Change all_root_varobjs to take a function_view
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
b811d2c2 3 Copyright (C) 1999-2020 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
6208b47d
VP
29#include "gdbthread.h"
30#include "inferior.h"
827f100c 31#include "varobj-iter.h"
396af9a1 32#include "parser-defs.h"
0d12e84c 33#include "gdbarch.h"
76deb5d9 34#include <algorithm>
8b93c638 35
b6313243
TT
36#if HAVE_PYTHON
37#include "python/python.h"
38#include "python/python-internal.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
c2c440a9 43/* See varobj.h. */
8b93c638 44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
72330bd6 104};
8b93c638 105
bb5ce47a 106/* Dynamic part of varobj. */
8b93c638 107
bb5ce47a
YQ
108struct varobj_dynamic
109{
b6313243
TT
110 /* Whether the children of this varobj were requested. This field is
111 used to decide if dynamic varobj should recompute their children.
112 In the event that the frontend never asked for the children, we
113 can avoid that. */
bd046f64 114 bool children_requested = false;
b6313243 115
0cc7d26f
TT
116 /* The pretty-printer constructor. If NULL, then the default
117 pretty-printer will be looked up. If None, then no
118 pretty-printer will be installed. */
9e5b9d2b 119 PyObject *constructor = NULL;
0cc7d26f 120
b6313243
TT
121 /* The pretty-printer that has been constructed. If NULL, then a
122 new printer object is needed, and one will be constructed. */
9e5b9d2b 123 PyObject *pretty_printer = NULL;
0cc7d26f
TT
124
125 /* The iterator returned by the printer's 'children' method, or NULL
126 if not available. */
9e5b9d2b 127 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
128
129 /* We request one extra item from the iterator, so that we can
130 report to the caller whether there are more items than we have
131 already reported. However, we don't want to install this value
132 when we read it, because that will mess up future updates. So,
133 we stash it here instead. */
9e5b9d2b 134 varobj_item *saved_item = NULL;
72330bd6 135};
8b93c638 136
8b93c638
JM
137/* Private function prototypes */
138
581e13c1 139/* Helper functions for the above subcommands. */
8b93c638 140
4c37490d 141static int delete_variable (struct varobj *, bool);
8b93c638 142
4c37490d 143static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 144
4c37490d 145static bool install_variable (struct varobj *);
8b93c638 146
a14ed312 147static void uninstall_variable (struct varobj *);
8b93c638 148
2f408ecb 149static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 150
b6313243 151static struct varobj *
5a2e0d6e
YQ
152create_child_with_value (struct varobj *parent, int index,
153 struct varobj_item *item);
b6313243 154
8b93c638
JM
155/* Utility routines */
156
a14ed312 157static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 158
4c37490d
SM
159static bool update_type_if_necessary (struct varobj *var,
160 struct value *new_value);
8264ba82 161
4c37490d
SM
162static bool install_new_value (struct varobj *var, struct value *value,
163 bool initial);
acd65feb 164
581e13c1 165/* Language-specific routines. */
8b93c638 166
b09e2c59 167static int number_of_children (const struct varobj *);
8b93c638 168
2f408ecb 169static std::string name_of_variable (const struct varobj *);
8b93c638 170
2f408ecb 171static std::string name_of_child (struct varobj *, int);
8b93c638 172
4c37490d 173static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 174
c1cc6152 175static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 176
2f408ecb
PA
177static std::string my_value_of_variable (struct varobj *var,
178 enum varobj_display_formats format);
8b93c638 179
4c37490d 180static bool is_root_p (const struct varobj *var);
8b93c638 181
9a1edae6 182static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 183 struct varobj_item *item);
b6313243 184
8b93c638
JM
185/* Private data */
186
581e13c1 187/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 188static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 189
76deb5d9
TT
190/* List of root variable objects. */
191static std::list<struct varobj_root *> rootlist;
8b93c638 192
581e13c1 193/* Pointer to the varobj hash table (built at run time). */
2c1413a9 194static htab_t varobj_table;
8b93c638 195
8b93c638
JM
196\f
197
198/* API Implementation */
4c37490d 199static bool
b09e2c59 200is_root_p (const struct varobj *var)
b2c2bd75
VP
201{
202 return (var->root->rootvar == var);
203}
8b93c638 204
d452c4bc 205#ifdef HAVE_PYTHON
6cd67bea
TT
206
207/* See python-internal.h. */
208gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
209: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
210{
211}
212
d452c4bc
UW
213#endif
214
7d8547c9
AC
215/* Return the full FRAME which corresponds to the given CORE_ADDR
216 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
217
218static struct frame_info *
219find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
220{
221 struct frame_info *frame = NULL;
222
223 if (frame_addr == (CORE_ADDR) 0)
224 return NULL;
225
9d49bdc2
PA
226 for (frame = get_current_frame ();
227 frame != NULL;
228 frame = get_prev_frame (frame))
7d8547c9 229 {
1fac167a
UW
230 /* The CORE_ADDR we get as argument was parsed from a string GDB
231 output as $fp. This output got truncated to gdbarch_addr_bit.
232 Truncate the frame base address in the same manner before
233 comparing it against our argument. */
234 CORE_ADDR frame_base = get_frame_base_address (frame);
235 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 236
1fac167a
UW
237 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
238 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
239
240 if (frame_base == frame_addr)
7d8547c9
AC
241 return frame;
242 }
9d49bdc2
PA
243
244 return NULL;
7d8547c9
AC
245}
246
5fa13070
SM
247/* Creates a varobj (not its children). */
248
8b93c638 249struct varobj *
2f408ecb
PA
250varobj_create (const char *objname,
251 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 252{
581e13c1 253 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 254 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
255
256 if (expression != NULL)
257 {
e4195b40 258 struct frame_info *fi;
35633fef 259 struct frame_id old_id = null_frame_id;
3977b71f 260 const struct block *block;
bbc13ae3 261 const char *p;
e55dccf0 262 struct value *value = NULL;
1bb9788d 263 CORE_ADDR pc;
8b93c638 264
9d49bdc2 265 /* Parse and evaluate the expression, filling in as much of the
dda83cd7 266 variable's data as possible. */
9d49bdc2
PA
267
268 if (has_stack_frames ())
269 {
581e13c1 270 /* Allow creator to specify context of variable. */
9d49bdc2
PA
271 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
272 fi = get_selected_frame (NULL);
273 else
274 /* FIXME: cagney/2002-11-23: This code should be doing a
275 lookup using the frame ID and not just the frame's
276 ``address''. This, of course, means an interface
277 change. However, with out that interface change ISAs,
278 such as the ia64 with its two stacks, won't work.
279 Similar goes for the case where there is a frameless
280 function. */
281 fi = find_frame_addr_in_frame_chain (frame);
282 }
8b93c638 283 else
9d49bdc2 284 fi = NULL;
8b93c638 285
73a93a32 286 if (type == USE_SELECTED_FRAME)
4c37490d 287 var->root->floating = true;
73a93a32 288
1bb9788d 289 pc = 0;
8b93c638
JM
290 block = NULL;
291 if (fi != NULL)
1bb9788d
TT
292 {
293 block = get_frame_block (fi, 0);
294 pc = get_frame_pc (fi);
295 }
8b93c638
JM
296
297 p = expression;
699bd4cf
TT
298
299 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
300 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 301 /* Wrap the call to parse expression, so we can
dda83cd7 302 return a sensible error. */
a70b8144 303 try
8e7b59a5 304 {
699bd4cf 305 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
8e7b59a5
KS
306 }
307
230d2906 308 catch (const gdb_exception_error &except)
73a93a32
JI
309 {
310 return NULL;
311 }
8b93c638 312
581e13c1 313 /* Don't allow variables to be created for types. */
608b4967
TT
314 if (var->root->exp->elts[0].opcode == OP_TYPE
315 || var->root->exp->elts[0].opcode == OP_TYPEOF
316 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 317 {
bc8332bb
AC
318 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
319 " as an expression.\n");
8b93c638
JM
320 return NULL;
321 }
322
9e5b9d2b 323 var->format = variable_default_display (var.get ());
e707fc44 324 var->root->valid_block =
699bd4cf 325 var->root->floating ? NULL : tracker.block ();
2f408ecb 326 var->name = expression;
02142340 327 /* For a root var, the name and the expr are the same. */
2f408ecb 328 var->path_expr = expression;
8b93c638
JM
329
330 /* When the frame is different from the current frame,
dda83cd7
SM
331 we must select the appropriate frame before parsing
332 the expression, otherwise the value will not be current.
333 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 334 if (var->root->valid_block)
8b93c638 335 {
4e22772d
JK
336 /* User could specify explicit FRAME-ADDR which was not found but
337 EXPRESSION is frame specific and we would not be able to evaluate
338 it correctly next time. With VALID_BLOCK set we must also set
339 FRAME and THREAD_ID. */
340 if (fi == NULL)
341 error (_("Failed to find the specified frame"));
342
7a424e99 343 var->root->frame = get_frame_id (fi);
00431a78 344 var->root->thread_id = inferior_thread ()->global_num;
35633fef 345 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 346 select_frame (fi);
8b93c638
JM
347 }
348
340a7723 349 /* We definitely need to catch errors here.
