Update copyright year range in all GDB files.
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
CommitLineData
ca3bf3bd
DJ
1/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
b811d2c2 3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
ca3bf3bd
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
ca3bf3bd
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
ca3bf3bd
DJ
19
20#include "defs.h"
21#include "frame.h"
ee967b5f 22#include "solib-svr4.h"
ca3bf3bd
DJ
23#include "symtab.h"
24#include "symfile.h"
25#include "objfiles.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "dis-asm.h"
30#include "inferior.h"
40045d91 31#include "osabi.h"
ca3bf3bd
DJ
32#include "regcache.h"
33#include "reggroups.h"
34#include "regset.h"
35
36#include "dummy-frame.h"
fa8f86ff 37#include "dwarf2.h"
ca3bf3bd
DJ
38#include "dwarf2-frame.h"
39#include "dwarf2loc.h"
ca3bf3bd
DJ
40#include "frame-base.h"
41#include "frame-unwind.h"
42
43#include "arch-utils.h"
44#include "gdbarch.h"
45#include "remote.h"
46#include "serial.h"
47
48#include "command.h"
49#include "gdbcmd.h"
ca3bf3bd 50
bdb4c075 51#include "xtensa-isa.h"
ca3bf3bd 52#include "xtensa-tdep.h"
94a0e877 53#include "xtensa-config.h"
325fac50 54#include <algorithm>
ca3bf3bd
DJ
55
56
ccce17b0 57static unsigned int xtensa_debug_level = 0;
ca3bf3bd
DJ
58
59#define DEBUGWARN(args...) \
60 if (xtensa_debug_level > 0) \
61 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
62
63#define DEBUGINFO(args...) \
64 if (xtensa_debug_level > 1) \
65 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
66
67#define DEBUGTRACE(args...) \
68 if (xtensa_debug_level > 2) \
69 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
70
71#define DEBUGVERB(args...) \
72 if (xtensa_debug_level > 3) \
73 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
74
75
76/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
ca3bf3bd
DJ
77#define SP_ALIGNMENT 16
78
79
bdb4c075
MG
80/* On Windowed ABI, we use a6 through a11 for passing arguments
81 to a function called by GDB because CALL4 is used. */
bdb4c075
MG
82#define ARGS_NUM_REGS 6
83#define REGISTER_SIZE 4
ca3bf3bd 84
ca3bf3bd 85
bdb4c075
MG
86/* Extract the call size from the return address or PS register. */
87#define PS_CALLINC_SHIFT 16
88#define PS_CALLINC_MASK 0x00030000
89#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
90#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
ca3bf3bd 91
98689b25
MG
92/* On TX, hardware can be configured without Exception Option.
93 There is no PS register in this case. Inside XT-GDB, let us treat
94 it as a virtual read-only register always holding the same value. */
95#define TX_PS 0x20
96
bdb4c075 97/* ABI-independent macros. */
91d8eb23
MD
98#define ARG_NOF(gdbarch) \
99 (gdbarch_tdep (gdbarch)->call_abi \
100 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
101#define ARG_1ST(gdbarch) \
102 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
94a0e877 103 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
91d8eb23 104 : (gdbarch_tdep (gdbarch)->a0_base + 6))
ca3bf3bd 105
ca3bf3bd
DJ
106/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
107 indicates that the instruction is an ENTRY instruction. */
108
91d8eb23
MD
109#define XTENSA_IS_ENTRY(gdbarch, op1) \
110 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
4c6b5505 111 ? ((op1) == 0x6c) : ((op1) == 0x36))
ca3bf3bd 112
bdb4c075 113#define XTENSA_ENTRY_LENGTH 3
ca3bf3bd
DJ
114
115/* windowing_enabled() returns true, if windowing is enabled.
