Mention that create_child takes ownership of the allocated name
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
72330bd6 53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
c5b48eac 81 /* The thread ID that this varobj_root belong to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638 139struct cpstack
72330bd6
AC
140{
141 char *name;
142 struct cpstack *next;
143};
8b93c638
JM
144
145/* A list of varobjs */
146
147struct vlist
72330bd6
AC
148{
149 struct varobj *var;
150 struct vlist *next;
151};
8b93c638
JM
152
153/* Private function prototypes */
154
581e13c1 155/* Helper functions for the above subcommands. */
8b93c638 156
a14ed312 157static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 158
a14ed312
KB
159static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
8b93c638 161
a14ed312 162static int install_variable (struct varobj *);
8b93c638 163
a14ed312 164static void uninstall_variable (struct varobj *);
8b93c638 165
a14ed312 166static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 167
b6313243 168static struct varobj *
5a2e0d6e
YQ
169create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
b6313243 171
8b93c638
JM
172/* Utility routines */
173
a14ed312 174static struct varobj *new_variable (void);
8b93c638 175
a14ed312 176static struct varobj *new_root_variable (void);
8b93c638 177
a14ed312 178static void free_variable (struct varobj *var);
8b93c638 179
74b7792f
AC
180static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
a14ed312 182static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 183
a14ed312 184static void cppush (struct cpstack **pstack, char *name);
8b93c638 185
a14ed312 186static char *cppop (struct cpstack **pstack);
8b93c638 187
8264ba82
AG
188static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
acd65feb
VP
191static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
581e13c1 194/* Language-specific routines. */
8b93c638 195
b09e2c59 196static int number_of_children (const struct varobj *);
8b93c638 197
b09e2c59 198static char *name_of_variable (const struct varobj *);
8b93c638 199
a14ed312 200static char *name_of_child (struct varobj *, int);
8b93c638 201
30b28db1 202static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 203
30b28db1 204static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 205
de051565
MK
206static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
8b93c638 208
b09e2c59 209static int is_root_p (const struct varobj *var);
8b93c638 210
9a1edae6 211static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 212 struct varobj_item *item);
b6313243 213
8b93c638
JM
214/* Private data */
215
581e13c1 216/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 217static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 218
581e13c1 219/* Header of the list of root variable objects. */
8b93c638 220static struct varobj_root *rootlist;
8b93c638 221
581e13c1
MS
222/* Prime number indicating the number of buckets in the hash table. */
223/* A prime large enough to avoid too many colisions. */
8b93c638
JM
224#define VAROBJ_TABLE_SIZE 227
225
581e13c1 226/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
227static struct vlist **varobj_table;
228
8b93c638
JM
229\f
230
231/* API Implementation */
b2c2bd75 232static int
b09e2c59 233is_root_p (const struct varobj *var)
b2c2bd75
VP
234{
235 return (var->root->rootvar == var);
236}
8b93c638 237
d452c4bc
UW
238#ifdef HAVE_PYTHON
239/* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
e5250216 241struct cleanup *
b09e2c59 242varobj_ensure_python_env (const struct varobj *var)
d452c4bc
UW
243{
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246}
247#endif
248
581e13c1 249/* Creates a varobj (not its children). */
8b93c638 250
7d8547c9
AC
251/* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254static struct frame_info *
255find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256{
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
9d49bdc2
PA
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
7d8547c9 265 {
1fac167a
UW
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 272
1fac167a
UW
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
7d8547c9
AC
277 return frame;
278 }
9d49bdc2
PA
279
280 return NULL;
7d8547c9
AC
281}
282
8b93c638
JM
283struct varobj *
284varobj_create (char *objname,
72330bd6 285 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
286{
287 struct varobj *var;
8b93c638
JM
288 struct cleanup *old_chain;
289
581e13c1 290 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 291 var = new_root_variable ();
74b7792f 292 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
293
294 if (expression != NULL)
295 {
e4195b40 296 struct frame_info *fi;
35633fef 297 struct frame_id old_id = null_frame_id;
3977b71f 298 const struct block *block;
bbc13ae3 299 const char *p;
e55dccf0 300 struct value *value = NULL;
8e7b59a5 301 volatile struct gdb_exception except;
1bb9788d 302 CORE_ADDR pc;
8b93c638 303
9d49bdc2
PA
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
581e13c1 309 /* Allow creator to specify context of variable. */
9d49bdc2
PA
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
8b93c638 322 else
9d49bdc2 323 fi = NULL;
8b93c638 324
581e13c1 325 /* frame = -2 means always use selected frame. */
73a93a32 326 if (type == USE_SELECTED_FRAME)
a5defcdc 327 var->root->floating = 1;
73a93a32 328
1bb9788d 329 pc = 0;
8b93c638
JM
330 block = NULL;
331 if (fi != NULL)
1bb9788d
TT
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
8b93c638
JM
336
337 p = expression;
338 innermost_block = NULL;
73a93a32 339 /* Wrap the call to parse expression, so we can
581e13c1 340 return a sensible error. */
8e7b59a5
KS
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
1bb9788d 343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
344 }
345
346 if (except.reason < 0)
73a93a32 347 {
f748fb40 348 do_cleanups (old_chain);
73a93a32
JI
349 return NULL;
350 }
8b93c638 351
581e13c1 352 /* Don't allow variables to be created for types. */
608b4967
TT
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
356 {
357 do_cleanups (old_chain);
bc8332bb
AC
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
8b93c638
JM
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
1b36a34b 365 var->name = xstrdup (expression);
02142340 366 /* For a root var, the name and the expr are the same. */
1b36a34b 367 var->path_expr = xstrdup (expression);
8b93c638
JM
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
581e13c1 372 Since select_frame is so benign, just call it for all cases. */
4e22772d 373 if (innermost_block)
8b93c638 374 {
4e22772d
JK
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
7a424e99 382 var->root->frame = get_frame_id (fi);
c5b48eac 383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 384 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 385 select_frame (fi);
8b93c638
JM
386 }
387
340a7723 388 /* We definitely need to catch errors here.
8b93c638 389 If evaluate_expression succeeds we got the value we wanted.
581e13c1 390 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
e55dccf0
VP
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 401
e55dccf0
VP
402 var->type = value_type (type_only_value);
403 }
8264ba82
AG
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
acd65feb 412
8b93c638 413 /* Set language info */
ca20d462 414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 415
d32cafc7
JB
416 install_new_value (var, value, 1 /* Initial assignment */);
417
581e13c1 418 /* Set ourselves as our root. */
8b93c638
JM
419 var->root->rootvar = var;
420
581e13c1 421 /* Reset the selected frame. */
35633fef
JK
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
8b93c638
JM
424 }
425
73a93a32 426 /* If the variable object name is null, that means this
581e13c1 427 is a temporary variable, so don't install it. */
73a93a32
JI
428
429 if ((var != NULL) && (objname != NULL))
8b93c638 430 {
1b36a34b 431 var->obj_name = xstrdup (objname);
8b93c638
JM
432
433 /* If a varobj name is duplicated, the install will fail so
581e13c1 434 we must cleanup. */
8b93c638
JM
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444}
445
581e13c1 446/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
447
448char *
449varobj_gen_name (void)
450{
451 static int id = 0;
e64d9b3d 452 char *obj_name;
8b93c638 453
581e13c1 454 /* Generate a name for this object. */
8b93c638 455 id++;
b435e160 456 obj_name = xstrprintf ("var%d", id);
8b93c638 457
e64d9b3d 458 return obj_name;
8b93c638
JM
459}
460
61d8f275
JK
461/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
8b93c638
JM
463
464struct varobj *
465varobj_get_handle (char *objname)
466{
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
8a3fe4f8 482 error (_("Variable object not found"));
8b93c638
JM
483
484 return cv->var;
485}
486
581e13c1 487/* Given the handle, return the name of the object. */
8b93c638
JM
488
489char *
b09e2c59 490varobj_get_objname (const struct varobj *var)
8b93c638
JM
491{
492 return var->obj_name;
493}
494
ca83fa81
SM
495/* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
8b93c638
JM
497
498char *
b09e2c59 499varobj_get_expression (const struct varobj *var)
8b93c638
JM
500{
501 return name_of_variable (var);
502}
503
504/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
505 otherwise deletes only the children; returns a malloc'ed list of
506 all the (malloc'ed) names of the variables that have been deleted
581e13c1 507 (NULL terminated). */
8b93c638
JM
508
509int
510varobj_delete (struct varobj *var, char ***dellist, int only_children)
511{
512 int delcount;
513 int mycount;
514 struct cpstack *result = NULL;
515 char **cp;
516
581e13c1 517 /* Initialize a stack for temporary results. */
8b93c638
JM
518 cppush (&result, NULL);
519
520 if (only_children)
581e13c1 521 /* Delete only the variable children. */
8b93c638
JM
522 delcount = delete_variable (&result, var, 1 /* only the children */ );
523 else
581e13c1 524 /* Delete the variable and all its children. */
8b93c638
JM
525 delcount = delete_variable (&result, var, 0 /* parent+children */ );
526
581e13c1 527 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
528 if (dellist != NULL)
529 {
530 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
531
532 cp = *dellist;
533 mycount = delcount;
534 *cp = cppop (&result);
535 while ((*cp != NULL) && (mycount > 0))
536 {
537 mycount--;
538 cp++;
539 *cp = cppop (&result);
540 }
541
542 if (mycount || (*cp != NULL))
8a3fe4f8 543 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 544 mycount);
8b93c638
JM
545 }
546
547 return delcount;
548}
549
d8b65138
JK
550#if HAVE_PYTHON
551
b6313243
TT
552/* Convenience function for varobj_set_visualizer. Instantiate a
553 pretty-printer for a given value. */
554static PyObject *
555instantiate_pretty_printer (PyObject *constructor, struct value *value)
556{
b6313243
TT
557 PyObject *val_obj = NULL;
558 PyObject *printer;
b6313243 559
b6313243 560 val_obj = value_to_value_object (value);
b6313243
TT
561 if (! val_obj)
562 return NULL;
563
564 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
565 Py_DECREF (val_obj);
566 return printer;
b6313243
TT
567}
568
d8b65138
JK
569#endif
570
581e13c1 571/* Set/Get variable object display format. */
8b93c638
JM
572
573enum varobj_display_formats
574varobj_set_display_format (struct varobj *var,
575 enum varobj_display_formats format)
576{
577 switch (format)
578 {
579 case FORMAT_NATURAL:
580 case FORMAT_BINARY:
581 case FORMAT_DECIMAL:
582 case FORMAT_HEXADECIMAL:
583 case FORMAT_OCTAL:
584 var->format = format;
585 break;
586
587 default:
588 var->format = variable_default_display (var);
589 }
590
ae7d22a6
VP
591 if (varobj_value_is_changeable_p (var)
592 && var->value && !value_lazy (var->value))
593 {
6c761d9c 594 xfree (var->print_value);
99ad9427
YQ
595 var->print_value = varobj_value_get_print_value (var->value,
596 var->format, var);
ae7d22a6
VP
597 }
598
8b93c638
JM
599 return var->format;
600}
601
602enum varobj_display_formats
b09e2c59 603varobj_get_display_format (const struct varobj *var)
8b93c638
JM
604{
605 return var->format;
606}
607
b6313243 608char *
b09e2c59 609varobj_get_display_hint (const struct varobj *var)
b6313243
TT
610{
611 char *result = NULL;
612
613#if HAVE_PYTHON
0646da15
TT
614 struct cleanup *back_to;
615
616 if (!gdb_python_initialized)
617 return NULL;
618
619 back_to = varobj_ensure_python_env (var);
d452c4bc 620
bb5ce47a
YQ
621 if (var->dynamic->pretty_printer != NULL)
622 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
623
624 do_cleanups (back_to);
b6313243
TT
625#endif
626
627 return result;
628}
629
0cc7d26f
TT
630/* Return true if the varobj has items after TO, false otherwise. */
631
632int
b09e2c59 633varobj_has_more (const struct varobj *var, int to)
0cc7d26f
TT
634{
635 if (VEC_length (varobj_p, var->children) > to)
636 return 1;
637 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 638 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
639}
640
c5b48eac
VP
641/* If the variable object is bound to a specific thread, that
642 is its evaluation can always be done in context of a frame
643 inside that thread, returns GDB id of the thread -- which
581e13c1 644 is always positive. Otherwise, returns -1. */
c5b48eac 645int
b09e2c59 646varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
647{
648 if (var->root->valid_block && var->root->thread_id > 0)
649 return var->root->thread_id;
650 else
651 return -1;
652}
653
25d5ea92
VP
654void
655varobj_set_frozen (struct varobj *var, int frozen)
656{
657 /* When a variable is unfrozen, we don't fetch its value.
