*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
6aba47ca 3 Copyright (C) 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "objfiles.h"
25#include "gdbtypes.h"
26#include "gdbcore.h"
27#include "value.h"
28#include "dis-asm.h"
29#include "inferior.h"
30#include "floatformat.h"
31#include "regcache.h"
32#include "reggroups.h"
33#include "regset.h"
34
35#include "dummy-frame.h"
36#include "elf/dwarf2.h"
37#include "dwarf2-frame.h"
38#include "dwarf2loc.h"
39#include "frame.h"
40#include "frame-base.h"
41#include "frame-unwind.h"
42
43#include "arch-utils.h"
44#include "gdbarch.h"
45#include "remote.h"
46#include "serial.h"
47
48#include "command.h"
49#include "gdbcmd.h"
50#include "gdb_assert.h"
51
bdb4c075 52#include "xtensa-isa.h"
ca3bf3bd
DJ
53#include "xtensa-tdep.h"
54
55
56static int xtensa_debug_level = 0;
57
58#define DEBUGWARN(args...) \
59 if (xtensa_debug_level > 0) \
60 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
61
62#define DEBUGINFO(args...) \
63 if (xtensa_debug_level > 1) \
64 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
65
66#define DEBUGTRACE(args...) \
67 if (xtensa_debug_level > 2) \
68 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
69
70#define DEBUGVERB(args...) \
71 if (xtensa_debug_level > 3) \
72 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
73
74
75/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
76#define SP_ALIGNMENT 16
77
78
bdb4c075
MG
79/* On Windowed ABI, we use a6 through a11 for passing arguments
80 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
81#define ARGS_NUM_REGS 6
82#define REGISTER_SIZE 4
ca3bf3bd 83
ca3bf3bd 84
bdb4c075
MG
85/* Extract the call size from the return address or PS register. */
86#define PS_CALLINC_SHIFT 16
87#define PS_CALLINC_MASK 0x00030000
88#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
89#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 90
bdb4c075 91/* ABI-independent macros. */
91d8eb23
MD
92#define ARG_NOF(gdbarch) \
93 (gdbarch_tdep (gdbarch)->call_abi \
94 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
95#define ARG_1ST(gdbarch) \
96 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
97 ? (gdbarch_tdep (gdbarch)->a0_base + 0) + C0_ARGS \
98 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd
DJ
99
100extern struct gdbarch_tdep *xtensa_config_tdep (struct gdbarch_info *);
101extern int xtensa_config_byte_order (struct gdbarch_info *);
102
103
104/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
105 indicates that the instruction is an ENTRY instruction. */
106
91d8eb23
MD
107#define XTENSA_IS_ENTRY(gdbarch, op1) \
108 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 109 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 110
bdb4c075 111#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
112
113/* windowing_enabled() returns true, if windowing is enabled.
114 WOE must be set to 1; EXCM to 0.
115 Note: We assume that EXCM is always 0 for XEA1. */
116
bdb4c075
MG
117#define PS_WOE (1<<18)
118#define PS_EXC (1<<4)
119
91d8eb23
MD
120/* Convert a live Ax register number to the corresponding Areg number. */
121static int
122areg_number (struct gdbarch *gdbarch, int regnum, ULONGEST wb)
123{
124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
125 int areg;
126
127 areg = regnum - tdep->a0_base;
128 areg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
129 areg &= tdep->num_aregs - 1;
130
131 return areg + tdep->ar_base;
132}
133
ca3bf3bd
DJ
134static inline int
135windowing_enabled (CORE_ADDR ps)
136{
bdb4c075 137 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
ca3bf3bd
DJ
138}
139
140/* Return the window size of the previous call to the function from which we
141 have just returned.
142
143 This function is used to extract the return value after a called function
bdb4c075 144 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
145 value (from the perspective of the caller) depends on what call
146 instruction was used. For now, we are assuming that the call instruction
147 precedes the current address, so we simply analyze the call instruction.
148 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
149 method to call the inferior function. */
150
151static int
91d8eb23 152extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 153{
bdb4c075 154 int winsize = 4;
ca3bf3bd 155 int insn;
ff7a4c00 156 gdb_byte buf[4];
ca3bf3bd
DJ
157
158 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
159
160 /* Read the previous instruction (should be a call[x]{4|8|12}. */
161 read_memory (pc-3, buf, 3);
162 insn = extract_unsigned_integer (buf, 3);
163
164 /* Decode call instruction:
165 Little Endian
166 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
167 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
168 Big Endian
169 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
170 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
171
91d8eb23 172 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
173 {
174 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 175 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
176 }
177 else
178 {
179 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 180 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
181 }
182 return winsize;
183}
184
185
186/* REGISTER INFORMATION */
187
188/* Returns the name of a register. */
ca3bf3bd 189static const char *
d93859e2 190xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
191{
192 /* Return the name stored in the register map. */
d93859e2
UW
193 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
194 + gdbarch_num_pseudo_regs (gdbarch))
195 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 196
ca3bf3bd
DJ
197 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
198 return 0;
199}
200
bdb4c075
MG
201static unsigned long
202xtensa_read_register (int regnum)
203{
204 ULONGEST value;
205
206 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
207 return (unsigned long) value;
208}
ca3bf3bd
DJ
209
210/* Return the type of a register. Create a new type, if necessary. */
211
212static struct ctype_cache
213{
214 struct ctype_cache *next;
215 int size;
216 struct type *virtual_type;
217} *type_entries = NULL;
218
219static struct type *
220xtensa_register_type (struct gdbarch *gdbarch, int regnum)
221{
222 /* Return signed integer for ARx and Ax registers. */
6b50c0b0
UW
223 if ((regnum >= gdbarch_tdep (gdbarch)->ar_base
224 && regnum < gdbarch_tdep (gdbarch)->ar_base
225 + gdbarch_tdep (gdbarch)->num_aregs)
226 || (regnum >= gdbarch_tdep (gdbarch)->a0_base
227 && regnum < gdbarch_tdep (gdbarch)->a0_base + 16))
ca3bf3bd
DJ
228 return builtin_type_int;
229
6b50c0b0
UW
230 if (regnum == gdbarch_pc_regnum (gdbarch)
231 || regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
ca3bf3bd
DJ
232 return lookup_pointer_type (builtin_type_void);
233
234 /* Return the stored type for all other registers. */
6b50c0b0
UW
235 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 237 {
6b50c0b0 238 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 239
bdb4c075 240 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
241
242 if (reg->ctype == 0)
243 {
244 struct ctype_cache *tp;
245 int size = reg->byte_size;
246
bdb4c075
MG
247 /* We always use the memory representation,
248 even if the register width is smaller. */
ca3bf3bd
DJ
249 switch (size)
250 {
251 case 1:
252 reg->ctype = builtin_type_uint8;
253 break;
254
255 case 2:
256 reg->ctype = builtin_type_uint16;
257 break;
258
259 case 4:
260 reg->ctype = builtin_type_uint32;
261 break;
262
263 case 8:
264 reg->ctype = builtin_type_uint64;
265 break;
266
267 case 16:
268 reg->ctype = builtin_type_uint128;
269 break;
270
271 default:
272 for (tp = type_entries; tp != NULL; tp = tp->next)
273 if (tp->size == size)
274 break;
275
276 if (tp == NULL)
277 {
278 char *name = xmalloc (16);
279 tp = xmalloc (sizeof (struct ctype_cache));
280 tp->next = type_entries;
281 type_entries = tp;
282 tp->size = size;
283
284 sprintf (name, "int%d", size * 8);
285 tp->virtual_type = init_type (TYPE_CODE_INT, size,
286 TYPE_FLAG_UNSIGNED, name,
287 NULL);
288 }
289
290 reg->ctype = tp->virtual_type;
291 }
292 }
293 return reg->ctype;
294 }
295
ca3bf3bd
DJ
296 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
297 return 0;
298}
299
300
bdb4c075 301/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
302 The debugging information enumerates registers starting from 0 for A0
303 to n for An. So, we only have to add the base number for A0. */
304
305static int
306xtensa_reg_to_regnum (int regnum)
307{
308 int i;
309
310 if (regnum >= 0 && regnum < 16)
304fe255 311 return gdbarch_tdep (current_gdbarch)->a0_base + regnum;
ca3bf3bd 312
f57d151a
UW
313 for (i = 0;
314 i < gdbarch_num_regs (current_gdbarch)
315 + gdbarch_num_pseudo_regs (current_gdbarch);
316 i++)
304fe255 317 if (regnum == gdbarch_tdep (current_gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
318 return i;
319
ca3bf3bd
DJ
320 internal_error (__FILE__, __LINE__,
321 _("invalid dwarf/stabs register number %d"), regnum);
322 return 0;
323}
324
325
bdb4c075
MG
326/* Write the bits of a masked register to the various registers.