116 WOE must be set to 1; EXCM to 0.
117 Note: We assume that EXCM is always 0 for XEA1. */
118
bdb4c075
MG
119#define PS_WOE (1<<18)
120#define PS_EXC (1<<4)
121
0dd5cbc5
AH
122/* Big enough to hold the size of the largest register in bytes. */
123#define XTENSA_MAX_REGISTER_SIZE 64
124
b801de47 125static int
98689b25
MG
126windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
127{
128 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
129 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
130 return 0;
131
132 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
133}
134
581e13c1
MS
135/* Convert a live A-register number to the corresponding AR-register
136 number. */
91d8eb23 137static int
ee967b5f 138arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
91d8eb23
MD
139{
140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ee967b5f 141 int arreg;
91d8eb23 142
ee967b5f
MG
143 arreg = a_regnum - tdep->a0_base;
144 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
145 arreg &= tdep->num_aregs - 1;
91d8eb23 146
ee967b5f
MG
147 return arreg + tdep->ar_base;
148}
149
150/* Convert a live AR-register number to the corresponding A-register order
151 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
152static int
153areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156 int areg;
157
158 areg = ar_regnum - tdep->ar_base;
159 if (areg < 0 || areg >= tdep->num_aregs)
160 return -1;
161 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
162 return (areg > 15) ? -1 : areg;
91d8eb23
MD
163}
164
68d6df83 165/* Read Xtensa register directly from the hardware. */
b801de47 166static unsigned long
08b9c608
MG
167xtensa_read_register (int regnum)
168{
169 ULONGEST value;
170
171 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
172 return (unsigned long) value;
173}
174
68d6df83 175/* Write Xtensa register directly to the hardware. */
b801de47 176static void
08b9c608
MG
177xtensa_write_register (int regnum, ULONGEST value)
178{
179 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
180}
181
ca3bf3bd
DJ
182/* Return the window size of the previous call to the function from which we
183 have just returned.
184
185 This function is used to extract the return value after a called function
bdb4c075 186 has returned to the caller. On Xtensa, the register that holds the return
ca3bf3bd
DJ
187 value (from the perspective of the caller) depends on what call
188 instruction was used. For now, we are assuming that the call instruction
189 precedes the current address, so we simply analyze the call instruction.
190 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
191 method to call the inferior function. */
192
193static int
91d8eb23 194extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
ca3bf3bd 195{
e17a4113 196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075 197 int winsize = 4;
ca3bf3bd 198 int insn;
ff7a4c00 199 gdb_byte buf[4];
ca3bf3bd
DJ
200
201 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
202
203 /* Read the previous instruction (should be a call[x]{4|8|12}. */
204 read_memory (pc-3, buf, 3);
e17a4113 205 insn = extract_unsigned_integer (buf, 3, byte_order);
ca3bf3bd
DJ
206
207 /* Decode call instruction:
208 Little Endian
209 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
210 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
211 Big Endian
212 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
213 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
214
e17a4113 215 if (byte_order == BFD_ENDIAN_LITTLE)
ca3bf3bd
DJ
216 {
217 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
bdb4c075 218 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
219 }
220 else
221 {
222 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
bdb4c075 223 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
ca3bf3bd
DJ
224 }
225 return winsize;
226}
227
228
229/* REGISTER INFORMATION */
230
08b9c608
MG
231/* Find register by name. */
232static int
a121b7c1 233xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
08b9c608
MG
234{
235 int i;
236
f6efe3f8 237 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
08b9c608
MG
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243}
244
ca3bf3bd 245/* Returns the name of a register. */
ca3bf3bd 246static const char *
d93859e2 247xtensa_register_name (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
248{
249 /* Return the name stored in the register map. */
f6efe3f8 250 if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
d93859e2 251 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
ca3bf3bd 252
ca3bf3bd