658 The 'not_fetched' flag remains set, so next -var-update
659 won't complain.
660
661 We don't fetch the value, because for structures the client
662 should do -var-update anyway. It would be bad to have different
663 client-size logic for structure and other types. */
664 var->frozen = frozen;
665}
666
667int
b09e2c59 668varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
669{
670 return var->frozen;
671}
672
0cc7d26f
TT
673/* A helper function that restricts a range to what is actually
674 available in a VEC. This follows the usual rules for the meaning
675 of FROM and TO -- if either is negative, the entire range is
676 used. */
677
99ad9427
YQ
678void
679varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
680{
681 if (*from < 0 || *to < 0)
682 {
683 *from = 0;
684 *to = VEC_length (varobj_p, children);
685 }
686 else
687 {
688 if (*from > VEC_length (varobj_p, children))
689 *from = VEC_length (varobj_p, children);
690 if (*to > VEC_length (varobj_p, children))
691 *to = VEC_length (varobj_p, children);
692 if (*from > *to)
693 *from = *to;
694 }
695}
696
697/* A helper for update_dynamic_varobj_children that installs a new
698 child when needed. */
699
700static void
701install_dynamic_child (struct varobj *var,
702 VEC (varobj_p) **changed,
8264ba82 703 VEC (varobj_p) **type_changed,
0cc7d26f
TT
704 VEC (varobj_p) **new,
705 VEC (varobj_p) **unchanged,
706 int *cchanged,
707 int index,
5a2e0d6e 708 struct varobj_item *item)
0cc7d26f
TT
709{
710 if (VEC_length (varobj_p, var->children) < index + 1)
711 {
712 /* There's no child yet. */
5a2e0d6e 713 struct varobj *child = varobj_add_child (var, item);
a109c7c1 714
0cc7d26f
TT
715 if (new)
716 {
717 VEC_safe_push (varobj_p, *new, child);
718 *cchanged = 1;
719 }
720 }
bf8793bb 721 else
0cc7d26f
TT
722 {
723 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 724 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 725
8264ba82
AG
726 if (type_updated)
727 {
728 if (type_changed)
729 VEC_safe_push (varobj_p, *type_changed, existing);
730 }
5a2e0d6e 731 if (install_new_value (existing, item->value, 0))
0cc7d26f 732 {
8264ba82 733 if (!type_updated && changed)
0cc7d26f
TT
734 VEC_safe_push (varobj_p, *changed, existing);
735 }
8264ba82 736 else if (!type_updated && unchanged)
0cc7d26f
TT
737 VEC_safe_push (varobj_p, *unchanged, existing);
738 }
739}
740
576ea091
YQ
741#if HAVE_PYTHON
742
0cc7d26f 743static int
b09e2c59 744dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f
TT
745{
746 struct cleanup *back_to;
bb5ce47a 747 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
748 int result;
749
0646da15
TT
750 if (!gdb_python_initialized)
751 return 0;
752
0cc7d26f
TT
753 back_to = varobj_ensure_python_env (var);
754 result = PyObject_HasAttr (printer, gdbpy_children_cst);
755 do_cleanups (back_to);
756 return result;
757}
576ea091 758#endif
0cc7d26f 759
e5250216
YQ
760/* A factory for creating dynamic varobj's iterators. Returns an
761 iterator object suitable for iterating over VAR's children. */
762
763static struct varobj_iter *
764varobj_get_iterator (struct varobj *var)
765{
576ea091 766#if HAVE_PYTHON
e5250216
YQ
767 if (var->dynamic->pretty_printer)
768 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 769#endif
e5250216
YQ
770
771 gdb_assert_not_reached (_("\
772requested an iterator from a non-dynamic varobj"));
773}
774
827f100c
YQ
775/* Release and clear VAR's saved item, if any. */
776
777static void
778varobj_clear_saved_item (struct varobj_dynamic *var)
779{
780 if (var->saved_item != NULL)
781 {
782 value_free (var->saved_item->value);
783 xfree (var->saved_item);
784 var->saved_item = NULL;
785 }
786}
0cc7d26f 787
b6313243
TT
788static int
789update_dynamic_varobj_children (struct varobj *var,
790 VEC (varobj_p) **changed,
8264ba82 791 VEC (varobj_p) **type_changed,
0cc7d26f
TT
792 VEC (varobj_p) **new,
793 VEC (varobj_p) **unchanged,
794 int *cchanged,
795 int update_children,
796 int from,
797 int to)
b6313243 798{
b6313243 799 int i;
b6313243 800
b6313243 801 *cchanged = 0;
b6313243 802
bb5ce47a 803 if (update_children || var->dynamic->child_iter == NULL)
b6313243 804 {
e5250216
YQ
805 varobj_iter_delete (var->dynamic->child_iter);
806 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 807
827f100c 808 varobj_clear_saved_item (var->dynamic);
b6313243 809
e5250216 810 i = 0;
b6313243 811
bb5ce47a 812 if (var->dynamic->child_iter == NULL)
827f100c 813 return 0;
b6313243 814 }
0cc7d26f
TT
815 else
816 i = VEC_length (varobj_p, var->children);
b6313243 817
0cc7d26f
TT
818 /* We ask for one extra child, so that MI can report whether there
819 are more children. */
820 for (; to < 0 || i < to + 1; ++i)
b6313243 821 {
827f100c 822 varobj_item *item;
b6313243 823
0cc7d26f 824 /* See if there was a leftover from last time. */
827f100c 825 if (var->dynamic->saved_item != NULL)
0cc7d26f 826 {
bb5ce47a
YQ
827 item = var->dynamic->saved_item;
828 var->dynamic->saved_item = NULL;
0cc7d26f
TT
829 }
830 else
a4c8e806 831 {
e5250216 832 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
833 /* Release vitem->value so its lifetime is not bound to the
834 execution of a command. */
835 if (item != NULL && item->value != NULL)
836 release_value_or_incref (item->value);
a4c8e806 837 }
b6313243 838
e5250216
YQ
839 if (item == NULL)
840 {
841 /* Iteration is done. Remove iterator from VAR. */
842 varobj_iter_delete (var->dynamic->child_iter);
843 var->dynamic->child_iter = NULL;
844 break;
845 }
0cc7d26f
TT
846 /* We don't want to push the extra child on any report list. */
847 if (to < 0 || i < to)
b6313243 848 {
0cc7d26f
TT
849 int can_mention = from < 0 || i >= from;
850
0cc7d26f 851 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 852 can_mention ? type_changed : NULL,
0cc7d26f
TT
853 can_mention ? new : NULL,
854 can_mention ? unchanged : NULL,
5e5ac9a5 855 can_mention ? cchanged : NULL, i,
827f100c
YQ
856 item);
857
858 xfree (item);
b6313243 859 }
0cc7d26f 860 else
b6313243 861 {
bb5ce47a 862 var->dynamic->saved_item = item;
b6313243 863
0cc7d26f
TT
864 /* We want to truncate the child list just before this
865 element. */
866 break;
867 }
b6313243
TT
868 }
869
870 if (i < VEC_length (varobj_p, var->children))
871 {
0cc7d26f 872 int j;
a109c7c1 873
0cc7d26f
TT
874 *cchanged = 1;
875 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
876 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
877 VEC_truncate (varobj_p, var->children, i);
b6313243 878 }
0cc7d26f
TT
879
880 /* If there are fewer children than requested, note that the list of
881 children changed. */
882 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
883 *cchanged = 1;
884
b6313243 885 var->num_children = VEC_length (varobj_p, var->children);
b6313243 886
b6313243 887 return 1;
b6313243 888}
25d5ea92 889
8b93c638
JM
890int
891varobj_get_num_children (struct varobj *var)
892{
893 if (var->num_children == -1)
b6313243 894 {
31f628ae 895 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
896 {
897 int dummy;
898
899 /* If we have a dynamic varobj, don't report -1 children.