dda83cd7
SM
350 If evaluate_expression succeeds we got the value we wanted.
351 But if it fails, we still go on with a call to evaluate_type(). */
a70b8144 352 try
8e7b59a5 353 {
4d01a485 354 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 355 }
230d2906 356 catch (const gdb_exception_error &except)
e55dccf0
VP
357 {
358 /* Error getting the value. Try to at least get the
359 right type. */
4d01a485 360 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 361
e55dccf0
VP
362 var->type = value_type (type_only_value);
363 }
8264ba82 364
492d29ea
PA
365 if (value != NULL)
366 {
367 int real_type_found = 0;
368
369 var->type = value_actual_type (value, 0, &real_type_found);
370 if (real_type_found)
371 value = value_cast (var->type, value);
372 }
acd65feb 373
8b93c638 374 /* Set language info */
b63a3f3f 375 var->root->lang_ops = var->root->exp->language_defn->varobj_ops ();
8b93c638 376
9e5b9d2b 377 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 378
581e13c1 379 /* Set ourselves as our root. */
9e5b9d2b 380 var->root->rootvar = var.get ();
8b93c638 381
581e13c1 382 /* Reset the selected frame. */
35633fef
JK
383 if (frame_id_p (old_id))
384 select_frame (frame_find_by_id (old_id));
8b93c638
JM
385 }
386
73a93a32 387 /* If the variable object name is null, that means this
581e13c1 388 is a temporary variable, so don't install it. */
73a93a32
JI
389
390 if ((var != NULL) && (objname != NULL))
8b93c638 391 {
2f408ecb 392 var->obj_name = objname;
8b93c638
JM
393
394 /* If a varobj name is duplicated, the install will fail so
dda83cd7 395 we must cleanup. */
9e5b9d2b
SM
396 if (!install_variable (var.get ()))
397 return NULL;
8b93c638
JM
398 }
399
9e5b9d2b 400 return var.release ();
8b93c638
JM
401}
402
581e13c1 403/* Generates an unique name that can be used for a varobj. */
8b93c638 404
2d6960b4 405std::string
8b93c638
JM
406varobj_gen_name (void)
407{
408 static int id = 0;
8b93c638 409
581e13c1 410 /* Generate a name for this object. */
8b93c638 411 id++;
2d6960b4 412 return string_printf ("var%d", id);
8b93c638
JM
413}
414
61d8f275
JK
415/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
416 error if OBJNAME cannot be found. */
8b93c638
JM
417
418struct varobj *
2f408ecb 419varobj_get_handle (const char *objname)
8b93c638 420{
2c1413a9
TT
421 varobj *var = (varobj *) htab_find_with_hash (varobj_table, objname,
422 htab_hash_string (objname));
8b93c638 423
2c1413a9 424 if (var == NULL)
8a3fe4f8 425 error (_("Variable object not found"));
8b93c638 426
2c1413a9 427 return var;
8b93c638
JM
428}
429
581e13c1 430/* Given the handle, return the name of the object. */
8b93c638 431
2f408ecb 432const char *
b09e2c59 433varobj_get_objname (const struct varobj *var)
8b93c638 434{
2f408ecb 435 return var->obj_name.c_str ();
8b93c638
JM
436}
437
2f408ecb
PA
438/* Given the handle, return the expression represented by the
439 object. */
8b93c638 440
2f408ecb 441std::string
b09e2c59 442varobj_get_expression (const struct varobj *var)
8b93c638
JM
443{
444 return name_of_variable (var);
445}
446
30914ca8 447/* See varobj.h. */
8b93c638
JM
448
449int
4c37490d 450varobj_delete (struct varobj *var, bool only_children)
8b93c638 451{
30914ca8 452 return delete_variable (var, only_children);
8b93c638
JM
453}
454
d8b65138
JK
455#if HAVE_PYTHON
456
b6313243
TT
457/* Convenience function for varobj_set_visualizer. Instantiate a
458 pretty-printer for a given value. */
459static PyObject *
460instantiate_pretty_printer (PyObject *constructor, struct value *value)
461{
b6313243
TT
462 PyObject *val_obj = NULL;
463 PyObject *printer;
b6313243 464
b6313243 465 val_obj = value_to_value_object (value);
b6313243
TT
466 if (! val_obj)
467 return NULL;
468
469 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
470 Py_DECREF (val_obj);
471 return printer;
b6313243
TT
472}
473
d8b65138
JK
474#endif
475
581e13c1 476/* Set/Get variable object display format. */
8b93c638
JM
477
478enum varobj_display_formats
479varobj_set_display_format (struct varobj *var,
480 enum varobj_display_formats format)
481{
482 switch (format)
483 {
484 case FORMAT_NATURAL:
485 case FORMAT_BINARY:
486 case FORMAT_DECIMAL:
487 case FORMAT_HEXADECIMAL:
488 case FORMAT_OCTAL:
1c35a88f 489 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
490 var->format = format;
491 break;
492
493 default:
494 var->format = variable_default_display (var);
495 }
496
ae7d22a6 497 if (varobj_value_is_changeable_p (var)
b4d61099 498 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 499 {
b4d61099 500 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 501 var->format, var);
ae7d22a6
VP
502 }
503
8b93c638
JM
504 return var->format;
505}
506
507enum varobj_display_formats
b09e2c59 508varobj_get_display_format (const struct varobj *var)
8b93c638
JM
509{
510 return var->format;
511}
512
9b972014 513gdb::unique_xmalloc_ptr<char>
b09e2c59 514varobj_get_display_hint (const struct varobj *var)
b6313243 515{
9b972014 516 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
517
518#if HAVE_PYTHON
0646da15
TT
519 if (!gdb_python_initialized)
520 return NULL;
521
bde7b3e3 522 gdbpy_enter_varobj enter_py (var);
d452c4bc 523
bb5ce47a
YQ
524 if (var->dynamic->pretty_printer != NULL)
525 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
526#endif
527
528 return result;
529}
530
0cc7d26f
TT
531/* Return true if the varobj has items after TO, false otherwise. */
532
4c37490d 533bool
b09e2c59 534varobj_has_more (const struct varobj *var, int to)
0cc7d26f 535{
ddf0ea08 536 if (var->children.size () > to)
4c37490d 537 return true;
ddf0ea08
SM
538
539 return ((to == -1 || var->children.size () == to)
bb5ce47a 540 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
541}
542
c5b48eac
VP
543/* If the variable object is bound to a specific thread, that
544 is its evaluation can always be done in context of a frame
545 inside that thread, returns GDB id of the thread -- which
581e13c1 546 is always positive. Otherwise, returns -1. */
c5b48eac 547int
b09e2c59 548varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
549{
550 if (var->root->valid_block && var->root->thread_id > 0)
551 return var->root->thread_id;
552 else
553 return -1;
554}
555
25d5ea92 556void
4c37490d 557varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
558{
559 /* When a variable is unfrozen, we don't fetch its value.
560 The 'not_fetched' flag remains set, so next -var-update
561 won't complain.
562
563 We don't fetch the value, because for structures the client
564 should do -var-update anyway. It would be bad to have different
565 client-size logic for structure and other types. */
566 var->frozen = frozen;
567}
568
4c37490d 569bool
b09e2c59 570varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
571{
572 return var->frozen;
573}
574
791b7405
AB
575/* A helper function that updates the contents of FROM and TO based on the
576 size of the vector CHILDREN. If the contents of either FROM or TO are
577 negative the entire range is used. */
0cc7d26f 578
99ad9427 579void
ddf0ea08
SM
580varobj_restrict_range (const std::vector<varobj *> &children,
581 int *from, int *to)
0cc7d26f 582{
ddf0ea08
SM
583 int len = children.size ();
584
0cc7d26f
TT
585 if (*from < 0 || *to < 0)
586 {
587 *from = 0;
ddf0ea08 588 *to = len;
0cc7d26f
TT
589 }
590 else
591 {
ddf0ea08
SM
592 if (*from > len)
593 *from = len;
594 if (*to > len)
595 *to = len;
0cc7d26f
TT
596 if (*from > *to)
597 *from = *to;
598 }
599}
600
601/* A helper for update_dynamic_varobj_children that installs a new
602 child when needed. */
603
604static void
605install_dynamic_child (struct varobj *var,
0604393c
SM
606 std::vector<varobj *> *changed,
607 std::vector<varobj *> *type_changed,
608 std::vector<varobj *> *newobj,
609 std::vector<varobj *> *unchanged,
4c37490d 610 bool *cchanged,
0cc7d26f 611 int index,
5a2e0d6e 612 struct varobj_item *item)
0cc7d26f 613{
ddf0ea08 614 if (var->children.size () < index + 1)
0cc7d26f
TT
615 {
616 /* There's no child yet. */
5a2e0d6e 617 struct varobj *child = varobj_add_child (var, item);
a109c7c1 618
0604393c 619 if (newobj != NULL)
0cc7d26f 620 {
0604393c 621 newobj->push_back (child);
4c37490d 622 *cchanged = true;
0cc7d26f
TT
623 }
624 }
bf8793bb 625 else
0cc7d26f 626 {
ddf0ea08 627 varobj *existing = var->children[index];
4c37490d 628 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 629
8264ba82
AG
630 if (type_updated)
631 {
0604393c
SM
632 if (type_changed != NULL)
633 type_changed->push_back (existing);
8264ba82 634 }
5a2e0d6e 635 if (install_new_value (existing, item->value, 0))
0cc7d26f 636 {
0604393c
SM
637 if (!type_updated && changed != NULL)
638 changed->push_back (existing);
0cc7d26f 639 }
0604393c
SM
640 else if (!type_updated && unchanged != NULL)
641 unchanged->push_back (existing);
0cc7d26f
TT
642 }
643}
644
576ea091
YQ
645#if HAVE_PYTHON
646
4c37490d 647static bool
b09e2c59 648dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 649{
bb5ce47a 650 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 651
0646da15 652 if (!gdb_python_initialized)
4c37490d 653 return false;
0646da15 654
bde7b3e3
TT
655 gdbpy_enter_varobj enter_py (var);
656 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 657}
576ea091 658#endif
0cc7d26f 659
e5250216
YQ
660/* A factory for creating dynamic varobj's iterators. Returns an
661 iterator object suitable for iterating over VAR's children. */
662
663static struct varobj_iter *
664varobj_get_iterator (struct varobj *var)
665{
576ea091 666#if HAVE_PYTHON
e5250216
YQ
667 if (var->dynamic->pretty_printer)
668 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 669#endif
e5250216
YQ
670
671 gdb_assert_not_reached (_("\
672requested an iterator from a non-dynamic varobj"));
673}
674
827f100c
YQ
675/* Release and clear VAR's saved item, if any. */
676
677static void
678varobj_clear_saved_item (struct varobj_dynamic *var)
679{
680 if (var->saved_item != NULL)
681 {
22bc8444 682 value_decref (var->saved_item->value);
0a8beaba 683 delete var->saved_item;
827f100c
YQ
684 var->saved_item = NULL;
685 }
686}
0cc7d26f 687
4c37490d 688static bool