DJ
253 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
254 return 0;
255}
256
ca3bf3bd
DJ
257/* Return the type of a register. Create a new type, if necessary. */
258
ca3bf3bd
DJ
259static struct type *
260xtensa_register_type (struct gdbarch *gdbarch, int regnum)
261{
df4df182
UW
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
ca3bf3bd 264 /* Return signed integer for ARx and Ax registers. */
df4df182
UW
265 if ((regnum >= tdep->ar_base
266 && regnum < tdep->ar_base + tdep->num_aregs)
267 || (regnum >= tdep->a0_base
268 && regnum < tdep->a0_base + 16))
0dfff4cb 269 return builtin_type (gdbarch)->builtin_int;
ca3bf3bd 270
6b50c0b0 271 if (regnum == gdbarch_pc_regnum (gdbarch)
df4df182 272 || regnum == tdep->a0_base + 1)
fde6c819 273 return builtin_type (gdbarch)->builtin_data_ptr;
ca3bf3bd
DJ
274
275 /* Return the stored type for all other registers. */
f6efe3f8 276 else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
ca3bf3bd 277 {
df4df182 278 xtensa_register_t* reg = &tdep->regmap[regnum];
ca3bf3bd 279
bdb4c075 280 /* Set ctype for this register (only the first time). */
ca3bf3bd
DJ
281
282 if (reg->ctype == 0)
283 {
284 struct ctype_cache *tp;
285 int size = reg->byte_size;
286
bdb4c075
MG
287 /* We always use the memory representation,
288 even if the register width is smaller. */
ca3bf3bd
DJ
289 switch (size)
290 {
291 case 1:
df4df182 292 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
ca3bf3bd
DJ
293 break;
294
295 case 2:
df4df182 296 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
ca3bf3bd
DJ
297 break;
298
299 case 4:
df4df182 300 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
ca3bf3bd
DJ
301 break;
302
303 case 8:
df4df182 304 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
ca3bf3bd
DJ
305 break;
306
307 case 16:
df4df182 308 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
ca3bf3bd
DJ
309 break;
310
311 default:
df4df182 312 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
ca3bf3bd
DJ
313 if (tp->size == size)
314 break;
315
316 if (tp == NULL)
317 {
528e1572 318 std::string name = string_printf ("int%d", size * 8);
8d749320
SM
319
320 tp = XNEW (struct ctype_cache);
df4df182
UW
321 tp->next = tdep->type_entries;
322 tdep->type_entries = tp;
ca3bf3bd 323 tp->size = size;
e9bb382b 324 tp->virtual_type
528e1572 325 = arch_integer_type (gdbarch, size * 8, 1, name.c_str ());
ca3bf3bd
DJ
326 }
327
328 reg->ctype = tp->virtual_type;
329 }
330 }
331 return reg->ctype;
332 }
333
ca3bf3bd
DJ
334 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
335 return 0;
336}
337
338
bdb4c075 339/* Return the 'local' register number for stubs, dwarf2, etc.
ca3bf3bd
DJ
340 The debugging information enumerates registers starting from 0 for A0
341 to n for An. So, we only have to add the base number for A0. */
342
343static int
d3f73121 344xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
ca3bf3bd
DJ
345{
346 int i;
347
348 if (regnum >= 0 && regnum < 16)
d3f73121 349 return gdbarch_tdep (gdbarch)->a0_base + regnum;
ca3bf3bd 350
f6efe3f8 351 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
d3f73121 352 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
ca3bf3bd
DJ
353 return i;
354
0fde2c53 355 return -1;
ca3bf3bd
DJ
356}
357
358
bdb4c075
MG
359/* Write the bits of a masked register to the various registers.
360 Only the masked areas of these registers are modified; the other
361 fields are untouched. The size of masked registers is always less
362 than or equal to 32 bits. */
ca3bf3bd
DJ
363
364static void
9c9acae0
UW
365xtensa_register_write_masked (struct regcache *regcache,
366 xtensa_register_t *reg, const gdb_byte *buffer)
ca3bf3bd 367{
0dd5cbc5 368 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
369 const xtensa_mask_t *mask = reg->mask;
370
371 int shift = 0; /* Shift for next mask (mod 32). */
372 int start, size; /* Start bit and size of current mask. */
373
374 unsigned int *ptr = value;
375 unsigned int regval, m, mem = 0;
376
377 int bytesize = reg->byte_size;
378 int bitsize = bytesize * 8;
379 int i, r;
380
381 DEBUGTRACE ("xtensa_register_write_masked ()\n");
382
383 /* Copy the masked register to host byte-order. */
ac7936df 384 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
385 for (i = 0; i < bytesize; i++)
386 {
387 mem >>= 8;
388 mem |= (buffer[bytesize - i - 1] << 24);
389 if ((i & 3) == 3)
390 *ptr++ = mem;
391 }
392 else
393 for (i = 0; i < bytesize; i++)
394 {
395 mem >>= 8;
396 mem |= (buffer[i] << 24);
397 if ((i & 3) == 3)
398 *ptr++ = mem;
399 }
400
401 /* We might have to shift the final value:
