Change varobj_iter::next to return unique_ptr
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
b811d2c2 3 Copyright (C) 1999-2020 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
6208b47d
VP
29#include "gdbthread.h"
30#include "inferior.h"
827f100c 31#include "varobj-iter.h"
396af9a1 32#include "parser-defs.h"
0d12e84c 33#include "gdbarch.h"
76deb5d9 34#include <algorithm>
8b93c638 35
b6313243
TT
36#if HAVE_PYTHON
37#include "python/python.h"
38#include "python/python-internal.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
c2c440a9 43/* See varobj.h. */
8b93c638 44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
72330bd6 104};
8b93c638 105
bb5ce47a 106/* Dynamic part of varobj. */
8b93c638 107
bb5ce47a
YQ
108struct varobj_dynamic
109{
b6313243
TT
110 /* Whether the children of this varobj were requested. This field is
111 used to decide if dynamic varobj should recompute their children.
112 In the event that the frontend never asked for the children, we
113 can avoid that. */
bd046f64 114 bool children_requested = false;
b6313243 115
0cc7d26f
TT
116 /* The pretty-printer constructor. If NULL, then the default
117 pretty-printer will be looked up. If None, then no
118 pretty-printer will be installed. */
9e5b9d2b 119 PyObject *constructor = NULL;
0cc7d26f 120
b6313243
TT
121 /* The pretty-printer that has been constructed. If NULL, then a
122 new printer object is needed, and one will be constructed. */
9e5b9d2b 123 PyObject *pretty_printer = NULL;
0cc7d26f
TT
124
125 /* The iterator returned by the printer's 'children' method, or NULL
126 if not available. */
9e5b9d2b 127 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
128
129 /* We request one extra item from the iterator, so that we can
130 report to the caller whether there are more items than we have
131 already reported. However, we don't want to install this value
132 when we read it, because that will mess up future updates. So,
133 we stash it here instead. */
9e5b9d2b 134 varobj_item *saved_item = NULL;
72330bd6 135};
8b93c638 136
8b93c638
JM
137/* Private function prototypes */
138
581e13c1 139/* Helper functions for the above subcommands. */
8b93c638 140
4c37490d 141static int delete_variable (struct varobj *, bool);
8b93c638 142
4c37490d 143static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 144
4c37490d 145static bool install_variable (struct varobj *);
8b93c638 146
a14ed312 147static void uninstall_variable (struct varobj *);
8b93c638 148
2f408ecb 149static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 150
b6313243 151static struct varobj *
5a2e0d6e
YQ
152create_child_with_value (struct varobj *parent, int index,
153 struct varobj_item *item);
b6313243 154
8b93c638
JM
155/* Utility routines */
156
a14ed312 157static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 158
4c37490d
SM
159static bool update_type_if_necessary (struct varobj *var,
160 struct value *new_value);
8264ba82 161
4c37490d
SM
162static bool install_new_value (struct varobj *var, struct value *value,
163 bool initial);
acd65feb 164
581e13c1 165/* Language-specific routines. */
8b93c638 166
b09e2c59 167static int number_of_children (const struct varobj *);
8b93c638 168
2f408ecb 169static std::string name_of_variable (const struct varobj *);
8b93c638 170
2f408ecb 171static std::string name_of_child (struct varobj *, int);
8b93c638 172
4c37490d 173static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 174
c1cc6152 175static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 176
2f408ecb
PA
177static std::string my_value_of_variable (struct varobj *var,
178 enum varobj_display_formats format);
8b93c638 179
4c37490d 180static bool is_root_p (const struct varobj *var);
8b93c638 181
9a1edae6 182static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 183 struct varobj_item *item);
b6313243 184
8b93c638
JM
185/* Private data */
186
581e13c1 187/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 188static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 189
76deb5d9
TT
190/* List of root variable objects. */
191static std::list<struct varobj_root *> rootlist;
8b93c638 192
581e13c1 193/* Pointer to the varobj hash table (built at run time). */
2c1413a9 194static htab_t varobj_table;
8b93c638 195
8b93c638
JM
196\f
197
198/* API Implementation */
4c37490d 199static bool
b09e2c59 200is_root_p (const struct varobj *var)
b2c2bd75
VP
201{
202 return (var->root->rootvar == var);
203}
8b93c638 204
d452c4bc 205#ifdef HAVE_PYTHON
6cd67bea
TT
206
207/* See python-internal.h. */
208gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
209: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
210{
211}
212
d452c4bc
UW
213#endif
214
7d8547c9
AC
215/* Return the full FRAME which corresponds to the given CORE_ADDR
216 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
217
218static struct frame_info *
219find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
220{
221 struct frame_info *frame = NULL;
222
223 if (frame_addr == (CORE_ADDR) 0)
224 return NULL;
225
9d49bdc2
PA
226 for (frame = get_current_frame ();
227 frame != NULL;
228 frame = get_prev_frame (frame))
7d8547c9 229 {
1fac167a
UW
230 /* The CORE_ADDR we get as argument was parsed from a string GDB
231 output as $fp. This output got truncated to gdbarch_addr_bit.
232 Truncate the frame base address in the same manner before
233 comparing it against our argument. */
234 CORE_ADDR frame_base = get_frame_base_address (frame);
235 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 236
1fac167a
UW
237 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
238 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
239
240 if (frame_base == frame_addr)
7d8547c9
AC
241 return frame;
242 }
9d49bdc2
PA
243
244 return NULL;
7d8547c9
AC
245}
246
5fa13070
SM
247/* Creates a varobj (not its children). */
248
8b93c638 249struct varobj *
2f408ecb
PA
250varobj_create (const char *objname,
251 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 252{
581e13c1 253 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 254 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
255
256 if (expression != NULL)
257 {
e4195b40 258 struct frame_info *fi;
35633fef 259 struct frame_id old_id = null_frame_id;
3977b71f 260 const struct block *block;
bbc13ae3 261 const char *p;
e55dccf0 262 struct value *value = NULL;
1bb9788d 263 CORE_ADDR pc;
8b93c638 264
9d49bdc2 265 /* Parse and evaluate the expression, filling in as much of the
dda83cd7 266 variable's data as possible. */
9d49bdc2
PA
267
268 if (has_stack_frames ())
269 {
581e13c1 270 /* Allow creator to specify context of variable. */
9d49bdc2
PA
271 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
272 fi = get_selected_frame (NULL);
273 else
274 /* FIXME: cagney/2002-11-23: This code should be doing a
275 lookup using the frame ID and not just the frame's
276 ``address''. This, of course, means an interface
277 change. However, with out that interface change ISAs,
278 such as the ia64 with its two stacks, won't work.
279 Similar goes for the case where there is a frameless
280 function. */
281 fi = find_frame_addr_in_frame_chain (frame);
282 }
8b93c638 283 else
9d49bdc2 284 fi = NULL;
8b93c638 285
73a93a32 286 if (type == USE_SELECTED_FRAME)
4c37490d 287 var->root->floating = true;
73a93a32 288
1bb9788d 289 pc = 0;
8b93c638
JM
290 block = NULL;
291 if (fi != NULL)
1bb9788d
TT
292 {
293 block = get_frame_block (fi, 0);
294 pc = get_frame_pc (fi);
295 }
8b93c638
JM
296
297 p = expression;
699bd4cf
TT
298
299 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
300 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 301 /* Wrap the call to parse expression, so we can
dda83cd7 302 return a sensible error. */
a70b8144 303 try
8e7b59a5 304 {
699bd4cf 305 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
8e7b59a5
KS
306 }
307
230d2906 308 catch (const gdb_exception_error &except)
73a93a32
JI
309 {
310 return NULL;
311 }
8b93c638 312
581e13c1 313 /* Don't allow variables to be created for types. */
608b4967
TT
314 if (var->root->exp->elts[0].opcode == OP_TYPE
315 || var->root->exp->elts[0].opcode == OP_TYPEOF
316 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 317 {
bc8332bb
AC
318 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
319 " as an expression.\n");
8b93c638
JM
320 return NULL;
321 }
322
9e5b9d2b 323 var->format = variable_default_display (var.get ());
e707fc44 324 var->root->valid_block =
699bd4cf 325 var->root->floating ? NULL : tracker.block ();
2f408ecb 326 var->name = expression;
02142340 327 /* For a root var, the name and the expr are the same. */
2f408ecb 328 var->path_expr = expression;
8b93c638
JM
329
330 /* When the frame is different from the current frame,
dda83cd7
SM
331 we must select the appropriate frame before parsing
332 the expression, otherwise the value will not be current.
333 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 334 if (var->root->valid_block)
8b93c638 335 {
4e22772d
JK
336 /* User could specify explicit FRAME-ADDR which was not found but
337 EXPRESSION is frame specific and we would not be able to evaluate
338 it correctly next time. With VALID_BLOCK set we must also set
339 FRAME and THREAD_ID. */
340 if (fi == NULL)
341 error (_("Failed to find the specified frame"));
342
7a424e99 343 var->root->frame = get_frame_id (fi);
00431a78 344 var->root->thread_id = inferior_thread ()->global_num;
35633fef 345 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 346 select_frame (fi);
8b93c638
JM
347 }
348
340a7723 349 /* We definitely need to catch errors here.