327 Only the masked areas of these registers are modified; the other
328 fields are untouched. The size of masked registers is always less
329 than or equal to 32 bits. */
ca3bf3bd
DJ
330
331static void
9c9acae0
UW
332xtensa_register_write_masked (struct regcache *regcache,
333 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd
DJ
334{
335 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
336 const xtensa_mask_t *mask = reg->mask;
337
338 int shift = 0; /* Shift for next mask (mod 32). */
339 int start, size; /* Start bit and size of current mask. */
340
341 unsigned int *ptr = value;
342 unsigned int regval, m, mem = 0;
343
344 int bytesize = reg->byte_size;
345 int bitsize = bytesize * 8;
346 int i, r;
347
348 DEBUGTRACE ("xtensa_register_write_masked ()\n");
349
350 /* Copy the masked register to host byte-order. */
6b50c0b0 351 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
352 for (i = 0; i < bytesize; i++)
353 {
354 mem >>= 8;
355 mem |= (buffer[bytesize - i - 1] << 24);
356 if ((i & 3) == 3)
357 *ptr++ = mem;
358 }
359 else
360 for (i = 0; i < bytesize; i++)
361 {
362 mem >>= 8;
363 mem |= (buffer[i] << 24);
364 if ((i & 3) == 3)
365 *ptr++ = mem;
366 }
367
368 /* We might have to shift the final value:
369 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
370 bytesize & 3 == x -> shift (4-x) * 8. */
371
372 *ptr = mem >> (((0 - bytesize) & 3) * 8);
373 ptr = value;
374 mem = *ptr;
375
376 /* Write the bits to the masked areas of the other registers. */
377 for (i = 0; i < mask->count; i++)
378 {
379 start = mask->mask[i].bit_start;
380 size = mask->mask[i].bit_size;
381 regval = mem >> shift;
382
383 if ((shift += size) > bitsize)
384 error (_("size of all masks is larger than the register"));
385
386 if (shift >= 32)
387 {
388 mem = *(++ptr);
389 shift -= 32;
390 bitsize -= 32;
391
392 if (shift > 0)
393 regval |= mem << (size - shift);
394 }
395
396 /* Make sure we have a valid register. */
397 r = mask->mask[i].reg_num;
398 if (r >= 0 && size > 0)
399 {
400 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
401 ULONGEST old_val;
402 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
403 m = 0xffffffff >> (32 - size) << start;
404 regval <<= start;
9c9acae0
UW
405 regval = (regval & m) | (old_val & ~m);
406 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
407 }
408 }
409}
410
411
bdb4c075
MG
412/* Read a tie state or mapped registers. Read the masked areas
413 of the registers and assemble them into a single value. */
ca3bf3bd
DJ
414
415static void
9c9acae0
UW
416xtensa_register_read_masked (struct regcache *regcache,
417 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd
DJ
418{
419 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
420 const xtensa_mask_t *mask = reg->mask;
421
422 int shift = 0;
423 int start, size;
424
425 unsigned int *ptr = value;
426 unsigned int regval, mem = 0;
427
428 int bytesize = reg->byte_size;
429 int bitsize = bytesize * 8;
430 int i;
431
432 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
433 reg->name == 0 ? "" : reg->name);
434
435 /* Assemble the register from the masked areas of other registers. */
436 for (i = 0; i < mask->count; i++)
437 {
438 int r = mask->mask[i].reg_num;
9c9acae0
UW
439 if (r >= 0)
440 {
441 ULONGEST val;
442 regcache_cooked_read_unsigned (regcache, r, &val);
443 regval = (unsigned int) val;
444 }
445 else
446 regval = 0;
447
ca3bf3bd
DJ
448 start = mask->mask[i].bit_start;
449 size = mask->mask[i].bit_size;
450
451 regval >>= start;
452
453 if (size < 32)
454 regval &= (0xffffffff >> (32 - size));
455
456 mem |= regval << shift;
457
458 if ((shift += size) > bitsize)
459 error (_("size of all masks is larger than the register"));
460
461 if (shift >= 32)
462 {
463 *ptr++ = mem;
464 bitsize -= 32;
465 shift -= 32;
466
467 if (shift == 0)
468 mem = 0;
469 else
470 mem = regval >> (size - shift);
471 }
472 }
473
474 if (shift > 0)
475 *ptr = mem;
476
477 /* Copy value to target byte order. */
478 ptr = value;
479 mem = *ptr;
480
6b50c0b0 481 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
482 for (i = 0; i < bytesize; i++)
483 {
484 if ((i & 3) == 0)
485 mem = *ptr++;
486 buffer[bytesize - i - 1] = mem & 0xff;
487 mem >>= 8;
488 }
489 else
490 for (i = 0; i < bytesize; i++)
491 {
492 if ((i & 3) == 0)
493 mem = *ptr++;
494 buffer[i] = mem & 0xff;
495 mem >>= 8;
496 }
497}
498
499
500/* Read pseudo registers. */
501
502static void
503xtensa_pseudo_register_read (struct gdbarch *gdbarch,
504 struct regcache *regcache,
505 int regnum,
506 gdb_byte *buffer)
507{
508 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 509 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 510
6b50c0b0
UW
511 if (regnum == gdbarch_num_regs (gdbarch)
512 + gdbarch_num_pseudo_regs (gdbarch))
513 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
ca3bf3bd 514
bdb4c075 515 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0
UW
516 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
517 && (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0)
518 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 519 {
ff7a4c00 520 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
ca3bf3bd 521
6b50c0b0 522 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
91d8eb23 523 regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
ca3bf3bd
DJ
524 }
525
bdb4c075 526 /* We can always read non-pseudo registers. */
6b50c0b0 527 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
528 regcache_raw_read (regcache, regnum, buffer);
529
530 /* Pseudo registers. */
f57d151a 531 else if (regnum >= 0
6b50c0b0
UW
532 && regnum < gdbarch_num_regs (gdbarch)
533 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 534 {
6b50c0b0 535 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 536 xtensa_register_type_t type = reg->type;
6b50c0b0 537 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 538
bdb4c075 539 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
540 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
541 {
542 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
543 {
544 warning (_("cannot read register %s"),
d93859e2 545 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
546 return;
547 }
548 }
549
550 /* Some targets cannot read TIE register files. */
551 else if (type == xtRegisterTypeTieRegfile)
552 {
553 /* Use 'fetch' to get register? */
554 if (flags & xtTargetFlagsUseFetchStore)
555 {
556 warning (_("cannot read register"));
557 return;
558 }
559
560 /* On some targets (esp. simulators), we can always read the reg. */
561 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
562 {
563 warning (_("cannot read register"));
564 return;
565 }
566 }
567
568 /* We can always read mapped registers. */
569 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
570 {
9c9acae0 571 xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
572 return;
573 }
574
575 /* Assume that we can read the register. */
576 regcache_raw_read (regcache, regnum, buffer);
577 }
ca3bf3bd
DJ
578 else
579 internal_error (__FILE__, __LINE__,
580 _("invalid register number %d"), regnum);
581}
582
583
584/* Write pseudo registers. */
585
586static void
587xtensa_pseudo_register_write (struct gdbarch *gdbarch,
588 struct regcache *regcache,
589 int regnum,
590 const gdb_byte *buffer)
591{
592 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 593 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 594
6b50c0b0
UW
595 if (regnum == gdbarch_num_regs (gdbarch)
596 + gdbarch_num_pseudo_regs (gdbarch))
597 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
ca3bf3bd 598
bdb4c075 599 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
6b50c0b0
UW
600 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
601 && (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0)
602 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 603 {
ff7a4c00 604 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
ca3bf3bd
DJ
605 unsigned int wb;
606
304fe255 607 regcache_raw_read (regcache,
6b50c0b0 608 gdbarch_tdep (gdbarch)->wb_regnum, buf);
91d8eb23 609 regnum = areg_number (gdbarch, regnum, extract_unsigned_integer (buf, 4));
ca3bf3bd
DJ
610 }
611
612 /* We can always write 'core' registers.
613 Note: We might have converted Ax->ARy. */
6b50c0b0 614 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
ca3bf3bd
DJ
615 regcache_raw_write (regcache, regnum, buffer);
616
617 /* Pseudo registers. */
f57d151a 618 else if (regnum >= 0
6b50c0b0
UW
619 && regnum < gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch))
ca3bf3bd 621 {
6b50c0b0 622 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 623 xtensa_register_type_t type = reg->type;
6b50c0b0 624 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 625
bdb4c075
MG
626 /* On most targets, we cannot write registers
627 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
628 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
629 {
630 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
631 {
632 warning (_("cannot write register %s"),
d93859e2 633 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
634 return;
635 }
636 }
637
638 /* Some targets cannot read TIE register files. */
639 else if (type == xtRegisterTypeTieRegfile)
640 {
641 /* Use 'store' to get register? */
642 if (flags & xtTargetFlagsUseFetchStore)
643 {
644 warning (_("cannot write register"));
645 return;
646 }
647
648 /* On some targets (esp. simulators), we can always write
649 the register. */
ca3bf3bd
DJ
650 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
651 {
652 warning (_("cannot write register"));
653 return;
654 }
655 }
656
657 /* We can always write mapped registers. */
658 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
659 {
9c9acae0 660 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
661 return;
662 }
663
664 /* Assume that we can write the register. */
665 regcache_raw_write (regcache, regnum, buffer);
666 }
ca3bf3bd
DJ
667 else
668 internal_error (__FILE__, __LINE__,
669 _("invalid register number %d"), regnum);
670}
671
ca3bf3bd
DJ
672static struct reggroup *xtensa_ar_reggroup;
673static struct reggroup *xtensa_user_reggroup;
674static struct reggroup *xtensa_vectra_reggroup;
7b871568 675static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
676
677static void
678xtensa_init_reggroups (void)
679{
680 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
681 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
682 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 683
7b871568
MG
684 xtensa_cp[0] = reggroup_new ("cp0", USER_REGGROUP);
685 xtensa_cp[1] = reggroup_new ("cp1", USER_REGGROUP);
686 xtensa_cp[2] = reggroup_new ("cp2", USER_REGGROUP);
687 xtensa_cp[3] = reggroup_new ("cp3", USER_REGGROUP);
688 xtensa_cp[4] = reggroup_new ("cp4", USER_REGGROUP);
689 xtensa_cp[5] = reggroup_new ("cp5", USER_REGGROUP);
690 xtensa_cp[6] = reggroup_new ("cp6", USER_REGGROUP);
691 xtensa_cp[7] = reggroup_new ("cp7", USER_REGGROUP);
692}
ca3bf3bd
DJ
693
694static void
695xtensa_add_reggroups (struct gdbarch *gdbarch)
696{
7b871568
MG
697 int i;
698
699 /* Predefined groups. */
ca3bf3bd
DJ
700 reggroup_add (gdbarch, all_reggroup);
701 reggroup_add (gdbarch, save_reggroup);
702 reggroup_add (gdbarch, restore_reggroup);
703 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