402 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
403 bytesize & 3 == x -> shift (4-x) * 8. */
404
405 *ptr = mem >> (((0 - bytesize) & 3) * 8);
406 ptr = value;
407 mem = *ptr;
408
409 /* Write the bits to the masked areas of the other registers. */
410 for (i = 0; i < mask->count; i++)
411 {
412 start = mask->mask[i].bit_start;
413 size = mask->mask[i].bit_size;
414 regval = mem >> shift;
415
416 if ((shift += size) > bitsize)
417 error (_("size of all masks is larger than the register"));
418
419 if (shift >= 32)
420 {
421 mem = *(++ptr);
422 shift -= 32;
423 bitsize -= 32;
424
425 if (shift > 0)
426 regval |= mem << (size - shift);
427 }
428
429 /* Make sure we have a valid register. */
430 r = mask->mask[i].reg_num;
431 if (r >= 0 && size > 0)
432 {
433 /* Don't overwrite the unmasked areas. */
9c9acae0
UW
434 ULONGEST old_val;
435 regcache_cooked_read_unsigned (regcache, r, &old_val);
ca3bf3bd
DJ
436 m = 0xffffffff >> (32 - size) << start;
437 regval <<= start;
9c9acae0
UW
438 regval = (regval & m) | (old_val & ~m);
439 regcache_cooked_write_unsigned (regcache, r, regval);
ca3bf3bd
DJ
440 }
441 }
442}
443
444
bdb4c075
MG
445/* Read a tie state or mapped registers. Read the masked areas
446 of the registers and assemble them into a single value. */
ca3bf3bd 447
05d1431c 448static enum register_status
849d0ba8 449xtensa_register_read_masked (readable_regcache *regcache,
9c9acae0 450 xtensa_register_t *reg, gdb_byte *buffer)
ca3bf3bd 451{
0dd5cbc5 452 unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
ca3bf3bd
DJ
453 const xtensa_mask_t *mask = reg->mask;
454
455 int shift = 0;
456 int start, size;
457
458 unsigned int *ptr = value;
459 unsigned int regval, mem = 0;
460
461 int bytesize = reg->byte_size;
462 int bitsize = bytesize * 8;
463 int i;
464
465 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
466 reg->name == 0 ? "" : reg->name);
467
468 /* Assemble the register from the masked areas of other registers. */
469 for (i = 0; i < mask->count; i++)
470 {
471 int r = mask->mask[i].reg_num;
9c9acae0
UW
472 if (r >= 0)
473 {
05d1431c 474 enum register_status status;
9c9acae0 475 ULONGEST val;
05d1431c 476
11f57cb6 477 status = regcache->cooked_read (r, &val);
05d1431c
PA
478 if (status != REG_VALID)
479 return status;
9c9acae0
UW
480 regval = (unsigned int) val;
481 }
482 else
483 regval = 0;
484
ca3bf3bd
DJ
485 start = mask->mask[i].bit_start;
486 size = mask->mask[i].bit_size;
487
488 regval >>= start;
489
490 if (size < 32)
491 regval &= (0xffffffff >> (32 - size));
492
493 mem |= regval << shift;
494
495 if ((shift += size) > bitsize)
496 error (_("size of all masks is larger than the register"));
497
498 if (shift >= 32)
499 {
500 *ptr++ = mem;
501 bitsize -= 32;
502 shift -= 32;
503
504 if (shift == 0)
505 mem = 0;
506 else
507 mem = regval >> (size - shift);
508 }
509 }
510
511 if (shift > 0)
512 *ptr = mem;
513
514 /* Copy value to target byte order. */
515 ptr = value;
516 mem = *ptr;
517
ac7936df 518 if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
519 for (i = 0; i < bytesize; i++)
520 {
521 if ((i & 3) == 0)
522 mem = *ptr++;
523 buffer[bytesize - i - 1] = mem & 0xff;
524 mem >>= 8;
525 }
526 else
527 for (i = 0; i < bytesize; i++)
528 {
529 if ((i & 3) == 0)
530 mem = *ptr++;
531 buffer[i] = mem & 0xff;
532 mem >>= 8;
533 }
05d1431c
PA
534
535 return REG_VALID;
ca3bf3bd
DJ
536}
537
538
539/* Read pseudo registers. */
540
05d1431c 541static enum register_status
ca3bf3bd 542xtensa_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 543 readable_regcache *regcache,
ca3bf3bd
DJ
544 int regnum,
545 gdb_byte *buffer)
546{
547 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
d93859e2 548 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 549
bdb4c075 550 /* Read aliases a0..a15, if this is a Windowed ABI. */
6b50c0b0 551 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 552 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 553 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 554 {
c185f580 555 ULONGEST value;
05d1431c 556 enum register_status status;
ca3bf3bd 557
03f50fc8
YQ
558 status = regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum,
559 &value);
05d1431c
PA
560 if (status != REG_VALID)
561 return status;
c185f580 562 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
563 }
564
bdb4c075 565 /* We can always read non-pseudo registers. */
6b50c0b0 566 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
03f50fc8 567 return regcache->raw_read (regnum, buffer);
94a0e877
MG
568
569 /* We have to find out how to deal with priveleged registers.