dda83cd7
SM
350 If evaluate_expression succeeds we got the value we wanted.
351 But if it fails, we still go on with a call to evaluate_type(). */
a70b8144 352 try
8e7b59a5 353 {
4d01a485 354 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 355 }
230d2906 356 catch (const gdb_exception_error &except)
e55dccf0
VP
357 {
358 /* Error getting the value. Try to at least get the
359 right type. */
4d01a485 360 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 361
e55dccf0
VP
362 var->type = value_type (type_only_value);
363 }
8264ba82 364
492d29ea
PA
365 if (value != NULL)
366 {
367 int real_type_found = 0;
368
369 var->type = value_actual_type (value, 0, &real_type_found);
370 if (real_type_found)
371 value = value_cast (var->type, value);
372 }
acd65feb 373
8b93c638 374 /* Set language info */
b63a3f3f 375 var->root->lang_ops = var->root->exp->language_defn->varobj_ops ();
8b93c638 376
9e5b9d2b 377 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 378
581e13c1 379 /* Set ourselves as our root. */
9e5b9d2b 380 var->root->rootvar = var.get ();
8b93c638 381
581e13c1 382 /* Reset the selected frame. */
35633fef
JK
383 if (frame_id_p (old_id))
384 select_frame (frame_find_by_id (old_id));
8b93c638
JM
385 }
386
73a93a32 387 /* If the variable object name is null, that means this
581e13c1 388 is a temporary variable, so don't install it. */
73a93a32
JI
389
390 if ((var != NULL) && (objname != NULL))
8b93c638 391 {
2f408ecb 392 var->obj_name = objname;
8b93c638
JM
393
394 /* If a varobj name is duplicated, the install will fail so
dda83cd7 395 we must cleanup. */
9e5b9d2b
SM
396 if (!install_variable (var.get ()))
397 return NULL;
8b93c638
JM
398 }
399
9e5b9d2b 400 return var.release ();
8b93c638
JM
401}
402
581e13c1 403/* Generates an unique name that can be used for a varobj. */
8b93c638 404
2d6960b4 405std::string
8b93c638
JM
406varobj_gen_name (void)
407{
408 static int id = 0;
8b93c638 409
581e13c1 410 /* Generate a name for this object. */
8b93c638 411 id++;
2d6960b4 412 return string_printf ("var%d", id);
8b93c638
JM
413}
414
61d8f275
JK
415/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
416 error if OBJNAME cannot be found. */
8b93c638
JM
417
418struct varobj *
2f408ecb 419varobj_get_handle (const char *objname)
8b93c638 420{
2c1413a9
TT
421 varobj *var = (varobj *) htab_find_with_hash (varobj_table, objname,
422 htab_hash_string (objname));
8b93c638 423
2c1413a9 424 if (var == NULL)
8a3fe4f8 425 error (_("Variable object not found"));
8b93c638 426
2c1413a9 427 return var;
8b93c638
JM
428}
429
581e13c1 430/* Given the handle, return the name of the object. */
8b93c638 431
2f408ecb 432const char *
b09e2c59 433varobj_get_objname (const struct varobj *var)
8b93c638 434{
2f408ecb 435 return var->obj_name.c_str ();
8b93c638
JM
436}
437
2f408ecb
PA
438/* Given the handle, return the expression represented by the
439 object. */
8b93c638 440
2f408ecb 441std::string
b09e2c59 442varobj_get_expression (const struct varobj *var)
8b93c638
JM
443{
444 return name_of_variable (var);
445}
446
30914ca8 447/* See varobj.h. */
8b93c638
JM
448
449int
4c37490d 450varobj_delete (struct varobj *var, bool only_children)
8b93c638 451{
30914ca8 452 return delete_variable (var, only_children);
8b93c638
JM
453}
454
d8b65138
JK
455#if HAVE_PYTHON
456
b6313243
TT
457/* Convenience function for varobj_set_visualizer. Instantiate a
458 pretty-printer for a given value. */
459static PyObject *
460instantiate_pretty_printer (PyObject *constructor, struct value *value)
461{
b6313243
TT
462 PyObject *val_obj = NULL;
463 PyObject *printer;
b6313243 464
b6313243 465 val_obj = value_to_value_object (value);
b6313243
TT
466 if (! val_obj)
467 return NULL;
468
469 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
470 Py_DECREF (val_obj);
471 return printer;
b6313243
TT
472}
473
d8b65138
JK
474#endif
475
581e13c1 476/* Set/Get variable object display format. */
8b93c638
JM
477
478enum varobj_display_formats
479varobj_set_display_format (struct varobj *var,
480 enum varobj_display_formats format)
481{
482 switch (format)
483 {
484 case FORMAT_NATURAL:
485 case FORMAT_BINARY:
486 case FORMAT_DECIMAL:
487 case FORMAT_HEXADECIMAL:
488 case FORMAT_OCTAL:
1c35a88f 489 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
490 var->format = format;
491 break;
492
493 default:
494 var->format = variable_default_display (var);
495 }
496
ae7d22a6 497 if (varobj_value_is_changeable_p (var)
b4d61099 498 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 499 {
b4d61099 500 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 501 var->format, var);
ae7d22a6
VP
502 }
503
8b93c638
JM
504 return var->format;
505}
506
507enum varobj_display_formats
b09e2c59 508varobj_get_display_format (const struct varobj *var)
8b93c638
JM
509{
510 return var->format;
511}
512
9b972014 513gdb::unique_xmalloc_ptr<char>
b09e2c59 514varobj_get_display_hint (const struct varobj *var)
b6313243 515{
9b972014 516 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
517
518#if HAVE_PYTHON
0646da15
TT
519 if (!gdb_python_initialized)
520 return NULL;
521
bde7b3e3 522 gdbpy_enter_varobj enter_py (var);
d452c4bc 523
bb5ce47a
YQ
524 if (var->dynamic->pretty_printer != NULL)
525 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
526#endif
527
528 return result;
529}
530
0cc7d26f
TT
531/* Return true if the varobj has items after TO, false otherwise. */
532
4c37490d 533bool
b09e2c59 534varobj_has_more (const struct varobj *var, int to)
0cc7d26f 535{
ddf0ea08 536 if (var->children.size () > to)
4c37490d 537 return true;
ddf0ea08
SM
538
539 return ((to == -1 || var->children.size () == to)
bb5ce47a 540 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
541}
542
c5b48eac
VP
543/* If the variable object is bound to a specific thread, that
544 is its evaluation can always be done in context of a frame
545 inside that thread, returns GDB id of the thread -- which
581e13c1 546 is always positive. Otherwise, returns -1. */
c5b48eac 547int
b09e2c59 548varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
549{
550 if (var->root->valid_block && var->root->thread_id > 0)
551 return var->root->thread_id;
552 else
553 return -1;
554}
555
25d5ea92 556void
4c37490d 557varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
558{
559 /* When a variable is unfrozen, we don't fetch its value.
560 The 'not_fetched' flag remains set, so next -var-update
561 won't complain.
562
563 We don't fetch the value, because for structures the client
564 should do -var-update anyway. It would be bad to have different
565 client-size logic for structure and other types. */
566 var->frozen = frozen;
567}
568
4c37490d 569bool
b09e2c59 570varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
571{
572 return var->frozen;
573}
574
791b7405
AB
575/* A helper function that updates the contents of FROM and TO based on the
576 size of the vector CHILDREN. If the contents of either FROM or TO are
577 negative the entire range is used. */
0cc7d26f 578
99ad9427 579void
ddf0ea08
SM
580varobj_restrict_range (const std::vector<varobj *> &children,
581 int *from, int *to)
0cc7d26f 582{
ddf0ea08
SM
583 int len = children.size ();
584
0cc7d26f
TT
585 if (*from < 0 || *to < 0)
586 {
587 *from = 0;
ddf0ea08 588 *to = len;
0cc7d26f
TT
589 }
590 else
591 {
ddf0ea08
SM
592 if (*from > len)
593 *from = len;
594 if (*to > len)
595 *to = len;
0cc7d26f
TT
596 if (*from > *to)
597 *from = *to;
598 }
599}
600
601/* A helper for update_dynamic_varobj_children that installs a new
602 child when needed. */
603
604static void
605install_dynamic_child (struct varobj *var,
0604393c
SM
606 std::vector<varobj *> *changed,
607 std::vector<varobj *> *type_changed,
608 std::vector<varobj *> *newobj,
609 std::vector<varobj *> *unchanged,
4c37490d 610 bool *cchanged,
0cc7d26f 611 int index,
5a2e0d6e 612 struct varobj_item *item)
0cc7d26f 613{
ddf0ea08 614 if (var->children.size () < index + 1)
0cc7d26f
TT
615 {
616 /* There's no child yet. */
5a2e0d6e 617 struct varobj *child = varobj_add_child (var, item);
a109c7c1 618
0604393c 619 if (newobj != NULL)
0cc7d26f 620 {
0604393c 621 newobj->push_back (child);
4c37490d 622 *cchanged = true;
0cc7d26f
TT
623 }
624 }
bf8793bb 625 else
0cc7d26f 626 {
ddf0ea08 627 varobj *existing = var->children[index];
4c37490d 628 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 629
8264ba82
AG
630 if (type_updated)
631 {
0604393c
SM
632 if (type_changed != NULL)
633 type_changed->push_back (existing);
8264ba82 634 }
5a2e0d6e 635 if (install_new_value (existing, item->value, 0))
0cc7d26f 636 {
0604393c
SM
637 if (!type_updated && changed != NULL)
638 changed->push_back (existing);
0cc7d26f 639 }
0604393c
SM
640 else if (!type_updated && unchanged != NULL)
641 unchanged->push_back (existing);
0cc7d26f
TT
642 }
643}
644
576ea091
YQ
645#if HAVE_PYTHON
646
4c37490d 647static bool
b09e2c59 648dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 649{
bb5ce47a 650 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 651
0646da15 652 if (!gdb_python_initialized)
4c37490d 653 return false;
0646da15 654
bde7b3e3
TT
655 gdbpy_enter_varobj enter_py (var);
656 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 657}
576ea091 658#endif
0cc7d26f 659
e5250216
YQ
660/* A factory for creating dynamic varobj's iterators. Returns an
661 iterator object suitable for iterating over VAR's children. */
662
663static struct varobj_iter *
664varobj_get_iterator (struct varobj *var)
665{
576ea091 666#if HAVE_PYTHON
e5250216
YQ
667 if (var->dynamic->pretty_printer)
668 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 669#endif
e5250216
YQ
670
671 gdb_assert_not_reached (_("\
672requested an iterator from a non-dynamic varobj"));
673}
674
827f100c
YQ
675/* Release and clear VAR's saved item, if any. */
676
677static void
678varobj_clear_saved_item (struct varobj_dynamic *var)
679{
680 if (var->saved_item != NULL)
681 {
22bc8444 682 value_decref (var->saved_item->value);
0a8beaba 683 delete var->saved_item;
827f100c
YQ
684 var->saved_item = NULL;
685 }
686}
0cc7d26f 687
4c37490d 688static bool
b6313243 689update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