704 reggroup_add (gdbarch, vector_reggroup);
705 reggroup_add (gdbarch, general_reggroup);
706 reggroup_add (gdbarch, float_reggroup);
707
708 /* Xtensa-specific groups. */
709 reggroup_add (gdbarch, xtensa_ar_reggroup);
710 reggroup_add (gdbarch, xtensa_user_reggroup);
711 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 712
7b871568
MG
713 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
714 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
715}
716
7b871568
MG
717static int
718xtensa_coprocessor_register_group (struct reggroup *group)
719{
720 int i;
721
722 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
723 if (group == xtensa_cp[i])
724 return i;
725
726 return -1;
727}
ca3bf3bd
DJ
728
729#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
730 | XTENSA_REGISTER_FLAGS_WRITABLE \
731 | XTENSA_REGISTER_FLAGS_VOLATILE)
732
733#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
734 | XTENSA_REGISTER_FLAGS_WRITABLE)
735
736static int
737xtensa_register_reggroup_p (struct gdbarch *gdbarch,
738 int regnum,
739 struct reggroup *group)
740{
6b50c0b0 741 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
742 xtensa_register_type_t type = reg->type;
743 xtensa_register_group_t rg = reg->group;
7b871568 744 int cp_number;
ca3bf3bd
DJ
745
746 /* First, skip registers that are not visible to this target
747 (unknown and unmapped registers when not using ISS). */
748
749 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
750 return 0;
751 if (group == all_reggroup)
752 return 1;
753 if (group == xtensa_ar_reggroup)
754 return rg & xtRegisterGroupAddrReg;
755 if (group == xtensa_user_reggroup)
756 return rg & xtRegisterGroupUser;
757 if (group == float_reggroup)
758 return rg & xtRegisterGroupFloat;
759 if (group == general_reggroup)
760 return rg & xtRegisterGroupGeneral;
761 if (group == float_reggroup)
762 return rg & xtRegisterGroupFloat;
763 if (group == system_reggroup)
764 return rg & xtRegisterGroupState;
765 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
766 return rg & xtRegisterGroupVectra;
767 if (group == save_reggroup || group == restore_reggroup)
6b50c0b0 768 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 769 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
7b871568
MG
770 if ((cp_number = xtensa_coprocessor_register_group (group)) >= 0)
771 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
772 else
773 return 1;
774}
775
776
ca3bf3bd
DJ
777/* Supply register REGNUM from the buffer specified by GREGS and LEN
778 in the general-purpose register set REGSET to register cache
bdb4c075 779 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
780
781static void
782xtensa_supply_gregset (const struct regset *regset,
783 struct regcache *rc,
784 int regnum,
785 const void *gregs,
786 size_t len)
787{
788 const xtensa_elf_gregset_t *regs = gregs;
6b50c0b0 789 struct gdbarch *gdbarch = get_regcache_arch (rc);
ca3bf3bd
DJ
790 int i;
791
792 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
793
6b50c0b0
UW
794 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
795 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
796 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
797 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
798 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
799 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
304fe255 800 (char *) &regs->windowbase);
6b50c0b0
UW
801 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
802 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
304fe255 803 (char *) &regs->windowstart);
6b50c0b0
UW
804 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
805 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
304fe255 806 (char *) &regs->lbeg);
6b50c0b0
UW
807 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
808 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
304fe255 809 (char *) &regs->lend);
6b50c0b0
UW
810 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
811 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
304fe255 812 (char *) &regs->lcount);
6b50c0b0
UW
813 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
814 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
304fe255 815 (char *) &regs->sar);
6b50c0b0
UW
816 if (regnum == gdbarch_tdep (gdbarch)->exccause_regnum || regnum == -1)
817 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->exccause_regnum,
304fe255 818 (char *) &regs->exccause);
6b50c0b0
UW
819 if (regnum == gdbarch_tdep (gdbarch)->excvaddr_regnum || regnum == -1)
820 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->excvaddr_regnum,
304fe255 821 (char *) &regs->excvaddr);
6b50c0b0
UW
822 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
823 && regnum < gdbarch_tdep (gdbarch)->ar_base
824 + gdbarch_tdep (gdbarch)->num_aregs)
304fe255
UW
825 regcache_raw_supply (rc, regnum,
826 (char *) &regs->ar[regnum - gdbarch_tdep
6b50c0b0 827 (gdbarch)->ar_base]);
ca3bf3bd
DJ
828 else if (regnum == -1)
829 {
6b50c0b0
UW
830 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
831 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
304fe255 832 (char *) &regs->ar[i]);
ca3bf3bd
DJ
833 }
834}
835
836
837/* Xtensa register set. */
838
839static struct regset
840xtensa_gregset =
841{
842 NULL,
843 xtensa_supply_gregset
844};
845
846
bdb4c075
MG
847/* Return the appropriate register set for the core
848 section identified by SECT_NAME and SECT_SIZE. */
ca3bf3bd
DJ
849
850static const struct regset *
851xtensa_regset_from_core_section (struct gdbarch *core_arch,
852 const char *sect_name,
853 size_t sect_size)
854{
855 DEBUGTRACE ("xtensa_regset_from_core_section "
856 "(..., sect_name==\"%s\", sect_size==%x) \n",
ec20a626 857 sect_name, (unsigned int) sect_size);
ca3bf3bd
DJ
858
859 if (strcmp (sect_name, ".reg") == 0
860 && sect_size >= sizeof(xtensa_elf_gregset_t))
861 return &xtensa_gregset;
862
863 return NULL;
864}
865
866
bdb4c075 867/* Handling frames. */
ca3bf3bd 868
bdb4c075
MG
869/* Number of registers to save in case of Windowed ABI. */
870#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 871
bdb4c075
MG
872/* Frame cache part for Windowed ABI. */
873typedef struct xtensa_windowed_frame_cache
ca3bf3bd 874{
ca3bf3bd
DJ
875 int wb; /* Base for this frame; -1 if not in regfile. */
876 int callsize; /* Call size to next frame. */
877 int ws;
878 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
879} xtensa_windowed_frame_cache_t;
880
881/* Call0 ABI Definitions. */
882
883#define C0_MAXOPDS 3 /* Maximum number of operands for prologue analysis. */
884#define C0_NREGS 16 /* Number of A-registers to track. */
885#define C0_CLESV 12 /* Callee-saved registers are here and up. */
886#define C0_SP 1 /* Register used as SP. */
887#define C0_FP 15 /* Register used as FP. */
888#define C0_RA 0 /* Register used as return address. */
889#define C0_ARGS 2 /* Register used as first arg/retval. */
890#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
891
892/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
893 A-register where the current content of the reg came from (in terms
894 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
895 mean that the orignal content of the register was saved to the stack.
896 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
897 know where SP will end up until the entire prologue has been analyzed. */
898
899#define C0_CONST -1 /* fr_reg value if register contains a constant. */
900#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
901#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
902
903extern xtensa_isa xtensa_default_isa;
904
905typedef struct xtensa_c0reg
906{
907 int fr_reg; /* original register from which register content
908 is derived, or C0_CONST, or C0_INEXP. */
909 int fr_ofs; /* constant offset from reg, or immediate value. */
910 int to_stk; /* offset from original SP to register (4-byte aligned),
911 or C0_NOSTK if register has not been saved. */
912} xtensa_c0reg_t;
913
914
915/* Frame cache part for Call0 ABI. */
916typedef struct xtensa_call0_frame_cache
917{
918 int c0_frmsz; /* Stack frame size. */
919 int c0_hasfp; /* Current frame uses frame pointer. */
920 int fp_regnum; /* A-register used as FP. */
921 int c0_fp; /* Actual value of frame pointer. */
922 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
923} xtensa_call0_frame_cache_t;
924
925typedef struct xtensa_frame_cache
926{
927 CORE_ADDR base; /* Stack pointer of the next frame. */
928 CORE_ADDR pc; /* PC at the entry point to the function. */
929 CORE_ADDR ra; /* The raw return address. */
930 CORE_ADDR ps; /* The PS register of the frame. */
931 CORE_ADDR prev_sp; /* Stack Pointer of the frame. */
932 int call0; /* It's a call0 framework (else windowed). */
933 union
934 {
935 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
936 xtensa_call0_frame_cache_t c0; /* call0 == true. */
937 };
ca3bf3bd
DJ
938} xtensa_frame_cache_t;
939
940
941static struct xtensa_frame_cache *
bdb4c075 942xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
943{
944 xtensa_frame_cache_t *cache;
945 int i;
946
947 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
948
949 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
950
951 cache->base = 0;
952 cache->pc = 0;
953 cache->ra = 0;
ca3bf3bd 954 cache->ps = 0;
ca3bf3bd 955 cache->prev_sp = 0;
bdb4c075
MG
956 cache->call0 = !windowed;
957 if (cache->call0)
958 {
959 cache->c0.c0_frmsz = -1;
960 cache->c0.c0_hasfp = 0;
961 cache->c0.fp_regnum = -1;
962 cache->c0.c0_fp = -1;
ca3bf3bd 963
bdb4c075
MG
964 for (i = 0; i < C0_NREGS; i++)
965 {
966 cache->c0.c0_rt[i].fr_reg = i;
967 cache->c0.c0_rt[i].fr_ofs = 0;
968 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
969 }
970 }
971 else
972 {
973 cache->wd.wb = 0;
974 cache->wd.callsize = -1;
ca3bf3bd 975
bdb4c075
MG
976 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
977 cache->wd.aregs[i] = -1;
978 }
ca3bf3bd
DJ
979 return cache;
980}
981
982
983static CORE_ADDR
984xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
985{
986 return address & ~15;
987}
988
989
990static CORE_ADDR
991xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
992{
ff7a4c00 993 gdb_byte buf[8];
ca3bf3bd
DJ
994
995 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
996
6b50c0b0 997 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
ca3bf3bd
DJ
998
999 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
1000 extract_typed_address (buf, builtin_type_void_func_ptr));
1001
1002 return extract_typed_address (buf, builtin_type_void_func_ptr);
1003}
1004
1005
1006static struct frame_id
1007xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1008{
1009 CORE_ADDR pc, fp;
ca3bf3bd 1010
bdb4c075 1011 /* next_frame->prev is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd
DJ
1012
1013 DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
1014
1015 pc = frame_pc_unwind (next_frame);
304fe255 1016 fp = frame_unwind_register_unsigned
6b50c0b0 1017 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1018
1019 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1020 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1021}
1022
bdb4c075
MG
1023/* The key values to identify the frame using "cache" are
1024
1025 cache->base = SP of this frame;
1026 cache->pc = entry-PC (entry point of the frame function);
1027 cache->prev_sp = SP of the previous frame.
