within_scope = check_scope (var);
2654 }
8b93c638
JM
2655 else
2656 {
c5b48eac
VP
2657 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2658 if (in_thread_list (ptid))
d2353924 2659 {
c5b48eac
VP
2660 switch_to_thread (ptid);
2661 within_scope = check_scope (var);
2662 }
8b93c638 2663 }
72330bd6 2664
8b93c638
JM
2665 if (within_scope)
2666 {
73a93a32 2667 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2668 expression fails we want to just return NULL. */
2669 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2670 return new_val;
2671 }
2672
6208b47d
VP
2673 do_cleanups (back_to);
2674
8b93c638
JM
2675 return NULL;
2676}
2677
30b28db1 2678static struct value *
fba45db2 2679c_value_of_child (struct varobj *parent, int index)
8b93c638 2680{
bbec2603 2681 struct value *value = NULL;
02142340 2682 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2683
2684 return value;
2685}
2686
2687static struct type *
fba45db2 2688c_type_of_child (struct varobj *parent, int index)
8b93c638 2689{
bbec2603 2690 struct type *type = NULL;
02142340 2691 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
2692 return type;
2693}
2694
8b93c638 2695static char *
de051565 2696c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2697{
14b3d9c9
JB
2698 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2699 it will print out its children instead of "{...}". So we need to
2700 catch that case explicitly. */
2701 struct type *type = get_type (var);
e64d9b3d 2702
b6313243
TT
2703 /* If we have a custom formatter, return whatever string it has
2704 produced. */
2705 if (var->pretty_printer && var->print_value)
2706 return xstrdup (var->print_value);
2707
14b3d9c9
JB
2708 /* Strip top-level references. */
2709 while (TYPE_CODE (type) == TYPE_CODE_REF)
2710 type = check_typedef (TYPE_TARGET_TYPE (type));
2711
2712 switch (TYPE_CODE (type))
8b93c638
JM
2713 {
2714 case TYPE_CODE_STRUCT:
2715 case TYPE_CODE_UNION:
2716 return xstrdup ("{...}");
2717 /* break; */
2718
2719 case TYPE_CODE_ARRAY:
2720 {
e64d9b3d 2721 char *number;
b435e160 2722 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 2723 return (number);
8b93c638
JM
2724 }
2725 /* break; */
2726
2727 default:
2728 {
575bbeb6
KS
2729 if (var->value == NULL)
2730 {
2731 /* This can happen if we attempt to get the value of a struct
2732 member when the parent is an invalid pointer. This is an
2733 error condition, so we should tell the caller. */
2734 return NULL;
2735 }
2736 else
2737 {
25d5ea92
VP
2738 if (var->not_fetched && value_lazy (var->value))
2739 /* Frozen variable and no value yet. We don't
2740 implicitly fetch the value. MI response will
2741 use empty string for the value, which is OK. */
2742 return NULL;
2743
b2c2bd75 2744 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 2745 gdb_assert (!value_lazy (var->value));
de051565
MK
2746
2747 /* If the specified format is the current one,
2748 we can reuse print_value */
2749 if (format == var->format)
2750 return xstrdup (var->print_value);
2751 else
d452c4bc 2752 return value_get_print_value (var->value, format, var);
85265413 2753 }
e64d9b3d 2754 }
8b93c638
JM
2755 }
2756}
2757\f
2758
2759/* C++ */
2760
2761static int
fba45db2 2762cplus_number_of_children (struct varobj *var)
8b93c638
JM
2763{
2764 struct type *type;
2765 int children, dont_know;
2766
2767 dont_know = 1;
2768 children = 0;
2769
2770 if (!CPLUS_FAKE_CHILD (var))
2771 {
2024f65a 2772 type = get_value_type (var);
02142340 2773 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
2774
2775 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 2776 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
2777 {
2778 int kids[3];
2779
2780 cplus_class_num_children (type, kids);
2781 if (kids[v_public] != 0)
2782 children++;
2783 if (kids[v_private] != 0)
2784 children++;
2785 if (kids[v_protected] != 0)
2786 children++;
2787
2788 /* Add any baseclasses */
2789 children += TYPE_N_BASECLASSES (type);
2790 dont_know = 0;
2791
2792 /* FIXME: save children in var */
2793 }
2794 }
2795 else
2796 {
2797 int kids[3];
2798
2024f65a 2799 type = get_value_type (var->parent);
02142340 2800 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
2801
2802 cplus_class_num_children (type, kids);
6e382aa3 2803 if (strcmp (var->name, "public") == 0)
8b93c638 2804 children = kids[v_public];
6e382aa3 2805 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
2806 children = kids[v_private];
2807 else
2808 children = kids[v_protected];
2809 dont_know = 0;
2810 }
2811
2812 if (dont_know)
2813 children = c_number_of_children (var);
2814
2815 return children;
2816}
2817
2818/* Compute # of public, private, and protected variables in this class.