690 std::vector<varobj *> *changed,
691 std::vector<varobj *> *type_changed,
692 std::vector<varobj *> *newobj,
693 std::vector<varobj *> *unchanged,
4c37490d
SM
694 bool *cchanged,
695 bool update_children,
0cc7d26f
TT
696 int from,
697 int to)
b6313243 698{
b6313243 699 int i;
b6313243 700
4c37490d 701 *cchanged = false;
b6313243 702
bb5ce47a 703 if (update_children || var->dynamic->child_iter == NULL)
b6313243 704 {
54746ce3 705 delete var->dynamic->child_iter;
e5250216 706 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 707
827f100c 708 varobj_clear_saved_item (var->dynamic);
b6313243 709
e5250216 710 i = 0;
b6313243 711
bb5ce47a 712 if (var->dynamic->child_iter == NULL)
4c37490d 713 return false;
b6313243 714 }
0cc7d26f 715 else
ddf0ea08 716 i = var->children.size ();
b6313243 717
0cc7d26f
TT
718 /* We ask for one extra child, so that MI can report whether there
719 are more children. */
720 for (; to < 0 || i < to + 1; ++i)
b6313243 721 {
60ee72f6 722 std::unique_ptr<varobj_item> item;
b6313243 723
0cc7d26f 724 /* See if there was a leftover from last time. */
827f100c 725 if (var->dynamic->saved_item != NULL)
0cc7d26f 726 {
60ee72f6 727 item = std::unique_ptr<varobj_item> (var->dynamic->saved_item);
bb5ce47a 728 var->dynamic->saved_item = NULL;
0cc7d26f
TT
729 }
730 else
a4c8e806 731 {
54746ce3 732 item = var->dynamic->child_iter->next ();
827f100c
YQ
733 /* Release vitem->value so its lifetime is not bound to the
734 execution of a command. */
735 if (item != NULL && item->value != NULL)
895dafa6 736 item->value = release_value (item->value).release ();
a4c8e806 737 }
b6313243 738
e5250216
YQ
739 if (item == NULL)
740 {
741 /* Iteration is done. Remove iterator from VAR. */
54746ce3 742 delete var->dynamic->child_iter;
e5250216
YQ
743 var->dynamic->child_iter = NULL;
744 break;
745 }
0cc7d26f
TT
746 /* We don't want to push the extra child on any report list. */
747 if (to < 0 || i < to)
b6313243 748 {
4c37490d 749 bool can_mention = from < 0 || i >= from;
0cc7d26f 750
0cc7d26f 751 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 752 can_mention ? type_changed : NULL,
fe978cb0 753 can_mention ? newobj : NULL,
0cc7d26f 754 can_mention ? unchanged : NULL,
5e5ac9a5 755 can_mention ? cchanged : NULL, i,
60ee72f6 756 item.get ());
b6313243 757 }
0cc7d26f 758 else
b6313243 759 {
60ee72f6 760 var->dynamic->saved_item = item.release ();
b6313243 761
0cc7d26f
TT
762 /* We want to truncate the child list just before this
763 element. */
764 break;
765 }
b6313243
TT
766 }
767
ddf0ea08 768 if (i < var->children.size ())
b6313243 769 {
4c37490d 770 *cchanged = true;
ddf0ea08
SM
771 for (int j = i; j < var->children.size (); ++j)
772 varobj_delete (var->children[j], 0);
773
774 var->children.resize (i);
b6313243 775 }
0cc7d26f
TT
776
777 /* If there are fewer children than requested, note that the list of
778 children changed. */
ddf0ea08 779 if (to >= 0 && var->children.size () < to)
4c37490d 780 *cchanged = true;
0cc7d26f 781
ddf0ea08 782 var->num_children = var->children.size ();
b6313243 783
4c37490d 784 return true;
b6313243 785}
25d5ea92 786
8b93c638
JM
787int
788varobj_get_num_children (struct varobj *var)
789{
790 if (var->num_children == -1)
b6313243 791 {
31f628ae 792 if (varobj_is_dynamic_p (var))
0cc7d26f 793 {
4c37490d 794 bool dummy;
0cc7d26f
TT
795
796 /* If we have a dynamic varobj, don't report -1 children.
797 So, try to fetch some children first. */
8264ba82 798 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 799 false, 0, 0);
0cc7d26f
TT
800 }
801 else
b6313243
TT
802 var->num_children = number_of_children (var);
803 }
8b93c638 804
0cc7d26f 805 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
806}
807
808/* Creates a list of the immediate children of a variable object;
581e13c1 809 the return code is the number of such children or -1 on error. */
8b93c638 810
ddf0ea08 811const std::vector<varobj *> &
0cc7d26f 812varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 813{
bd046f64 814 var->dynamic->children_requested = true;
b6313243 815
31f628ae 816 if (varobj_is_dynamic_p (var))
0cc7d26f 817 {
4c37490d
SM
818 bool children_changed;
819
b6313243
TT
820 /* This, in theory, can result in the number of children changing without
821 frontend noticing. But well, calling -var-list-children on the same
822 varobj twice is not something a sane frontend would do. */
8264ba82 823 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 824 &children_changed, false, 0, *to);
99ad9427 825 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
826 return var->children;
827 }
8b93c638 828
8b93c638
JM
829 if (var->num_children == -1)
830 var->num_children = number_of_children (var);
831
74a44383
DJ
832 /* If that failed, give up. */
833 if (var->num_children == -1)
d56d46f5 834 return var->children;
74a44383 835
28335dcc
VP
836 /* If we're called when the list of children is not yet initialized,
837 allocate enough elements in it. */
ddf0ea08
SM
838 while (var->children.size () < var->num_children)
839 var->children.push_back (NULL);
28335dcc 840
ddf0ea08 841 for (int i = 0; i < var->num_children; i++)
8b93c638 842 {
ddf0ea08 843 if (var->children[i] == NULL)
28335dcc
VP
844 {
845 /* Either it's the first call to varobj_list_children for
846 this variable object, and the child was never created,
847 or it was explicitly deleted by the client. */
2f408ecb 848 std::string name = name_of_child (var, i);
ddf0ea08 849 var->children[i] = create_child (var, i, name);
28335dcc 850 }
8b93c638
JM
851 }
852
99ad9427 853 varobj_restrict_range (var->children, from, to);
d56d46f5 854 return var->children;
8b93c638
JM
855}
856
b6313243 857static struct varobj *
5a2e0d6e 858varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 859{
ddf0ea08
SM
860 varobj *v = create_child_with_value (var, var->children.size (), item);
861
862 var->children.push_back (v);
a109c7c1 863
b6313243
TT
864 return v;
865}
866
8b93c638 867/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
868 prints on the console. The caller is responsible for freeing the string.
869 */
8b93c638 870
2f408ecb 871std::string
8b93c638
JM
872varobj_get_type (struct varobj *var)
873{
8ab91b96 874 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
875 NULL, too.)
876 Do not return a type for invalid variables as well. */
877 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 878 return std::string ();
8b93c638 879
1a4300e9 880 return type_to_string (var->type);
8b93c638
JM
881}
882
1ecb4ee0
DJ
883/* Obtain the type of an object variable. */
884
885struct type *
b09e2c59 886varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
887{
888 return var->type;
889}
890
85254831
KS
891/* Is VAR a path expression parent, i.e., can it be used to construct
892 a valid path expression? */
893
4c37490d 894static bool
b09e2c59 895is_path_expr_parent (const struct varobj *var)
85254831 896{
9a9a7608
AB
897 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
898 return var->root->lang_ops->is_path_expr_parent (var);
899}
85254831 900
9a9a7608
AB
901/* Is VAR a path expression parent, i.e., can it be used to construct
902 a valid path expression? By default we assume any VAR can be a path
903 parent. */
85254831 904
4c37490d 905bool
b09e2c59 906varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 907{
4c37490d 908 return true;
85254831
KS
909}
910
911/* Return the path expression parent for VAR. */
912
c1cc6152
SM
913const struct varobj *
914varobj_get_path_expr_parent (const struct varobj *var)
85254831 915{
c1cc6152 916 const struct varobj *parent = var;
85254831
KS
917
918 while (!is_root_p (parent) && !is_path_expr_parent (parent))
919 parent = parent->parent;
920
5abe0f0c
JV
921 /* Computation of full rooted expression for children of dynamic
922 varobjs is not supported. */
923 if (varobj_is_dynamic_p (parent))
924 error (_("Invalid variable object (child of a dynamic varobj)"));
925
85254831
KS
926 return parent;
927}
928
02142340
VP
929/* Return a pointer to the full rooted expression of varobj VAR.
930 If it has not been computed yet, compute it. */
2f408ecb
PA
931
932const char *
c1cc6152 933varobj_get_path_expr (const struct varobj *var)
02142340 934{
2f408ecb 935 if (var->path_expr.empty ())
02142340
VP
936 {
937 /* For root varobjs, we initialize path_expr
938 when creating varobj, so here it should be
939 child varobj. */
c1cc6152 940 struct varobj *mutable_var = (struct varobj *) var;
02142340 941 gdb_assert (!is_root_p (var));
2568868e 942
c1cc6152 943 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 944 }
2568868e 945
2f408ecb 946 return var->path_expr.c_str ();
02142340
VP
947}
948
fa4d0c40 949const struct language_defn *
b09e2c59 950varobj_get_language (const struct varobj *var)
8b93c638 951{
fa4d0c40 952 return var->root->exp->language_defn;
8b93c638
JM
953}
954
955int
b09e2c59 956varobj_get_attributes (const struct varobj *var)
8b93c638
JM
957{
958 int attributes = 0;
959
340a7723 960 if (varobj_editable_p (var))
581e13c1 961 /* FIXME: define masks for attributes. */
8b93c638
JM
962 attributes |= 0x00000001; /* Editable */
963
964 return attributes;
965}
966
cde5ef40
YQ
967/* Return true if VAR is a dynamic varobj. */
968
4c37490d 969bool
b09e2c59 970varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 971{
bb5ce47a 972 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
973}
974
2f408ecb 975std::string
de051565
MK
976varobj_get_formatted_value (struct varobj *var,
977 enum varobj_display_formats format)
978{
979 return my_value_of_variable (var, format);
980}
981
2f408ecb 982std::string
8b93c638
JM
983varobj_get_value (struct varobj *var)
984{
de051565 985 return my_value_of_variable (var, var->format);
8b93c638
JM
986}
987
988/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
989 value of the given expression. */
990/* Note: Invokes functions that can call error(). */
8b93c638 991
4c37490d 992bool
2f408ecb 993varobj_set_value (struct varobj *var, const char *expression)
8b93c638 994{
34365054 995 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 996 /* The argument "expression" contains the variable's new value.