1028*/
1029
1030static void
1031call0_frame_cache (struct frame_info *next_frame,
1032 xtensa_frame_cache_t *cache,
1033 CORE_ADDR pc);
ca3bf3bd
DJ
1034
1035static struct xtensa_frame_cache *
1036xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
1037{
1038 xtensa_frame_cache_t *cache;
ca3bf3bd 1039 CORE_ADDR ra, wb, ws, pc, sp, ps;
6b50c0b0
UW
1040 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1041 unsigned int ps_regnum = gdbarch_ps_regnum (gdbarch);
ca3bf3bd 1042 char op1;
bdb4c075 1043 int windowed;
ca3bf3bd
DJ
1044
1045 DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
1046 next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
1047
ca3bf3bd
DJ
1048 if (*this_cache)
1049 return *this_cache;
1050
bdb4c075
MG
1051 windowed = windowing_enabled (xtensa_read_register (ps_regnum));
1052
ca3bf3bd 1053 /* Get pristine xtensa-frame. */
bdb4c075 1054 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1055 *this_cache = cache;
1056
3e8c568d 1057 pc = frame_unwind_register_unsigned (next_frame,
6b50c0b0 1058 gdbarch_pc_regnum (gdbarch));
ca3bf3bd 1059
bdb4c075 1060 if (windowed)
ca3bf3bd 1061 {
bdb4c075 1062 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
304fe255 1063 wb = frame_unwind_register_unsigned
6b50c0b0 1064 (next_frame, gdbarch_tdep (gdbarch)->wb_regnum);
304fe255 1065 ws = frame_unwind_register_unsigned
6b50c0b0 1066 (next_frame, gdbarch_tdep (gdbarch)->ws_regnum);
bdb4c075 1067 ps = frame_unwind_register_unsigned (next_frame, ps_regnum);
ca3bf3bd 1068
bdb4c075 1069 op1 = read_memory_integer (pc, 1);
91d8eb23 1070 if (XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1071 {
bdb4c075 1072 int callinc = CALLINC (ps);
304fe255 1073 ra = frame_unwind_register_unsigned
6b50c0b0 1074 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 0 + callinc * 4);
bdb4c075
MG
1075
1076 DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
1077 (int)pc, callinc);
1078
1079 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1080 cache->wd.callsize = 0;
1081 cache->wd.wb = wb;
1082 cache->wd.ws = ws;
304fe255 1083 cache->prev_sp = frame_unwind_register_unsigned
6b50c0b0 1084 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
bdb4c075
MG
1085 }
1086 else
1087 {
304fe255 1088 ra = frame_unwind_register_unsigned
6b50c0b0 1089 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 0);
bdb4c075 1090 cache->wd.callsize = WINSIZE (ra);
304fe255 1091 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1092 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1093 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd
DJ
1094 }
1095
bdb4c075
MG
1096 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1097 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1098 cache->ps = (ps & ~PS_CALLINC_MASK)
1099 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1100
1101 if (cache->wd.ws == 0)
ca3bf3bd 1102 {
bdb4c075 1103 int i;
ca3bf3bd 1104
bdb4c075 1105 /* Set A0...A3. */
304fe255 1106 sp = frame_unwind_register_unsigned
6b50c0b0 1107 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1108
1109 for (i = 0; i < 4; i++, sp += 4)
1110 {
1111 cache->wd.aregs[i] = sp;
1112 }
ca3bf3bd 1113
bdb4c075 1114 if (cache->wd.callsize > 4)
ca3bf3bd 1115 {
bdb4c075
MG
1116 /* Set A4...A7/A11. */
1117 /* Read an SP of the previous frame. */
1118 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
1119 sp -= cache->wd.callsize * 4;
1120
1121 for ( /* i=4 */ ; i < cache->wd.callsize; i++, sp += 4)
1122 {
1123 cache->wd.aregs[i] = sp;
1124 }
ca3bf3bd
DJ
1125 }
1126 }
ca3bf3bd 1127
bdb4c075
MG
1128 if ((cache->prev_sp == 0) && ( ra != 0 ))
1129 /* If RA is equal to 0 this frame is an outermost frame. Leave
1130 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1131 {
bdb4c075
MG
1132 if (cache->wd.ws == 0)
1133 {
1134 /* Register window overflow already happened.
1135 We can read caller's SP from the proper spill loction. */
1136 cache->prev_sp =
1137 read_memory_integer (cache->wd.aregs[1],
6b50c0b0
UW
1138 register_size (gdbarch,
1139 gdbarch_tdep (gdbarch)->a0_base + 1));
bdb4c075
MG
1140 }
1141 else
1142 {
1143 /* Read caller's frame SP directly from the previous window. */
91d8eb23
MD
1144 int regnum = areg_number
1145 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1146 cache->wd.wb);
ca3bf3bd 1147
bdb4c075
MG
1148 cache->prev_sp = xtensa_read_register (regnum);
1149 }
ca3bf3bd
DJ
1150 }
1151 }
bdb4c075
MG
1152 else /* Call0 framework. */
1153 {
1154 call0_frame_cache (next_frame, cache, pc);
1155 }
ca3bf3bd 1156
304fe255 1157 cache->base = frame_unwind_register_unsigned
6b50c0b0 1158 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd 1159
ca3bf3bd
DJ
1160 return cache;
1161}
1162
ca3bf3bd
DJ
1163static void
1164xtensa_frame_this_id (struct frame_info *next_frame,
1165 void **this_cache,
1166 struct frame_id *this_id)
1167{
1168 struct xtensa_frame_cache *cache =
1169 xtensa_frame_cache (next_frame, this_cache);
bdb4c075 1170 struct frame_id id;
ca3bf3bd 1171
ec20a626
UW
1172 DEBUGTRACE ("xtensa_frame_this_id (next 0x%lx, *this 0x%lx)\n",
1173 (unsigned long) next_frame, (unsigned long) *this_cache);
ca3bf3bd
DJ
1174
1175 if (cache->prev_sp == 0)
1176 return;
1177
bdb4c075
MG
1178 id = frame_id_build (cache->prev_sp, cache->pc);
1179 if (frame_id_eq (id, get_frame_id(next_frame)))
1180 {
1181 warning(_("\
1182Frame stack is corrupted. That could happen because of \
1183setting register(s) from GDB or stopping execution \
1184inside exception handler. Frame backtracing has stopped. \
1185It can make some GDB commands work inappropriately.\n"));
1186 cache->prev_sp = 0;
1187 return;
1188 }
1189 (*this_id) = id;
ca3bf3bd
DJ
1190}
1191
bdb4c075
MG
1192static int
1193call0_frame_get_reg_at_entry (struct frame_info *next_frame,
1194 struct xtensa_frame_cache *cache,
1195 int regnum,
1196 CORE_ADDR *addrp,
1197 enum lval_type *lval,
1198 gdb_byte *valuep)
1199{
1200 CORE_ADDR fp, spe;
1201 int stkofs;
6b50c0b0
UW
1202 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1203 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1204 && regnum <= (gdbarch_tdep (gdbarch)->ar_base + C0_NREGS))
1205 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
bdb4c075
MG
1206
1207 /* Determine stack pointer on entry to this function, based on FP. */
1208 spe = cache->c0.c0_fp - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1209
1210 /* If register was saved to the stack frame in the prologue, retrieve it. */
1211 stkofs = cache->c0.c0_rt[reg].to_stk;
1212 if (stkofs != C0_NOSTK)
1213 {
1214 *lval = lval_memory;
1215 *addrp = spe + stkofs;
1216
1217 if (valuep)
6b50c0b0 1218 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
bdb4c075
MG
1219
1220 return 1;
1221 }
1222
1223 /* If not callee-saved or if known to have been overwritten, give up. */
1224 if (reg < C0_CLESV
1225 || cache->c0.c0_rt[reg].fr_reg != reg
1226 || cache->c0.c0_rt[reg].fr_ofs != 0)
1227 return 0;
1228
1229 if (get_frame_type (next_frame) != NORMAL_FRAME)
1230 /* TODO: Do we need a special case for DUMMY_FRAME here? */
1231 return 0;
1232
1233 return call0_frame_get_reg_at_entry (get_next_frame(next_frame),
1234 cache, regnum, addrp, lval, valuep);
1235}
ca3bf3bd
DJ
1236
1237static void
1238xtensa_frame_prev_register (struct frame_info *next_frame,
1239 void **this_cache,
1240 int regnum,
1241 int *optimizedp,
1242 enum lval_type *lvalp,
1243 CORE_ADDR *addrp,
1244 int *realnump,
1245 gdb_byte *valuep)
1246{
6b50c0b0 1247 struct gdbarch *gdbarch = get_frame_arch (next_frame);
ca3bf3bd
DJ
1248 struct xtensa_frame_cache *cache =
1249 xtensa_frame_cache (next_frame, this_cache);
1250 CORE_ADDR saved_reg = 0;
1251 int done = 1;
1252
ec20a626
UW
1253 DEBUGTRACE ("xtensa_frame_prev_register (next 0x%lx, "
1254 "*this 0x%lx, regnum %d (%s), ...)\n",
1255 (unsigned long) next_frame,
1256 *this_cache ? (unsigned long) *this_cache : 0, regnum,
d93859e2 1257 xtensa_register_name (gdbarch, regnum));
ca3bf3bd 1258
6b50c0b0 1259 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1260 saved_reg = cache->ra;
6b50c0b0 1261 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1262 saved_reg = cache->prev_sp;
1263 else if (!cache->call0)
ca3bf3bd 1264 {
6b50c0b0 1265 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
bdb4c075
MG
1266 {
1267 if (cache->wd.ws != 0)
1268 saved_reg = cache->wd.ws;
1269 else
1270 saved_reg = 1 << cache->wd.wb;
1271 }
6b50c0b0 1272 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1273 saved_reg = cache->wd.wb;
6b50c0b0 1274 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1275 saved_reg = cache->ps;
ca3bf3bd 1276 else
bdb4c075 1277 done = 0;
ca3bf3bd 1278 }
ca3bf3bd
DJ
1279 else
1280 done = 0;
1281
1282 if (done)
1283 {
1284 *optimizedp = 0;
1285 *lvalp = not_lval;
1286 *addrp = 0;
1287 *realnump = -1;
1288 if (valuep)
1289 store_unsigned_integer (valuep, 4, saved_reg);
1290
1291 return;
1292 }
1293
bdb4c075 1294 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1295 {
bdb4c075 1296 /* Convert A-register numbers to AR-register numbers. */
6b50c0b0
UW
1297 if (regnum >= gdbarch_tdep (gdbarch)->a0_base + 0
1298 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