570 Let's treat them as pseudo-registers, but we cannot read/write them. */
571
0d0bf81a
MF
572 else if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only
573 || regnum < gdbarch_tdep (gdbarch)->a0_base)
94a0e877
MG
574 {
575 buffer[0] = (gdb_byte)0;
576 buffer[1] = (gdb_byte)0;
577 buffer[2] = (gdb_byte)0;
578 buffer[3] = (gdb_byte)0;
05d1431c 579 return REG_VALID;
94a0e877 580 }
ca3bf3bd 581 /* Pseudo registers. */
f6efe3f8 582 else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
ca3bf3bd 583 {
6b50c0b0 584 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 585 xtensa_register_type_t type = reg->type;
6b50c0b0 586 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 587
bdb4c075 588 /* We cannot read Unknown or Unmapped registers. */
ca3bf3bd
DJ
589 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
590 {
591 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
592 {
593 warning (_("cannot read register %s"),
d93859e2 594 xtensa_register_name (gdbarch, regnum));
05d1431c 595 return REG_VALID;
ca3bf3bd
DJ
596 }
597 }
598
599 /* Some targets cannot read TIE register files. */
600 else if (type == xtRegisterTypeTieRegfile)
601 {
602 /* Use 'fetch' to get register? */
603 if (flags & xtTargetFlagsUseFetchStore)
604 {
605 warning (_("cannot read register"));
05d1431c 606 return REG_VALID;
ca3bf3bd
DJ
607 }
608
609 /* On some targets (esp. simulators), we can always read the reg. */
610 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
611 {
612 warning (_("cannot read register"));
05d1431c 613 return REG_VALID;
ca3bf3bd
DJ
614 }
615 }
616
617 /* We can always read mapped registers. */
618 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
05d1431c 619 return xtensa_register_read_masked (regcache, reg, buffer);
ca3bf3bd
DJ
620
621 /* Assume that we can read the register. */
03f50fc8 622 return regcache->raw_read (regnum, buffer);
ca3bf3bd 623 }
ca3bf3bd
DJ
624 else
625 internal_error (__FILE__, __LINE__,
626 _("invalid register number %d"), regnum);
627}
628
629
630/* Write pseudo registers. */
631
632static void
633xtensa_pseudo_register_write (struct gdbarch *gdbarch,
634 struct regcache *regcache,
635 int regnum,
636 const gdb_byte *buffer)
637{
638 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
d93859e2 639 regnum, xtensa_register_name (gdbarch, regnum));
ca3bf3bd 640
30baf67b 641 /* Renumber register, if aliases a0..a15 on Windowed ABI. */
6b50c0b0 642 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
94a0e877 643 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
6b50c0b0 644 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
ca3bf3bd 645 {
c185f580
AH
646 ULONGEST value;
647 regcache_raw_read_unsigned (regcache,
648 gdbarch_tdep (gdbarch)->wb_regnum, &value);
649 regnum = arreg_number (gdbarch, regnum, value);
ca3bf3bd
DJ
650 }
651
652 /* We can always write 'core' registers.
653 Note: We might have converted Ax->ARy. */
6b50c0b0 654 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
10eaee5f 655 regcache->raw_write (regnum, buffer);
ca3bf3bd 656
94a0e877
MG
657 /* We have to find out how to deal with priveleged registers.
658 Let's treat them as pseudo-registers, but we cannot read/write them. */
659
660 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
661 {
662 return;
663 }
ca3bf3bd 664 /* Pseudo registers. */
f6efe3f8 665 else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
ca3bf3bd 666 {
6b50c0b0 667 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd 668 xtensa_register_type_t type = reg->type;
6b50c0b0 669 int flags = gdbarch_tdep (gdbarch)->target_flags;
ca3bf3bd 670
bdb4c075
MG
671 /* On most targets, we cannot write registers
672 of type "Unknown" or "Unmapped". */
ca3bf3bd
DJ
673 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
674 {
675 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
676 {
677 warning (_("cannot write register %s"),
d93859e2 678 xtensa_register_name (gdbarch, regnum));
ca3bf3bd
DJ
679 return;
680 }
681 }
682
683 /* Some targets cannot read TIE register files. */
684 else if (type == xtRegisterTypeTieRegfile)
685 {
686 /* Use 'store' to get register? */
687 if (flags & xtTargetFlagsUseFetchStore)
688 {
689 warning (_("cannot write register"));
690 return;
691 }
692
693 /* On some targets (esp. simulators), we can always write
694 the register. */
ca3bf3bd
DJ
695 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