900 So, try to fetch some children first. */
8264ba82 901 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
902 0, 0, 0);
903 }
904 else
b6313243
TT
905 var->num_children = number_of_children (var);
906 }
8b93c638 907
0cc7d26f 908 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
909}
910
911/* Creates a list of the immediate children of a variable object;
581e13c1 912 the return code is the number of such children or -1 on error. */
8b93c638 913
d56d46f5 914VEC (varobj_p)*
0cc7d26f 915varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 916{
8b93c638 917 char *name;
b6313243
TT
918 int i, children_changed;
919
bb5ce47a 920 var->dynamic->children_requested = 1;
b6313243 921
31f628ae 922 if (varobj_is_dynamic_p (var))
0cc7d26f 923 {
b6313243
TT
924 /* This, in theory, can result in the number of children changing without
925 frontend noticing. But well, calling -var-list-children on the same
926 varobj twice is not something a sane frontend would do. */
8264ba82
AG
927 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
928 &children_changed, 0, 0, *to);
99ad9427 929 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
930 return var->children;
931 }
8b93c638 932
8b93c638
JM
933 if (var->num_children == -1)
934 var->num_children = number_of_children (var);
935
74a44383
DJ
936 /* If that failed, give up. */
937 if (var->num_children == -1)
d56d46f5 938 return var->children;
74a44383 939
28335dcc
VP
940 /* If we're called when the list of children is not yet initialized,
941 allocate enough elements in it. */
942 while (VEC_length (varobj_p, var->children) < var->num_children)
943 VEC_safe_push (varobj_p, var->children, NULL);
944
8b93c638
JM
945 for (i = 0; i < var->num_children; i++)
946 {
d56d46f5 947 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
948
949 if (existing == NULL)
950 {
951 /* Either it's the first call to varobj_list_children for
952 this variable object, and the child was never created,
953 or it was explicitly deleted by the client. */
954 name = name_of_child (var, i);
955 existing = create_child (var, i, name);
956 VEC_replace (varobj_p, var->children, i, existing);
957 }
8b93c638
JM
958 }
959
99ad9427 960 varobj_restrict_range (var->children, from, to);
d56d46f5 961 return var->children;
8b93c638
JM
962}
963
b6313243 964static struct varobj *
5a2e0d6e 965varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 966{
5a2e0d6e 967 varobj_p v = create_child_with_value (var,
b6313243 968 VEC_length (varobj_p, var->children),
5a2e0d6e 969 item);
a109c7c1 970
b6313243 971 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
972 return v;
973}
974
8b93c638 975/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
976 prints on the console. The caller is responsible for freeing the string.
977 */
8b93c638
JM
978
979char *
980varobj_get_type (struct varobj *var)
981{
8ab91b96 982 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
983 NULL, too.)
984 Do not return a type for invalid variables as well. */
985 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
986 return NULL;
987
1a4300e9 988 return type_to_string (var->type);
8b93c638
JM
989}
990
1ecb4ee0
DJ
991/* Obtain the type of an object variable. */
992
993struct type *
b09e2c59 994varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
995{
996 return var->type;
997}
998
85254831
KS
999/* Is VAR a path expression parent, i.e., can it be used to construct
1000 a valid path expression? */
1001
1002static int
b09e2c59 1003is_path_expr_parent (const struct varobj *var)
85254831 1004{
9a9a7608
AB
1005 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1006 return var->root->lang_ops->is_path_expr_parent (var);
1007}
85254831 1008
9a9a7608
AB
1009/* Is VAR a path expression parent, i.e., can it be used to construct
1010 a valid path expression? By default we assume any VAR can be a path
1011 parent. */
85254831 1012
9a9a7608 1013int
b09e2c59 1014varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
1015{
1016 return 1;
85254831
KS
1017}
1018
1019/* Return the path expression parent for VAR. */
1020
99ad9427
YQ
1021struct varobj *
1022varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1023{
1024 struct varobj *parent = var;
1025
1026 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1027 parent = parent->parent;
1028
1029 return parent;
1030}
1031
02142340
VP
1032/* Return a pointer to the full rooted expression of varobj VAR.
1033 If it has not been computed yet, compute it. */
1034char *
1035varobj_get_path_expr (struct varobj *var)
1036{
2568868e 1037 if (var->path_expr == NULL)
02142340
VP
1038 {
1039 /* For root varobjs, we initialize path_expr
1040 when creating varobj, so here it should be
1041 child varobj. */
1042 gdb_assert (!is_root_p (var));
2568868e
SM
1043
1044 var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 1045 }
2568868e
SM
1046
1047 return var->path_expr;
02142340
VP
1048}
1049
fa4d0c40 1050const struct language_defn *
b09e2c59 1051varobj_get_language (const struct varobj *var)
8b93c638 1052{
fa4d0c40 1053 return var->root->exp->language_defn;
8b93c638
JM
1054}
1055
1056int
b09e2c59 1057varobj_get_attributes (const struct varobj *var)
8b93c638
JM
1058{
1059 int attributes = 0;
1060
340a7723 1061 if (varobj_editable_p (var))
581e13c1 1062 /* FIXME: define masks for attributes. */
8b93c638
JM
1063 attributes |= 0x00000001; /* Editable */
1064
1065 return attributes;
1066}
1067
cde5ef40
YQ
1068/* Return true if VAR is a dynamic varobj. */
1069
0cc7d26f 1070int
b09e2c59 1071varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1072{
bb5ce47a 1073 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1074}
1075
de051565
MK
1076char *
1077varobj_get_formatted_value (struct varobj *var,
1078 enum varobj_display_formats format)
1079{
1080 return my_value_of_variable (var, format);
1081}
1082
8b93c638
JM
1083char *
1084varobj_get_value (struct varobj *var)
1085{
de051565 1086 return my_value_of_variable (var, var->format);
8b93c638
JM
1087}
1088
1089/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1090 value of the given expression. */
1091/* Note: Invokes functions that can call error(). */
8b93c638
JM
1092
1093int
1094varobj_set_value (struct varobj *var, char *expression)
1095{
34365054 1096 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1097 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1098 We need to first construct a legal expression for this -- ugh! */
1099 /* Does this cover all the bases? */
8b93c638 1100 struct expression *exp;
34365054 1101 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1102 int saved_input_radix = input_radix;
bbc13ae3 1103 const char *s = expression;
8e7b59a5 1104 volatile struct gdb_exception except;
8b93c638 1105
340a7723 1106 gdb_assert (varobj_editable_p (var));
8b93c638 1107
581e13c1 1108 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1109 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1110 TRY_CATCH (except, RETURN_MASK_ERROR)
1111 {
1112 value = evaluate_expression (exp);
1113 }
1114
1115 if (except.reason < 0)
340a7723 1116 {
581e13c1 1117 /* We cannot proceed without a valid expression. */
340a7723
NR
1118 xfree (exp);
1119 return 0;
8b93c638
JM
1120 }
1121
340a7723
NR
1122 /* All types that are editable must also be changeable. */
1123 gdb_assert (varobj_value_is_changeable_p (var));
1124
1125 /* The value of a changeable variable object must not be lazy. */
1126 gdb_assert (!value_lazy (var->value));
1127
1128 /* Need to coerce the input. We want to check if the
1129 value of the variable object will be different
1130 after assignment, and the first thing value_assign
1131 does is coerce the input.
1132 For example, if we are assigning an array to a pointer variable we
b021a221 1133 should compare the pointer with the array's address, not with the
340a7723
NR
1134 array's content. */
1135 value = coerce_array (value);
1136
8e7b59a5
KS
1137 /* The new value may be lazy. value_assign, or
1138 rather value_contents, will take care of this. */
1139 TRY_CATCH (except, RETURN_MASK_ERROR)
1140 {
1141 val = value_assign (var->value, value);
1142 }
1143
1144 if (except.reason < 0)
340a7723 1145 return 0;
8e7b59a5 1146
340a7723
NR
1147 /* If the value has changed, record it, so that next -var-update can
1148 report this change. If a variable had a value of '1', we've set it
1149 to '333' and then set again to '1', when -var-update will report this
1150 variable as changed -- because the first assignment has set the
1151 'updated' flag. There's no need to optimize that, because return value
1152 of -var-update should be considered an approximation. */
581e13c1 1153 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1154 input_radix = saved_input_radix;
1155 return 1;
8b93c638
JM
1156}
1157
0cc7d26f
TT
1158#if HAVE_PYTHON
1159
1160/* A helper function to install a constructor function and visualizer
bb5ce47a 1161 in a varobj_dynamic. */
0cc7d26f
TT
1162
1163static void
bb5ce47a 1164install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1165 PyObject *visualizer)
1166{
1167 Py_XDECREF (var->constructor);
1168 var->constructor = constructor;
1169
1170 Py_XDECREF (var->pretty_printer);
1171 var->pretty_printer = visualizer;
1172
e5250216 1173 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1174 var->child_iter = NULL;
1175}
1176
1177/* Install the default visualizer for VAR. */
1178
1179static void
1180install_default_visualizer (struct varobj *var)
1181{
d65aec65
PM
1182 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1183 if (CPLUS_FAKE_CHILD (var))
1184 return;
1185
0cc7d26f
TT
1186 if (pretty_printing)
1187 {
1188 PyObject *pretty_printer = NULL;
1189
1190 if (var->value)
1191 {
1192 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1193 if (! pretty_printer)
1194 {
1195 gdbpy_print_stack ();
1196 error (_("Cannot instantiate printer for default visualizer"));
1197 }
1198 }
1199
1200 if (pretty_printer == Py_None)
1201 {
1202 Py_DECREF (pretty_printer);
1203 pretty_printer = NULL;
1204 }
1205
bb5ce47a 1206 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1207 }
1208}
1209
1210/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1211 make a new object. */
1212
1213static void
1214construct_visualizer (struct varobj *var, PyObject *constructor)
1215{
1216 PyObject *pretty_printer;
1217
d65aec65
PM
1218 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1219 if (CPLUS_FAKE_CHILD (var))
1220 return;
1221
0cc7d26f
TT
1222 Py_INCREF (constructor);
1223 if (constructor == Py_None)
1224 pretty_printer = NULL;
1225 else
1226 {
1227 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1228 if (! pretty_printer)
1229 {
1230 gdbpy_print_stack ();
1231 Py_DECREF (constructor);
1232 constructor = Py_None;
1233 Py_INCREF (constructor);
1234 }
1235
1236 if (pretty_printer == Py_None)
1237 {
1238 Py_DECREF (pretty_printer);
1239 pretty_printer = NULL;
1240 }
1241 }
1242
bb5ce47a 1243 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1244}
1245
1246#endif /* HAVE_PYTHON */
1247
1248/* A helper function for install_new_value. This creates and installs
1249 a visualizer for VAR, if appropriate. */
1250
1251static void
1252install_new_value_visualizer (struct varobj *var)
1253{
1254#if HAVE_PYTHON
1255 /* If the constructor is None, then we want the raw value. If VAR
1256 does not have a value, just skip this. */
0646da15
TT
1257 if (!gdb_python_initialized)
1258 return;
1259
bb5ce47a 1260 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1261 {
1262 struct cleanup *cleanup;
0cc7d26f
TT
1263
1264 cleanup = varobj_ensure_python_env (var);
1265
bb5ce47a 1266 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1267 install_default_visualizer (var);
1268 else
bb5ce47a 1269 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1270
1271 do_cleanups (cleanup);
1272 }
1273#else
1274 /* Do nothing. */
1275#endif
1276}
1277
8264ba82
AG
1278/* When using RTTI to determine variable type it may be changed in runtime when
1279 the variable value is changed. This function checks whether type of varobj
1280 VAR will change when a new value NEW_VALUE is assigned and if it is so
1281 updates the type of VAR. */
1282
1283static int
1284update_type_if_necessary (struct varobj *var, struct value *new_value)
1285{
1286 if (new_value)
1287 {
1288 struct value_print_options opts;
1289
1290 get_user_print_options (&opts);
1291 if (opts.objectprint)
1292 {
1293 struct type *new_type;
1294 char *curr_type_str, *new_type_str;
afa269ae 1295 int type_name_changed;
8264ba82
AG
1296
1297 new_type = value_actual_type (new_value, 0, 0);
1298 new_type_str = type_to_string (new_type);
1299 curr_type_str = varobj_get_type (var);
afa269ae
SM
1300 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1301 xfree (curr_type_str);
1302 xfree (new_type_str);
1303
1304 if (type_name_changed)
8264ba82
AG
1305 {
1306 var->type = new_type;
1307
1308 /* This information may be not valid for a new type. */
1309 varobj_delete (var, NULL, 1);
1310 VEC_free (varobj_p, var->children);
1311 var->num_children = -1;
1312 return 1;
1313 }
1314 }
1315 }
1316
1317 return 0;
1318}
1319
acd65feb
VP
1320/* Assign a new value to a variable object. If INITIAL is non-zero,
1321 this is the first assignement after the variable object was just
1322 created, or changed type. In that case, just assign the value
1323 and return 0.