91d8eb23 1299 regnum = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1300
bdb4c075 1301 /* Check if AR-register has been saved to stack. */
6b50c0b0
UW
1302 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1303 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1304 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1305 {
6b50c0b0 1306 int areg = regnum - gdbarch_tdep (gdbarch)->ar_base
304fe255 1307 - (cache->wd.wb * 4);
ca3bf3bd 1308
bdb4c075
MG
1309 if (areg >= 0
1310 && areg < XTENSA_NUM_SAVED_AREGS
1311 && cache->wd.aregs[areg] != -1)
1312 {
1313 *optimizedp = 0;
1314 *lvalp = lval_memory;
1315 *addrp = cache->wd.aregs[areg];
1316 *realnump = -1;
ca3bf3bd 1317
bdb4c075
MG
1318 if (valuep)
1319 read_memory (*addrp, valuep,
6b50c0b0 1320 register_size (gdbarch, regnum));
bdb4c075
MG
1321
1322 DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
1323 return;
1324 }
ca3bf3bd
DJ
1325 }
1326 }
bdb4c075
MG
1327 else /* Call0 ABI. */
1328 {
6b50c0b0
UW
1329 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1330 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1331 + C0_NREGS))
6b50c0b0 1332 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1333
bdb4c075
MG
1334 if (reg < C0_NREGS)
1335 {
1336 CORE_ADDR spe;
1337 int stkofs;
1338
1339 /* If register was saved in the prologue, retrieve it. */
1340 stkofs = cache->c0.c0_rt[reg].to_stk;
1341 if (stkofs != C0_NOSTK)
1342 {
1343 /* Determine SP on entry based on FP. */
1344 spe = cache->c0.c0_fp
1345 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1346 *optimizedp = 0;
1347 *lvalp = lval_memory;
1348 *addrp = spe + stkofs;
1349 *realnump = -1;
1350
1351 if (valuep)
1352 read_memory (*addrp, valuep,
6b50c0b0 1353 register_size (gdbarch, regnum));
bdb4c075
MG
1354
1355 DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
1356 return;
1357 }
1358 }
1359 }
1360
1361 /* All other registers have been either saved to
1362 the stack or are still alive in the processor. */
ca3bf3bd
DJ
1363
1364 *optimizedp = 0;
1365 *lvalp = lval_register;
1366 *addrp = 0;
1367 *realnump = regnum;
1368 if (valuep)
1369 frame_unwind_register (next_frame, (*realnump), valuep);
1370}
1371
1372
1373static const struct frame_unwind
1374xtensa_frame_unwind =
1375{
1376 NORMAL_FRAME,
1377 xtensa_frame_this_id,
1378 xtensa_frame_prev_register
1379};
1380
1381static const struct frame_unwind *
1382xtensa_frame_sniffer (struct frame_info *next_frame)
1383{
1384 return &xtensa_frame_unwind;
1385}
1386
1387static CORE_ADDR
1388xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
1389{
1390 struct xtensa_frame_cache *cache =
1391 xtensa_frame_cache (next_frame, this_cache);
1392
1393 return cache->base;
1394}
1395
1396static const struct frame_base
1397xtensa_frame_base =
1398{
1399 &xtensa_frame_unwind,
1400 xtensa_frame_base_address,
1401 xtensa_frame_base_address,
1402 xtensa_frame_base_address
1403};
1404
1405
1406static void
1407xtensa_extract_return_value (struct type *type,
1408 struct regcache *regcache,
1409 void *dst)
1410{
6b50c0b0 1411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
ca3bf3bd
DJ
1412 bfd_byte *valbuf = dst;
1413 int len = TYPE_LENGTH (type);
1414 ULONGEST pc, wb;
1415 int callsize, areg;
1416 int offset = 0;
1417
1418 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1419
1420 gdb_assert(len > 0);
1421
6b50c0b0 1422 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1423 {
1424 /* First, we have to find the caller window in the register file. */
6b50c0b0 1425 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1426 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1427
bdb4c075
MG
1428 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1429 if (len > (callsize > 8 ? 8 : 16))
1430 internal_error (__FILE__, __LINE__,
1431 _("cannot extract return value of %d bytes long"), len);
ca3bf3bd 1432
bdb4c075
MG
1433 /* Get the register offset of the return
1434 register (A2) in the caller window. */
304fe255 1435 regcache_raw_read_unsigned
6b50c0b0 1436 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
91d8eb23
MD
1437 areg = areg_number (gdbarch,
1438 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1439 }
1440 else
1441 {
1442 /* No windowing hardware - Call0 ABI. */
6b50c0b0 1443 areg = gdbarch_tdep (gdbarch)->a0_base + 0 + C0_ARGS;
bdb4c075 1444 }
ca3bf3bd
DJ
1445
1446 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1447
6b50c0b0 1448 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1449 offset = 4 - len;
1450
1451 for (; len > 0; len -= 4, areg++, valbuf += 4)
1452 {
1453 if (len < 4)
1454 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1455 else
1456 regcache_raw_read (regcache, areg, valbuf);
1457 }
1458}
1459
1460
1461static void
1462xtensa_store_return_value (struct type *type,
1463 struct regcache *regcache,
1464 const void *dst)
1465{
6b50c0b0 1466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
ca3bf3bd
DJ
1467 const bfd_byte *valbuf = dst;
1468 unsigned int areg;
1469 ULONGEST pc, wb;
1470 int callsize;
1471 int len = TYPE_LENGTH (type);
1472 int offset = 0;
1473
1474 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1475
6b50c0b0 1476 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1477 {
6b50c0b0
UW
1478 regcache_raw_read_unsigned
1479 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1480 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1481 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1482
bdb4c075
MG
1483 if (len > (callsize > 8 ? 8 : 16))
1484 internal_error (__FILE__, __LINE__,
1485 _("unimplemented for this length: %d"),
1486 TYPE_LENGTH (type));
91d8eb23
MD
1487 areg = areg_number (gdbarch,
1488 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1489
bdb4c075 1490 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1491 callsize, (int) wb);
bdb4c075
MG
1492 }
1493 else
1494 {
6b50c0b0 1495 areg = gdbarch_tdep (gdbarch)->a0_base + 0 + C0_ARGS;
bdb4c075 1496 }
ca3bf3bd 1497
6b50c0b0 1498 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1499 offset = 4 - len;
1500
ca3bf3bd
DJ
1501 for (; len > 0; len -= 4, areg++, valbuf += 4)
1502 {
1503 if (len < 4)
1504 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1505 else
1506 regcache_raw_write (regcache, areg, valbuf);
1507 }
1508}
1509
1510
bdb4c075 1511static enum return_value_convention
ca3bf3bd
DJ
1512xtensa_return_value (struct gdbarch *gdbarch,
1513 struct type *valtype,
1514 struct regcache *regcache,
1515 gdb_byte *readbuf,
1516 const gdb_byte *writebuf)
1517{
bdb4c075 1518 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1519
1520 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1521 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1522 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1523 && TYPE_LENGTH (valtype) > 16);
1524
1525 if (struct_return)
1526 return RETURN_VALUE_STRUCT_CONVENTION;
1527
1528 DEBUGTRACE ("xtensa_return_value(...)\n");
1529
1530 if (writebuf != NULL)
1531 {
1532 xtensa_store_return_value (valtype, regcache, writebuf);
1533 }
1534
1535 if (readbuf != NULL)
1536 {
1537 gdb_assert (!struct_return);
1538 xtensa_extract_return_value (valtype, regcache, readbuf);
1539 }
1540 return RETURN_VALUE_REGISTER_CONVENTION;
1541}
1542
1543
1544/* DUMMY FRAME */
1545
1546static CORE_ADDR
1547xtensa_push_dummy_call (struct gdbarch *gdbarch,
1548 struct value *function,
1549 struct regcache *regcache,
1550 CORE_ADDR bp_addr,
1551 int nargs,
1552 struct value **args,
1553 CORE_ADDR sp,
1554 int struct_return,
1555 CORE_ADDR struct_addr)
1556{
1557 int i;
1558 int size, onstack_size;
ff7a4c00 1559 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1560 CORE_ADDR ra, ps;
1561 struct argument_info
1562 {
1563 const bfd_byte *contents;
1564 int length;
1565 int onstack; /* onstack == 0 => in reg */
1566 int align; /* alignment */
1567 union
1568 {
1569 int offset; /* stack offset if on stack */
1570 int regno; /* regno if in register */
1571 } u;
1572 };
1573
1574 struct argument_info *arg_info =
1575 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1576
1577 CORE_ADDR osp = sp;
1578
1579 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1580
1581 if (xtensa_debug_level > 3)
1582 {
1583 int i;
1584 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1585 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1586 "struct_addr=0x%x\n",
1587 (int) sp, (int) struct_return, (int) struct_addr);
1588
1589 for (i = 0; i < nargs; i++)
1590 {
1591 struct value *arg = args[i];
1592 struct type *arg_type = check_typedef (value_type (arg));
ec20a626
UW
1593 fprintf_unfiltered (gdb_stdlog, "%2d: 0x%lx %3d ",
1594 i, (unsigned long) arg, TYPE_LENGTH (arg_type));
ca3bf3bd
DJ
1595 switch (TYPE_CODE (arg_type))
1596 {
1597 case TYPE_CODE_INT:
1598 fprintf_unfiltered (gdb_stdlog, "int");
1599 break;
1600 case TYPE_CODE_STRUCT:
1601 fprintf_unfiltered (gdb_stdlog, "struct");
1602 break;
1603 default:
1604 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1605 break;
1606 }
ec20a626
UW
1607 fprintf_unfiltered (gdb_stdlog, " 0x%lx\n",
1608 (unsigned long) value_contents (arg));
ca3bf3bd
DJ
1609 }
1610 }
1611
1612 /* First loop: collect information.