696 {
697 warning (_("cannot write register"));
698 return;
699 }
700 }
701
702 /* We can always write mapped registers. */
703 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
704 {
9c9acae0 705 xtensa_register_write_masked (regcache, reg, buffer);
ca3bf3bd
DJ
706 return;
707 }
708
709 /* Assume that we can write the register. */
10eaee5f 710 regcache->raw_write (regnum, buffer);
ca3bf3bd 711 }
ca3bf3bd
DJ
712 else
713 internal_error (__FILE__, __LINE__,
714 _("invalid register number %d"), regnum);
715}
716
ca3bf3bd
DJ
717static struct reggroup *xtensa_ar_reggroup;
718static struct reggroup *xtensa_user_reggroup;
719static struct reggroup *xtensa_vectra_reggroup;
7b871568 720static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
ca3bf3bd
DJ
721
722static void
723xtensa_init_reggroups (void)
724{
98689b25 725 int i;
98689b25 726
ca3bf3bd
DJ
727 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
728 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
729 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
ca3bf3bd 730
98689b25 731 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
9c3cc999 732 xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i), USER_REGGROUP);
7b871568 733}
ca3bf3bd
DJ
734
735static void
736xtensa_add_reggroups (struct gdbarch *gdbarch)
737{
7b871568
MG
738 int i;
739
740 /* Predefined groups. */
ca3bf3bd
DJ
741 reggroup_add (gdbarch, all_reggroup);
742 reggroup_add (gdbarch, save_reggroup);
743 reggroup_add (gdbarch, restore_reggroup);
744 reggroup_add (gdbarch, system_reggroup);
7b871568
MG
745 reggroup_add (gdbarch, vector_reggroup);
746 reggroup_add (gdbarch, general_reggroup);
747 reggroup_add (gdbarch, float_reggroup);
748
749 /* Xtensa-specific groups. */
750 reggroup_add (gdbarch, xtensa_ar_reggroup);
751 reggroup_add (gdbarch, xtensa_user_reggroup);
752 reggroup_add (gdbarch, xtensa_vectra_reggroup);
ca3bf3bd 753
7b871568
MG
754 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
755 reggroup_add (gdbarch, xtensa_cp[i]);
ca3bf3bd
DJ
756}
757
7b871568
MG
758static int
759xtensa_coprocessor_register_group (struct reggroup *group)
760{
761 int i;
762
763 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
764 if (group == xtensa_cp[i])
765 return i;
766
767 return -1;
768}
ca3bf3bd
DJ
769
770#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
771 | XTENSA_REGISTER_FLAGS_WRITABLE \
772 | XTENSA_REGISTER_FLAGS_VOLATILE)
773
774#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
775 | XTENSA_REGISTER_FLAGS_WRITABLE)
776
777static int
778xtensa_register_reggroup_p (struct gdbarch *gdbarch,
779 int regnum,
780 struct reggroup *group)
781{
6b50c0b0 782 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
ca3bf3bd
DJ
783 xtensa_register_type_t type = reg->type;
784 xtensa_register_group_t rg = reg->group;
7b871568 785 int cp_number;
ca3bf3bd 786
57041825
MG
787 if (group == save_reggroup)
788 /* Every single register should be included into the list of registers
789 to be watched for changes while using -data-list-changed-registers. */
790 return 1;
791
ca3bf3bd
DJ
792 /* First, skip registers that are not visible to this target
793 (unknown and unmapped registers when not using ISS). */
794
795 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
796 return 0;
797 if (group == all_reggroup)
798 return 1;
799 if (group == xtensa_ar_reggroup)
800 return rg & xtRegisterGroupAddrReg;
801 if (group == xtensa_user_reggroup)
802 return rg & xtRegisterGroupUser;
803 if (group == float_reggroup)
804 return rg & xtRegisterGroupFloat;
805 if (group == general_reggroup)
806 return rg & xtRegisterGroupGeneral;
ca3bf3bd
DJ
807 if (group == system_reggroup)
808 return rg & xtRegisterGroupState;
809 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
810 return rg & xtRegisterGroupVectra;
57041825 811 if (group == restore_reggroup)
6b50c0b0 812 return (regnum < gdbarch_num_regs (gdbarch)
ca3bf3bd 813 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
1448a0a2
PM
814 cp_number = xtensa_coprocessor_register_group (group);
815 if (cp_number >= 0)
7b871568 816 return rg & (xtRegisterGroupCP0 << cp_number);
ca3bf3bd
DJ
817 else
818 return 1;
819}
820
821
ca3bf3bd
DJ
822/* Supply register REGNUM from the buffer specified by GREGS and LEN
823 in the general-purpose register set REGSET to register cache
bdb4c075 824 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
ca3bf3bd
DJ
825