581e13c1
MS
1324 Otherwise, assign the new value, and return 1 if the value is
1325 different from the current one, 0 otherwise. The comparison is
1326 done on textual representation of value. Therefore, some types
1327 need not be compared. E.g. for structures the reported value is
1328 always "{...}", so no comparison is necessary here. If the old
1329 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1330
1331 The VALUE parameter should not be released -- the function will
1332 take care of releasing it when needed. */
acd65feb
VP
1333static int
1334install_new_value (struct varobj *var, struct value *value, int initial)
1335{
1336 int changeable;
1337 int need_to_fetch;
1338 int changed = 0;
25d5ea92 1339 int intentionally_not_fetched = 0;
7a4d50bf 1340 char *print_value = NULL;
acd65feb 1341
acd65feb 1342 /* We need to know the varobj's type to decide if the value should
3e43a32a 1343 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1344 don't have a type. */
acd65feb 1345 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1346 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1347
1348 /* If the type has custom visualizer, we consider it to be always
581e13c1 1349 changeable. FIXME: need to make sure this behaviour will not
b6313243 1350 mess up read-sensitive values. */
bb5ce47a 1351 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1352 changeable = 1;
1353
acd65feb
VP
1354 need_to_fetch = changeable;
1355
b26ed50d
VP
1356 /* We are not interested in the address of references, and given
1357 that in C++ a reference is not rebindable, it cannot
1358 meaningfully change. So, get hold of the real value. */
1359 if (value)
0cc7d26f 1360 value = coerce_ref (value);
b26ed50d 1361
acd65feb
VP
1362 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1363 /* For unions, we need to fetch the value implicitly because
1364 of implementation of union member fetch. When gdb
1365 creates a value for a field and the value of the enclosing
1366 structure is not lazy, it immediately copies the necessary
1367 bytes from the enclosing values. If the enclosing value is
1368 lazy, the call to value_fetch_lazy on the field will read
1369 the data from memory. For unions, that means we'll read the
1370 same memory more than once, which is not desirable. So
1371 fetch now. */
1372 need_to_fetch = 1;
1373
1374 /* The new value might be lazy. If the type is changeable,
1375 that is we'll be comparing values of this type, fetch the
1376 value now. Otherwise, on the next update the old value
1377 will be lazy, which means we've lost that old value. */
1378 if (need_to_fetch && value && value_lazy (value))
1379 {
25d5ea92
VP
1380 struct varobj *parent = var->parent;
1381 int frozen = var->frozen;
a109c7c1 1382
25d5ea92
VP
1383 for (; !frozen && parent; parent = parent->parent)
1384 frozen |= parent->frozen;
1385
1386 if (frozen && initial)
1387 {
1388 /* For variables that are frozen, or are children of frozen
1389 variables, we don't do fetch on initial assignment.
1390 For non-initial assignemnt we do the fetch, since it means we're
1391 explicitly asked to compare the new value with the old one. */
1392 intentionally_not_fetched = 1;
1393 }
8e7b59a5 1394 else
acd65feb 1395 {
8e7b59a5
KS
1396 volatile struct gdb_exception except;
1397
1398 TRY_CATCH (except, RETURN_MASK_ERROR)
1399 {
1400 value_fetch_lazy (value);
1401 }
1402
1403 if (except.reason < 0)
1404 {
1405 /* Set the value to NULL, so that for the next -var-update,
1406 we don't try to compare the new value with this value,
1407 that we couldn't even read. */
1408 value = NULL;
1409 }
acd65feb 1410 }
acd65feb
VP
1411 }
1412
e848a8a5
TT
1413 /* Get a reference now, before possibly passing it to any Python
1414 code that might release it. */
1415 if (value != NULL)
1416 value_incref (value);
b6313243 1417
7a4d50bf
VP
1418 /* Below, we'll be comparing string rendering of old and new
1419 values. Don't get string rendering if the value is
1420 lazy -- if it is, the code above has decided that the value
1421 should not be fetched. */
bb5ce47a
YQ
1422 if (value != NULL && !value_lazy (value)
1423 && var->dynamic->pretty_printer == NULL)
99ad9427 1424 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1425
acd65feb
VP
1426 /* If the type is changeable, compare the old and the new values.
1427 If this is the initial assignment, we don't have any old value
1428 to compare with. */
7a4d50bf 1429 if (!initial && changeable)
acd65feb 1430 {
3e43a32a
MS
1431 /* If the value of the varobj was changed by -var-set-value,
1432 then the value in the varobj and in the target is the same.
1433 However, that value is different from the value that the
581e13c1 1434 varobj had after the previous -var-update. So need to the
3e43a32a 1435 varobj as changed. */
acd65feb 1436 if (var->updated)
57e66780 1437 {
57e66780
DJ
1438 changed = 1;
1439 }
bb5ce47a 1440 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1441 {
1442 /* Try to compare the values. That requires that both
1443 values are non-lazy. */
25d5ea92
VP
1444 if (var->not_fetched && value_lazy (var->value))
1445 {
1446 /* This is a frozen varobj and the value was never read.
1447 Presumably, UI shows some "never read" indicator.
1448 Now that we've fetched the real value, we need to report
1449 this varobj as changed so that UI can show the real
1450 value. */
1451 changed = 1;
1452 }
1453 else if (var->value == NULL && value == NULL)
581e13c1 1454 /* Equal. */
acd65feb
VP
1455 ;
1456 else if (var->value == NULL || value == NULL)
57e66780 1457 {
57e66780
DJ
1458 changed = 1;
1459 }
acd65feb
VP
1460 else
1461 {
1462 gdb_assert (!value_lazy (var->value));
1463 gdb_assert (!value_lazy (value));
85265413 1464
57e66780 1465 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1466 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1467 changed = 1;
acd65feb
VP
1468 }
1469 }
1470 }
85265413 1471
ee342b23
VP
1472 if (!initial && !changeable)
1473 {
1474 /* For values that are not changeable, we don't compare the values.