1613 Cast into type_long. (This shouldn't happen often for C because
1614 GDB already does this earlier.) It's possible that GDB could
1615 do it all the time but it's harmless to leave this code here. */
1616
1617 size = 0;
1618 onstack_size = 0;
1619 i = 0;
1620
1621 if (struct_return)
1622 size = REGISTER_SIZE;
1623
1624 for (i = 0; i < nargs; i++)
1625 {
1626 struct argument_info *info = &arg_info[i];
1627 struct value *arg = args[i];
1628 struct type *arg_type = check_typedef (value_type (arg));
1629
1630 switch (TYPE_CODE (arg_type))
1631 {
1632 case TYPE_CODE_INT:
1633 case TYPE_CODE_BOOL:
1634 case TYPE_CODE_CHAR:
1635 case TYPE_CODE_RANGE:
1636 case TYPE_CODE_ENUM:
1637
1638 /* Cast argument to long if necessary as the mask does it too. */
1639 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1640 {
1641 arg_type = builtin_type_long;
1642 arg = value_cast (arg_type, arg);
1643 }
bdb4c075
MG
1644 /* Aligment is equal to the type length for the basic types. */
1645 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1646 break;
1647
1648 case TYPE_CODE_FLT:
1649
1650 /* Align doubles correctly. */
1651 if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
1652 info->align = TYPE_LENGTH (builtin_type_double);
1653 else
1654 info->align = TYPE_LENGTH (builtin_type_long);
1655 break;
1656
1657 case TYPE_CODE_STRUCT:
1658 default:
1659 info->align = TYPE_LENGTH (builtin_type_long);
1660 break;
1661 }
1662 info->length = TYPE_LENGTH (arg_type);
1663 info->contents = value_contents (arg);
1664
1665 /* Align size and onstack_size. */
1666 size = (size + info->align - 1) & ~(info->align - 1);
1667 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1668
91d8eb23 1669 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1670 {
1671 info->onstack = 1;
1672 info->u.offset = onstack_size;
1673 onstack_size += info->length;
1674 }
1675 else
1676 {
1677 info->onstack = 0;
91d8eb23 1678 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1679 }
1680 size += info->length;
1681 }
1682
1683 /* Adjust the stack pointer and align it. */
1684 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1685
bdb4c075 1686 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1687 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1688 && (sp != osp))
ca3bf3bd
DJ
1689 {
1690 read_memory (osp - 16, buf, 16);
1691 write_memory (sp - 16, buf, 16);
1692 }
1693
1694 /* Second Loop: Load arguments. */
1695
1696 if (struct_return)
1697 {
1698 store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
91d8eb23 1699 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1700 }
1701
1702 for (i = 0; i < nargs; i++)
1703 {
1704 struct argument_info *info = &arg_info[i];
1705
1706 if (info->onstack)
1707 {
1708 int n = info->length;
1709 CORE_ADDR offset = sp + info->u.offset;
1710
1711 /* Odd-sized structs are aligned to the lower side of a memory
1712 word in big-endian mode and require a shift. This only
1713 applies for structures smaller than one word. */
1714
4c6b5505 1715 if (n < REGISTER_SIZE
6b50c0b0 1716 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1717 offset += (REGISTER_SIZE - n);
1718
1719 write_memory (offset, info->contents, info->length);
1720
1721 }
1722 else
1723 {
1724 int n = info->length;
1725 const bfd_byte *cp = info->contents;
1726 int r = info->u.regno;
1727
1728 /* Odd-sized structs are aligned to the lower side of registers in
1729 big-endian mode and require a shift. The odd-sized leftover will
1730 be at the end. Note that this is only true for structures smaller
1731 than REGISTER_SIZE; for larger odd-sized structures the excess
1732 will be left-aligned in the register on both endiannesses. */
1733
4c6b5505 1734 if (n < REGISTER_SIZE
6b50c0b0 1735 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1736 {
1737 ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
1738 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1739
1740 store_unsigned_integer (buf, REGISTER_SIZE, v);
1741 regcache_cooked_write (regcache, r, buf);
1742
1743 cp += REGISTER_SIZE;
1744 n -= REGISTER_SIZE;
1745 r++;
1746 }
1747 else
1748 while (n > 0)
1749 {
ca3bf3bd
DJ
1750 regcache_cooked_write (regcache, r, cp);
1751
ca3bf3bd
DJ
1752 cp += REGISTER_SIZE;
1753 n -= REGISTER_SIZE;
1754 r++;
1755 }
1756 }
1757 }
1758
ca3bf3bd 1759 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1760 The return address for the current function (in A0) is
ca3bf3bd
DJ
1761 saved in the dummy frame, so we can savely overwrite A0 here. */
1762
6b50c0b0 1763 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1764 {
1765 ra = (bp_addr & 0x3fffffff) | 0x40000000;
6b50c0b0 1766 regcache_raw_read (regcache, gdbarch_ps_regnum (gdbarch), buf);
bdb4c075 1767 ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
304fe255 1768 regcache_cooked_write_unsigned
6b50c0b0 1769 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1770 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1771 gdbarch_ps_regnum (gdbarch),
bdb4c075
MG
1772 ps | 0x00010000);
1773 }
1774 else
1775 {
1776 /* Simulate CALL0: write RA into A0 register. */
304fe255 1777 regcache_cooked_write_unsigned
6b50c0b0 1778 (regcache, gdbarch_tdep (gdbarch)->a0_base + 0, bp_addr);
bdb4c075 1779 }
ca3bf3bd
DJ
1780
1781 /* Set new stack pointer and return it. */
304fe255 1782 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1783 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1784 /* Make dummy frame ID unique by adding a constant. */
1785 return sp + SP_ALIGNMENT;
1786}
1787
1788
1789/* Return a breakpoint for the current location of PC. We always use
1790 the density version if we have density instructions (regardless of the
1791 current instruction at PC), and use regular instructions otherwise. */
1792
1793#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1794#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1795#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1796#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1797
bdb4c075 1798static const unsigned char *
67d57894
MD
1799xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1800 int *lenptr)
ca3bf3bd 1801{
ff7a4c00
MG
1802 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1803 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1804 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1805 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
ca3bf3bd
DJ
1806
1807 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1808
67d57894 1809 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
ca3bf3bd 1810 {
67d57894 1811 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1812 {
1813 *lenptr = sizeof (density_big_breakpoint);
1814 return density_big_breakpoint;
1815 }
1816 else
1817 {
1818 *lenptr = sizeof (density_little_breakpoint);
1819 return density_little_breakpoint;
1820 }
1821 }
1822 else
1823 {
67d57894 1824 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1825 {
1826 *lenptr = sizeof (big_breakpoint);
1827 return big_breakpoint;
1828 }
1829 else
1830 {
1831 *lenptr = sizeof (little_breakpoint);
1832 return little_breakpoint;
1833 }
1834 }
1835}
1836
bdb4c075
MG
1837/* Call0 ABI support routines. */
1838
1839/* Call0 opcode class. Opcodes are preclassified according to what they
1840 mean for Call0 prologue analysis, and their number of significant operands.
1841 The purpose of this is to simplify prologue analysis by separating
1842 instruction decoding (libisa) from the semantics of prologue analysis. */
1843
1844typedef enum {
1845 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
1846 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
1847 c0opc_flow, /* Flow control insn. */
1848 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
1849 c0opc_break, /* Debugger software breakpoints. */
1850 c0opc_add, /* Adding two registers. */
1851 c0opc_addi, /* Adding a register and an immediate. */
1852 c0opc_sub, /* Subtracting a register from a register. */
1853 c0opc_mov, /* Moving a register to a register. */
1854 c0opc_movi, /* Moving an immediate to a register. */
1855 c0opc_l32r, /* Loading a literal. */
1856 c0opc_s32i, /* Storing word at fixed offset from a base register. */
1857 c0opc_NrOf /* Number of opcode classifications. */
1858} xtensa_insn_kind;
1859
1860
1861/* Classify an opcode based on what it means for Call0 prologue analysis. */
1862
1863static xtensa_insn_kind
1864call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
1865{
1866 const char *opcname;
1867 xtensa_insn_kind opclass = c0opc_uninteresting;
1868
1869 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
1870
1871 /* Get opcode name and handle special classifications. */
1872
1873 opcname = xtensa_opcode_name (isa, opc);
1874
1875 if (opcname == NULL
1876 || strcasecmp (opcname, "ill") == 0
1877 || strcasecmp (opcname, "ill.n") == 0)
1878 opclass = c0opc_illegal;
1879 else if (strcasecmp (opcname, "break") == 0
1880 || strcasecmp (opcname, "break.n") == 0)
1881 opclass = c0opc_break;
1882 else if (strcasecmp (opcname, "entry") == 0)
1883 opclass = c0opc_entry;
1884 else if (xtensa_opcode_is_branch (isa, opc) > 0
1885 || xtensa_opcode_is_jump (isa, opc) > 0
1886 || xtensa_opcode_is_loop (isa, opc) > 0
1887 || xtensa_opcode_is_call (isa, opc) > 0
1888 || strcasecmp (opcname, "simcall") == 0
1889 || strcasecmp (opcname, "syscall") == 0)
1890 opclass = c0opc_flow;
1891
1892 /* Also, classify specific opcodes that need to be tracked. */
1893 else if (strcasecmp (opcname, "add") == 0
1894 || strcasecmp (opcname, "add.n") == 0)
1895 opclass = c0opc_add;
1896 else if (strcasecmp (opcname, "addi") == 0
1897 || strcasecmp (opcname, "addi.n") == 0
1898 || strcasecmp (opcname, "addmi") == 0)
1899 opclass = c0opc_addi;
1900 else if (strcasecmp (opcname, "sub") == 0)
1901 opclass = c0opc_sub;
1902 else if (strcasecmp (opcname, "mov.n") == 0
1903 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
1904 opclass = c0opc_mov;
1905 else if (strcasecmp (opcname, "movi") == 0
1906 || strcasecmp (opcname, "movi.n") == 0)
1907 opclass = c0opc_movi;
1908 else if (strcasecmp (opcname, "l32r") == 0)
1909 opclass = c0opc_l32r;
1910 else if (strcasecmp (opcname, "s32i") == 0
1911 || strcasecmp (opcname, "s32i.n") == 0)
1912 opclass = c0opc_s32i;
1913
1914 return opclass;
1915}
1916
1917/* Tracks register movement/mutation for a given operation, which may
1918 be within a bundle. Updates the destination register tracking info
1919 accordingly. The pc is needed only for pc-relative load instructions
1920 (eg. l32r). The SP register number is needed to identify stores to
1921 the stack frame. */
1922
1923static void
1924call0_track_op (xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
1925 xtensa_insn_kind opclass, int nods, unsigned odv[],
1926 CORE_ADDR pc, int spreg)
1927{
1928 unsigned litbase, litaddr, litval;
1929
1930 switch (opclass)
1931 {
1932 case c0opc_addi:
1933 /* 3 operands: dst, src, imm. */
1934 gdb_assert (nods == 3);
1935 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1936 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
1937 break;
1938 case c0opc_add:
1939 /* 3 operands: dst, src1, src2. */
1940 gdb_assert (nods == 3);
1941 if (src[odv[1]].fr_reg == C0_CONST)
1942 {
1943 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
1944 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
1945 }
1946 else if (src[odv[2]].fr_reg == C0_CONST)
1947 {
1948 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1949 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
1950 }
1951 else dst[odv[0]].fr_reg = C0_INEXP;
1952 break;
1953 case c0opc_sub:
1954 /* 3 operands: dst, src1, src2. */
1955 gdb_assert (nods == 3);
1956 if (src[odv[2]].fr_reg == C0_CONST)
1957 {
1958 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1959 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
1960 }
1961 else dst[odv[0]].fr_reg = C0_INEXP;
1962 break;
1963 case c0opc_mov:
1964 /* 2 operands: dst, src [, src]. */
1965 gdb_assert (nods == 2);
1966 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
1967 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
1968 break;
1969 case c0opc_movi:
1970 /* 2 operands: dst, imm. */
1971 gdb_assert (nods == 2);
1972 dst[odv[0]].fr_reg = C0_CONST;
1973 dst[odv[0]].fr_ofs = odv[1];
1974 break;
1975 case c0opc_l32r:
1976 /* 2 operands: dst, literal offset. */
1977 gdb_assert (nods == 2);
1978 /* litbase = xtensa_get_litbase (pc); can be also used. */
304fe255
UW
1979 litbase = (gdbarch_tdep (current_gdbarch)->litbase_regnum == -1)
1980 ? 0 : xtensa_read_register
1981 (gdbarch_tdep (current_gdbarch)->litbase_regnum);
bdb4c075
MG
1982 litaddr = litbase & 1
1983 ? (litbase & ~1) + (signed)odv[1]
1984 : (pc + 3 + (signed)odv[1]) & ~3;
1985 litval = read_memory_integer(litaddr, 4);
1986 dst[odv[0]].fr_reg = C0_CONST;
1987 dst[odv[0]].fr_ofs = litval;
1988 break;
1989 case c0opc_s32i:
1990 /* 3 operands: value, base, offset. */
1991 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
1992 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
1993 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
1994 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
1995 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
1996 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
1997 {
1998 /* ISA encoding guarantees alignment. But, check it anyway. */
1999 gdb_assert ((odv[2] & 3) == 0);
2000 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2001 }
2002 break;
2003 default:
2004 gdb_assert (0);
2005 }
2006}
2007
2008/* Analyze prologue of the function at start address to determine if it uses
2009 the Call0 ABI, and if so track register moves and linear modifications
2010 in the prologue up to the PC or just beyond the prologue, whichever is first.