826static void
827xtensa_supply_gregset (const struct regset *regset,
828 struct regcache *rc,
829 int regnum,
830 const void *gregs,
831 size_t len)
832{
19ba03f4 833 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
ac7936df 834 struct gdbarch *gdbarch = rc->arch ();
ca3bf3bd
DJ
835 int i;
836
cce7e648 837 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
ca3bf3bd 838
6b50c0b0 839 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
73e1c03f 840 rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
6b50c0b0 841 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
73e1c03f 842 rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
6b50c0b0 843 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
73e1c03f
SM
844 rc->raw_supply (gdbarch_tdep (gdbarch)->wb_regnum,
845 (char *) &regs->windowbase);
6b50c0b0 846 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
73e1c03f
SM
847 rc->raw_supply (gdbarch_tdep (gdbarch)->ws_regnum,
848 (char *) &regs->windowstart);
6b50c0b0 849 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
73e1c03f
SM
850 rc->raw_supply (gdbarch_tdep (gdbarch)->lbeg_regnum,
851 (char *) &regs->lbeg);
6b50c0b0 852 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
73e1c03f
SM
853 rc->raw_supply (gdbarch_tdep (gdbarch)->lend_regnum,
854 (char *) &regs->lend);
6b50c0b0 855 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
73e1c03f
SM
856 rc->raw_supply (gdbarch_tdep (gdbarch)->lcount_regnum,
857 (char *) &regs->lcount);
6b50c0b0 858 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
73e1c03f
SM
859 rc->raw_supply (gdbarch_tdep (gdbarch)->sar_regnum,
860 (char *) &regs->sar);
6b50c0b0
UW
861 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
862 && regnum < gdbarch_tdep (gdbarch)->ar_base
863 + gdbarch_tdep (gdbarch)->num_aregs)
73e1c03f
SM
864 rc->raw_supply
865 (regnum, (char *) &regs->ar[regnum - gdbarch_tdep (gdbarch)->ar_base]);
ca3bf3bd
DJ
866 else if (regnum == -1)
867 {
6b50c0b0 868 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
73e1c03f
SM
869 rc->raw_supply (gdbarch_tdep (gdbarch)->ar_base + i,
870 (char *) &regs->ar[i]);
ca3bf3bd
DJ
871 }
872}
873
874
875/* Xtensa register set. */
876
877static struct regset
878xtensa_gregset =
879{
880 NULL,
881 xtensa_supply_gregset
882};
883
884
97094034 885/* Iterate over supported core file register note sections. */
ca3bf3bd 886
97094034
AA
887static void
888xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
889 iterate_over_regset_sections_cb *cb,
890 void *cb_data,
891 const struct regcache *regcache)
ca3bf3bd 892{
97094034 893 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
ca3bf3bd 894
a616bb94
AH
895 cb (".reg", sizeof (xtensa_elf_gregset_t), sizeof (xtensa_elf_gregset_t),
896 &xtensa_gregset, NULL, cb_data);
ca3bf3bd
DJ
897}
898
899
bdb4c075 900/* Handling frames. */
ca3bf3bd 901
bdb4c075
MG
902/* Number of registers to save in case of Windowed ABI. */
903#define XTENSA_NUM_SAVED_AREGS 12
ca3bf3bd 904
bdb4c075
MG
905/* Frame cache part for Windowed ABI. */
906typedef struct xtensa_windowed_frame_cache
ca3bf3bd 907{
ee967b5f
MG
908 int wb; /* WINDOWBASE of the previous frame. */
909 int callsize; /* Call size of this frame. */
08b9c608
MG
910 int ws; /* WINDOWSTART of the previous frame. It keeps track of
911 life windows only. If there is no bit set for the
912 window, that means it had been already spilled
913 because of window overflow. */
914
915 /* Addresses of spilled A-registers.
916 AREGS[i] == -1, if corresponding AR is alive. */
ca3bf3bd 917 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
bdb4c075
MG
918} xtensa_windowed_frame_cache_t;
919
920/* Call0 ABI Definitions. */
921
581e13c1
MS
922#define C0_MAXOPDS 3 /* Maximum number of operands for prologue
923 analysis. */
bdb4c075
MG
924#define C0_CLESV 12 /* Callee-saved registers are here and up. */
925#define C0_SP 1 /* Register used as SP. */
926#define C0_FP 15 /* Register used as FP. */
927#define C0_RA 0 /* Register used as return address. */
928#define C0_ARGS 2 /* Register used as first arg/retval. */
929#define C0_NARGS 6 /* Number of A-regs for args/retvals. */
930
931/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
932 A-register where the current content of the reg came from (in terms
933 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
85102364 934 mean that the original content of the register was saved to the stack.