b6313243 689update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
690 std::vector<varobj *> *changed,
691 std::vector<varobj *> *type_changed,
692 std::vector<varobj *> *newobj,
693 std::vector<varobj *> *unchanged,
4c37490d
SM
694 bool *cchanged,
695 bool update_children,
0cc7d26f
TT
696 int from,
697 int to)
b6313243 698{
b6313243 699 int i;
b6313243 700
4c37490d 701 *cchanged = false;
b6313243 702
bb5ce47a 703 if (update_children || var->dynamic->child_iter == NULL)
b6313243 704 {
e5250216
YQ
705 varobj_iter_delete (var->dynamic->child_iter);
706 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 707
827f100c 708 varobj_clear_saved_item (var->dynamic);
b6313243 709
e5250216 710 i = 0;
b6313243 711
bb5ce47a 712 if (var->dynamic->child_iter == NULL)
4c37490d 713 return false;
b6313243 714 }
0cc7d26f 715 else
ddf0ea08 716 i = var->children.size ();
b6313243 717
0cc7d26f
TT
718 /* We ask for one extra child, so that MI can report whether there
719 are more children. */
720 for (; to < 0 || i < to + 1; ++i)
b6313243 721 {
827f100c 722 varobj_item *item;
b6313243 723
0cc7d26f 724 /* See if there was a leftover from last time. */
827f100c 725 if (var->dynamic->saved_item != NULL)
0cc7d26f 726 {
bb5ce47a
YQ
727 item = var->dynamic->saved_item;
728 var->dynamic->saved_item = NULL;
0cc7d26f
TT
729 }
730 else
a4c8e806 731 {
e5250216 732 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
733 /* Release vitem->value so its lifetime is not bound to the
734 execution of a command. */
735 if (item != NULL && item->value != NULL)
895dafa6 736 item->value = release_value (item->value).release ();
a4c8e806 737 }
b6313243 738
e5250216
YQ
739 if (item == NULL)
740 {
741 /* Iteration is done. Remove iterator from VAR. */
742 varobj_iter_delete (var->dynamic->child_iter);
743 var->dynamic->child_iter = NULL;
744 break;
745 }
0cc7d26f
TT
746 /* We don't want to push the extra child on any report list. */
747 if (to < 0 || i < to)
b6313243 748 {
4c37490d 749 bool can_mention = from < 0 || i >= from;
0cc7d26f 750
0cc7d26f 751 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 752 can_mention ? type_changed : NULL,
fe978cb0 753 can_mention ? newobj : NULL,
0cc7d26f 754 can_mention ? unchanged : NULL,
5e5ac9a5 755 can_mention ? cchanged : NULL, i,
827f100c
YQ
756 item);
757
0a8beaba 758 delete item;
b6313243 759 }
0cc7d26f 760 else
b6313243 761 {
bb5ce47a 762 var->dynamic->saved_item = item;
b6313243 763
0cc7d26f
TT
764 /* We want to truncate the child list just before this
765 element. */
766 break;
767 }
b6313243
TT
768 }
769
ddf0ea08 770 if (i < var->children.size ())
b6313243 771 {
4c37490d 772 *cchanged = true;
ddf0ea08
SM
773 for (int j = i; j < var->children.size (); ++j)
774 varobj_delete (var->children[j], 0);
775
776 var->children.resize (i);
b6313243 777 }
0cc7d26f
TT
778
779 /* If there are fewer children than requested, note that the list of
780 children changed. */
ddf0ea08 781 if (to >= 0 && var->children.size () < to)
4c37490d 782 *cchanged = true;
0cc7d26f 783
ddf0ea08 784 var->num_children = var->children.size ();
b6313243 785
4c37490d 786 return true;
b6313243 787}
25d5ea92 788
8b93c638
JM
789int
790varobj_get_num_children (struct varobj *var)
791{
792 if (var->num_children == -1)
b6313243 793 {
31f628ae 794 if (varobj_is_dynamic_p (var))
0cc7d26f 795 {
4c37490d 796 bool dummy;
0cc7d26f
TT
797
798 /* If we have a dynamic varobj, don't report -1 children.
799 So, try to fetch some children first. */
8264ba82 800 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 801 false, 0, 0);
0cc7d26f
TT
802 }
803 else
b6313243
TT
804 var->num_children = number_of_children (var);
805 }
8b93c638 806
0cc7d26f 807 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
808}
809
810/* Creates a list of the immediate children of a variable object;
581e13c1 811 the return code is the number of such children or -1 on error. */
8b93c638 812
ddf0ea08 813const std::vector<varobj *> &
0cc7d26f 814varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 815{
bd046f64 816 var->dynamic->children_requested = true;
b6313243 817
31f628ae 818 if (varobj_is_dynamic_p (var))
0cc7d26f 819 {
4c37490d
SM
820 bool children_changed;
821
b6313243
TT
822 /* This, in theory, can result in the number of children changing without
823 frontend noticing. But well, calling -var-list-children on the same
824 varobj twice is not something a sane frontend would do. */
8264ba82 825 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 826 &children_changed, false, 0, *to);
99ad9427 827 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
828 return var->children;
829 }
8b93c638 830
8b93c638
JM
831 if (var->num_children == -1)
832 var->num_children = number_of_children (var);
833
74a44383
DJ
834 /* If that failed, give up. */
835 if (var->num_children == -1)
d56d46f5 836 return var->children;
74a44383 837
28335dcc
VP
838 /* If we're called when the list of children is not yet initialized,
839 allocate enough elements in it. */
ddf0ea08
SM
840 while (var->children.size () < var->num_children)
841 var->children.push_back (NULL);
28335dcc 842
ddf0ea08 843 for (int i = 0; i < var->num_children; i++)
8b93c638 844 {
ddf0ea08 845 if (var->children[i] == NULL)
28335dcc
VP
846 {
847 /* Either it's the first call to varobj_list_children for
848 this variable object, and the child was never created,
849 or it was explicitly deleted by the client. */
2f408ecb 850 std::string name = name_of_child (var, i);
ddf0ea08 851 var->children[i] = create_child (var, i, name);
28335dcc 852 }
8b93c638
JM
853 }
854
99ad9427 855 varobj_restrict_range (var->children, from, to);
d56d46f5 856 return var->children;
8b93c638
JM
857}
858
b6313243 859static struct varobj *
5a2e0d6e 860varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 861{
ddf0ea08
SM
862 varobj *v = create_child_with_value (var, var->children.size (), item);
863
864 var->children.push_back (v);
a109c7c1 865
b6313243
TT
866 return v;
867}
868
8b93c638 869/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
870 prints on the console. The caller is responsible for freeing the string.
871 */
8b93c638 872
2f408ecb 873std::string
8b93c638
JM
874varobj_get_type (struct varobj *var)
875{
8ab91b96 876 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
877 NULL, too.)
878 Do not return a type for invalid variables as well. */
879 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 880 return std::string ();
8b93c638 881
1a4300e9 882 return type_to_string (var->type);
8b93c638
JM
883}
884
1ecb4ee0
DJ
885/* Obtain the type of an object variable. */
886
887struct type *
b09e2c59 888varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
889{
890 return var->type;
891}
892
85254831
KS
893/* Is VAR a path expression parent, i.e., can it be used to construct
894 a valid path expression? */
895
4c37490d 896static bool
b09e2c59 897is_path_expr_parent (const struct varobj *var)
85254831 898{
9a9a7608
AB
899 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
900 return var->root->lang_ops->is_path_expr_parent (var);
901}
85254831 902
9a9a7608
AB
903/* Is VAR a path expression parent, i.e., can it be used to construct
904 a valid path expression? By default we assume any VAR can be a path
905 parent. */
85254831 906
4c37490d 907bool
b09e2c59 908varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 909{
4c37490d 910 return true;
85254831
KS
911}
912
913/* Return the path expression parent for VAR. */
914
c1cc6152
SM
915const struct varobj *
916varobj_get_path_expr_parent (const struct varobj *var)
85254831 917{
c1cc6152 918 const struct varobj *parent = var;
85254831
KS
919
920 while (!is_root_p (parent) && !is_path_expr_parent (parent))
921 parent = parent->parent;
922
5abe0f0c
JV
923 /* Computation of full rooted expression for children of dynamic
924 varobjs is not supported. */
925 if (varobj_is_dynamic_p (parent))
926 error (_("Invalid variable object (child of a dynamic varobj)"));
927
85254831
KS
928 return parent;
929}
930
02142340
VP
931/* Return a pointer to the full rooted expression of varobj VAR.
932 If it has not been computed yet, compute it. */
2f408ecb
PA
933
934const char *
c1cc6152 935varobj_get_path_expr (const struct varobj *var)
02142340 936{
2f408ecb 937 if (var->path_expr.empty ())
02142340
VP
938 {
939 /* For root varobjs, we initialize path_expr
940 when creating varobj, so here it should be
941 child varobj. */
c1cc6152 942 struct varobj *mutable_var = (struct varobj *) var;
02142340 943 gdb_assert (!is_root_p (var));
2568868e 944
c1cc6152 945 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 946 }
2568868e 947
2f408ecb 948 return var->path_expr.c_str ();
02142340
VP
949}
950
fa4d0c40 951const struct language_defn *
b09e2c59 952varobj_get_language (const struct varobj *var)
8b93c638 953{
fa4d0c40 954 return var->root->exp->language_defn;
8b93c638
JM
955}
956
957int
b09e2c59 958varobj_get_attributes (const struct varobj *var)
8b93c638
JM
959{
960 int attributes = 0;
961
340a7723 962 if (varobj_editable_p (var))
581e13c1 963 /* FIXME: define masks for attributes. */
8b93c638
JM
964 attributes |= 0x00000001; /* Editable */
965
966 return attributes;
967}
968
cde5ef40
YQ
969/* Return true if VAR is a dynamic varobj. */
970
4c37490d 971bool
b09e2c59 972varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 973{
bb5ce47a 974 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
975}
976
2f408ecb 977std::string
de051565
MK
978varobj_get_formatted_value (struct varobj *var,
979 enum varobj_display_formats format)
980{
981 return my_value_of_variable (var, format);
982}
983
2f408ecb 984std::string
8b93c638
JM
985varobj_get_value (struct varobj *var)
986{
de051565 987 return my_value_of_variable (var, var->format);
8b93c638
JM
988}
989
990/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
991 value of the given expression. */
992/* Note: Invokes functions that can call error(). */
8b93c638 993
4c37490d 994bool
2f408ecb 995varobj_set_value (struct varobj *var, const char *expression)
8b93c638 996{
34365054 997 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 998 /* The argument "expression" contains the variable's new value.