2011 An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
2012 The prologue may overlap non-prologue instructions but is guaranteed to end
2013 by the first flow-control instruction (jump, branch, call or return).
2014 Since an optimized function may move information around and change the
2015 stack frame arbitrarily during the prologue, the information is guaranteed
2016 valid only at the point in the function indicated by the PC.
2017 May be used to skip the prologue or identify the ABI, w/o tracking.
2018
2019 Returns: Address of first instruction after prologue, or PC (whichever
2020 is first), or 0, if decoding failed (in libisa).
2021 Input args:
2022 start Start address of function/prologue.
2023 pc Program counter to stop at. Use 0 to continue to end of prologue.
2024 If 0, avoids infinite run-on in corrupt code memory by bounding
2025 the scan to the end of the function if that can be determined.
2026 nregs Number of general registers to track (size of rt[] array).
2027 InOut args:
2028 rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
2029 If NULL, registers are not tracked.
2030 Output args:
2031 call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
2032 (more accurately, non-zero until 'entry' insn is encountered).
2033
2034 Note that these may produce useful results even if decoding fails
2035 because they begin with default assumptions that analysis may change. */
2036
2037static CORE_ADDR
2038call0_analyze_prologue (CORE_ADDR start, CORE_ADDR pc,
2039 int nregs, xtensa_c0reg_t rt[], int *call0)
2040{
2041 CORE_ADDR ia; /* Current insn address in prologue. */
2042 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2043 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2044 #define BSZ 32 /* Instruction buffer size. */
2045 char ibuf[BSZ]; /* Instruction buffer for decoding prologue. */
2046 xtensa_isa isa; /* libisa ISA handle. */
2047 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2048 xtensa_format ifmt; /* libisa instruction format. */
2049 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2050 xtensa_opcode opc; /* Opcode in current slot. */
2051 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2052 int nods; /* Opcode number of operands. */
2053 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2054 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2055 int j; /* General loop counter. */
2056 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2057 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2058 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2059
2060 struct symtab_and_line prologue_sal;
2061
2062 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2063 (int)start, (int)pc);
2064
2065 /* Try to limit the scan to the end of the function if a non-zero pc
2066 arg was not supplied to avoid probing beyond the end of valid memory.
2067 If memory is full of garbage that classifies as c0opc_uninteresting.
2068 If this fails (eg. if no symbols) pc ends up 0 as it was.
2069 Intialize the Call0 frame and register tracking info.
2070 Assume it's Call0 until an 'entry' instruction is encountered.
2071 Assume we may be in the prologue until we hit a flow control instr. */
2072
2073 rtmp = NULL;
2074 body_pc = INT_MAX;
2075 end_pc = 0;
2076
2077 /* Find out, if we have an information about the prologue from DWARF. */
2078 prologue_sal = find_pc_line (start, 0);
2079 if (prologue_sal.line != 0) /* Found debug info. */
2080 body_pc = prologue_sal.end;
2081
2082 /* If we are going to analyze the prologue in general without knowing about
2083 the current PC, make the best assumtion for the end of the prologue. */
2084 if (pc == 0)
2085 {
2086 find_pc_partial_function (start, 0, NULL, &end_pc);
2087 body_pc = min (end_pc, body_pc);
2088 }
2089 else
2090 body_pc = min (pc, body_pc);
2091
2092 if (call0 != NULL)
2093 *call0 = 1;
2094
2095 if (rt != NULL)
2096 {
2097 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2098 /* rt is already initialized in xtensa_alloc_frame_cache(). */
2099 }
2100 else nregs = 0;
2101
2102 isa = xtensa_default_isa;
2103 gdb_assert (BSZ >= xtensa_isa_maxlength (isa));
2104 ins = xtensa_insnbuf_alloc (isa);
2105 slot = xtensa_insnbuf_alloc (isa);
2106
2107 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2108 {
2109 /* (Re)fill instruction buffer from memory if necessary, but do not
2110 read memory beyond PC to be sure we stay within text section
2111 (this protection only works if a non-zero pc is supplied). */
2112
2113 if (ia + xtensa_isa_maxlength (isa) > bt)
2114 {
2115 ba = ia;
2116 bt = (ba + BSZ) < body_pc ? ba + BSZ : body_pc;
2117 read_memory (ba, ibuf, bt - ba);
2118 }
2119
2120 /* Decode format information. */
2121
2122 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2123 ifmt = xtensa_format_decode (isa, ins);
2124 if (ifmt == XTENSA_UNDEFINED)
2125 {
2126 fail = 1;
2127 goto done;
2128 }
2129 ilen = xtensa_format_length (isa, ifmt);
2130 if (ilen == XTENSA_UNDEFINED)
2131 {
2132 fail = 1;
2133 goto done;
2134 }
2135 islots = xtensa_format_num_slots (isa, ifmt);
2136 if (islots == XTENSA_UNDEFINED)
2137 {
2138 fail = 1;
2139 goto done;
2140 }
2141
2142 /* Analyze a bundle or a single instruction, using a snapshot of
2143 the register tracking info as input for the entire bundle so that
2144 register changes do not take effect within this bundle. */
ca3bf3bd 2145
bdb4c075
MG
2146 for (j = 0; j < nregs; ++j)
2147 rtmp[j] = rt[j];
2148
2149 for (is = 0; is < islots; ++is)
2150 {
2151 /* Decode a slot and classify the opcode. */
2152
2153 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2154 if (fail)
2155 goto done;
2156
2157 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2158 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2159 (unsigned)ia, opc);
2160 if (opc == XTENSA_UNDEFINED)
2161 opclass = c0opc_illegal;
2162 else
2163 opclass = call0_classify_opcode (isa, opc);
2164
2165 /* Decide whether to track this opcode, ignore it, or bail out. */
2166
2167 switch (opclass)
2168 {
2169 case c0opc_illegal:
2170 case c0opc_break:
2171 fail = 1;
2172 goto done;
2173
2174 case c0opc_uninteresting:
2175 continue;
2176
2177 case c0opc_flow:
2178 goto done;
2179
2180 case c0opc_entry:
2181 if (call0 != NULL)
2182 *call0 = 0;
2183 ia += ilen; /* Skip over 'entry' insn. */
2184 goto done;
2185
2186 default:
2187 if (call0 != NULL)
2188 *call0 = 1;
2189 }
2190
2191 /* Only expected opcodes should get this far. */
2192 if (rt == NULL)
2193 continue;
2194
2195 /* Extract and decode the operands. */
2196 nods = xtensa_opcode_num_operands (isa, opc);
2197 if (nods == XTENSA_UNDEFINED)
2198 {
2199 fail = 1;
2200 goto done;
2201 }
2202
2203 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2204 {
2205 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2206 is, slot, &odv[j]);
2207 if (fail)
2208 goto done;
2209
2210 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2211 if (fail)
2212 goto done;
2213 }
2214
2215 /* Check operands to verify use of 'mov' assembler macro. */
2216 if (opclass == c0opc_mov && nods == 3)
2217 {
2218 if (odv[2] == odv[1])
2219 nods = 2;
2220 else
2221 {
2222 opclass = c0opc_uninteresting;
2223 continue;
2224 }
2225 }
2226
2227 /* Track register movement and modification for this operation. */
2228 call0_track_op (rt, rtmp, opclass, nods, odv, ia, 1);
2229 }
2230 }
2231done:
2232 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2233 (unsigned)ia, fail ? "failed" : "succeeded");
2234 xtensa_insnbuf_free(isa, slot);
2235 xtensa_insnbuf_free(isa, ins);
2236 return fail ? 0 : ia;
2237}
2238
2239/* Initialize frame cache for the current frame. The "next_frame" is the next
2240 one relative to current frame. "cache" is the pointer to the data structure
2241 we have to initialize. "pc" is curretnt PC. */
2242
2243static void
2244call0_frame_cache (struct frame_info *next_frame,
2245 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2246{
6b50c0b0 2247 struct gdbarch *gdbarch = get_frame_arch (next_frame);
bdb4c075
MG
2248 CORE_ADDR start_pc; /* The beginning of the function. */
2249 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2250 CORE_ADDR sp, fp, ra;
2251 int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
2252
2253 /* Find the beginning of the prologue of the function containing the PC
2254 and analyze it up to the PC or the end of the prologue. */
2255
2256 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2257 {
2258 body_pc = call0_analyze_prologue (start_pc, pc, C0_NREGS,
2259 &cache->c0.c0_rt[0],
2260 &cache->call0);
2261 }
2262
304fe255 2263 sp = frame_unwind_register_unsigned
6b50c0b0 2264 (next_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
bdb4c075
MG
2265 fp = sp; /* Assume FP == SP until proven otherwise. */
2266
2267 /* Get the frame information and FP (if used) at the current PC.
2268 If PC is in the prologue, the prologue analysis is more reliable
2269 than DWARF info. We don't not know for sure if PC is in the prologue,
2270 but we know no calls have yet taken place, so we can almost
2271 certainly rely on the prologue analysis. */
2272
2273 if (body_pc <= pc)
2274 {
2275 /* Prologue analysis was successful up to the PC.