581e13c1
MS
997 We need to first construct a legal expression for this -- ugh! */
998 /* Does this cover all the bases? */
34365054 999 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1000 int saved_input_radix = input_radix;
bbc13ae3 1001 const char *s = expression;
8b93c638 1002
340a7723 1003 gdb_assert (varobj_editable_p (var));
8b93c638 1004
581e13c1 1005 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1006 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
a70b8144 1007 try
8e7b59a5 1008 {
4d01a485 1009 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1010 }
1011
230d2906 1012 catch (const gdb_exception_error &except)
340a7723 1013 {
581e13c1 1014 /* We cannot proceed without a valid expression. */
4c37490d 1015 return false;
8b93c638
JM
1016 }
1017
340a7723
NR
1018 /* All types that are editable must also be changeable. */
1019 gdb_assert (varobj_value_is_changeable_p (var));
1020
1021 /* The value of a changeable variable object must not be lazy. */
b4d61099 1022 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1023
1024 /* Need to coerce the input. We want to check if the
1025 value of the variable object will be different
1026 after assignment, and the first thing value_assign
1027 does is coerce the input.
1028 For example, if we are assigning an array to a pointer variable we
b021a221 1029 should compare the pointer with the array's address, not with the
340a7723
NR
1030 array's content. */
1031 value = coerce_array (value);
1032
8e7b59a5
KS
1033 /* The new value may be lazy. value_assign, or
1034 rather value_contents, will take care of this. */
a70b8144 1035 try
8e7b59a5 1036 {
b4d61099 1037 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1038 }
1039
230d2906 1040 catch (const gdb_exception_error &except)
492d29ea 1041 {
4c37490d 1042 return false;
492d29ea 1043 }
8e7b59a5 1044
340a7723
NR
1045 /* If the value has changed, record it, so that next -var-update can
1046 report this change. If a variable had a value of '1', we've set it
1047 to '333' and then set again to '1', when -var-update will report this
1048 variable as changed -- because the first assignment has set the
1049 'updated' flag. There's no need to optimize that, because return value
1050 of -var-update should be considered an approximation. */
4c37490d 1051 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1052 input_radix = saved_input_radix;
4c37490d 1053 return true;
8b93c638
JM
1054}
1055
0cc7d26f
TT
1056#if HAVE_PYTHON
1057
1058/* A helper function to install a constructor function and visualizer
bb5ce47a 1059 in a varobj_dynamic. */
0cc7d26f
TT
1060
1061static void
bb5ce47a 1062install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1063 PyObject *visualizer)
1064{
1065 Py_XDECREF (var->constructor);
1066 var->constructor = constructor;
1067
1068 Py_XDECREF (var->pretty_printer);
1069 var->pretty_printer = visualizer;
1070
54746ce3 1071 delete var->child_iter;
0cc7d26f
TT
1072 var->child_iter = NULL;
1073}
1074
1075/* Install the default visualizer for VAR. */
1076
1077static void
1078install_default_visualizer (struct varobj *var)
1079{
d65aec65
PM
1080 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1081 if (CPLUS_FAKE_CHILD (var))
1082 return;
1083
0cc7d26f
TT
1084 if (pretty_printing)
1085 {
a31abe80 1086 gdbpy_ref<> pretty_printer;
0cc7d26f 1087
b4d61099 1088 if (var->value != nullptr)
0cc7d26f 1089 {
b4d61099 1090 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1091 if (pretty_printer == nullptr)
0cc7d26f
TT
1092 {
1093 gdbpy_print_stack ();
1094 error (_("Cannot instantiate printer for default visualizer"));
1095 }
1096 }
a31abe80 1097
0cc7d26f 1098 if (pretty_printer == Py_None)
895dafa6 1099 pretty_printer.reset (nullptr);
0cc7d26f 1100
a31abe80 1101 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1102 }
1103}
1104
1105/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1106 make a new object. */
1107
1108static void
1109construct_visualizer (struct varobj *var, PyObject *constructor)
1110{
1111 PyObject *pretty_printer;
1112
d65aec65
PM
1113 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1114 if (CPLUS_FAKE_CHILD (var))
1115 return;
1116
0cc7d26f
TT
1117 Py_INCREF (constructor);
1118 if (constructor == Py_None)
1119 pretty_printer = NULL;
1120 else
1121 {
b4d61099
TT
1122 pretty_printer = instantiate_pretty_printer (constructor,
1123 var->value.get ());
0cc7d26f
TT
1124 if (! pretty_printer)
1125 {
1126 gdbpy_print_stack ();
1127 Py_DECREF (constructor);
1128 constructor = Py_None;
1129 Py_INCREF (constructor);
1130 }
1131
1132 if (pretty_printer == Py_None)
1133 {
1134 Py_DECREF (pretty_printer);
1135 pretty_printer = NULL;
1136 }
1137 }
1138
bb5ce47a 1139 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1140}
1141
1142#endif /* HAVE_PYTHON */
1143
1144/* A helper function for install_new_value. This creates and installs
1145 a visualizer for VAR, if appropriate. */
1146
1147static void
1148install_new_value_visualizer (struct varobj *var)
1149{
1150#if HAVE_PYTHON
1151 /* If the constructor is None, then we want the raw value. If VAR
1152 does not have a value, just skip this. */
0646da15
TT
1153 if (!gdb_python_initialized)
1154 return;
1155
bb5ce47a 1156 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1157 {
bde7b3e3 1158 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1159
bb5ce47a 1160 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1161 install_default_visualizer (var);
1162 else
bb5ce47a 1163 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1164 }
1165#else
1166 /* Do nothing. */
1167#endif
1168}
1169
8264ba82
AG
1170/* When using RTTI to determine variable type it may be changed in runtime when
1171 the variable value is changed. This function checks whether type of varobj
1172 VAR will change when a new value NEW_VALUE is assigned and if it is so
1173 updates the type of VAR. */
1174
4c37490d 1175static bool
8264ba82
AG
1176update_type_if_necessary (struct varobj *var, struct value *new_value)
1177{
1178 if (new_value)
1179 {
1180 struct value_print_options opts;
1181
1182 get_user_print_options (&opts);
1183 if (opts.objectprint)
1184 {
2f408ecb
PA
1185 struct type *new_type = value_actual_type (new_value, 0, 0);
1186 std::string new_type_str = type_to_string (new_type);
1187 std::string curr_type_str = varobj_get_type (var);
8264ba82 1188
2f408ecb
PA
1189 /* Did the type name change? */
1190 if (curr_type_str != new_type_str)
8264ba82
AG
1191 {
1192 var->type = new_type;
1193
1194 /* This information may be not valid for a new type. */
30914ca8 1195 varobj_delete (var, 1);
ddf0ea08 1196 var->children.clear ();
8264ba82 1197 var->num_children = -1;
4c37490d 1198 return true;
8264ba82
AG
1199 }
1200 }
1201 }
1202
4c37490d 1203 return false;
8264ba82
AG
1204}
1205
4c37490d
SM
1206/* Assign a new value to a variable object. If INITIAL is true,
1207 this is the first assignment after the variable object was just
acd65feb 1208 created, or changed type. In that case, just assign the value
4c37490d
SM
1209 and return false.
1210 Otherwise, assign the new value, and return true if the value is
1211 different from the current one, false otherwise. The comparison is
581e13c1
MS
1212 done on textual representation of value. Therefore, some types
1213 need not be compared. E.g. for structures the reported value is
1214 always "{...}", so no comparison is necessary here. If the old
4c37490d 1215 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1216
1217 The VALUE parameter should not be released -- the function will
1218 take care of releasing it when needed. */
4c37490d
SM
1219static bool
1220install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1221{
4c37490d
SM
1222 bool changeable;
1223 bool need_to_fetch;
1224 bool changed = false;
1225 bool intentionally_not_fetched = false;
acd65feb 1226
acd65feb 1227 /* We need to know the varobj's type to decide if the value should
3e43a32a 1228 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1229 don't have a type. */
acd65feb 1230 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1231 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1232
1233 /* If the type has custom visualizer, we consider it to be always
581e13c1 1234 changeable. FIXME: need to make sure this behaviour will not
b6313243 1235 mess up read-sensitive values. */
bb5ce47a 1236 if (var->dynamic->pretty_printer != NULL)
4c37490d 1237 changeable = true;
b6313243 1238
acd65feb
VP
1239 need_to_fetch = changeable;
1240
b26ed50d
VP
1241 /* We are not interested in the address of references, and given
1242 that in C++ a reference is not rebindable, it cannot
1243 meaningfully change. So, get hold of the real value. */
1244 if (value)
0cc7d26f 1245 value = coerce_ref (value);
b26ed50d 1246
78134374 1247 if (var->type && var->type->code () == TYPE_CODE_UNION)
acd65feb
VP
1248 /* For unions, we need to fetch the value implicitly because
1249 of implementation of union member fetch. When gdb
1250 creates a value for a field and the value of the enclosing
1251 structure is not lazy, it immediately copies the necessary
1252 bytes from the enclosing values. If the enclosing value is
1253 lazy, the call to value_fetch_lazy on the field will read
1254 the data from memory. For unions, that means we'll read the
1255 same memory more than once, which is not desirable. So
1256 fetch now. */
4c37490d 1257 need_to_fetch = true;
acd65feb
VP
1258
1259 /* The new value might be lazy. If the type is changeable,
1260 that is we'll be comparing values of this type, fetch the
1261 value now. Otherwise, on the next update the old value
1262 will be lazy, which means we've lost that old value. */
1263 if (need_to_fetch && value && value_lazy (value))
1264 {
c1cc6152 1265 const struct varobj *parent = var->parent;
4c37490d 1266 bool frozen = var->frozen;
a109c7c1 1267
25d5ea92
VP
1268 for (; !frozen && parent; parent = parent->parent)
1269 frozen |= parent->frozen;
1270
1271 if (frozen && initial)
1272 {
1273 /* For variables that are frozen, or are children of frozen
1274 variables, we don't do fetch on initial assignment.