2819 That means we need to descend into all baseclasses and find out
2820 how many are there, too. */
2821static void
1669605f 2822cplus_class_num_children (struct type *type, int children[3])
8b93c638
JM
2823{
2824 int i;
2825
2826 children[v_public] = 0;
2827 children[v_private] = 0;
2828 children[v_protected] = 0;
2829
2830 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2831 {
2832 /* If we have a virtual table pointer, omit it. */
72330bd6 2833 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
8b93c638
JM
2834 continue;
2835
2836 if (TYPE_FIELD_PROTECTED (type, i))
2837 children[v_protected]++;
2838 else if (TYPE_FIELD_PRIVATE (type, i))
2839 children[v_private]++;
2840 else
2841 children[v_public]++;
2842 }
2843}
2844
2845static char *
fba45db2 2846cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
2847{
2848 return c_name_of_variable (parent);
2849}
2850
2024f65a
VP
2851enum accessibility { private_field, protected_field, public_field };
2852
2853/* Check if field INDEX of TYPE has the specified accessibility.
2854 Return 0 if so and 1 otherwise. */
2855static int
2856match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 2857{
2024f65a
VP
2858 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2859 return 1;
2860 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2861 return 1;
2862 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2863 && !TYPE_FIELD_PROTECTED (type, index))
2864 return 1;
2865 else
2866 return 0;
2867}
2868
2869static void
2870cplus_describe_child (struct varobj *parent, int index,
02142340
VP
2871 char **cname, struct value **cvalue, struct type **ctype,
2872 char **cfull_expression)
2024f65a 2873{
348144ba 2874 char *name = NULL;
2024f65a 2875 struct value *value;
8b93c638 2876 struct type *type;
02142340
VP
2877 int was_ptr;
2878 char *parent_expression = NULL;
8b93c638 2879
2024f65a
VP
2880 if (cname)
2881 *cname = NULL;
2882 if (cvalue)
2883 *cvalue = NULL;
2884 if (ctype)
2885 *ctype = NULL;
02142340
VP
2886 if (cfull_expression)
2887 *cfull_expression = NULL;
2024f65a 2888
8b93c638
JM
2889 if (CPLUS_FAKE_CHILD (parent))
2890 {
2024f65a
VP
2891 value = parent->parent->value;
2892 type = get_value_type (parent->parent);
02142340
VP
2893 if (cfull_expression)
2894 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
2895 }
2896 else
2024f65a
VP
2897 {
2898 value = parent->value;
2899 type = get_value_type (parent);
02142340
VP
2900 if (cfull_expression)
2901 parent_expression = varobj_get_path_expr (parent);
2024f65a 2902 }
8b93c638 2903
02142340 2904 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
2905
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 2907 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 2908 {
02142340 2909 char *join = was_ptr ? "->" : ".";
8b93c638
JM
2910 if (CPLUS_FAKE_CHILD (parent))
2911 {
6e382aa3
JJ
2912 /* The fields of the class type are ordered as they
2913 appear in the class. We are given an index for a
2914 particular access control type ("public","protected",
2915 or "private"). We must skip over fields that don't
2916 have the access control we are looking for to properly
2917 find the indexed field. */
2918 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 2919 enum accessibility acc = public_field;
6e382aa3 2920 if (strcmp (parent->name, "private") == 0)
2024f65a 2921 acc = private_field;
6e382aa3 2922 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
2923 acc = protected_field;
2924
2925 while (index >= 0)
6e382aa3 2926 {
2024f65a
VP
2927 if (TYPE_VPTR_BASETYPE (type) == type
2928 && type_index == TYPE_VPTR_FIELDNO (type))
2929 ; /* ignore vptr */
2930 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
2931 --index;
2932 ++type_index;
6e382aa3 2933 }
2024f65a
VP
2934 --type_index;
2935
2936 if (cname)
2937 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2938
2939 if (cvalue && value)
2940 *cvalue = value_struct_element_index (value, type_index);
2941
2942 if (ctype)
2943 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
2944
2945 if (cfull_expression)
2946 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2947 join,
2948 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
2949 }
2950 else if (index < TYPE_N_BASECLASSES (type))
2951 {
2952 /* This is a baseclass. */
2953 if (cname)
2954 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2955
2956 if (cvalue && value)
6e382aa3 2957 {
2024f65a 2958 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