581e13c1
MS
999 We need to first construct a legal expression for this -- ugh! */
1000 /* Does this cover all the bases? */
34365054 1001 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1002 int saved_input_radix = input_radix;
bbc13ae3 1003 const char *s = expression;
8b93c638 1004
340a7723 1005 gdb_assert (varobj_editable_p (var));
8b93c638 1006
581e13c1 1007 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1008 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
a70b8144 1009 try
8e7b59a5 1010 {
4d01a485 1011 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1012 }
1013
230d2906 1014 catch (const gdb_exception_error &except)
340a7723 1015 {
581e13c1 1016 /* We cannot proceed without a valid expression. */
4c37490d 1017 return false;
8b93c638
JM
1018 }
1019
340a7723
NR
1020 /* All types that are editable must also be changeable. */
1021 gdb_assert (varobj_value_is_changeable_p (var));
1022
1023 /* The value of a changeable variable object must not be lazy. */
b4d61099 1024 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1025
1026 /* Need to coerce the input. We want to check if the
1027 value of the variable object will be different
1028 after assignment, and the first thing value_assign
1029 does is coerce the input.
1030 For example, if we are assigning an array to a pointer variable we
b021a221 1031 should compare the pointer with the array's address, not with the
340a7723
NR
1032 array's content. */
1033 value = coerce_array (value);
1034
8e7b59a5
KS
1035 /* The new value may be lazy. value_assign, or
1036 rather value_contents, will take care of this. */
a70b8144 1037 try
8e7b59a5 1038 {
b4d61099 1039 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1040 }
1041
230d2906 1042 catch (const gdb_exception_error &except)
492d29ea 1043 {
4c37490d 1044 return false;
492d29ea 1045 }
8e7b59a5 1046
340a7723
NR
1047 /* If the value has changed, record it, so that next -var-update can
1048 report this change. If a variable had a value of '1', we've set it
1049 to '333' and then set again to '1', when -var-update will report this
1050 variable as changed -- because the first assignment has set the
1051 'updated' flag. There's no need to optimize that, because return value
1052 of -var-update should be considered an approximation. */
4c37490d 1053 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1054 input_radix = saved_input_radix;
4c37490d 1055 return true;
8b93c638
JM
1056}
1057
0cc7d26f
TT
1058#if HAVE_PYTHON
1059
1060/* A helper function to install a constructor function and visualizer
bb5ce47a 1061 in a varobj_dynamic. */
0cc7d26f
TT
1062
1063static void
bb5ce47a 1064install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1065 PyObject *visualizer)
1066{
1067 Py_XDECREF (var->constructor);
1068 var->constructor = constructor;
1069
1070 Py_XDECREF (var->pretty_printer);
1071 var->pretty_printer = visualizer;
1072
e5250216 1073 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1074 var->child_iter = NULL;
1075}
1076
1077/* Install the default visualizer for VAR. */
1078
1079static void
1080install_default_visualizer (struct varobj *var)
1081{
d65aec65
PM
1082 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1083 if (CPLUS_FAKE_CHILD (var))
1084 return;
1085
0cc7d26f
TT
1086 if (pretty_printing)
1087 {
a31abe80 1088 gdbpy_ref<> pretty_printer;
0cc7d26f 1089
b4d61099 1090 if (var->value != nullptr)
0cc7d26f 1091 {
b4d61099 1092 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1093 if (pretty_printer == nullptr)
0cc7d26f
TT
1094 {
1095 gdbpy_print_stack ();
1096 error (_("Cannot instantiate printer for default visualizer"));
1097 }
1098 }
a31abe80 1099
0cc7d26f 1100 if (pretty_printer == Py_None)
895dafa6 1101 pretty_printer.reset (nullptr);
0cc7d26f 1102
a31abe80 1103 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1104 }
1105}
1106
1107/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1108 make a new object. */
1109
1110static void
1111construct_visualizer (struct varobj *var, PyObject *constructor)
1112{
1113 PyObject *pretty_printer;
1114
d65aec65
PM
1115 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1116 if (CPLUS_FAKE_CHILD (var))
1117 return;
1118
0cc7d26f
TT
1119 Py_INCREF (constructor);
1120 if (constructor == Py_None)
1121 pretty_printer = NULL;
1122 else
1123 {
b4d61099
TT
1124 pretty_printer = instantiate_pretty_printer (constructor,
1125 var->value.get ());
0cc7d26f
TT
1126 if (! pretty_printer)
1127 {
1128 gdbpy_print_stack ();
1129 Py_DECREF (constructor);
1130 constructor = Py_None;
1131 Py_INCREF (constructor);
1132 }
1133
1134 if (pretty_printer == Py_None)
1135 {
1136 Py_DECREF (pretty_printer);
1137 pretty_printer = NULL;
1138 }
1139 }
1140
bb5ce47a 1141 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1142}
1143
1144#endif /* HAVE_PYTHON */
1145
1146/* A helper function for install_new_value. This creates and installs
1147 a visualizer for VAR, if appropriate. */
1148
1149static void
1150install_new_value_visualizer (struct varobj *var)
1151{
1152#if HAVE_PYTHON
1153 /* If the constructor is None, then we want the raw value. If VAR
1154 does not have a value, just skip this. */
0646da15
TT
1155 if (!gdb_python_initialized)
1156 return;
1157
bb5ce47a 1158 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1159 {
bde7b3e3 1160 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1161
bb5ce47a 1162 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1163 install_default_visualizer (var);
1164 else
bb5ce47a 1165 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1166 }
1167#else
1168 /* Do nothing. */
1169#endif
1170}
1171
8264ba82
AG
1172/* When using RTTI to determine variable type it may be changed in runtime when
1173 the variable value is changed. This function checks whether type of varobj
1174 VAR will change when a new value NEW_VALUE is assigned and if it is so
1175 updates the type of VAR. */
1176
4c37490d 1177static bool
8264ba82
AG
1178update_type_if_necessary (struct varobj *var, struct value *new_value)
1179{
1180 if (new_value)
1181 {
1182 struct value_print_options opts;
1183
1184 get_user_print_options (&opts);
1185 if (opts.objectprint)
1186 {
2f408ecb
PA
1187 struct type *new_type = value_actual_type (new_value, 0, 0);
1188 std::string new_type_str = type_to_string (new_type);
1189 std::string curr_type_str = varobj_get_type (var);
8264ba82 1190
2f408ecb
PA
1191 /* Did the type name change? */
1192 if (curr_type_str != new_type_str)
8264ba82
AG
1193 {
1194 var->type = new_type;
1195
1196 /* This information may be not valid for a new type. */
30914ca8 1197 varobj_delete (var, 1);
ddf0ea08 1198 var->children.clear ();
8264ba82 1199 var->num_children = -1;
4c37490d 1200 return true;
8264ba82
AG
1201 }
1202 }
1203 }
1204
4c37490d 1205 return false;
8264ba82
AG
1206}
1207
4c37490d
SM
1208/* Assign a new value to a variable object. If INITIAL is true,
1209 this is the first assignment after the variable object was just
acd65feb 1210 created, or changed type. In that case, just assign the value
4c37490d
SM
1211 and return false.
1212 Otherwise, assign the new value, and return true if the value is
1213 different from the current one, false otherwise. The comparison is
581e13c1
MS
1214 done on textual representation of value. Therefore, some types
1215 need not be compared. E.g. for structures the reported value is
1216 always "{...}", so no comparison is necessary here. If the old
4c37490d 1217 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1218
1219 The VALUE parameter should not be released -- the function will
1220 take care of releasing it when needed. */
4c37490d
SM
1221static bool
1222install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1223{
4c37490d
SM
1224 bool changeable;
1225 bool need_to_fetch;
1226 bool changed = false;
1227 bool intentionally_not_fetched = false;
acd65feb 1228
acd65feb 1229 /* We need to know the varobj's type to decide if the value should
3e43a32a 1230 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1231 don't have a type. */
acd65feb 1232 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1233 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1234
1235 /* If the type has custom visualizer, we consider it to be always
581e13c1 1236 changeable. FIXME: need to make sure this behaviour will not
b6313243 1237 mess up read-sensitive values. */
bb5ce47a 1238 if (var->dynamic->pretty_printer != NULL)
4c37490d 1239 changeable = true;
b6313243 1240
acd65feb
VP
1241 need_to_fetch = changeable;
1242
b26ed50d
VP
1243 /* We are not interested in the address of references, and given
1244 that in C++ a reference is not rebindable, it cannot
1245 meaningfully change. So, get hold of the real value. */
1246 if (value)
0cc7d26f 1247 value = coerce_ref (value);
b26ed50d 1248
78134374 1249 if (var->type && var->type->code () == TYPE_CODE_UNION)
acd65feb
VP
1250 /* For unions, we need to fetch the value implicitly because
1251 of implementation of union member fetch. When gdb
1252 creates a value for a field and the value of the enclosing
1253 structure is not lazy, it immediately copies the necessary
1254 bytes from the enclosing values. If the enclosing value is
1255 lazy, the call to value_fetch_lazy on the field will read
1256 the data from memory. For unions, that means we'll read the
1257 same memory more than once, which is not desirable. So
1258 fetch now. */
4c37490d 1259 need_to_fetch = true;
acd65feb
VP
1260
1261 /* The new value might be lazy. If the type is changeable,
1262 that is we'll be comparing values of this type, fetch the
1263 value now. Otherwise, on the next update the old value
1264 will be lazy, which means we've lost that old value. */
1265 if (need_to_fetch && value && value_lazy (value))
1266 {
c1cc6152 1267 const struct varobj *parent = var->parent;
4c37490d 1268 bool frozen = var->frozen;
a109c7c1 1269
25d5ea92
VP
1270 for (; !frozen && parent; parent = parent->parent)
1271 frozen |= parent->frozen;
1272
1273 if (frozen && initial)
1274 {
1275 /* For variables that are frozen, or are children of frozen
1276 variables, we don't do fetch on initial assignment.