30baf67b 1275 For non-initial assignment we do the fetch, since it means we're
25d5ea92 1276 explicitly asked to compare the new value with the old one. */
4c37490d 1277 intentionally_not_fetched = true;
25d5ea92 1278 }
8e7b59a5 1279 else
acd65feb 1280 {
8e7b59a5 1281
a70b8144 1282 try
8e7b59a5
KS
1283 {
1284 value_fetch_lazy (value);
1285 }
1286
230d2906 1287 catch (const gdb_exception_error &except)
8e7b59a5
KS
1288 {
1289 /* Set the value to NULL, so that for the next -var-update,
1290 we don't try to compare the new value with this value,
1291 that we couldn't even read. */
1292 value = NULL;
1293 }
acd65feb 1294 }
acd65feb
VP
1295 }
1296
e848a8a5
TT
1297 /* Get a reference now, before possibly passing it to any Python
1298 code that might release it. */
b4d61099 1299 value_ref_ptr value_holder;
e848a8a5 1300 if (value != NULL)
bbfa6f00 1301 value_holder = value_ref_ptr::new_reference (value);
b6313243 1302
7a4d50bf
VP
1303 /* Below, we'll be comparing string rendering of old and new
1304 values. Don't get string rendering if the value is
1305 lazy -- if it is, the code above has decided that the value
1306 should not be fetched. */
2f408ecb 1307 std::string print_value;
bb5ce47a
YQ
1308 if (value != NULL && !value_lazy (value)
1309 && var->dynamic->pretty_printer == NULL)
99ad9427 1310 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1311
acd65feb
VP
1312 /* If the type is changeable, compare the old and the new values.
1313 If this is the initial assignment, we don't have any old value
1314 to compare with. */
7a4d50bf 1315 if (!initial && changeable)
acd65feb 1316 {
3e43a32a
MS
1317 /* If the value of the varobj was changed by -var-set-value,
1318 then the value in the varobj and in the target is the same.
1319 However, that value is different from the value that the
581e13c1 1320 varobj had after the previous -var-update. So need to the
3e43a32a 1321 varobj as changed. */
acd65feb 1322 if (var->updated)
4c37490d 1323 changed = true;
bb5ce47a 1324 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1325 {
1326 /* Try to compare the values. That requires that both
1327 values are non-lazy. */
b4d61099 1328 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1329 {
1330 /* This is a frozen varobj and the value was never read.
1331 Presumably, UI shows some "never read" indicator.
1332 Now that we've fetched the real value, we need to report
1333 this varobj as changed so that UI can show the real
1334 value. */
4c37490d 1335 changed = true;
25d5ea92 1336 }
dda83cd7 1337 else if (var->value == NULL && value == NULL)
581e13c1 1338 /* Equal. */
acd65feb
VP
1339 ;
1340 else if (var->value == NULL || value == NULL)
57e66780 1341 {
4c37490d 1342 changed = true;
57e66780 1343 }
acd65feb
VP
1344 else
1345 {
b4d61099 1346 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1347 gdb_assert (!value_lazy (value));
85265413 1348
2f408ecb
PA
1349 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1350 if (var->print_value != print_value)
4c37490d 1351 changed = true;
acd65feb
VP
1352 }
1353 }
1354 }
85265413 1355
ee342b23
VP
1356 if (!initial && !changeable)
1357 {
1358 /* For values that are not changeable, we don't compare the values.
1359 However, we want to notice if a value was not NULL and now is NULL,
1360 or vise versa, so that we report when top-level varobjs come in scope
1361 and leave the scope. */
1362 changed = (var->value != NULL) != (value != NULL);
1363 }
1364
acd65feb 1365 /* We must always keep the new value, since children depend on it. */
b4d61099 1366 var->value = value_holder;
25d5ea92 1367 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1368 var->not_fetched = true;
25d5ea92 1369 else
4c37490d
SM
1370 var->not_fetched = false;
1371 var->updated = false;
85265413 1372
0cc7d26f
TT
1373 install_new_value_visualizer (var);
1374
1375 /* If we installed a pretty-printer, re-compare the printed version
1376 to see if the variable changed. */
bb5ce47a 1377 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1378 {
b4d61099
TT
1379 print_value = varobj_value_get_print_value (var->value.get (),
1380 var->format, var);
2f408ecb
PA
1381 if ((var->print_value.empty () && !print_value.empty ())
1382 || (!var->print_value.empty () && print_value.empty ())
1383 || (!var->print_value.empty () && !print_value.empty ()
1384 && var->print_value != print_value))
4c37490d 1385 changed = true;
0cc7d26f 1386 }
0cc7d26f
TT
1387 var->print_value = print_value;
1388
b4d61099 1389 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1390
1391 return changed;
1392}
acd65feb 1393
0cc7d26f
TT
1394/* Return the requested range for a varobj. VAR is the varobj. FROM
1395 and TO are out parameters; *FROM and *TO will be set to the
1396 selected sub-range of VAR. If no range was selected using
1397 -var-set-update-range, then both will be -1. */
1398void
b09e2c59 1399varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1400{
0cc7d26f
TT
1401 *from = var->from;
1402 *to = var->to;
b6313243
TT
1403}
1404
0cc7d26f
TT
1405/* Set the selected sub-range of children of VAR to start at index
1406 FROM and end at index TO. If either FROM or TO is less than zero,
1407 this is interpreted as a request for all children. */
1408void
1409varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1410{
0cc7d26f
TT
1411 var->from = from;
1412 var->to = to;
b6313243
TT
1413}
1414
1415void
1416varobj_set_visualizer (struct varobj *var, const char *visualizer)
1417{
1418#if HAVE_PYTHON
bde7b3e3 1419 PyObject *mainmod;
b6313243 1420
0646da15
TT
1421 if (!gdb_python_initialized)
1422 return;
1423
bde7b3e3 1424 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1425
1426 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1427 gdbpy_ref<> globals
1428 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1429 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1430 globals.get (), globals.get ()));
b6313243 1431
bde7b3e3 1432 if (constructor == NULL)
b6313243
TT
1433 {
1434 gdbpy_print_stack ();
da1f2771 1435 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1436 }
1437
bde7b3e3 1438 construct_visualizer (var, constructor.get ());
b6313243 1439
0cc7d26f 1440 /* If there are any children now, wipe them. */
30914ca8 1441 varobj_delete (var, 1 /* children only */);
0cc7d26f 1442 var->num_children = -1;
b6313243 1443#else
da1f2771 1444 error (_("Python support required"));
b6313243
TT
1445#endif
1446}
1447
7a290c40 1448/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1449 true if var has mutated. In other words, if the type of
7a290c40
JB
1450 the new value is different from the type of the varobj's old
1451 value.
1452
1453 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1454
4c37490d 1455static bool
b09e2c59 1456varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1457 struct type *new_type)
1458{
1459 /* If we haven't previously computed the number of children in var,
1460 it does not matter from the front-end's perspective whether
1461 the type has mutated or not. For all intents and purposes,
1462 it has not mutated. */
1463 if (var->num_children < 0)
4c37490d 1464 return false;
7a290c40 1465
4c37490d 1466 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1467 {
1468 /* The varobj module, when installing new values, explicitly strips
1469 references, saying that we're not interested in those addresses.
1470 But detection of mutation happens before installing the new
1471 value, so our value may be a reference that we need to strip
1472 in order to remain consistent. */
1473 if (new_value != NULL)
1474 new_value = coerce_ref (new_value);
1475 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1476 }
7a290c40 1477 else
4c37490d 1478 return false;
7a290c40
JB
1479}
1480
8b93c638
JM
1481/* Update the values for a variable and its children. This is a
1482 two-pronged attack. First, re-parse the value for the root's
1483 expression to see if it's changed. Then go all the way
1484 through its children, reconstructing them and noting if they've
1485 changed.
1486
4c37490d 1487 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1488 of MI request to update this specific variable, or
581e13c1 1489 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1490 update frozen variables.
705da579 1491
581e13c1 1492 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1493 returns TYPE_CHANGED, then it has done this and VARP will be modified
1494 to point to the new varobj. */
8b93c638 1495
0604393c 1496std::vector<varobj_update_result>
4c37490d 1497varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1498{
4c37490d 1499 bool type_changed = false;
fe978cb0 1500 struct value *newobj;
0604393c
SM
1501 std::vector<varobj_update_result> stack;
1502 std::vector<varobj_update_result> result;
8b93c638 1503
25d5ea92
VP
1504 /* Frozen means frozen -- we don't check for any change in
1505 this varobj, including its going out of scope, or
1506 changing type. One use case for frozen varobjs is
1507 retaining previously evaluated expressions, and we don't
1508 want them to be reevaluated at all. */
fe978cb0 1509 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1510 return result;
8756216b
DP
1511
1512 if (!(*varp)->root->is_valid)
f7f9ae2c 1513 {
0604393c 1514 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1515 return result;
1516 }
8b93c638 1517
25d5ea92 1518 if ((*varp)->root->rootvar == *varp)
ae093f96 1519 {
0604393c 1520 varobj_update_result r (*varp);
f7f9ae2c 1521
581e13c1 1522 /* Update the root variable. value_of_root can return NULL
25d5ea92 1523 if the variable is no longer around, i.e. we stepped out of
581e13c1 1524 the frame in which a local existed. We are letting the
25d5ea92
VP
1525 value_of_root variable dispose of the varobj if the type
1526 has changed. */
fe978cb0 1527 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1528 if (update_type_if_necessary (*varp, newobj))
1529 type_changed = true;
f7f9ae2c 1530 r.varobj = *varp;
f7f9ae2c 1531 r.type_changed = type_changed;
fe978cb0 1532 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1533 r.changed = true;
ea56f9c2 1534
fe978cb0 1535 if (newobj == NULL)
f7f9ae2c 1536 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1537 r.value_installed = true;
f7f9ae2c
VP
1538
1539 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1540 {
0b4bc29a 1541 if (r.type_changed || r.changed)
0604393c
SM
1542 result.push_back (std::move (r));
1543
b6313243
TT
1544 return result;
1545 }
a109c7c1 1546
0604393c 1547 stack.push_back (std::move (r));
b20d8971 1548 }
0604393c
SM
1549 else
1550 stack.emplace_back (*varp);
8b93c638 1551
8756216b 1552 /* Walk through the children, reconstructing them all. */
0604393c 1553 while (!stack.empty ())
8b93c638 1554 {
0604393c
SM
1555 varobj_update_result r = std::move (stack.back ());
1556 stack.pop_back ();
b6313243
TT
1557 struct varobj *v = r.varobj;
1558
b6313243
TT
1559 /* Update this variable, unless it's a root, which is already
1560 updated. */
1561 if (!r.value_installed)
7a290c40
JB
1562 {
1563 struct type *new_type;
1564
fe978cb0 1565 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1566 if (update_type_if_necessary (v, newobj))
1567 r.type_changed = true;
fe978cb0
PA
1568 if (newobj)
1569 new_type = value_type (newobj);
7a290c40 1570 else
ca20d462 1571 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1572
fe978cb0 1573 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1574 {
1575 /* The children are no longer valid; delete them now.