02142340 2959 release_value (*cvalue);
6e382aa3
JJ
2960 }
2961
2024f65a
VP
2962 if (ctype)
2963 {
2964 *ctype = TYPE_FIELD_TYPE (type, index);
2965 }
02142340
VP
2966
2967 if (cfull_expression)
2968 {
2969 char *ptr = was_ptr ? "*" : "";
2970 /* Cast the parent to the base' type. Note that in gdb,
2971 expression like
2972 (Base1)d
2973 will create an lvalue, for all appearences, so we don't
2974 need to use more fancy:
2975 *(Base1*)(&d)
2976 construct. */
2977 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2978 ptr,
2979 TYPE_FIELD_NAME (type, index),
2980 ptr,
2981 parent_expression);
2982 }
8b93c638 2983 }
8b93c638
JM
2984 else
2985 {
348144ba 2986 char *access = NULL;
6e382aa3 2987 int children[3];
2024f65a 2988 cplus_class_num_children (type, children);
6e382aa3 2989
8b93c638 2990 /* Everything beyond the baseclasses can
6e382aa3
JJ
2991 only be "public", "private", or "protected"
2992
2993 The special "fake" children are always output by varobj in
2994 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
2995 index -= TYPE_N_BASECLASSES (type);
2996 switch (index)
2997 {
2998 case 0:
6e382aa3 2999 if (children[v_public] > 0)
2024f65a 3000 access = "public";
6e382aa3 3001 else if (children[v_private] > 0)
2024f65a 3002 access = "private";
6e382aa3 3003 else
2024f65a 3004 access = "protected";
6e382aa3 3005 break;
8b93c638 3006 case 1:
6e382aa3 3007 if (children[v_public] > 0)
8b93c638 3008 {
6e382aa3 3009 if (children[v_private] > 0)
2024f65a 3010 access = "private";
6e382aa3 3011 else
2024f65a 3012 access = "protected";
8b93c638 3013 }
6e382aa3 3014 else if (children[v_private] > 0)
2024f65a 3015 access = "protected";
6e382aa3 3016 break;
8b93c638 3017 case 2:
6e382aa3 3018 /* Must be protected */
2024f65a 3019 access = "protected";
6e382aa3 3020 break;
8b93c638
JM
3021 default:
3022 /* error! */
3023 break;
3024 }
348144ba
MS
3025
3026 gdb_assert (access);
2024f65a
VP
3027 if (cname)
3028 *cname = xstrdup (access);
8b93c638 3029
02142340 3030 /* Value and type and full expression are null here. */
2024f65a 3031 }
8b93c638 3032 }
8b93c638
JM
3033 else
3034 {
02142340 3035 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3036 }
3037}
8b93c638 3038
2024f65a
VP
3039static char *
3040cplus_name_of_child (struct varobj *parent, int index)
3041{
3042 char *name = NULL;
02142340 3043 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3044 return name;
3045}
3046
02142340
VP
3047static char *
3048cplus_path_expr_of_child (struct varobj *child)
3049{
3050 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3051 &child->path_expr);
3052 return child->path_expr;
3053}
3054
30b28db1 3055static struct value *
fba45db2 3056cplus_value_of_root (struct varobj **var_handle)
8b93c638 3057{
73a93a32 3058 return c_value_of_root (var_handle);
8b93c638
JM
3059}
3060
30b28db1 3061static struct value *
fba45db2 3062cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3063{
2024f65a 3064 struct value *value = NULL;
02142340 3065 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3066 return value;
3067}
3068
3069static struct type *
fba45db2 3070cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3071{
2024f65a 3072 struct type *type = NULL;
02142340 3073 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3074 return type;
3075}
3076
8b93c638 3077static char *
de051565 3078cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638
JM
3079{
3080
3081 /* If we have one of our special types, don't print out
3082 any value. */
3083 if (CPLUS_FAKE_CHILD (var))
3084 return xstrdup ("");
3085
de051565 3086 return c_value_of_variable (var, format);
8b93c638
JM
3087}
3088\f
3089/* Java */
3090
3091static int
fba45db2 3092java_number_of_children (struct varobj *var)
8b93c638
JM
3093{
3094 return cplus_number_of_children (var);
3095}
3096
3097static char *
fba45db2 3098java_name_of_variable (struct varobj *parent)
8b93c638
JM
3099{
3100 char *p, *name;
3101
3102 name = cplus_name_of_variable (parent);
3103 /* If the name has "-" in it, it is because we
3104 needed to escape periods in the name... */
3105 p = name;
3106
3107 while (*p != '\000')
3108 {
3109 if (*p == '-')
3110 *p = '.';
3111 p++;
3112 }
3113
3114 return name;
3115}
3116
3117static char *
fba45db2 3118java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3119{
3120 char *name, *p;
3121
3122 name = cplus_name_of_child (parent, index);
3123 /* Escape any periods in the name... */
3124 p = name;
3125
3126 while (*p != '\000')
3127 {
3128 if (*p == '.')