1475 However, we want to notice if a value was not NULL and now is NULL,
1476 or vise versa, so that we report when top-level varobjs come in scope
1477 and leave the scope. */
1478 changed = (var->value != NULL) != (value != NULL);
1479 }
1480
acd65feb 1481 /* We must always keep the new value, since children depend on it. */
25d5ea92 1482 if (var->value != NULL && var->value != value)
acd65feb
VP
1483 value_free (var->value);
1484 var->value = value;
25d5ea92
VP
1485 if (value && value_lazy (value) && intentionally_not_fetched)
1486 var->not_fetched = 1;
1487 else
1488 var->not_fetched = 0;
acd65feb 1489 var->updated = 0;
85265413 1490
0cc7d26f
TT
1491 install_new_value_visualizer (var);
1492
1493 /* If we installed a pretty-printer, re-compare the printed version
1494 to see if the variable changed. */
bb5ce47a 1495 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1496 {
1497 xfree (print_value);
99ad9427
YQ
1498 print_value = varobj_value_get_print_value (var->value, var->format,
1499 var);
e8f781e2
TT
1500 if ((var->print_value == NULL && print_value != NULL)
1501 || (var->print_value != NULL && print_value == NULL)
1502 || (var->print_value != NULL && print_value != NULL
1503 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1504 changed = 1;
1505 }
1506 if (var->print_value)
1507 xfree (var->print_value);
1508 var->print_value = print_value;
1509
b26ed50d 1510 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1511
1512 return changed;
1513}
acd65feb 1514
0cc7d26f
TT
1515/* Return the requested range for a varobj. VAR is the varobj. FROM
1516 and TO are out parameters; *FROM and *TO will be set to the
1517 selected sub-range of VAR. If no range was selected using
1518 -var-set-update-range, then both will be -1. */
1519void
b09e2c59 1520varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1521{
0cc7d26f
TT
1522 *from = var->from;
1523 *to = var->to;
b6313243
TT
1524}
1525
0cc7d26f
TT
1526/* Set the selected sub-range of children of VAR to start at index
1527 FROM and end at index TO. If either FROM or TO is less than zero,
1528 this is interpreted as a request for all children. */
1529void
1530varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1531{
0cc7d26f
TT
1532 var->from = from;
1533 var->to = to;
b6313243
TT
1534}
1535
1536void
1537varobj_set_visualizer (struct varobj *var, const char *visualizer)
1538{
1539#if HAVE_PYTHON
34fa1d9d
MS
1540 PyObject *mainmod, *globals, *constructor;
1541 struct cleanup *back_to;
b6313243 1542
0646da15
TT
1543 if (!gdb_python_initialized)
1544 return;
1545
d452c4bc 1546 back_to = varobj_ensure_python_env (var);
b6313243
TT
1547
1548 mainmod = PyImport_AddModule ("__main__");
1549 globals = PyModule_GetDict (mainmod);
1550 Py_INCREF (globals);
1551 make_cleanup_py_decref (globals);
1552
1553 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1554
0cc7d26f 1555 if (! constructor)
b6313243
TT
1556 {
1557 gdbpy_print_stack ();
da1f2771 1558 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1559 }
1560
0cc7d26f
TT
1561 construct_visualizer (var, constructor);
1562 Py_XDECREF (constructor);
b6313243 1563
0cc7d26f
TT
1564 /* If there are any children now, wipe them. */
1565 varobj_delete (var, NULL, 1 /* children only */);
1566 var->num_children = -1;
b6313243
TT
1567
1568 do_cleanups (back_to);
1569#else
da1f2771 1570 error (_("Python support required"));
b6313243
TT
1571#endif
1572}
1573
7a290c40
JB
1574/* If NEW_VALUE is the new value of the given varobj (var), return
1575 non-zero if var has mutated. In other words, if the type of
1576 the new value is different from the type of the varobj's old
1577 value.
1578
1579 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1580
1581static int
b09e2c59 1582varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1583 struct type *new_type)
1584{
1585 /* If we haven't previously computed the number of children in var,
1586 it does not matter from the front-end's perspective whether
1587 the type has mutated or not. For all intents and purposes,
1588 it has not mutated. */
1589 if (var->num_children < 0)
1590 return 0;
1591
ca20d462 1592 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1593 {
1594 /* The varobj module, when installing new values, explicitly strips
1595 references, saying that we're not interested in those addresses.
1596 But detection of mutation happens before installing the new
1597 value, so our value may be a reference that we need to strip
1598 in order to remain consistent. */
1599 if (new_value != NULL)
1600 new_value = coerce_ref (new_value);
1601 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1602 }
7a290c40
JB
1603 else
1604 return 0;
1605}
1606
8b93c638
JM
1607/* Update the values for a variable and its children. This is a
1608 two-pronged attack. First, re-parse the value for the root's
1609 expression to see if it's changed. Then go all the way
1610 through its children, reconstructing them and noting if they've
1611 changed.
1612
25d5ea92
VP
1613 The EXPLICIT parameter specifies if this call is result
1614 of MI request to update this specific variable, or
581e13c1 1615 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1616 update frozen variables.
705da579 1617
581e13c1 1618 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1619 returns TYPE_CHANGED, then it has done this and VARP will be modified
1620 to point to the new varobj. */
8b93c638 1621
1417b39d
JB
1622VEC(varobj_update_result) *
1623varobj_update (struct varobj **varp, int explicit)
8b93c638 1624{
25d5ea92 1625 int type_changed = 0;
8b93c638 1626 int i;
30b28db1 1627 struct value *new;
b6313243 1628 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1629 VEC (varobj_update_result) *result = NULL;
8b93c638 1630
25d5ea92
VP
1631 /* Frozen means frozen -- we don't check for any change in
1632 this varobj, including its going out of scope, or
1633 changing type. One use case for frozen varobjs is
1634 retaining previously evaluated expressions, and we don't
1635 want them to be reevaluated at all. */
1636 if (!explicit && (*varp)->frozen)
f7f9ae2c 1637 return result;
8756216b
DP
1638
1639 if (!(*varp)->root->is_valid)
f7f9ae2c 1640 {
cfce2ea2 1641 varobj_update_result r = {0};
a109c7c1 1642
cfce2ea2 1643 r.varobj = *varp;
f7f9ae2c
VP
1644 r.status = VAROBJ_INVALID;
1645 VEC_safe_push (varobj_update_result, result, &r);
1646 return result;
1647 }
8b93c638 1648
25d5ea92 1649 if ((*varp)->root->rootvar == *varp)
ae093f96 1650 {
cfce2ea2 1651 varobj_update_result r = {0};
a109c7c1 1652
cfce2ea2 1653 r.varobj = *varp;
f7f9ae2c
VP
1654 r.status = VAROBJ_IN_SCOPE;
1655
581e13c1 1656 /* Update the root variable. value_of_root can return NULL
25d5ea92 1657 if the variable is no longer around, i.e. we stepped out of
581e13c1 1658 the frame in which a local existed. We are letting the
25d5ea92
VP
1659 value_of_root variable dispose of the varobj if the type
1660 has changed. */
25d5ea92 1661 new = value_of_root (varp, &type_changed);
8264ba82
AG
1662 if (update_type_if_necessary(*varp, new))
1663 type_changed = 1;
f7f9ae2c 1664 r.varobj = *varp;
f7f9ae2c 1665 r.type_changed = type_changed;
ea56f9c2 1666 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1667 r.changed = 1;
ea56f9c2 1668
25d5ea92 1669 if (new == NULL)
f7f9ae2c 1670 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1671 r.value_installed = 1;
f7f9ae2c
VP
1672
1673 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1674 {
0b4bc29a
JK
1675 if (r.type_changed || r.changed)
1676 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1677 return result;
1678 }
1679
1680 VEC_safe_push (varobj_update_result, stack, &r);
1681 }
1682 else
1683 {
cfce2ea2 1684 varobj_update_result r = {0};
a109c7c1 1685
cfce2ea2 1686 r.varobj = *varp;
b6313243 1687 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1688 }
8b93c638 1689
8756216b 1690 /* Walk through the children, reconstructing them all. */
b6313243 1691 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1692 {
b6313243
TT
1693 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1694 struct varobj *v = r.varobj;
1695
1696 VEC_pop (varobj_update_result, stack);
1697
1698 /* Update this variable, unless it's a root, which is already
1699 updated. */
1700 if (!r.value_installed)
7a290c40
JB
1701 {
1702 struct type *new_type;
1703
b6313243 1704 new = value_of_child (v->parent, v->index);
8264ba82
AG
1705 if (update_type_if_necessary(v, new))
1706 r.type_changed = 1;
7a290c40
JB
1707 if (new)
1708 new_type = value_type (new);
1709 else
ca20d462 1710 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1711
1712 if (varobj_value_has_mutated (v, new, new_type))
1713 {
1714 /* The children are no longer valid; delete them now.
1715 Report the fact that its type changed as well. */
1716 varobj_delete (v, NULL, 1 /* only_children */);
1717 v->num_children = -1;
1718 v->to = -1;
1719 v->from = -1;
1720 v->type = new_type;
1721 r.type_changed = 1;
1722 }
1723
1724 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1725 {
1726 r.changed = 1;
1727 v->updated = 0;
1728 }
1729 }
1730
31f628ae
YQ
1731 /* We probably should not get children of a dynamic varobj, but
1732 for which -var-list-children was never invoked. */
1733 if (varobj_is_dynamic_p (v))
b6313243 1734 {
8264ba82
AG
1735 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1736 VEC (varobj_p) *new = 0;
26f9bcee 1737 int i, children_changed = 0;
b6313243
TT
1738
1739 if (v->frozen)
1740 continue;
1741
bb5ce47a 1742 if (!v->dynamic->children_requested)
0cc7d26f
TT
1743 {
1744 int dummy;
1745
1746 /* If we initially did not have potential children, but
1747 now we do, consider the varobj as changed.