30baf67b 1277 For non-initial assignment we do the fetch, since it means we're
25d5ea92 1278 explicitly asked to compare the new value with the old one. */
4c37490d 1279 intentionally_not_fetched = true;
25d5ea92 1280 }
8e7b59a5 1281 else
acd65feb 1282 {
8e7b59a5 1283
a70b8144 1284 try
8e7b59a5
KS
1285 {
1286 value_fetch_lazy (value);
1287 }
1288
230d2906 1289 catch (const gdb_exception_error &except)
8e7b59a5
KS
1290 {
1291 /* Set the value to NULL, so that for the next -var-update,
1292 we don't try to compare the new value with this value,
1293 that we couldn't even read. */
1294 value = NULL;
1295 }
acd65feb 1296 }
acd65feb
VP
1297 }
1298
e848a8a5
TT
1299 /* Get a reference now, before possibly passing it to any Python
1300 code that might release it. */
b4d61099 1301 value_ref_ptr value_holder;
e848a8a5 1302 if (value != NULL)
bbfa6f00 1303 value_holder = value_ref_ptr::new_reference (value);
b6313243 1304
7a4d50bf
VP
1305 /* Below, we'll be comparing string rendering of old and new
1306 values. Don't get string rendering if the value is
1307 lazy -- if it is, the code above has decided that the value
1308 should not be fetched. */
2f408ecb 1309 std::string print_value;
bb5ce47a
YQ
1310 if (value != NULL && !value_lazy (value)
1311 && var->dynamic->pretty_printer == NULL)
99ad9427 1312 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1313
acd65feb
VP
1314 /* If the type is changeable, compare the old and the new values.
1315 If this is the initial assignment, we don't have any old value
1316 to compare with. */
7a4d50bf 1317 if (!initial && changeable)
acd65feb 1318 {
3e43a32a
MS
1319 /* If the value of the varobj was changed by -var-set-value,
1320 then the value in the varobj and in the target is the same.
1321 However, that value is different from the value that the
581e13c1 1322 varobj had after the previous -var-update. So need to the
3e43a32a 1323 varobj as changed. */
acd65feb 1324 if (var->updated)
4c37490d 1325 changed = true;
bb5ce47a 1326 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1327 {
1328 /* Try to compare the values. That requires that both
1329 values are non-lazy. */
b4d61099 1330 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1331 {
1332 /* This is a frozen varobj and the value was never read.
1333 Presumably, UI shows some "never read" indicator.
1334 Now that we've fetched the real value, we need to report
1335 this varobj as changed so that UI can show the real
1336 value. */
4c37490d 1337 changed = true;
25d5ea92 1338 }
dda83cd7 1339 else if (var->value == NULL && value == NULL)
581e13c1 1340 /* Equal. */
acd65feb
VP
1341 ;
1342 else if (var->value == NULL || value == NULL)
57e66780 1343 {
4c37490d 1344 changed = true;
57e66780 1345 }
acd65feb
VP
1346 else
1347 {
b4d61099 1348 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1349 gdb_assert (!value_lazy (value));
85265413 1350
2f408ecb
PA
1351 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1352 if (var->print_value != print_value)
4c37490d 1353 changed = true;
acd65feb
VP
1354 }
1355 }
1356 }
85265413 1357
ee342b23
VP
1358 if (!initial && !changeable)
1359 {
1360 /* For values that are not changeable, we don't compare the values.
1361 However, we want to notice if a value was not NULL and now is NULL,
1362 or vise versa, so that we report when top-level varobjs come in scope
1363 and leave the scope. */
1364 changed = (var->value != NULL) != (value != NULL);
1365 }
1366
acd65feb 1367 /* We must always keep the new value, since children depend on it. */
b4d61099 1368 var->value = value_holder;
25d5ea92 1369 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1370 var->not_fetched = true;
25d5ea92 1371 else
4c37490d
SM
1372 var->not_fetched = false;
1373 var->updated = false;
85265413 1374
0cc7d26f
TT
1375 install_new_value_visualizer (var);
1376
1377 /* If we installed a pretty-printer, re-compare the printed version
1378 to see if the variable changed. */
bb5ce47a 1379 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1380 {
b4d61099
TT
1381 print_value = varobj_value_get_print_value (var->value.get (),
1382 var->format, var);
2f408ecb
PA
1383 if ((var->print_value.empty () && !print_value.empty ())
1384 || (!var->print_value.empty () && print_value.empty ())
1385 || (!var->print_value.empty () && !print_value.empty ()
1386 && var->print_value != print_value))
4c37490d 1387 changed = true;
0cc7d26f 1388 }
0cc7d26f
TT
1389 var->print_value = print_value;
1390
b4d61099 1391 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1392
1393 return changed;
1394}
acd65feb 1395
0cc7d26f
TT
1396/* Return the requested range for a varobj. VAR is the varobj. FROM
1397 and TO are out parameters; *FROM and *TO will be set to the
1398 selected sub-range of VAR. If no range was selected using
1399 -var-set-update-range, then both will be -1. */
1400void
b09e2c59 1401varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1402{
0cc7d26f
TT
1403 *from = var->from;
1404 *to = var->to;
b6313243
TT
1405}
1406
0cc7d26f
TT
1407/* Set the selected sub-range of children of VAR to start at index
1408 FROM and end at index TO. If either FROM or TO is less than zero,
1409 this is interpreted as a request for all children. */
1410void
1411varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1412{
0cc7d26f
TT
1413 var->from = from;
1414 var->to = to;
b6313243
TT
1415}
1416
1417void
1418varobj_set_visualizer (struct varobj *var, const char *visualizer)
1419{
1420#if HAVE_PYTHON
bde7b3e3 1421 PyObject *mainmod;
b6313243 1422
0646da15
TT
1423 if (!gdb_python_initialized)
1424 return;
1425
bde7b3e3 1426 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1427
1428 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1429 gdbpy_ref<> globals
1430 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1431 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1432 globals.get (), globals.get ()));
b6313243 1433
bde7b3e3 1434 if (constructor == NULL)
b6313243
TT
1435 {
1436 gdbpy_print_stack ();
da1f2771 1437 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1438 }
1439
bde7b3e3 1440 construct_visualizer (var, constructor.get ());
b6313243 1441
0cc7d26f 1442 /* If there are any children now, wipe them. */
30914ca8 1443 varobj_delete (var, 1 /* children only */);
0cc7d26f 1444 var->num_children = -1;
b6313243 1445#else
da1f2771 1446 error (_("Python support required"));
b6313243
TT
1447#endif
1448}
1449
7a290c40 1450/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1451 true if var has mutated. In other words, if the type of
7a290c40
JB
1452 the new value is different from the type of the varobj's old
1453 value.
1454
1455 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1456
4c37490d 1457static bool
b09e2c59 1458varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1459 struct type *new_type)
1460{
1461 /* If we haven't previously computed the number of children in var,
1462 it does not matter from the front-end's perspective whether
1463 the type has mutated or not. For all intents and purposes,
1464 it has not mutated. */
1465 if (var->num_children < 0)
4c37490d 1466 return false;
7a290c40 1467
4c37490d 1468 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1469 {
1470 /* The varobj module, when installing new values, explicitly strips
1471 references, saying that we're not interested in those addresses.
1472 But detection of mutation happens before installing the new
1473 value, so our value may be a reference that we need to strip
1474 in order to remain consistent. */
1475 if (new_value != NULL)
1476 new_value = coerce_ref (new_value);
1477 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1478 }
7a290c40 1479 else
4c37490d 1480 return false;
7a290c40
JB
1481}
1482
8b93c638
JM
1483/* Update the values for a variable and its children. This is a
1484 two-pronged attack. First, re-parse the value for the root's
1485 expression to see if it's changed. Then go all the way
1486 through its children, reconstructing them and noting if they've
1487 changed.
1488
4c37490d 1489 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1490 of MI request to update this specific variable, or
581e13c1 1491 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1492 update frozen variables.
705da579 1493
581e13c1 1494 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1495 returns TYPE_CHANGED, then it has done this and VARP will be modified
1496 to point to the new varobj. */
8b93c638 1497
0604393c 1498std::vector<varobj_update_result>
4c37490d 1499varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1500{
4c37490d 1501 bool type_changed = false;
fe978cb0 1502 struct value *newobj;
0604393c
SM
1503 std::vector<varobj_update_result> stack;
1504 std::vector<varobj_update_result> result;
8b93c638 1505
25d5ea92
VP
1506 /* Frozen means frozen -- we don't check for any change in
1507 this varobj, including its going out of scope, or
1508 changing type. One use case for frozen varobjs is
1509 retaining previously evaluated expressions, and we don't
1510 want them to be reevaluated at all. */
fe978cb0 1511 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1512 return result;
8756216b
DP
1513
1514 if (!(*varp)->root->is_valid)
f7f9ae2c 1515 {
0604393c 1516 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1517 return result;
1518 }
8b93c638 1519
25d5ea92 1520 if ((*varp)->root->rootvar == *varp)
ae093f96 1521 {
0604393c 1522 varobj_update_result r (*varp);
f7f9ae2c 1523
581e13c1 1524 /* Update the root variable. value_of_root can return NULL
25d5ea92 1525 if the variable is no longer around, i.e. we stepped out of
581e13c1 1526 the frame in which a local existed. We are letting the
25d5ea92
VP
1527 value_of_root variable dispose of the varobj if the type
1528 has changed. */
fe978cb0 1529 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1530 if (update_type_if_necessary (*varp, newobj))
1531 type_changed = true;
f7f9ae2c 1532 r.varobj = *varp;
f7f9ae2c 1533 r.type_changed = type_changed;
fe978cb0 1534 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1535 r.changed = true;
ea56f9c2 1536
fe978cb0 1537 if (newobj == NULL)
f7f9ae2c 1538 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1539 r.value_installed = true;
f7f9ae2c
VP
1540
1541 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1542 {
0b4bc29a 1543 if (r.type_changed || r.changed)
0604393c
SM
1544 result.push_back (std::move (r));
1545
b6313243
TT
1546 return result;
1547 }
a109c7c1 1548
0604393c 1549 stack.push_back (std::move (r));
b20d8971 1550 }
0604393c
SM
1551 else
1552 stack.emplace_back (*varp);
8b93c638 1553
8756216b 1554 /* Walk through the children, reconstructing them all. */
0604393c 1555 while (!stack.empty ())
8b93c638 1556 {
0604393c
SM
1557 varobj_update_result r = std::move (stack.back ());
1558 stack.pop_back ();
b6313243
TT
1559 struct varobj *v = r.varobj;
1560
b6313243
TT
1561 /* Update this variable, unless it's a root, which is already
1562 updated. */
1563 if (!r.value_installed)
7a290c40
JB
1564 {
1565 struct type *new_type;
1566
fe978cb0 1567 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1568 if (update_type_if_necessary (v, newobj))
1569 r.type_changed = true;
fe978cb0
PA
1570 if (newobj)
1571 new_type = value_type (newobj);
7a290c40 1572 else
ca20d462 1573 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1574
fe978cb0 1575 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1576 {
1577 /* The children are no longer valid; delete them now.