2276 It includes the cases when PC == START_PC. */
2277 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2278 /* c0_hasfp == true means there is a frame pointer because
2279 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2280 was derived from SP. Otherwise, it would be C0_FP. */
2281 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2282 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2283 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2284 }
2285 else /* No data from the prologue analysis. */
2286 {
2287 c0_hasfp = 0;
6b50c0b0 2288 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2289 c0_frmsz = 0;
2290 start_pc = pc;
2291 }
2292
2293 prev_sp = fp + c0_frmsz;
2294
2295 /* Frame size from debug info or prologue tracking does not account for
2296 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2297 if (c0_hasfp)
2298 {
2299 fp = frame_unwind_register_unsigned (next_frame, fp_regnum);
2300
2301 /* Recalculate previous SP. */
2302 prev_sp = fp + c0_frmsz;
2303 /* Update the stack frame size. */
2304 c0_frmsz += fp - sp;
2305 }
2306
2307 /* Get the return address (RA) from the stack if saved,
2308 or try to get it from a register. */
2309
2310 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2311 if (to_stk != C0_NOSTK)
2312 ra = (CORE_ADDR)
2313 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk, 4);
2314
2315 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2316 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2317 {
2318 /* Special case for terminating backtrace at a function that wants to
2319 be seen as the outermost. Such a function will clear it's RA (A0)
2320 register to 0 in the prologue instead of saving its original value. */
2321 ra = 0;
2322 }
2323 else
2324 {
2325 /* RA was copied to another register or (before any function call) may
2326 still be in the original RA register. This is not always reliable:
2327 even in a leaf function, register tracking stops after prologue, and
2328 even in prologue, non-prologue instructions (not tracked) may overwrite
2329 RA or any register it was copied to. If likely in prologue or before
2330 any call, use retracking info and hope for the best (compiler should
2331 have saved RA in stack if not in a leaf function). If not in prologue,
2332 too bad. */
2333
2334 int i;
2335 for (i = 0;
2336 (i < C0_NREGS) &&
2337 (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2338 ++i);
2339 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2340 i = C0_RA;
2341 if (i < C0_NREGS) /* Read from the next_frame. */
2342 {
304fe255
UW
2343 ra = frame_unwind_register_unsigned
2344 (next_frame,
6b50c0b0 2345 gdbarch_tdep (gdbarch)->a0_base + 0
304fe255 2346 + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2347 }
2348 else ra = 0;
2349 }
2350
2351 cache->pc = start_pc;
2352 cache->ra = ra;
2353 /* RA == 0 marks the outermost frame. Do not go past it. */
2354 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2355 cache->c0.fp_regnum = fp_regnum;
2356 cache->c0.c0_frmsz = c0_frmsz;
2357 cache->c0.c0_hasfp = c0_hasfp;
2358 cache->c0.c0_fp = fp;
2359}
2360
2361
2362/* Skip function prologue.
2363
2364 Return the pc of the first instruction after prologue. GDB calls this to
2365 find the address of the first line of the function or (if there is no line
2366 number information) to skip the prologue for planting breakpoints on
2367 function entries. Use debug info (if present) or prologue analysis to skip
2368 the prologue to achieve reliable debugging behavior. For windowed ABI,
2369 only the 'entry' instruction is skipped. It is not strictly necessary to
2370 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2371 backtrace at any point in the prologue, however certain potential hazards
2372 are avoided and a more "normal" debugging experience is ensured by
2373 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2374 For example, if we don't skip the prologue:
2375 - Some args may not yet have been saved to the stack where the debug
2376 info expects to find them (true anyway when only 'entry' is skipped);
2377 - Software breakpoints ('break' instrs) may not have been unplanted
2378 when the prologue analysis is done on initializing the frame cache,
2379 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2380
2381 If we have debug info ( line-number info, in particular ) we simply skip
2382 the code associated with the first function line effectively skipping
bdb4c075 2383 the prologue code. It works even in cases like
ca3bf3bd
DJ
2384
2385 int main()
2386 { int local_var = 1;
2387 ....
2388 }
2389
2390 because, for this source code, both Xtensa compilers will generate two
2391 separate entries ( with the same line number ) in dwarf line-number
2392 section to make sure there is a boundary between the prologue code and
2393 the rest of the function.
2394
bdb4c075
MG
2395 If there is no debug info, we need to analyze the code. */
2396
2397/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd
DJ
2398
2399CORE_ADDR
2400xtensa_skip_prologue (CORE_ADDR start_pc)
2401{
bdb4c075
MG
2402 struct symtab_and_line prologue_sal;
2403 CORE_ADDR body_pc;
2404
ca3bf3bd
DJ
2405 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2406
bdb4c075
MG
2407#if DONT_SKIP_PROLOGUE
2408 return start_pc;
2409#endif
2410
2411 /* Try to find first body line from debug info. */
2412
2413 prologue_sal = find_pc_line (start_pc, 0);
2414 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 2415 {
bdb4c075
MG
2416 /* In Call0, it is possible to have a function with only one instruction
2417 ('ret') resulting from a 1-line optimized function that does nothing.
2418 In that case, prologue_sal.end may actually point to the start of the
2419 next function in the text section, causing a breakpoint to be set at
2420 the wrong place. Check if the end address is in a different function,
2421 and if so return the start PC. We know we have symbol info. */
ca3bf3bd 2422
bdb4c075
MG
2423 CORE_ADDR end_func;
2424
2425 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
2426 if (end_func != start_pc)
ca3bf3bd
DJ
2427 return start_pc;
2428
bdb4c075 2429 return prologue_sal.end;
ca3bf3bd 2430 }
ca3bf3bd 2431
bdb4c075
MG
2432 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
2433 body_pc = call0_analyze_prologue(start_pc, 0, 0, NULL, NULL);
2434 return body_pc != 0 ? body_pc : start_pc;
2435}
ca3bf3bd
DJ
2436
2437/* Verify the current configuration. */
ca3bf3bd
DJ
2438static void
2439xtensa_verify_config (struct gdbarch *gdbarch)
2440{
2441 struct ui_file *log;
2442 struct cleanup *cleanups;
2443 struct gdbarch_tdep *tdep;
2444 long dummy;
2445 char *buf;
2446
2447 tdep = gdbarch_tdep (gdbarch);
2448 log = mem_fileopen ();
2449 cleanups = make_cleanup_ui_file_delete (log);
2450
2451 /* Verify that we got a reasonable number of AREGS. */
2452 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
bdb4c075
MG
2453 fprintf_unfiltered (log, _("\
2454\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
2455 tdep->num_aregs);
ca3bf3bd
DJ
2456
2457 /* Verify that certain registers exist. */
bdb4c075 2458
ca3bf3bd 2459 if (tdep->pc_regnum == -1)
bdb4c075
MG
2460 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
2461 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
2462 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
2463
2464 if (tdep->isa_use_windowed_registers)
2465 {
2466 if (tdep->wb_regnum == -1)
2467 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
2468 if (tdep->ws_regnum == -1)
2469 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
2470 if (tdep->ar_base == -1)
2471 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
2472 }
2473
ca3bf3bd 2474 if (tdep->a0_base == -1)
bdb4c075 2475 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
ca3bf3bd
DJ
2476
2477 buf = ui_file_xstrdup (log, &dummy);
2478 make_cleanup (xfree, buf);
2479 if (strlen (buf) > 0)
2480 internal_error (__FILE__, __LINE__,
2481 _("the following are invalid: %s"), buf);
2482 do_cleanups (cleanups);
2483}
2484
ca3bf3bd
DJ
2485/* Module "constructor" function. */
2486
2487static struct gdbarch *
2488xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2489{
2490 struct gdbarch_tdep *tdep;
2491 struct gdbarch *gdbarch;
2492 struct xtensa_abi_handler *abi_handler;
2493
2494 DEBUGTRACE ("gdbarch_init()\n");
2495
2496 /* We have to set the byte order before we call gdbarch_alloc. */
2497 info.byte_order = xtensa_config_byte_order (&info);
2498
2499 tdep = xtensa_config_tdep (&info);
2500 gdbarch = gdbarch_alloc (&info, tdep);
2501
2502 /* Verify our configuration. */
2503 xtensa_verify_config (gdbarch);
2504
bdb4c075 2505 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
2506 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
2507 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
2508
2509 /* Set target information. */
2510 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
2511 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
2512 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
2513 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2514 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
2515
2516 /* Renumber registers for known formats (stab, dwarf, and dwarf2). */
2517 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2518 set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2519 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
2520
2521 /* We provide our own function to get register information. */
2522 set_gdbarch_register_name (gdbarch, xtensa_register_name);
2523 set_gdbarch_register_type (gdbarch, xtensa_register_type);
2524
2525 /* To call functions from GDB using dummy frame */
2526 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
2527
2528 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2529
2530 set_gdbarch_return_value (gdbarch, xtensa_return_value);
2531
2532 /* Advance PC across any prologue instructions to reach "real" code. */
2533 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
2534
2535 /* Stack grows downward. */
2536 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2537
2538 /* Set breakpoints. */
2539 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
2540
2541 /* After breakpoint instruction or illegal instruction, pc still
2542 points at break instruction, so don't decrement. */
2543 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2544
2545 /* We don't skip args. */
2546 set_gdbarch_frame_args_skip (gdbarch, 0);
2547
2548 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
2549
2550 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
2551
2552 set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
2553
2554 /* Frame handling. */
2555 frame_base_set_default (gdbarch, &xtensa_frame_base);
2556 frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
2557
2558 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
2559
2560 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2561
2562 xtensa_add_reggroups (gdbarch);
2563 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
2564
2565 set_gdbarch_regset_from_core_section (gdbarch,
2566 xtensa_regset_from_core_section);
2567
2568 return gdbarch;
2569}
2570
ca3bf3bd 2571static void
6b50c0b0 2572xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
2573{
2574 error (_("xtensa_dump_tdep(): not implemented"));
2575}
2576
ca3bf3bd
DJ
2577void
2578_initialize_xtensa_tdep (void)
2579{
2580 struct cmd_list_element *c;
2581
2582 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
2583 xtensa_init_reggroups ();
2584
2585 add_setshow_zinteger_cmd ("xtensa",
2586 class_maintenance,
2587 &xtensa_debug_level, _("\
2588Set Xtensa debugging."), _("\
2589Show Xtensa debugging."), _("\
2590When non-zero, Xtensa-specific debugging is enabled. \
2591Can be 1, 2, 3, or 4 indicating the level of debugging."),
2592 NULL,
2593 NULL,
2594 &setdebuglist, &showdebuglist);
2595}
This page took 0.238323 seconds and 4 git commands to generate.