dda83cd7 1576 Report the fact that its type changed as well. */
30914ca8 1577 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1578 v->num_children = -1;
1579 v->to = -1;
1580 v->from = -1;
1581 v->type = new_type;
4c37490d 1582 r.type_changed = true;
7a290c40
JB
1583 }
1584
fe978cb0 1585 if (install_new_value (v, newobj, r.type_changed))
b6313243 1586 {
4c37490d
SM
1587 r.changed = true;
1588 v->updated = false;
b6313243
TT
1589 }
1590 }
1591
31f628ae
YQ
1592 /* We probably should not get children of a dynamic varobj, but
1593 for which -var-list-children was never invoked. */
1594 if (varobj_is_dynamic_p (v))
b6313243 1595 {
b926417a 1596 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1597 bool children_changed = false;
b6313243
TT
1598
1599 if (v->frozen)
1600 continue;
1601
bd046f64 1602 if (!v->dynamic->children_requested)
0cc7d26f 1603 {
4c37490d 1604 bool dummy;
0cc7d26f
TT
1605
1606 /* If we initially did not have potential children, but
1607 now we do, consider the varobj as changed.
1608 Otherwise, if children were never requested, consider
1609 it as unchanged -- presumably, such varobj is not yet
1610 expanded in the UI, so we need not bother getting
1611 it. */
1612 if (!varobj_has_more (v, 0))
1613 {
8264ba82 1614 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1615 &dummy, false, 0, 0);
0cc7d26f 1616 if (varobj_has_more (v, 0))
4c37490d 1617 r.changed = true;
0cc7d26f
TT
1618 }
1619
1620 if (r.changed)
0604393c 1621 result.push_back (std::move (r));
0cc7d26f
TT
1622
1623 continue;
1624 }
1625
4c37490d 1626 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1627 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1628 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1629 &newobj_vec,
1630 &unchanged, &children_changed,
1631 true, v->from, v->to))
b6313243 1632 {
b926417a 1633 if (children_changed || !newobj_vec.empty ())
b6313243 1634 {
4c37490d 1635 r.children_changed = true;
b926417a 1636 r.newobj = std::move (newobj_vec);
b6313243 1637 }
0cc7d26f
TT
1638 /* Push in reverse order so that the first child is
1639 popped from the work stack first, and so will be
1640 added to result first. This does not affect
1641 correctness, just "nicer". */
b926417a 1642 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1643 {
b926417a 1644 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1645
1646 /* Type may change only if value was changed. */
b926417a
TT
1647 item.changed = true;
1648 item.type_changed = true;
1649 item.value_installed = true;
0604393c 1650
b926417a 1651 stack.push_back (std::move (item));
8264ba82 1652 }
0604393c 1653 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1654 {
b926417a 1655 varobj_update_result item (changed[i]);
a109c7c1 1656
b926417a
TT
1657 item.changed = true;
1658 item.value_installed = true;
0604393c 1659
b926417a 1660 stack.push_back (std::move (item));
b6313243 1661 }
0604393c
SM
1662 for (int i = unchanged.size () - 1; i >= 0; --i)
1663 {
1664 if (!unchanged[i]->frozen)
1665 {
b926417a 1666 varobj_update_result item (unchanged[i]);
0604393c 1667
b926417a 1668 item.value_installed = true;
0cc7d26f 1669
b926417a 1670 stack.push_back (std::move (item));
0604393c
SM
1671 }
1672 }
1673 if (r.changed || r.children_changed)
1674 result.push_back (std::move (r));
0cc7d26f 1675
b6313243
TT
1676 continue;
1677 }
1678 }
28335dcc
VP
1679
1680 /* Push any children. Use reverse order so that the first
1681 child is popped from the work stack first, and so
1682 will be added to result first. This does not
1683 affect correctness, just "nicer". */
0604393c 1684 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1685 {
ddf0ea08 1686 varobj *c = v->children[i];
a109c7c1 1687
28335dcc 1688 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1689 if (c != NULL && !c->frozen)
0604393c 1690 stack.emplace_back (c);
8b93c638 1691 }
b6313243
TT
1692
1693 if (r.changed || r.type_changed)
0604393c 1694 result.push_back (std::move (r));
8b93c638
JM
1695 }
1696
f7f9ae2c 1697 return result;
8b93c638 1698}
8b93c638
JM
1699
1700/* Helper functions */
1701
1702/*
1703 * Variable object construction/destruction
1704 */
1705
1706static int
4c37490d 1707delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1708{
1709 int delcount = 0;
1710
30914ca8 1711 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1712 true /* remove_from_parent_p */ );
8b93c638
JM
1713
1714 return delcount;
1715}
1716
581e13c1 1717/* Delete the variable object VAR and its children. */
8b93c638
JM
1718/* IMPORTANT NOTE: If we delete a variable which is a child
1719 and the parent is not removed we dump core. It must be always
581e13c1 1720 initially called with remove_from_parent_p set. */
8b93c638 1721static void
4c37490d
SM
1722delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1723 bool remove_from_parent_p)
8b93c638 1724{
581e13c1 1725 /* Delete any children of this variable, too. */
ddf0ea08 1726 for (varobj *child : var->children)
28335dcc 1727 {
214270ab
VP
1728 if (!child)
1729 continue;
ddf0ea08 1730
8b93c638 1731 if (!remove_from_parent_p)
28335dcc 1732 child->parent = NULL;
ddf0ea08 1733
4c37490d 1734 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1735 }
ddf0ea08 1736 var->children.clear ();
8b93c638 1737
581e13c1 1738 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1739 if (only_children_p)
1740 return;
1741
581e13c1 1742 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1743 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1744 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1745 if (!var->obj_name.empty ())
8b93c638 1746 {
8b93c638
JM
1747 *delcountp = *delcountp + 1;
1748 }
1749
581e13c1 1750 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1751 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1752 (as indicated by remove_from_parent_p) we don't bother doing an
1753 expensive list search to find the element to remove when we are
581e13c1 1754 discarding the list afterwards. */
72330bd6 1755 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1756 var->parent->children[var->index] = NULL;
72330bd6 1757
2f408ecb 1758 if (!var->obj_name.empty ())
73a93a32 1759 uninstall_variable (var);
8b93c638 1760
581e13c1 1761 /* Free memory associated with this variable. */
9e5b9d2b 1762 delete var;
8b93c638
JM
1763}
1764
581e13c1 1765/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1766static bool
fba45db2 1767install_variable (struct varobj *var)
8b93c638 1768{
2c1413a9
TT
1769 hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1770 void **slot = htab_find_slot_with_hash (varobj_table,
1771 var->obj_name.c_str (),
1772 hash, INSERT);
1773 if (*slot != nullptr)
8a3fe4f8 1774 error (_("Duplicate variable object name"));
8b93c638 1775
581e13c1 1776 /* Add varobj to hash table. */
2c1413a9 1777 *slot = var;
8b93c638 1778
581e13c1 1779 /* If root, add varobj to root list. */
b2c2bd75 1780 if (is_root_p (var))
76deb5d9 1781 rootlist.push_front (var->root);
8b93c638 1782
4c37490d 1783 return true; /* OK */
8b93c638
JM
1784}
1785
405feb71 1786/* Uninstall the object VAR. */
8b93c638 1787static void
fba45db2 1788uninstall_variable (struct varobj *var)
8b93c638 1789{
2c1413a9
TT
1790 hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1791 htab_remove_elt_with_hash (varobj_table, var->obj_name.c_str (), hash);
8b93c638
JM
1792
1793 if (varobjdebug)
2f408ecb 1794 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638 1795
581e13c1 1796 /* If root, remove varobj from root list. */
b2c2bd75 1797 if (is_root_p (var))
8b93c638 1798 {
76deb5d9
TT
1799 auto iter = std::find (rootlist.begin (), rootlist.end (), var->root);
1800 rootlist.erase (iter);
8b93c638 1801 }
8b93c638
JM
1802}
1803
837ce252
SM
1804/* Create and install a child of the parent of the given name.
1805
1806 The created VAROBJ takes ownership of the allocated NAME. */
1807
8b93c638 1808static struct varobj *
2f408ecb 1809create_child (struct varobj *parent, int index, std::string &name)
b6313243 1810{
5a2e0d6e
YQ
1811 struct varobj_item item;
1812
2f408ecb 1813 std::swap (item.name, name);
5a2e0d6e
YQ
1814 item.value = value_of_child (parent, index);
1815
1816 return create_child_with_value (parent, index, &item);
b6313243
TT
1817}
1818
1819static struct varobj *
5a2e0d6e
YQ
1820create_child_with_value (struct varobj *parent, int index,
1821 struct varobj_item *item)
8b93c638 1822{
9e5b9d2b 1823 varobj *child = new varobj (parent->root);
8b93c638 1824
5e5ac9a5 1825 /* NAME is allocated by caller. */
2f408ecb 1826 std::swap (child->name, item->name);
8b93c638 1827 child->index = index;
8b93c638 1828 child->parent = parent;
85254831 1829
99ad9427 1830 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1831 child->obj_name = string_printf ("%s.%d_anonymous",
1832 parent->obj_name.c_str (), index);
85254831 1833 else
2f408ecb
PA
1834 child->obj_name = string_printf ("%s.%s",
1835 parent->obj_name.c_str (),
1836 child->name.c_str ());
85254831 1837
8b93c638
JM
1838 install_variable (child);
1839
acd65feb
VP
1840 /* Compute the type of the child. Must do this before
1841 calling install_new_value. */
5a2e0d6e 1842 if (item->value != NULL)
acd65feb 1843 /* If the child had no evaluation errors, var->value
581e13c1 1844 will be non-NULL and contain a valid type. */
5a2e0d6e 1845 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1846 else
581e13c1 1847 /* Otherwise, we must compute the type. */
ca20d462
YQ
1848 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1849 child->index);
5a2e0d6e 1850 install_new_value (child, item->value, 1);
acd65feb 1851
8b93c638
JM
1852 return child;
1853}
8b93c638
JM
1854\f
1855
1856/*
1857 * Miscellaneous utility functions.