dda83cd7 1578 Report the fact that its type changed as well. */
30914ca8 1579 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1580 v->num_children = -1;
1581 v->to = -1;
1582 v->from = -1;
1583 v->type = new_type;
4c37490d 1584 r.type_changed = true;
7a290c40
JB
1585 }
1586
fe978cb0 1587 if (install_new_value (v, newobj, r.type_changed))
b6313243 1588 {
4c37490d
SM
1589 r.changed = true;
1590 v->updated = false;
b6313243
TT
1591 }
1592 }
1593
31f628ae
YQ
1594 /* We probably should not get children of a dynamic varobj, but
1595 for which -var-list-children was never invoked. */
1596 if (varobj_is_dynamic_p (v))
b6313243 1597 {
b926417a 1598 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1599 bool children_changed = false;
b6313243
TT
1600
1601 if (v->frozen)
1602 continue;
1603
bd046f64 1604 if (!v->dynamic->children_requested)
0cc7d26f 1605 {
4c37490d 1606 bool dummy;
0cc7d26f
TT
1607
1608 /* If we initially did not have potential children, but
1609 now we do, consider the varobj as changed.
1610 Otherwise, if children were never requested, consider
1611 it as unchanged -- presumably, such varobj is not yet
1612 expanded in the UI, so we need not bother getting
1613 it. */
1614 if (!varobj_has_more (v, 0))
1615 {
8264ba82 1616 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1617 &dummy, false, 0, 0);
0cc7d26f 1618 if (varobj_has_more (v, 0))
4c37490d 1619 r.changed = true;
0cc7d26f
TT
1620 }
1621
1622 if (r.changed)
0604393c 1623 result.push_back (std::move (r));
0cc7d26f
TT
1624
1625 continue;
1626 }
1627
4c37490d 1628 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1629 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1630 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1631 &newobj_vec,
1632 &unchanged, &children_changed,
1633 true, v->from, v->to))
b6313243 1634 {
b926417a 1635 if (children_changed || !newobj_vec.empty ())
b6313243 1636 {
4c37490d 1637 r.children_changed = true;
b926417a 1638 r.newobj = std::move (newobj_vec);
b6313243 1639 }
0cc7d26f
TT
1640 /* Push in reverse order so that the first child is
1641 popped from the work stack first, and so will be
1642 added to result first. This does not affect
1643 correctness, just "nicer". */
b926417a 1644 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1645 {
b926417a 1646 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1647
1648 /* Type may change only if value was changed. */
b926417a
TT
1649 item.changed = true;
1650 item.type_changed = true;
1651 item.value_installed = true;
0604393c 1652
b926417a 1653 stack.push_back (std::move (item));
8264ba82 1654 }
0604393c 1655 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1656 {
b926417a 1657 varobj_update_result item (changed[i]);
a109c7c1 1658
b926417a
TT
1659 item.changed = true;
1660 item.value_installed = true;
0604393c 1661
b926417a 1662 stack.push_back (std::move (item));
b6313243 1663 }
0604393c
SM
1664 for (int i = unchanged.size () - 1; i >= 0; --i)
1665 {
1666 if (!unchanged[i]->frozen)
1667 {
b926417a 1668 varobj_update_result item (unchanged[i]);
0604393c 1669
b926417a 1670 item.value_installed = true;
0cc7d26f 1671
b926417a 1672 stack.push_back (std::move (item));
0604393c
SM
1673 }
1674 }
1675 if (r.changed || r.children_changed)
1676 result.push_back (std::move (r));
0cc7d26f 1677
b6313243
TT
1678 continue;
1679 }
1680 }
28335dcc
VP
1681
1682 /* Push any children. Use reverse order so that the first
1683 child is popped from the work stack first, and so
1684 will be added to result first. This does not
1685 affect correctness, just "nicer". */
0604393c 1686 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1687 {
ddf0ea08 1688 varobj *c = v->children[i];
a109c7c1 1689
28335dcc 1690 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1691 if (c != NULL && !c->frozen)
0604393c 1692 stack.emplace_back (c);
8b93c638 1693 }
b6313243
TT
1694
1695 if (r.changed || r.type_changed)
0604393c 1696 result.push_back (std::move (r));
8b93c638
JM
1697 }
1698
f7f9ae2c 1699 return result;
8b93c638 1700}
8b93c638
JM
1701
1702/* Helper functions */
1703
1704/*
1705 * Variable object construction/destruction
1706 */
1707
1708static int
4c37490d 1709delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1710{
1711 int delcount = 0;
1712
30914ca8 1713 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1714 true /* remove_from_parent_p */ );
8b93c638
JM
1715
1716 return delcount;
1717}
1718
581e13c1 1719/* Delete the variable object VAR and its children. */
8b93c638
JM
1720/* IMPORTANT NOTE: If we delete a variable which is a child
1721 and the parent is not removed we dump core. It must be always
581e13c1 1722 initially called with remove_from_parent_p set. */
8b93c638 1723static void
4c37490d
SM
1724delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1725 bool remove_from_parent_p)
8b93c638 1726{
581e13c1 1727 /* Delete any children of this variable, too. */
ddf0ea08 1728 for (varobj *child : var->children)
28335dcc 1729 {
214270ab
VP
1730 if (!child)
1731 continue;
ddf0ea08 1732
8b93c638 1733 if (!remove_from_parent_p)
28335dcc 1734 child->parent = NULL;
ddf0ea08 1735
4c37490d 1736 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1737 }
ddf0ea08 1738 var->children.clear ();
8b93c638 1739
581e13c1 1740 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1741 if (only_children_p)
1742 return;
1743
581e13c1 1744 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1745 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1746 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1747 if (!var->obj_name.empty ())
8b93c638 1748 {
8b93c638
JM
1749 *delcountp = *delcountp + 1;
1750 }
1751
581e13c1 1752 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1753 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1754 (as indicated by remove_from_parent_p) we don't bother doing an
1755 expensive list search to find the element to remove when we are
581e13c1 1756 discarding the list afterwards. */
72330bd6 1757 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1758 var->parent->children[var->index] = NULL;
72330bd6 1759
2f408ecb 1760 if (!var->obj_name.empty ())
73a93a32 1761 uninstall_variable (var);
8b93c638 1762
581e13c1 1763 /* Free memory associated with this variable. */
9e5b9d2b 1764 delete var;
8b93c638
JM
1765}
1766
581e13c1 1767/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1768static bool
fba45db2 1769install_variable (struct varobj *var)
8b93c638 1770{
2c1413a9
TT
1771 hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1772 void **slot = htab_find_slot_with_hash (varobj_table,
1773 var->obj_name.c_str (),
1774 hash, INSERT);
1775 if (*slot != nullptr)
8a3fe4f8 1776 error (_("Duplicate variable object name"));
8b93c638 1777
581e13c1 1778 /* Add varobj to hash table. */
2c1413a9 1779 *slot = var;
8b93c638 1780
581e13c1 1781 /* If root, add varobj to root list. */
b2c2bd75 1782 if (is_root_p (var))
76deb5d9 1783 rootlist.push_front (var->root);
8b93c638 1784
4c37490d 1785 return true; /* OK */
8b93c638
JM
1786}
1787
405feb71 1788/* Uninstall the object VAR. */
8b93c638 1789static void
fba45db2 1790uninstall_variable (struct varobj *var)
8b93c638 1791{
2c1413a9
TT
1792 hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1793 htab_remove_elt_with_hash (varobj_table, var->obj_name.c_str (), hash);
8b93c638
JM
1794
1795 if (varobjdebug)
2f408ecb 1796 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638 1797
581e13c1 1798 /* If root, remove varobj from root list. */
b2c2bd75 1799 if (is_root_p (var))
8b93c638 1800 {
76deb5d9
TT
1801 auto iter = std::find (rootlist.begin (), rootlist.end (), var->root);
1802 rootlist.erase (iter);
8b93c638 1803 }
8b93c638
JM
1804}
1805
837ce252
SM
1806/* Create and install a child of the parent of the given name.
1807
1808 The created VAROBJ takes ownership of the allocated NAME. */
1809
8b93c638 1810static struct varobj *
2f408ecb 1811create_child (struct varobj *parent, int index, std::string &name)
b6313243 1812{
5a2e0d6e
YQ
1813 struct varobj_item item;
1814
2f408ecb 1815 std::swap (item.name, name);
5a2e0d6e
YQ
1816 item.value = value_of_child (parent, index);
1817
1818 return create_child_with_value (parent, index, &item);
b6313243
TT
1819}
1820
1821static struct varobj *
5a2e0d6e
YQ
1822create_child_with_value (struct varobj *parent, int index,
1823 struct varobj_item *item)
8b93c638 1824{
9e5b9d2b 1825 varobj *child = new varobj (parent->root);
8b93c638 1826
5e5ac9a5 1827 /* NAME is allocated by caller. */
2f408ecb 1828 std::swap (child->name, item->name);
8b93c638 1829 child->index = index;
8b93c638 1830 child->parent = parent;
85254831 1831
99ad9427 1832 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1833 child->obj_name = string_printf ("%s.%d_anonymous",
1834 parent->obj_name.c_str (), index);
85254831 1835 else
2f408ecb
PA
1836 child->obj_name = string_printf ("%s.%s",
1837 parent->obj_name.c_str (),
1838 child->name.c_str ());
85254831 1839
8b93c638
JM
1840 install_variable (child);
1841
acd65feb
VP
1842 /* Compute the type of the child. Must do this before
1843 calling install_new_value. */
5a2e0d6e 1844 if (item->value != NULL)
acd65feb 1845 /* If the child had no evaluation errors, var->value
581e13c1 1846 will be non-NULL and contain a valid type. */
5a2e0d6e 1847 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1848 else
581e13c1 1849 /* Otherwise, we must compute the type. */
ca20d462
YQ
1850 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1851 child->index);
5a2e0d6e 1852 install_new_value (child, item->value, 1);
acd65feb 1853
8b93c638
JM
1854 return child;
1855}
8b93c638
JM
1856\f
1857
1858/*
1859 * Miscellaneous utility functions.