1748 Otherwise, if children were never requested, consider
1749 it as unchanged -- presumably, such varobj is not yet
1750 expanded in the UI, so we need not bother getting
1751 it. */
1752 if (!varobj_has_more (v, 0))
1753 {
8264ba82 1754 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1755 &dummy, 0, 0, 0);
1756 if (varobj_has_more (v, 0))
1757 r.changed = 1;
1758 }
1759
1760 if (r.changed)
1761 VEC_safe_push (varobj_update_result, result, &r);
1762
1763 continue;
1764 }
1765
b6313243
TT
1766 /* If update_dynamic_varobj_children returns 0, then we have
1767 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1768 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1769 &unchanged, &children_changed, 1,
0cc7d26f 1770 v->from, v->to))
b6313243 1771 {
0cc7d26f 1772 if (children_changed || new)
b6313243 1773 {
0cc7d26f
TT
1774 r.children_changed = 1;
1775 r.new = new;
b6313243 1776 }
0cc7d26f
TT
1777 /* Push in reverse order so that the first child is
1778 popped from the work stack first, and so will be
1779 added to result first. This does not affect
1780 correctness, just "nicer". */
8264ba82
AG
1781 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1782 {
1783 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1784 varobj_update_result r = {0};
1785
1786 /* Type may change only if value was changed. */
1787 r.varobj = tmp;
1788 r.changed = 1;
1789 r.type_changed = 1;
1790 r.value_installed = 1;
1791 VEC_safe_push (varobj_update_result, stack, &r);
1792 }
0cc7d26f 1793 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1794 {
0cc7d26f 1795 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1796 varobj_update_result r = {0};
a109c7c1 1797
cfce2ea2 1798 r.varobj = tmp;
0cc7d26f 1799 r.changed = 1;
b6313243
TT
1800 r.value_installed = 1;
1801 VEC_safe_push (varobj_update_result, stack, &r);
1802 }
0cc7d26f
TT
1803 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1804 {
1805 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1806
0cc7d26f
TT
1807 if (!tmp->frozen)
1808 {
cfce2ea2 1809 varobj_update_result r = {0};
a109c7c1 1810
cfce2ea2 1811 r.varobj = tmp;
0cc7d26f
TT
1812 r.value_installed = 1;
1813 VEC_safe_push (varobj_update_result, stack, &r);
1814 }
1815 }
b6313243
TT
1816 if (r.changed || r.children_changed)
1817 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1818
8264ba82
AG
1819 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1820 because NEW has been put into the result vector. */
0cc7d26f 1821 VEC_free (varobj_p, changed);
8264ba82 1822 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1823 VEC_free (varobj_p, unchanged);
1824
b6313243
TT
1825 continue;
1826 }
1827 }
28335dcc
VP
1828
1829 /* Push any children. Use reverse order so that the first
1830 child is popped from the work stack first, and so
1831 will be added to result first. This does not
1832 affect correctness, just "nicer". */
1833 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1834 {
28335dcc 1835 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1836
28335dcc 1837 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1838 if (c != NULL && !c->frozen)
28335dcc 1839 {
cfce2ea2 1840 varobj_update_result r = {0};
a109c7c1 1841
cfce2ea2 1842 r.varobj = c;
b6313243 1843 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1844 }
8b93c638 1845 }
b6313243
TT
1846
1847 if (r.changed || r.type_changed)
1848 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1849 }
1850
b6313243
TT
1851 VEC_free (varobj_update_result, stack);
1852
f7f9ae2c 1853 return result;
8b93c638
JM
1854}
1855\f
1856
1857/* Helper functions */
1858
1859/*
1860 * Variable object construction/destruction
1861 */
1862
1863static int
fba45db2
KB
1864delete_variable (struct cpstack **resultp, struct varobj *var,
1865 int only_children_p)
8b93c638
JM
1866{
1867 int delcount = 0;
1868
1869 delete_variable_1 (resultp, &delcount, var,
1870 only_children_p, 1 /* remove_from_parent_p */ );
1871
1872 return delcount;
1873}
1874
581e13c1 1875/* Delete the variable object VAR and its children. */
8b93c638
JM
1876/* IMPORTANT NOTE: If we delete a variable which is a child
1877 and the parent is not removed we dump core. It must be always
581e13c1 1878 initially called with remove_from_parent_p set. */
8b93c638 1879static void
72330bd6
AC
1880delete_variable_1 (struct cpstack **resultp, int *delcountp,
1881 struct varobj *var, int only_children_p,
1882 int remove_from_parent_p)
8b93c638 1883{
28335dcc 1884 int i;
8b93c638 1885
581e13c1 1886 /* Delete any children of this variable, too. */
28335dcc
VP
1887 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1888 {
1889 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1890
214270ab
VP
1891 if (!child)
1892 continue;
8b93c638 1893 if (!remove_from_parent_p)
28335dcc
VP
1894 child->parent = NULL;
1895 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1896 }
28335dcc 1897 VEC_free (varobj_p, var->children);
8b93c638 1898
581e13c1 1899 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1900 if (only_children_p)
1901 return;
1902
581e13c1 1903 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1904 /* If the name is null, this is a temporary variable, that has not
581e13c1 1905 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1906 if (var->obj_name != NULL)
8b93c638 1907 {
5b616ba1 1908 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1909 *delcountp = *delcountp + 1;
1910 }
1911
581e13c1 1912 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1913 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1914 (as indicated by remove_from_parent_p) we don't bother doing an
1915 expensive list search to find the element to remove when we are
581e13c1 1916 discarding the list afterwards. */
72330bd6 1917 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1918 {
28335dcc 1919 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1920 }
72330bd6 1921
73a93a32
JI
1922 if (var->obj_name != NULL)
1923 uninstall_variable (var);
8b93c638 1924
581e13c1 1925 /* Free memory associated with this variable. */
8b93c638
JM
1926 free_variable (var);
1927}
1928
581e13c1 1929/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1930static int
fba45db2 1931install_variable (struct varobj *var)
8b93c638
JM
1932{
1933 struct vlist *cv;
1934 struct vlist *newvl;
1935 const char *chp;
1936 unsigned int index = 0;
1937 unsigned int i = 1;
1938
1939 for (chp = var->obj_name; *chp; chp++)
1940 {
1941 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1942 }
1943
1944 cv = *(varobj_table + index);
1945 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1946 cv = cv->next;
1947
1948 if (cv != NULL)
8a3fe4f8 1949 error (_("Duplicate variable object name"));
8b93c638 1950
581e13c1 1951 /* Add varobj to hash table. */
8b93c638
JM
1952 newvl = xmalloc (sizeof (struct vlist));
1953 newvl->next = *(varobj_table + index);
1954 newvl->var = var;
1955 *(varobj_table + index) = newvl;
1956
581e13c1 1957 /* If root, add varobj to root list. */
b2c2bd75 1958 if (is_root_p (var))
8b93c638 1959 {
581e13c1 1960 /* Add to list of root variables. */
8b93c638
JM
1961 if (rootlist == NULL)
1962 var->root->next = NULL;
1963 else
1964 var->root->next = rootlist;
1965 rootlist = var->root;
8b93c638
JM
1966 }
1967
1968 return 1; /* OK */
1969}
1970
581e13c1 1971/* Unistall the object VAR. */
8b93c638 1972static void
fba45db2 1973uninstall_variable (struct varobj *var)
8b93c638
JM
1974{
1975 struct vlist *cv;
1976 struct vlist *prev;
1977 struct varobj_root *cr;
1978 struct varobj_root *prer;
1979 const char *chp;
1980 unsigned int index = 0;
1981 unsigned int i = 1;
1982
581e13c1 1983 /* Remove varobj from hash table. */
8b93c638
JM
1984 for (chp = var->obj_name; *chp; chp++)
1985 {
1986 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1987 }
1988
1989 cv = *(varobj_table + index);
1990 prev = NULL;
1991 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1992 {
1993 prev = cv;
1994 cv = cv->next;
1995 }
1996
1997 if (varobjdebug)
1998 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1999
2000 if (cv == NULL)
2001 {
72330bd6
AC
2002 warning
2003 ("Assertion failed: Could not find variable object \"%s\" to delete",
2004 var->obj_name);
8b93c638
JM
2005 return;
2006 }
2007
2008 if (prev == NULL)
2009 *(varobj_table + index) = cv->next;
2010 else
2011 prev->next = cv->next;
2012
b8c9b27d 2013 xfree (cv);
8b93c638 2014
581e13c1 2015 /* If root, remove varobj from root list. */
b2c2bd75 2016 if (is_root_p (var))
8b93c638 2017 {
581e13c1 2018 /* Remove from list of root variables. */
8b93c638
JM
2019 if (rootlist == var->root)
2020 rootlist = var->root->next;
2021 else
2022 {
2023 prer = NULL;
2024 cr = rootlist;
2025 while ((cr != NULL) && (cr->rootvar != var))
2026 {
2027 prer = cr;
2028 cr = cr->next;
2029 }
2030 if (cr == NULL)
2031 {
8f7e195f
JB
2032 warning (_("Assertion failed: Could not find "
2033 "varobj \"%s\" in root list"),
3e43a32a 2034 var->obj_name);
8b93c638
JM
2035 return;
2036 }
2037 if (prer == NULL)
2038 rootlist = NULL;
2039 else
2040 prer->next = cr->next;
2041 }
8b93c638
JM
2042 }
2043
2044}
2045
837ce252
SM
2046/* Create and install a child of the parent of the given name.
2047
2048 The created VAROBJ takes ownership of the allocated NAME. */
2049
8b93c638 2050static struct varobj *
fba45db2 2051create_child (struct varobj *parent, int index, char *name)
b6313243 2052{
5a2e0d6e
YQ
2053 struct varobj_item item;
2054
2055 item.name = name;
2056 item.value = value_of_child (parent, index);
2057
2058 return create_child_with_value (parent, index, &item);
b6313243
TT
2059}
2060
2061static struct varobj *
5a2e0d6e
YQ
2062create_child_with_value (struct varobj *parent, int index,
2063 struct varobj_item *item)
8b93c638
JM
2064{
2065 struct varobj *child;
2066 char *childs_name;
2067
2068 child = new_variable ();
2069
5e5ac9a5 2070 /* NAME is allocated by caller. */
5a2e0d6e 2071 child->name = item->name;
8b93c638 2072 child->index = index;
8b93c638
JM
2073 child->parent = parent;
2074 child->root = parent->root;
85254831 2075
99ad9427 2076 if (varobj_is_anonymous_child (child))
85254831
KS
2077 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2078 else
5a2e0d6e 2079 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2080 child->obj_name = childs_name;
85254831 2081
8b93c638
JM
2082 install_variable (child);
2083
acd65feb
VP
2084 /* Compute the type of the child. Must do this before
2085 calling install_new_value. */
5a2e0d6e 2086 if (item->value != NULL)
acd65feb 2087 /* If the child had no evaluation errors, var->value
581e13c1 2088 will be non-NULL and contain a valid type. */
5a2e0d6e 2089 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2090 else
581e13c1 2091 /* Otherwise, we must compute the type. */
ca20d462
YQ
2092 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2093 child->index);
5a2e0d6e 2094 install_new_value (child, item->value, 1);
acd65feb 2095
8b93c638
JM
2096 return child;
2097}
8b93c638
JM
2098\f
2099
2100/*
2101 * Miscellaneous utility functions.