1858 */
1859
581e13c1 1860/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1861varobj::varobj (varobj_root *root_)
1862: root (root_), dynamic (new varobj_dynamic)
8b93c638 1863{
8b93c638
JM
1864}
1865
581e13c1 1866/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1867
1868varobj::~varobj ()
8b93c638 1869{
9e5b9d2b
SM
1870 varobj *var = this;
1871
d452c4bc 1872#if HAVE_PYTHON
bb5ce47a 1873 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1874 {
bde7b3e3 1875 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1876
1877 Py_XDECREF (var->dynamic->constructor);
1878 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1879 }
1880#endif
1881
54746ce3 1882 delete var->dynamic->child_iter;
827f100c 1883 varobj_clear_saved_item (var->dynamic);
36746093 1884
b2c2bd75 1885 if (is_root_p (var))
4d01a485 1886 delete var->root;
8b93c638 1887
9e5b9d2b 1888 delete var->dynamic;
74b7792f
AC
1889}
1890
6e2a9270
VP
1891/* Return the type of the value that's stored in VAR,
1892 or that would have being stored there if the
581e13c1 1893 value were accessible.
6e2a9270
VP
1894
1895 This differs from VAR->type in that VAR->type is always
85102364 1896 the true type of the expression in the source language.
6e2a9270
VP
1897 The return value of this function is the type we're
1898 actually storing in varobj, and using for displaying
1899 the values and for comparing previous and new values.
1900
1901 For example, top-level references are always stripped. */
99ad9427 1902struct type *
b09e2c59 1903varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
1904{
1905 struct type *type;
1906
b4d61099
TT
1907 if (var->value != nullptr)
1908 type = value_type (var->value.get ());
6e2a9270
VP
1909 else
1910 type = var->type;
1911
1912 type = check_typedef (type);
1913
aa006118 1914 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
1915 type = get_target_type (type);
1916
1917 type = check_typedef (type);
1918
1919 return type;
1920}
1921
8b93c638 1922/* What is the default display for this variable? We assume that
581e13c1 1923 everything is "natural". Any exceptions? */
8b93c638 1924static enum varobj_display_formats
fba45db2 1925variable_default_display (struct varobj *var)
8b93c638
JM
1926{
1927 return FORMAT_NATURAL;
1928}
1929
8b93c638
JM
1930/*
1931 * Language-dependencies
1932 */
1933
1934/* Common entry points */
1935
8b93c638
JM
1936/* Return the number of children for a given variable.
1937 The result of this function is defined by the language
581e13c1 1938 implementation. The number of children returned by this function
8b93c638 1939 is the number of children that the user will see in the variable
581e13c1 1940 display. */
8b93c638 1941static int
b09e2c59 1942number_of_children (const struct varobj *var)
8b93c638 1943{
ca20d462 1944 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
1945}
1946
2f408ecb
PA
1947/* What is the expression for the root varobj VAR? */
1948
1949static std::string
b09e2c59 1950name_of_variable (const struct varobj *var)
8b93c638 1951{
ca20d462 1952 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
1953}
1954
2f408ecb
PA
1955/* What is the name of the INDEX'th child of VAR? */
1956
1957static std::string
fba45db2 1958name_of_child (struct varobj *var, int index)
8b93c638 1959{
ca20d462 1960 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
1961}
1962
2213e2be 1963/* If frame associated with VAR can be found, switch
4c37490d 1964 to it and return true. Otherwise, return false. */
2213e2be 1965
4c37490d 1966static bool
b09e2c59 1967check_scope (const struct varobj *var)
2213e2be
YQ
1968{
1969 struct frame_info *fi;
4c37490d 1970 bool scope;
2213e2be
YQ
1971
1972 fi = frame_find_by_id (var->root->frame);
1973 scope = fi != NULL;
1974
1975 if (fi)
1976 {
1977 CORE_ADDR pc = get_frame_pc (fi);
1978
1979 if (pc < BLOCK_START (var->root->valid_block) ||
1980 pc >= BLOCK_END (var->root->valid_block))
4c37490d 1981 scope = false;
2213e2be
YQ
1982 else
1983 select_frame (fi);
1984 }
1985 return scope;
1986}
1987
1988/* Helper function to value_of_root. */
1989
1990static struct value *
1991value_of_root_1 (struct varobj **var_handle)
1992{
1993 struct value *new_val = NULL;
1994 struct varobj *var = *var_handle;
4c37490d 1995 bool within_scope = false;
2213e2be
YQ
1996
1997 /* Only root variables can be updated... */
1998 if (!is_root_p (var))
1999 /* Not a root var. */
2000 return NULL;
2001
5ed8105e 2002 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2003
2004 /* Determine whether the variable is still around. */
2005 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2006 within_scope = true;
2213e2be
YQ
2007 else if (var->root->thread_id == 0)
2008 {
2009 /* The program was single-threaded when the variable object was
2010 created. Technically, it's possible that the program became
2011 multi-threaded since then, but we don't support such
2012 scenario yet. */
2013 within_scope = check_scope (var);
2014 }
2015 else
2016 {
00431a78 2017 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2018
00431a78 2019 if (thread != NULL)
2213e2be 2020 {
00431a78 2021 switch_to_thread (thread);
2213e2be
YQ
2022 within_scope = check_scope (var);
2023 }
2024 }
2025
2026 if (within_scope)
2027 {
2213e2be
YQ
2028
2029 /* We need to catch errors here, because if evaluate
dda83cd7 2030 expression fails we want to just return NULL. */
a70b8144 2031 try
2213e2be 2032 {
4d01a485 2033 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2034 }
230d2906 2035 catch (const gdb_exception_error &except)
492d29ea
PA
2036 {
2037 }
2213e2be
YQ
2038 }
2039
2213e2be
YQ
2040 return new_val;
2041}
2042
a5defcdc
VP
2043/* What is the ``struct value *'' of the root variable VAR?
2044 For floating variable object, evaluation can get us a value
2045 of different type from what is stored in varobj already. In
2046 that case:
2047 - *type_changed will be set to 1
2048 - old varobj will be freed, and new one will be
2049 created, with the same name.
2050 - *var_handle will be set to the new varobj
2051 Otherwise, *type_changed will be set to 0. */
30b28db1 2052static struct value *
4c37490d 2053value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2054{
73a93a32
JI
2055 struct varobj *var;
2056
2057 if (var_handle == NULL)
2058 return NULL;
2059
2060 var = *var_handle;
2061
2062 /* This should really be an exception, since this should
581e13c1 2063 only get called with a root variable. */
73a93a32 2064
b2c2bd75 2065 if (!is_root_p (var))
73a93a32
JI
2066 return NULL;
2067
a5defcdc 2068 if (var->root->floating)
73a93a32
JI
2069 {
2070 struct varobj *tmp_var;
6225abfa 2071
2f408ecb 2072 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2073 USE_SELECTED_FRAME);
2074 if (tmp_var == NULL)
2075 {
2076 return NULL;
2077 }
2f408ecb
PA
2078 std::string old_type = varobj_get_type (var);
2079 std::string new_type = varobj_get_type (tmp_var);
2080 if (old_type == new_type)
73a93a32 2081 {
fcacd99f
VP
2082 /* The expression presently stored inside var->root->exp
2083 remembers the locations of local variables relatively to
2084 the frame where the expression was created (in DWARF location
2085 button, for example). Naturally, those locations are not
2086 correct in other frames, so update the expression. */
2087
4d01a485 2088 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2089
30914ca8 2090 varobj_delete (tmp_var, 0);
73a93a32
JI
2091 *type_changed = 0;
2092 }
2093 else
2094 {
2f408ecb 2095 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2096 tmp_var->from = var->from;
2097 tmp_var->to = var->to;
30914ca8 2098 varobj_delete (var, 0);
a5defcdc 2099
73a93a32
JI
2100 install_variable (tmp_var);
2101 *var_handle = tmp_var;
705da579 2102 var = *var_handle;
4c37490d 2103 *type_changed = true;
73a93a32
JI
2104 }
2105 }
2106 else
2107 {
2108 *type_changed = 0;
2109 }
2110
7a290c40
JB
2111 {
2112 struct value *value;
2113
2213e2be 2114 value = value_of_root_1 (var_handle);
7a290c40
JB
2115 if (var->value == NULL || value == NULL)
2116 {
2117 /* For root varobj-s, a NULL value indicates a scoping issue.
2118 So, nothing to do in terms of checking for mutations. */
2119 }
2120 else if (varobj_value_has_mutated (var, value, value_type (value)))
2121 {
2122 /* The type has mutated, so the children are no longer valid.