1860 */
1861
581e13c1 1862/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1863varobj::varobj (varobj_root *root_)
1864: root (root_), dynamic (new varobj_dynamic)
8b93c638 1865{
8b93c638
JM
1866}
1867
581e13c1 1868/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1869
1870varobj::~varobj ()
8b93c638 1871{
9e5b9d2b
SM
1872 varobj *var = this;
1873
d452c4bc 1874#if HAVE_PYTHON
bb5ce47a 1875 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1876 {
bde7b3e3 1877 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1878
1879 Py_XDECREF (var->dynamic->constructor);
1880 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1881 }
1882#endif
1883
827f100c
YQ
1884 varobj_iter_delete (var->dynamic->child_iter);
1885 varobj_clear_saved_item (var->dynamic);
36746093 1886
b2c2bd75 1887 if (is_root_p (var))
4d01a485 1888 delete var->root;
8b93c638 1889
9e5b9d2b 1890 delete var->dynamic;
74b7792f
AC
1891}
1892
6e2a9270
VP
1893/* Return the type of the value that's stored in VAR,
1894 or that would have being stored there if the
581e13c1 1895 value were accessible.
6e2a9270
VP
1896
1897 This differs from VAR->type in that VAR->type is always
85102364 1898 the true type of the expression in the source language.
6e2a9270
VP
1899 The return value of this function is the type we're
1900 actually storing in varobj, and using for displaying
1901 the values and for comparing previous and new values.
1902
1903 For example, top-level references are always stripped. */
99ad9427 1904struct type *
b09e2c59 1905varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
1906{
1907 struct type *type;
1908
b4d61099
TT
1909 if (var->value != nullptr)
1910 type = value_type (var->value.get ());
6e2a9270
VP
1911 else
1912 type = var->type;
1913
1914 type = check_typedef (type);
1915
aa006118 1916 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
1917 type = get_target_type (type);
1918
1919 type = check_typedef (type);
1920
1921 return type;
1922}
1923
8b93c638 1924/* What is the default display for this variable? We assume that
581e13c1 1925 everything is "natural". Any exceptions? */
8b93c638 1926static enum varobj_display_formats
fba45db2 1927variable_default_display (struct varobj *var)
8b93c638
JM
1928{
1929 return FORMAT_NATURAL;
1930}
1931
8b93c638
JM
1932/*
1933 * Language-dependencies
1934 */
1935
1936/* Common entry points */
1937
8b93c638
JM
1938/* Return the number of children for a given variable.
1939 The result of this function is defined by the language
581e13c1 1940 implementation. The number of children returned by this function
8b93c638 1941 is the number of children that the user will see in the variable
581e13c1 1942 display. */
8b93c638 1943static int
b09e2c59 1944number_of_children (const struct varobj *var)
8b93c638 1945{
ca20d462 1946 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
1947}
1948
2f408ecb
PA
1949/* What is the expression for the root varobj VAR? */
1950
1951static std::string
b09e2c59 1952name_of_variable (const struct varobj *var)
8b93c638 1953{
ca20d462 1954 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
1955}
1956
2f408ecb
PA
1957/* What is the name of the INDEX'th child of VAR? */
1958
1959static std::string
fba45db2 1960name_of_child (struct varobj *var, int index)
8b93c638 1961{
ca20d462 1962 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
1963}
1964
2213e2be 1965/* If frame associated with VAR can be found, switch
4c37490d 1966 to it and return true. Otherwise, return false. */
2213e2be 1967
4c37490d 1968static bool
b09e2c59 1969check_scope (const struct varobj *var)
2213e2be
YQ
1970{
1971 struct frame_info *fi;
4c37490d 1972 bool scope;
2213e2be
YQ
1973
1974 fi = frame_find_by_id (var->root->frame);
1975 scope = fi != NULL;
1976
1977 if (fi)
1978 {
1979 CORE_ADDR pc = get_frame_pc (fi);
1980
1981 if (pc < BLOCK_START (var->root->valid_block) ||
1982 pc >= BLOCK_END (var->root->valid_block))
4c37490d 1983 scope = false;
2213e2be
YQ
1984 else
1985 select_frame (fi);
1986 }
1987 return scope;
1988}
1989
1990/* Helper function to value_of_root. */
1991
1992static struct value *
1993value_of_root_1 (struct varobj **var_handle)
1994{
1995 struct value *new_val = NULL;
1996 struct varobj *var = *var_handle;
4c37490d 1997 bool within_scope = false;
2213e2be
YQ
1998
1999 /* Only root variables can be updated... */
2000 if (!is_root_p (var))
2001 /* Not a root var. */
2002 return NULL;
2003
5ed8105e 2004 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2005
2006 /* Determine whether the variable is still around. */
2007 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2008 within_scope = true;
2213e2be
YQ
2009 else if (var->root->thread_id == 0)
2010 {
2011 /* The program was single-threaded when the variable object was
2012 created. Technically, it's possible that the program became
2013 multi-threaded since then, but we don't support such
2014 scenario yet. */
2015 within_scope = check_scope (var);
2016 }
2017 else
2018 {
00431a78 2019 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2020
00431a78 2021 if (thread != NULL)
2213e2be 2022 {
00431a78 2023 switch_to_thread (thread);
2213e2be
YQ
2024 within_scope = check_scope (var);
2025 }
2026 }
2027
2028 if (within_scope)
2029 {
2213e2be
YQ
2030
2031 /* We need to catch errors here, because if evaluate
dda83cd7 2032 expression fails we want to just return NULL. */
a70b8144 2033 try
2213e2be 2034 {
4d01a485 2035 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2036 }
230d2906 2037 catch (const gdb_exception_error &except)
492d29ea
PA
2038 {
2039 }
2213e2be
YQ
2040 }
2041
2213e2be
YQ
2042 return new_val;
2043}
2044
a5defcdc
VP
2045/* What is the ``struct value *'' of the root variable VAR?
2046 For floating variable object, evaluation can get us a value
2047 of different type from what is stored in varobj already. In
2048 that case:
2049 - *type_changed will be set to 1
2050 - old varobj will be freed, and new one will be
2051 created, with the same name.
2052 - *var_handle will be set to the new varobj
2053 Otherwise, *type_changed will be set to 0. */
30b28db1 2054static struct value *
4c37490d 2055value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2056{
73a93a32
JI
2057 struct varobj *var;
2058
2059 if (var_handle == NULL)
2060 return NULL;
2061
2062 var = *var_handle;
2063
2064 /* This should really be an exception, since this should
581e13c1 2065 only get called with a root variable. */
73a93a32 2066
b2c2bd75 2067 if (!is_root_p (var))
73a93a32
JI
2068 return NULL;
2069
a5defcdc 2070 if (var->root->floating)
73a93a32
JI
2071 {
2072 struct varobj *tmp_var;
6225abfa 2073
2f408ecb 2074 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2075 USE_SELECTED_FRAME);
2076 if (tmp_var == NULL)
2077 {
2078 return NULL;
2079 }
2f408ecb
PA
2080 std::string old_type = varobj_get_type (var);
2081 std::string new_type = varobj_get_type (tmp_var);
2082 if (old_type == new_type)
73a93a32 2083 {
fcacd99f
VP
2084 /* The expression presently stored inside var->root->exp
2085 remembers the locations of local variables relatively to
2086 the frame where the expression was created (in DWARF location
2087 button, for example). Naturally, those locations are not
2088 correct in other frames, so update the expression. */
2089
4d01a485 2090 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2091
30914ca8 2092 varobj_delete (tmp_var, 0);
73a93a32
JI
2093 *type_changed = 0;
2094 }
2095 else
2096 {
2f408ecb 2097 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2098 tmp_var->from = var->from;
2099 tmp_var->to = var->to;
30914ca8 2100 varobj_delete (var, 0);
a5defcdc 2101
73a93a32
JI
2102 install_variable (tmp_var);
2103 *var_handle = tmp_var;
705da579 2104 var = *var_handle;
4c37490d 2105 *type_changed = true;
73a93a32
JI
2106 }
2107 }
2108 else
2109 {
2110 *type_changed = 0;
2111 }
2112
7a290c40
JB
2113 {
2114 struct value *value;
2115
2213e2be 2116 value = value_of_root_1 (var_handle);
7a290c40
JB
2117 if (var->value == NULL || value == NULL)
2118 {
2119 /* For root varobj-s, a NULL value indicates a scoping issue.
2120 So, nothing to do in terms of checking for mutations. */
2121 }
2122 else if (varobj_value_has_mutated (var, value, value_type (value)))
2123 {
2124 /* The type has mutated, so the children are no longer valid.