2102 */
2103
581e13c1 2104/* Allocate memory and initialize a new variable. */
8b93c638
JM
2105static struct varobj *
2106new_variable (void)
2107{
2108 struct varobj *var;
2109
2110 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2111 var->name = NULL;
02142340 2112 var->path_expr = NULL;
8b93c638
JM
2113 var->obj_name = NULL;
2114 var->index = -1;
2115 var->type = NULL;
2116 var->value = NULL;
8b93c638
JM
2117 var->num_children = -1;
2118 var->parent = NULL;
2119 var->children = NULL;
2120 var->format = 0;
2121 var->root = NULL;
fb9b6b35 2122 var->updated = 0;
85265413 2123 var->print_value = NULL;
25d5ea92
VP
2124 var->frozen = 0;
2125 var->not_fetched = 0;
bb5ce47a
YQ
2126 var->dynamic
2127 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2128 var->dynamic->children_requested = 0;
0cc7d26f
TT
2129 var->from = -1;
2130 var->to = -1;
bb5ce47a
YQ
2131 var->dynamic->constructor = 0;
2132 var->dynamic->pretty_printer = 0;
2133 var->dynamic->child_iter = 0;
2134 var->dynamic->saved_item = 0;
8b93c638
JM
2135
2136 return var;
2137}
2138
581e13c1 2139/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2140static struct varobj *
2141new_root_variable (void)
2142{
2143 struct varobj *var = new_variable ();
a109c7c1 2144
3e43a32a 2145 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2146 var->root->lang_ops = NULL;
8b93c638
JM
2147 var->root->exp = NULL;
2148 var->root->valid_block = NULL;
7a424e99 2149 var->root->frame = null_frame_id;
a5defcdc 2150 var->root->floating = 0;
8b93c638 2151 var->root->rootvar = NULL;
8756216b 2152 var->root->is_valid = 1;
8b93c638
JM
2153
2154 return var;
2155}
2156
581e13c1 2157/* Free any allocated memory associated with VAR. */
8b93c638 2158static void
fba45db2 2159free_variable (struct varobj *var)
8b93c638 2160{
d452c4bc 2161#if HAVE_PYTHON
bb5ce47a 2162 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2163 {
2164 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2165
2166 Py_XDECREF (var->dynamic->constructor);
2167 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2168 do_cleanups (cleanup);
2169 }
2170#endif
2171
827f100c
YQ
2172 varobj_iter_delete (var->dynamic->child_iter);
2173 varobj_clear_saved_item (var->dynamic);
36746093
JK
2174 value_free (var->value);
2175
581e13c1 2176 /* Free the expression if this is a root variable. */
b2c2bd75 2177 if (is_root_p (var))
8b93c638 2178 {
3038237c 2179 xfree (var->root->exp);
8038e1e2 2180 xfree (var->root);
8b93c638
JM
2181 }
2182
8038e1e2
AC
2183 xfree (var->name);
2184 xfree (var->obj_name);
85265413 2185 xfree (var->print_value);
02142340 2186 xfree (var->path_expr);
bb5ce47a 2187 xfree (var->dynamic);
8038e1e2 2188 xfree (var);
8b93c638
JM
2189}
2190
74b7792f
AC
2191static void
2192do_free_variable_cleanup (void *var)
2193{
2194 free_variable (var);
2195}
2196
2197static struct cleanup *
2198make_cleanup_free_variable (struct varobj *var)
2199{
2200 return make_cleanup (do_free_variable_cleanup, var);
2201}
2202
6e2a9270
VP
2203/* Return the type of the value that's stored in VAR,
2204 or that would have being stored there if the
581e13c1 2205 value were accessible.
6e2a9270
VP
2206
2207 This differs from VAR->type in that VAR->type is always
2208 the true type of the expession in the source language.
2209 The return value of this function is the type we're
2210 actually storing in varobj, and using for displaying
2211 the values and for comparing previous and new values.
2212
2213 For example, top-level references are always stripped. */
99ad9427 2214struct type *
b09e2c59 2215varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2216{
2217 struct type *type;
2218
2219 if (var->value)
2220 type = value_type (var->value);
2221 else
2222 type = var->type;
2223
2224 type = check_typedef (type);
2225
2226 if (TYPE_CODE (type) == TYPE_CODE_REF)
2227 type = get_target_type (type);
2228
2229 type = check_typedef (type);
2230
2231 return type;
2232}
2233
8b93c638 2234/* What is the default display for this variable? We assume that
581e13c1 2235 everything is "natural". Any exceptions? */
8b93c638 2236static enum varobj_display_formats
fba45db2 2237variable_default_display (struct varobj *var)
8b93c638
JM
2238{
2239 return FORMAT_NATURAL;
2240}
2241
581e13c1 2242/* FIXME: The following should be generic for any pointer. */
8b93c638 2243static void
fba45db2 2244cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2245{
2246 struct cpstack *s;
2247
2248 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2249 s->name = name;
2250 s->next = *pstack;
2251 *pstack = s;
2252}
2253
581e13c1 2254/* FIXME: The following should be generic for any pointer. */
8b93c638 2255static char *
fba45db2 2256cppop (struct cpstack **pstack)
8b93c638
JM
2257{
2258 struct cpstack *s;
2259 char *v;
2260
2261 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2262 return NULL;
2263
2264 s = *pstack;
2265 v = s->name;
2266 *pstack = (*pstack)->next;
b8c9b27d 2267 xfree (s);
8b93c638
JM
2268
2269 return v;
2270}
2271\f
2272/*
2273 * Language-dependencies
2274 */
2275
2276/* Common entry points */
2277
8b93c638
JM
2278/* Return the number of children for a given variable.
2279 The result of this function is defined by the language
581e13c1 2280 implementation. The number of children returned by this function
8b93c638 2281 is the number of children that the user will see in the variable
581e13c1 2282 display. */
8b93c638 2283static int
b09e2c59 2284number_of_children (const struct varobj *var)
8b93c638 2285{
ca20d462 2286 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2287}
2288
3e43a32a 2289/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2290 string. */
8b93c638 2291static char *
b09e2c59 2292name_of_variable (const struct varobj *var)
8b93c638 2293{
ca20d462 2294 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2295}
2296
3e43a32a 2297/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2298 string. */
8b93c638 2299static char *
fba45db2 2300name_of_child (struct varobj *var, int index)
8b93c638 2301{
ca20d462 2302 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2303}
2304
2213e2be
YQ
2305/* If frame associated with VAR can be found, switch
2306 to it and return 1. Otherwise, return 0. */
2307
2308static int
b09e2c59 2309check_scope (const struct varobj *var)
2213e2be
YQ
2310{
2311 struct frame_info *fi;
2312 int scope;
2313
2314 fi = frame_find_by_id (var->root->frame);
2315 scope = fi != NULL;
2316
2317 if (fi)
2318 {
2319 CORE_ADDR pc = get_frame_pc (fi);
2320
2321 if (pc < BLOCK_START (var->root->valid_block) ||
2322 pc >= BLOCK_END (var->root->valid_block))
2323 scope = 0;
2324 else
2325 select_frame (fi);
2326 }
2327 return scope;
2328}
2329
2330/* Helper function to value_of_root. */
2331
2332static struct value *
2333value_of_root_1 (struct varobj **var_handle)
2334{
2335 struct value *new_val = NULL;
2336 struct varobj *var = *var_handle;
2337 int within_scope = 0;
2338 struct cleanup *back_to;
2339
2340 /* Only root variables can be updated... */
2341 if (!is_root_p (var))
2342 /* Not a root var. */
2343 return NULL;
2344
2345 back_to = make_cleanup_restore_current_thread ();
2346
2347 /* Determine whether the variable is still around. */
2348 if (var->root->valid_block == NULL || var->root->floating)
2349 within_scope = 1;
2350 else if (var->root->thread_id == 0)
2351 {
2352 /* The program was single-threaded when the variable object was
2353 created. Technically, it's possible that the program became
2354 multi-threaded since then, but we don't support such
2355 scenario yet. */
2356 within_scope = check_scope (var);
2357 }
2358 else
2359 {
2360 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2361 if (in_thread_list (ptid))
2362 {
2363 switch_to_thread (ptid);
2364 within_scope = check_scope (var);
2365 }
2366 }
2367
2368 if (within_scope)
2369 {
2370 volatile struct gdb_exception except;
2371
2372 /* We need to catch errors here, because if evaluate
2373 expression fails we want to just return NULL. */
2374 TRY_CATCH (except, RETURN_MASK_ERROR)
2375 {
2376 new_val = evaluate_expression (var->root->exp);
2377 }
2378 }
2379
2380 do_cleanups (back_to);
2381
2382 return new_val;
2383}
2384
a5defcdc
VP
2385/* What is the ``struct value *'' of the root variable VAR?
2386 For floating variable object, evaluation can get us a value
2387 of different type from what is stored in varobj already. In
2388 that case:
2389 - *type_changed will be set to 1
2390 - old varobj will be freed, and new one will be
2391 created, with the same name.
2392 - *var_handle will be set to the new varobj
2393 Otherwise, *type_changed will be set to 0. */
30b28db1 2394static struct value *
fba45db2 2395value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2396{
73a93a32
JI
2397 struct varobj *var;
2398
2399 if (var_handle == NULL)
2400 return NULL;
2401
2402 var = *var_handle;
2403
2404 /* This should really be an exception, since this should
581e13c1 2405 only get called with a root variable. */
73a93a32 2406
b2c2bd75 2407 if (!is_root_p (var))
73a93a32
JI
2408 return NULL;
2409
a5defcdc 2410 if (var->root->floating)
73a93a32
JI
2411 {
2412 struct varobj *tmp_var;
2413 char *old_type, *new_type;
6225abfa 2414
73a93a32
JI
2415 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2416 USE_SELECTED_FRAME);
2417 if (tmp_var == NULL)
2418 {
2419 return NULL;
2420 }
6225abfa 2421 old_type = varobj_get_type (var);
73a93a32 2422 new_type = varobj_get_type (tmp_var);
72330bd6 2423 if (strcmp (old_type, new_type) == 0)
73a93a32 2424 {
fcacd99f
VP
2425 /* The expression presently stored inside var->root->exp
2426 remembers the locations of local variables relatively to
2427 the frame where the expression was created (in DWARF location
2428 button, for example). Naturally, those locations are not
2429 correct in other frames, so update the expression. */
2430
2431 struct expression *tmp_exp = var->root->exp;
a109c7c1 2432
fcacd99f
VP
2433 var->root->exp = tmp_var->root->exp;
2434 tmp_var->root->exp = tmp_exp;
2435
73a93a32
JI
2436 varobj_delete (tmp_var, NULL, 0);
2437 *type_changed = 0;
2438 }
2439 else
2440 {
1b36a34b 2441 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2442 tmp_var->from = var->from;
2443 tmp_var->to = var->to;
a5defcdc
VP
2444 varobj_delete (var, NULL, 0);
2445
73a93a32
JI
2446 install_variable (tmp_var);
2447 *var_handle = tmp_var;
705da579 2448 var = *var_handle;
73a93a32
JI
2449 *type_changed = 1;
2450 }
74dddad3
MS
2451 xfree (old_type);
2452 xfree (new_type);
73a93a32
JI
2453 }
2454 else
2455 {
2456 *type_changed = 0;
2457 }
2458
7a290c40
JB
2459 {
2460 struct value *value;
2461
2213e2be 2462 value = value_of_root_1 (var_handle);
7a290c40
JB
2463 if (var->value == NULL || value == NULL)
2464 {
2465 /* For root varobj-s, a NULL value indicates a scoping issue.