2123 Just delete them, and tell our caller that the type has
2124 changed. */
30914ca8 2125 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2126 var->num_children = -1;
2127 var->to = -1;
2128 var->from = -1;
4c37490d 2129 *type_changed = true;
7a290c40
JB
2130 }
2131 return value;
2132 }
8b93c638
JM
2133}
2134
581e13c1 2135/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2136static struct value *
c1cc6152 2137value_of_child (const struct varobj *parent, int index)
8b93c638 2138{
30b28db1 2139 struct value *value;
8b93c638 2140
ca20d462 2141 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2142
8b93c638
JM
2143 return value;
2144}
2145
581e13c1 2146/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2147static std::string
de051565 2148my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2149{
8756216b 2150 if (var->root->is_valid)
0cc7d26f 2151 {
bb5ce47a 2152 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2153 return varobj_value_get_print_value (var->value.get (), var->format,
2154 var);
ca20d462 2155 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2156 }
8756216b 2157 else
2f408ecb 2158 return std::string ();
8b93c638
JM
2159}
2160
99ad9427
YQ
2161void
2162varobj_formatted_print_options (struct value_print_options *opts,
2163 enum varobj_display_formats format)
2164{
2165 get_formatted_print_options (opts, format_code[(int) format]);
2166 opts->deref_ref = 0;
0625771b 2167 opts->raw = !pretty_printing;
99ad9427
YQ
2168}
2169
2f408ecb 2170std::string
99ad9427
YQ
2171varobj_value_get_print_value (struct value *value,
2172 enum varobj_display_formats format,
b09e2c59 2173 const struct varobj *var)
85265413 2174{
79a45b7d 2175 struct value_print_options opts;
be759fcf
PM
2176 struct type *type = NULL;
2177 long len = 0;
1eba6383 2178 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2179 /* Initialize it just to avoid a GCC false warning. */
2180 CORE_ADDR str_addr = 0;
4c37490d 2181 bool string_print = false;
57e66780
DJ
2182
2183 if (value == NULL)
2f408ecb 2184 return std::string ();
57e66780 2185
d7e74731 2186 string_file stb;
2f408ecb
PA
2187 std::string thevalue;
2188
b6313243 2189#if HAVE_PYTHON
0646da15
TT
2190 if (gdb_python_initialized)
2191 {
bb5ce47a 2192 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2193
68cdc557 2194 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2195
0646da15
TT
2196 if (value_formatter)
2197 {
2198 /* First check to see if we have any children at all. If so,
2199 we simply return {...}. */
2200 if (dynamic_varobj_has_child_method (var))
d7e74731 2201 return "{...}";
b6313243 2202
0646da15
TT
2203 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2204 {
2205 struct value *replacement;
0646da15 2206
a5c5eda7
SM
2207 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2208 &replacement,
2209 &stb);
0646da15
TT
2210
2211 /* If we have string like output ... */
68cdc557 2212 if (output != NULL)
0646da15 2213 {
0646da15
TT
2214 /* If this is a lazy string, extract it. For lazy
2215 strings we always print as a string, so set
2216 string_print. */
68cdc557 2217 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2218 {
68cdc557
TT
2219 gdbpy_extract_lazy_string (output.get (), &str_addr,
2220 &type, &len, &encoding);
4c37490d 2221 string_print = true;
0646da15
TT
2222 }
2223 else
2224 {
2225 /* If it is a regular (non-lazy) string, extract
2226 it and copy the contents into THEVALUE. If the
2227 hint says to print it as a string, set
2228 string_print. Otherwise just return the extracted
2229 string as a value. */
2230
9b972014 2231 gdb::unique_xmalloc_ptr<char> s
68cdc557 2232 = python_string_to_target_string (output.get ());
0646da15
TT
2233
2234 if (s)
2235 {
e3821cca 2236 struct gdbarch *gdbarch;
0646da15 2237
9b972014
TT
2238 gdb::unique_xmalloc_ptr<char> hint
2239 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2240 if (hint)
2241 {
9b972014 2242 if (!strcmp (hint.get (), "string"))
4c37490d 2243 string_print = true;
0646da15
TT
2244 }
2245
9b972014 2246 thevalue = std::string (s.get ());
2f408ecb 2247 len = thevalue.size ();
e3821cca 2248 gdbarch = get_type_arch (value_type (value));
0646da15 2249 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2250
2251 if (!string_print)
d7e74731 2252 return thevalue;
0646da15
TT
2253 }
2254 else
2255 gdbpy_print_stack ();
2256 }
2257 }
2258 /* If the printer returned a replacement value, set VALUE
2259 to REPLACEMENT. If there is not a replacement value,
2260 just use the value passed to this function. */
2261 if (replacement)
2262 value = replacement;
2263 }
2264 }
2265 }
b6313243
TT
2266#endif
2267
99ad9427 2268 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2269
2270 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2271 if (!thevalue.empty ())
d7e74731 2272 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2273 len, encoding.get (), 0, &opts);
09ca9e2e 2274 else if (string_print)
00bd41d6
PM
2275 /* Otherwise, if string_print is set, and it is not a regular
2276 string, it is a lazy string. */
d7e74731 2277 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2278 else
00bd41d6 2279 /* All other cases. */
d7e74731 2280 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2281
d7e74731 2282 return std::move (stb.string ());
85265413
NR
2283}
2284
4c37490d 2285bool
b09e2c59 2286varobj_editable_p (const struct varobj *var)
340a7723
NR
2287{
2288 struct type *type;
340a7723 2289
b4d61099
TT
2290 if (!(var->root->is_valid && var->value != nullptr
2291 && VALUE_LVAL (var->value.get ())))
4c37490d 2292 return false;
340a7723 2293
99ad9427 2294 type = varobj_get_value_type (var);
340a7723 2295
78134374 2296 switch (type->code ())
340a7723
NR
2297 {
2298 case TYPE_CODE_STRUCT:
2299 case TYPE_CODE_UNION:
2300 case TYPE_CODE_ARRAY:
2301 case TYPE_CODE_FUNC:
2302 case TYPE_CODE_METHOD:
4c37490d 2303 return false;
340a7723
NR
2304 break;
2305
2306 default:
4c37490d 2307 return true;
340a7723
NR
2308 break;
2309 }
2310}
2311
d32cafc7 2312/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2313
4c37490d 2314bool
b09e2c59 2315varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2316{
ca20d462 2317 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2318}
2319
4c37490d 2320/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2321 selected frame, and not bound to thread/frame. Such variable objects
2322 are created using '@' as frame specifier to -var-create. */
4c37490d 2323bool
b09e2c59 2324varobj_floating_p (const struct varobj *var)
5a413362
VP
2325{
2326 return var->root->floating;
2327}
2328
d32cafc7
JB
2329/* Implement the "value_is_changeable_p" varobj callback for most
2330 languages. */
2331
4c37490d 2332bool
b09e2c59 2333varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2334{
4c37490d 2335 bool r;
d32cafc7
JB
2336 struct type *type;
2337
2338 if (CPLUS_FAKE_CHILD (var))
4c37490d 2339 return false;
d32cafc7 2340
99ad9427 2341 type = varobj_get_value_type (var);
d32cafc7 2342
78134374 2343 switch (type->code ())
d32cafc7
JB
2344 {
2345 case TYPE_CODE_STRUCT:
2346 case TYPE_CODE_UNION:
2347 case TYPE_CODE_ARRAY:
4c37490d 2348 r = false;
d32cafc7
JB
2349 break;
2350
2351 default:
4c37490d 2352 r = true;
d32cafc7
JB
2353 }
2354
2355 return r;
2356}
2357
d8f168dd
TT
2358/* Iterate all the existing _root_ VAROBJs and call the FUNC callback
2359 for each one. */
54333c3b
JK
2360
2361void
d8f168dd 2362all_root_varobjs (gdb::function_view<void (struct varobj *var)> func)
54333c3b 2363{
54333c3b 2364 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
76deb5d9
TT
2365 auto iter = rootlist.begin ();
2366 auto end = rootlist.end ();
2367 while (iter != end)
54333c3b 2368 {
76deb5d9 2369 auto self = iter++;
d8f168dd 2370 func ((*self)->rootvar);
54333c3b
JK
2371 }
2372}
8756216b 2373
54333c3b 2374/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2375 defined on globals. It is a helper for varobj_invalidate.
2376
2377 This function is called after changing the symbol file, in this case the
2378 pointers to "struct type" stored by the varobj are no longer valid. All
2379 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2380
54333c3b 2381static void
d8f168dd 2382varobj_invalidate_iter (struct varobj *var)
8756216b 2383{
4e969b4f
AB
2384 /* global and floating var must be re-evaluated. */
2385 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2386 {
54333c3b 2387 struct varobj *tmp_var;
2dbd25e5 2388
54333c3b
JK
2389 /* Try to create a varobj with same expression. If we succeed
2390 replace the old varobj, otherwise invalidate it. */
2f408ecb 2391 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2392 USE_CURRENT_FRAME);
2393 if (tmp_var != NULL)
2394 {
2f408ecb 2395 tmp_var->obj_name = var->obj_name;
30914ca8 2396 varobj_delete (var, 0);
54333c3b 2397 install_variable (tmp_var);
2dbd25e5 2398 }
54333c3b 2399 else
4c37490d 2400 var->root->is_valid = false;
2dbd25e5 2401 }
54333c3b 2402 else /* locals must be invalidated. */
4c37490d 2403 var->root->is_valid = false;
54333c3b
JK
2404}
2405
2406/* Invalidate the varobjs that are tied to locals and re-create the ones that
2407 are defined on globals.
2408 Invalidated varobjs will be always printed in_scope="invalid". */
2409
2410void
2411varobj_invalidate (void)
2412{
d8f168dd 2413 all_root_varobjs (varobj_invalidate_iter);
8756216b 2414}
481695ed 2415
2c1413a9
TT
2416/* A hash function for a varobj. */
2417
2418static hashval_t
2419hash_varobj (const void *a)
2420{
2421 const varobj *obj = (const varobj *) a;
2422 return htab_hash_string (obj->obj_name.c_str ());
2423}
2424
2425/* A hash table equality function for varobjs. */
2426
2427static int
2428eq_varobj_and_string (const void *a, const void *b)
2429{
2430 const varobj *obj = (const varobj *) a;
2431 const char *name = (const char *) b;
2432
2433 return obj->obj_name == name;
2434}
2435
6c265988 2436void _initialize_varobj ();
1c3569d4 2437void
6c265988 2438_initialize_varobj ()
1c3569d4 2439{
2c1413a9
TT
2440 varobj_table = htab_create_alloc (5, hash_varobj, eq_varobj_and_string,
2441 nullptr, xcalloc, xfree);
1c3569d4
MR
2442
2443 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2444 &varobjdebug,
2445 _("Set varobj debugging."),
2446 _("Show varobj debugging."),
2447 _("When non-zero, varobj debugging is enabled."),
2448 NULL, show_varobjdebug,
2449 &setdebuglist, &showdebuglist);
2450}
This page took 2.510979 seconds and 4 git commands to generate.