2125 Just delete them, and tell our caller that the type has
2126 changed. */
30914ca8 2127 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2128 var->num_children = -1;
2129 var->to = -1;
2130 var->from = -1;
4c37490d 2131 *type_changed = true;
7a290c40
JB
2132 }
2133 return value;
2134 }
8b93c638
JM
2135}
2136
581e13c1 2137/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2138static struct value *
c1cc6152 2139value_of_child (const struct varobj *parent, int index)
8b93c638 2140{
30b28db1 2141 struct value *value;
8b93c638 2142
ca20d462 2143 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2144
8b93c638
JM
2145 return value;
2146}
2147
581e13c1 2148/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2149static std::string
de051565 2150my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2151{
8756216b 2152 if (var->root->is_valid)
0cc7d26f 2153 {
bb5ce47a 2154 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2155 return varobj_value_get_print_value (var->value.get (), var->format,
2156 var);
ca20d462 2157 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2158 }
8756216b 2159 else
2f408ecb 2160 return std::string ();
8b93c638
JM
2161}
2162
99ad9427
YQ
2163void
2164varobj_formatted_print_options (struct value_print_options *opts,
2165 enum varobj_display_formats format)
2166{
2167 get_formatted_print_options (opts, format_code[(int) format]);
2168 opts->deref_ref = 0;
0625771b 2169 opts->raw = !pretty_printing;
99ad9427
YQ
2170}
2171
2f408ecb 2172std::string
99ad9427
YQ
2173varobj_value_get_print_value (struct value *value,
2174 enum varobj_display_formats format,
b09e2c59 2175 const struct varobj *var)
85265413 2176{
79a45b7d 2177 struct value_print_options opts;
be759fcf
PM
2178 struct type *type = NULL;
2179 long len = 0;
1eba6383 2180 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2181 /* Initialize it just to avoid a GCC false warning. */
2182 CORE_ADDR str_addr = 0;
4c37490d 2183 bool string_print = false;
57e66780
DJ
2184
2185 if (value == NULL)
2f408ecb 2186 return std::string ();
57e66780 2187
d7e74731 2188 string_file stb;
2f408ecb
PA
2189 std::string thevalue;
2190
b6313243 2191#if HAVE_PYTHON
0646da15
TT
2192 if (gdb_python_initialized)
2193 {
bb5ce47a 2194 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2195
68cdc557 2196 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2197
0646da15
TT
2198 if (value_formatter)
2199 {
2200 /* First check to see if we have any children at all. If so,
2201 we simply return {...}. */
2202 if (dynamic_varobj_has_child_method (var))
d7e74731 2203 return "{...}";
b6313243 2204
0646da15
TT
2205 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2206 {
2207 struct value *replacement;
0646da15 2208
a5c5eda7
SM
2209 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2210 &replacement,
2211 &stb);
0646da15
TT
2212
2213 /* If we have string like output ... */
68cdc557 2214 if (output != NULL)
0646da15 2215 {
0646da15
TT
2216 /* If this is a lazy string, extract it. For lazy
2217 strings we always print as a string, so set
2218 string_print. */
68cdc557 2219 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2220 {
68cdc557
TT
2221 gdbpy_extract_lazy_string (output.get (), &str_addr,
2222 &type, &len, &encoding);
4c37490d 2223 string_print = true;
0646da15
TT
2224 }
2225 else
2226 {
2227 /* If it is a regular (non-lazy) string, extract
2228 it and copy the contents into THEVALUE. If the
2229 hint says to print it as a string, set
2230 string_print. Otherwise just return the extracted
2231 string as a value. */
2232
9b972014 2233 gdb::unique_xmalloc_ptr<char> s
68cdc557 2234 = python_string_to_target_string (output.get ());
0646da15
TT
2235
2236 if (s)
2237 {
e3821cca 2238 struct gdbarch *gdbarch;
0646da15 2239
9b972014
TT
2240 gdb::unique_xmalloc_ptr<char> hint
2241 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2242 if (hint)
2243 {
9b972014 2244 if (!strcmp (hint.get (), "string"))
4c37490d 2245 string_print = true;
0646da15
TT
2246 }
2247
9b972014 2248 thevalue = std::string (s.get ());
2f408ecb 2249 len = thevalue.size ();
e3821cca 2250 gdbarch = get_type_arch (value_type (value));
0646da15 2251 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2252
2253 if (!string_print)
d7e74731 2254 return thevalue;
0646da15
TT
2255 }
2256 else
2257 gdbpy_print_stack ();
2258 }
2259 }
2260 /* If the printer returned a replacement value, set VALUE
2261 to REPLACEMENT. If there is not a replacement value,
2262 just use the value passed to this function. */
2263 if (replacement)
2264 value = replacement;
2265 }
2266 }
2267 }
b6313243
TT
2268#endif
2269
99ad9427 2270 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2271
2272 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2273 if (!thevalue.empty ())
d7e74731 2274 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2275 len, encoding.get (), 0, &opts);
09ca9e2e 2276 else if (string_print)
00bd41d6
PM
2277 /* Otherwise, if string_print is set, and it is not a regular
2278 string, it is a lazy string. */
d7e74731 2279 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2280 else
00bd41d6 2281 /* All other cases. */
d7e74731 2282 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2283
d7e74731 2284 return std::move (stb.string ());
85265413
NR
2285}
2286
4c37490d 2287bool
b09e2c59 2288varobj_editable_p (const struct varobj *var)
340a7723
NR
2289{
2290 struct type *type;
340a7723 2291
b4d61099
TT
2292 if (!(var->root->is_valid && var->value != nullptr
2293 && VALUE_LVAL (var->value.get ())))
4c37490d 2294 return false;
340a7723 2295
99ad9427 2296 type = varobj_get_value_type (var);
340a7723 2297
78134374 2298 switch (type->code ())
340a7723
NR
2299 {
2300 case TYPE_CODE_STRUCT:
2301 case TYPE_CODE_UNION:
2302 case TYPE_CODE_ARRAY:
2303 case TYPE_CODE_FUNC:
2304 case TYPE_CODE_METHOD:
4c37490d 2305 return false;
340a7723
NR
2306 break;
2307
2308 default:
4c37490d 2309 return true;
340a7723
NR
2310 break;
2311 }
2312}
2313
d32cafc7 2314/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2315
4c37490d 2316bool
b09e2c59 2317varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2318{
ca20d462 2319 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2320}
2321
4c37490d 2322/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2323 selected frame, and not bound to thread/frame. Such variable objects
2324 are created using '@' as frame specifier to -var-create. */
4c37490d 2325bool
b09e2c59 2326varobj_floating_p (const struct varobj *var)
5a413362
VP
2327{
2328 return var->root->floating;
2329}
2330
d32cafc7
JB
2331/* Implement the "value_is_changeable_p" varobj callback for most
2332 languages. */
2333
4c37490d 2334bool
b09e2c59 2335varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2336{
4c37490d 2337 bool r;
d32cafc7
JB
2338 struct type *type;
2339
2340 if (CPLUS_FAKE_CHILD (var))
4c37490d 2341 return false;
d32cafc7 2342
99ad9427 2343 type = varobj_get_value_type (var);
d32cafc7 2344
78134374 2345 switch (type->code ())
d32cafc7
JB
2346 {
2347 case TYPE_CODE_STRUCT:
2348 case TYPE_CODE_UNION:
2349 case TYPE_CODE_ARRAY:
4c37490d 2350 r = false;
d32cafc7
JB
2351 break;
2352
2353 default:
4c37490d 2354 r = true;
d32cafc7
JB
2355 }
2356
2357 return r;
2358}
2359
d8f168dd
TT
2360/* Iterate all the existing _root_ VAROBJs and call the FUNC callback
2361 for each one. */
54333c3b
JK
2362
2363void
d8f168dd 2364all_root_varobjs (gdb::function_view<void (struct varobj *var)> func)
54333c3b 2365{
54333c3b 2366 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
76deb5d9
TT
2367 auto iter = rootlist.begin ();
2368 auto end = rootlist.end ();
2369 while (iter != end)
54333c3b 2370 {
76deb5d9 2371 auto self = iter++;
d8f168dd 2372 func ((*self)->rootvar);
54333c3b
JK
2373 }
2374}
8756216b 2375
54333c3b 2376/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2377 defined on globals. It is a helper for varobj_invalidate.
2378
2379 This function is called after changing the symbol file, in this case the
2380 pointers to "struct type" stored by the varobj are no longer valid. All
2381 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2382
54333c3b 2383static void
d8f168dd 2384varobj_invalidate_iter (struct varobj *var)
8756216b 2385{
4e969b4f
AB
2386 /* global and floating var must be re-evaluated. */
2387 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2388 {
54333c3b 2389 struct varobj *tmp_var;
2dbd25e5 2390
54333c3b
JK
2391 /* Try to create a varobj with same expression. If we succeed
2392 replace the old varobj, otherwise invalidate it. */
2f408ecb 2393 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2394 USE_CURRENT_FRAME);
2395 if (tmp_var != NULL)
2396 {
2f408ecb 2397 tmp_var->obj_name = var->obj_name;
30914ca8 2398 varobj_delete (var, 0);
54333c3b 2399 install_variable (tmp_var);
2dbd25e5 2400 }
54333c3b 2401 else
4c37490d 2402 var->root->is_valid = false;
2dbd25e5 2403 }
54333c3b 2404 else /* locals must be invalidated. */
4c37490d 2405 var->root->is_valid = false;
54333c3b
JK
2406}
2407
2408/* Invalidate the varobjs that are tied to locals and re-create the ones that
2409 are defined on globals.
2410 Invalidated varobjs will be always printed in_scope="invalid". */
2411
2412void
2413varobj_invalidate (void)
2414{
d8f168dd 2415 all_root_varobjs (varobj_invalidate_iter);
8756216b 2416}
481695ed 2417
2c1413a9
TT
2418/* A hash function for a varobj. */
2419
2420static hashval_t
2421hash_varobj (const void *a)
2422{
2423 const varobj *obj = (const varobj *) a;
2424 return htab_hash_string (obj->obj_name.c_str ());
2425}
2426
2427/* A hash table equality function for varobjs. */
2428
2429static int
2430eq_varobj_and_string (const void *a, const void *b)
2431{
2432 const varobj *obj = (const varobj *) a;
2433 const char *name = (const char *) b;
2434
2435 return obj->obj_name == name;
2436}
2437
6c265988 2438void _initialize_varobj ();
1c3569d4 2439void
6c265988 2440_initialize_varobj ()
1c3569d4 2441{
2c1413a9
TT
2442 varobj_table = htab_create_alloc (5, hash_varobj, eq_varobj_and_string,
2443 nullptr, xcalloc, xfree);
1c3569d4
MR
2444
2445 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2446 &varobjdebug,
2447 _("Set varobj debugging."),
2448 _("Show varobj debugging."),
2449 _("When non-zero, varobj debugging is enabled."),
2450 NULL, show_varobjdebug,
2451 &setdebuglist, &showdebuglist);
2452}
This page took 2.473562 seconds and 4 git commands to generate.