2466 So, nothing to do in terms of checking for mutations. */
2467 }
2468 else if (varobj_value_has_mutated (var, value, value_type (value)))
2469 {
2470 /* The type has mutated, so the children are no longer valid.
2471 Just delete them, and tell our caller that the type has
2472 changed. */
2473 varobj_delete (var, NULL, 1 /* only_children */);
2474 var->num_children = -1;
2475 var->to = -1;
2476 var->from = -1;
2477 *type_changed = 1;
2478 }
2479 return value;
2480 }
8b93c638
JM
2481}
2482
581e13c1 2483/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2484static struct value *
fba45db2 2485value_of_child (struct varobj *parent, int index)
8b93c638 2486{
30b28db1 2487 struct value *value;
8b93c638 2488
ca20d462 2489 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2490
8b93c638
JM
2491 return value;
2492}
2493
581e13c1 2494/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2495static char *
de051565 2496my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2497{
8756216b 2498 if (var->root->is_valid)
0cc7d26f 2499 {
bb5ce47a 2500 if (var->dynamic->pretty_printer != NULL)
99ad9427 2501 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2502 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2503 }
8756216b
DP
2504 else
2505 return NULL;
8b93c638
JM
2506}
2507
99ad9427
YQ
2508void
2509varobj_formatted_print_options (struct value_print_options *opts,
2510 enum varobj_display_formats format)
2511{
2512 get_formatted_print_options (opts, format_code[(int) format]);
2513 opts->deref_ref = 0;
2514 opts->raw = 1;
2515}
2516
2517char *
2518varobj_value_get_print_value (struct value *value,
2519 enum varobj_display_formats format,
b09e2c59 2520 const struct varobj *var)
85265413 2521{
57e66780 2522 struct ui_file *stb;
621c8364 2523 struct cleanup *old_chain;
ac91cd70 2524 char *thevalue = NULL;
79a45b7d 2525 struct value_print_options opts;
be759fcf
PM
2526 struct type *type = NULL;
2527 long len = 0;
2528 char *encoding = NULL;
2529 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2530 /* Initialize it just to avoid a GCC false warning. */
2531 CORE_ADDR str_addr = 0;
09ca9e2e 2532 int string_print = 0;
57e66780
DJ
2533
2534 if (value == NULL)
2535 return NULL;
2536
621c8364
TT
2537 stb = mem_fileopen ();
2538 old_chain = make_cleanup_ui_file_delete (stb);
2539
be759fcf 2540 gdbarch = get_type_arch (value_type (value));
b6313243 2541#if HAVE_PYTHON
0646da15
TT
2542 if (gdb_python_initialized)
2543 {
bb5ce47a 2544 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2545
0646da15 2546 varobj_ensure_python_env (var);
09ca9e2e 2547
0646da15
TT
2548 if (value_formatter)
2549 {
2550 /* First check to see if we have any children at all. If so,
2551 we simply return {...}. */
2552 if (dynamic_varobj_has_child_method (var))
2553 {
2554 do_cleanups (old_chain);
2555 return xstrdup ("{...}");
2556 }
b6313243 2557
0646da15
TT
2558 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2559 {
2560 struct value *replacement;
2561 PyObject *output = NULL;
2562
2563 output = apply_varobj_pretty_printer (value_formatter,
2564 &replacement,
2565 stb);
2566
2567 /* If we have string like output ... */
2568 if (output)
2569 {
2570 make_cleanup_py_decref (output);
2571
2572 /* If this is a lazy string, extract it. For lazy
2573 strings we always print as a string, so set
2574 string_print. */
2575 if (gdbpy_is_lazy_string (output))
2576 {
2577 gdbpy_extract_lazy_string (output, &str_addr, &type,
2578 &len, &encoding);
2579 make_cleanup (free_current_contents, &encoding);
2580 string_print = 1;
2581 }
2582 else
2583 {
2584 /* If it is a regular (non-lazy) string, extract
2585 it and copy the contents into THEVALUE. If the
2586 hint says to print it as a string, set
2587 string_print. Otherwise just return the extracted
2588 string as a value. */
2589
2590 char *s = python_string_to_target_string (output);
2591
2592 if (s)
2593 {
2594 char *hint;
2595
2596 hint = gdbpy_get_display_hint (value_formatter);
2597 if (hint)
2598 {
2599 if (!strcmp (hint, "string"))
2600 string_print = 1;
2601 xfree (hint);
2602 }
2603
2604 len = strlen (s);
2605 thevalue = xmemdup (s, len + 1, len + 1);
2606 type = builtin_type (gdbarch)->builtin_char;
2607 xfree (s);
2608
2609 if (!string_print)
2610 {
2611 do_cleanups (old_chain);
2612 return thevalue;
2613 }
2614
2615 make_cleanup (xfree, thevalue);
2616 }
2617 else
2618 gdbpy_print_stack ();
2619 }
2620 }
2621 /* If the printer returned a replacement value, set VALUE
2622 to REPLACEMENT. If there is not a replacement value,
2623 just use the value passed to this function. */
2624 if (replacement)
2625 value = replacement;
2626 }
2627 }
2628 }
b6313243
TT
2629#endif
2630
99ad9427 2631 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2632
2633 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2634 if (thevalue)
ac91cd70 2635 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2636 else if (string_print)
00bd41d6
PM
2637 /* Otherwise, if string_print is set, and it is not a regular
2638 string, it is a lazy string. */
09ca9e2e 2639 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2640 else
00bd41d6 2641 /* All other cases. */
b6313243 2642 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2643
759ef836 2644 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2645
85265413
NR
2646 do_cleanups (old_chain);
2647 return thevalue;
2648}
2649
340a7723 2650int
b09e2c59 2651varobj_editable_p (const struct varobj *var)
340a7723
NR
2652{
2653 struct type *type;
340a7723
NR
2654
2655 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2656 return 0;
2657
99ad9427 2658 type = varobj_get_value_type (var);
340a7723
NR
2659
2660 switch (TYPE_CODE (type))
2661 {
2662 case TYPE_CODE_STRUCT:
2663 case TYPE_CODE_UNION:
2664 case TYPE_CODE_ARRAY:
2665 case TYPE_CODE_FUNC:
2666 case TYPE_CODE_METHOD:
2667 return 0;
2668 break;
2669
2670 default:
2671 return 1;
2672 break;
2673 }
2674}
2675
d32cafc7 2676/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2677
99ad9427 2678int
b09e2c59 2679varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2680{
ca20d462 2681 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2682}
2683
5a413362
VP
2684/* Return 1 if that varobj is floating, that is is always evaluated in the
2685 selected frame, and not bound to thread/frame. Such variable objects
2686 are created using '@' as frame specifier to -var-create. */
2687int
b09e2c59 2688varobj_floating_p (const struct varobj *var)
5a413362
VP
2689{
2690 return var->root->floating;
2691}
2692
d32cafc7
JB
2693/* Implement the "value_is_changeable_p" varobj callback for most
2694 languages. */
2695
99ad9427 2696int
b09e2c59 2697varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2698{
2699 int r;
2700 struct type *type;
2701
2702 if (CPLUS_FAKE_CHILD (var))
2703 return 0;
2704
99ad9427 2705 type = varobj_get_value_type (var);
d32cafc7
JB
2706
2707 switch (TYPE_CODE (type))
2708 {
2709 case TYPE_CODE_STRUCT:
2710 case TYPE_CODE_UNION:
2711 case TYPE_CODE_ARRAY:
2712 r = 0;
2713 break;
2714
2715 default:
2716 r = 1;
2717 }
2718
2719 return r;
2720}
2721
54333c3b
JK
2722/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2723 with an arbitrary caller supplied DATA pointer. */
2724
2725void
2726all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2727{
2728 struct varobj_root *var_root, *var_root_next;
2729
2730 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2731
2732 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2733 {
2734 var_root_next = var_root->next;
2735
2736 (*func) (var_root->rootvar, data);
2737 }
2738}
8756216b 2739
54333c3b 2740/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2741 defined on globals. It is a helper for varobj_invalidate.
2742
2743 This function is called after changing the symbol file, in this case the
2744 pointers to "struct type" stored by the varobj are no longer valid. All
2745 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2746
54333c3b
JK
2747static void
2748varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2749{
4e969b4f
AB
2750 /* global and floating var must be re-evaluated. */
2751 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2752 {
54333c3b 2753 struct varobj *tmp_var;
2dbd25e5 2754
54333c3b
JK
2755 /* Try to create a varobj with same expression. If we succeed
2756 replace the old varobj, otherwise invalidate it. */
2757 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2758 USE_CURRENT_FRAME);
2759 if (tmp_var != NULL)
2760 {
2761 tmp_var->obj_name = xstrdup (var->obj_name);
2762 varobj_delete (var, NULL, 0);
2763 install_variable (tmp_var);
2dbd25e5 2764 }
54333c3b
JK
2765 else
2766 var->root->is_valid = 0;
2dbd25e5 2767 }
54333c3b
JK
2768 else /* locals must be invalidated. */
2769 var->root->is_valid = 0;
2770}
2771
2772/* Invalidate the varobjs that are tied to locals and re-create the ones that
2773 are defined on globals.
2774 Invalidated varobjs will be always printed in_scope="invalid". */
2775
2776void
2777varobj_invalidate (void)
2778{
2779 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2780}
1c3569d4
MR
2781\f
2782extern void _initialize_varobj (void);
2783void
2784_initialize_varobj (void)
2785{
2786 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2787
2788 varobj_table = xmalloc (sizeof_table);
2789 memset (varobj_table, 0, sizeof_table);
2790
2791 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2792 &varobjdebug,
2793 _("Set varobj debugging."),
2794 _("Show varobj debugging."),
2795 _("When non-zero, varobj debugging is enabled."),
2796 NULL, show_varobjdebug,
2797 &setdebuglist, &showdebuglist);
2798}
This page took 2.390663 seconds and 4 git commands to generate.