3129 *p = '-';
3130 p++;
3131 }
3132
3133 return name;
3134}
3135
02142340
VP
3136static char *
3137java_path_expr_of_child (struct varobj *child)
3138{
3139 return NULL;
3140}
3141
30b28db1 3142static struct value *
fba45db2 3143java_value_of_root (struct varobj **var_handle)
8b93c638 3144{
73a93a32 3145 return cplus_value_of_root (var_handle);
8b93c638
JM
3146}
3147
30b28db1 3148static struct value *
fba45db2 3149java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3150{
3151 return cplus_value_of_child (parent, index);
3152}
3153
3154static struct type *
fba45db2 3155java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3156{
3157 return cplus_type_of_child (parent, index);
3158}
3159
8b93c638 3160static char *
de051565 3161java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3162{
de051565 3163 return cplus_value_of_variable (var, format);
8b93c638 3164}
54333c3b
JK
3165
3166/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3167 with an arbitrary caller supplied DATA pointer. */
3168
3169void
3170all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3171{
3172 struct varobj_root *var_root, *var_root_next;
3173
3174 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3175
3176 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3177 {
3178 var_root_next = var_root->next;
3179
3180 (*func) (var_root->rootvar, data);
3181 }
3182}
8b93c638
JM
3183\f
3184extern void _initialize_varobj (void);
3185void
3186_initialize_varobj (void)
3187{
3188 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3189
3190 varobj_table = xmalloc (sizeof_table);
3191 memset (varobj_table, 0, sizeof_table);
3192
85c07804
AC
3193 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3194 &varobjdebug, _("\
3195Set varobj debugging."), _("\
3196Show varobj debugging."), _("\
3197When non-zero, varobj debugging is enabled."),
3198 NULL,
920d2a44 3199 show_varobjdebug,
85c07804 3200 &setlist, &showlist);
8b93c638 3201}
8756216b 3202
54333c3b
JK
3203/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3204 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3205
54333c3b
JK
3206static void
3207varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3208{
54333c3b
JK
3209 /* Floating varobjs are reparsed on each stop, so we don't care if the
3210 presently parsed expression refers to something that's gone. */
3211 if (var->root->floating)
3212 return;
8756216b 3213
54333c3b
JK
3214 /* global var must be re-evaluated. */
3215 if (var->root->valid_block == NULL)
2dbd25e5 3216 {
54333c3b 3217 struct varobj *tmp_var;
2dbd25e5 3218
54333c3b
JK
3219 /* Try to create a varobj with same expression. If we succeed
3220 replace the old varobj, otherwise invalidate it. */
3221 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3222 USE_CURRENT_FRAME);
3223 if (tmp_var != NULL)
3224 {
3225 tmp_var->obj_name = xstrdup (var->obj_name);
3226 varobj_delete (var, NULL, 0);
3227 install_variable (tmp_var);
2dbd25e5 3228 }
54333c3b
JK
3229 else
3230 var->root->is_valid = 0;
2dbd25e5 3231 }
54333c3b
JK
3232 else /* locals must be invalidated. */
3233 var->root->is_valid = 0;
3234}
3235
3236/* Invalidate the varobjs that are tied to locals and re-create the ones that
3237 are defined on globals.
3238 Invalidated varobjs will be always printed in_scope="invalid". */
3239
3240void
3241varobj_invalidate (void)
3242{
3243 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3244}
This page took 2.334709 seconds and 4 git commands to generate.