bdb4c075
MG
935 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
936 know where SP will end up until the entire prologue has been analyzed. */
937
938#define C0_CONST -1 /* fr_reg value if register contains a constant. */
939#define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
940#define C0_NOSTK -1 /* to_stk value if register has not been stored. */
941
942extern xtensa_isa xtensa_default_isa;
943
944typedef struct xtensa_c0reg
945{
dbab50de
MG
946 int fr_reg; /* original register from which register content
947 is derived, or C0_CONST, or C0_INEXP. */
948 int fr_ofs; /* constant offset from reg, or immediate value. */
949 int to_stk; /* offset from original SP to register (4-byte aligned),
950 or C0_NOSTK if register has not been saved. */
bdb4c075
MG
951} xtensa_c0reg_t;
952
bdb4c075
MG
953/* Frame cache part for Call0 ABI. */
954typedef struct xtensa_call0_frame_cache
955{
dbab50de
MG
956 int c0_frmsz; /* Stack frame size. */
957 int c0_hasfp; /* Current frame uses frame pointer. */
958 int fp_regnum; /* A-register used as FP. */
959 int c0_fp; /* Actual value of frame pointer. */
85102364 960 int c0_fpalign; /* Dynamic adjustment for the stack
dbab50de
MG
961 pointer. It's an AND mask. Zero,
962 if alignment was not adjusted. */
963 int c0_old_sp; /* In case of dynamic adjustment, it is
964 a register holding unaligned sp.
965 C0_INEXP, when undefined. */
966 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
967 stack offset. C0_NOSTK otherwise. */
968
969 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
bdb4c075
MG
970} xtensa_call0_frame_cache_t;
971
972typedef struct xtensa_frame_cache
973{
ee967b5f 974 CORE_ADDR base; /* Stack pointer of this frame. */
08b9c608
MG
975 CORE_ADDR pc; /* PC of this frame at the function entry point. */
976 CORE_ADDR ra; /* The raw return address of this frame. */
977 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
978 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
bdb4c075
MG
979 int call0; /* It's a call0 framework (else windowed). */
980 union
981 {
982 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
983 xtensa_call0_frame_cache_t c0; /* call0 == true. */
984 };
ca3bf3bd
DJ
985} xtensa_frame_cache_t;
986
987
988static struct xtensa_frame_cache *
bdb4c075 989xtensa_alloc_frame_cache (int windowed)
ca3bf3bd
DJ
990{
991 xtensa_frame_cache_t *cache;
992 int i;
993
994 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
995
996 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
997
998 cache->base = 0;
999 cache->pc = 0;
1000 cache->ra = 0;
ca3bf3bd 1001 cache->ps = 0;
ca3bf3bd 1002 cache->prev_sp = 0;
bdb4c075
MG
1003 cache->call0 = !windowed;
1004 if (cache->call0)
1005 {
1006 cache->c0.c0_frmsz = -1;
1007 cache->c0.c0_hasfp = 0;
1008 cache->c0.fp_regnum = -1;
1009 cache->c0.c0_fp = -1;
dbab50de
MG
1010 cache->c0.c0_fpalign = 0;
1011 cache->c0.c0_old_sp = C0_INEXP;
1012 cache->c0.c0_sp_ofs = C0_NOSTK;
ca3bf3bd 1013
bdb4c075
MG
1014 for (i = 0; i < C0_NREGS; i++)
1015 {
1016 cache->c0.c0_rt[i].fr_reg = i;
1017 cache->c0.c0_rt[i].fr_ofs = 0;
1018 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1019 }
1020 }
1021 else
1022 {
1023 cache->wd.wb = 0;
ee967b5f 1024 cache->wd.ws = 0;
bdb4c075 1025 cache->wd.callsize = -1;
ca3bf3bd 1026
bdb4c075
MG
1027 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1028 cache->wd.aregs[i] = -1;
1029 }
ca3bf3bd
DJ
1030 return cache;
1031}
1032
1033
1034static CORE_ADDR
1035xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1036{
1037 return address & ~15;
1038}
1039
1040
1041static CORE_ADDR
1042xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1043{
ff7a4c00 1044 gdb_byte buf[8];
0dfff4cb 1045 CORE_ADDR pc;
ca3bf3bd 1046
a74ce742
PM
1047 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1048 host_address_to_string (next_frame));
ca3bf3bd 1049
6b50c0b0 1050 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1051 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
ca3bf3bd 1052
0dfff4cb 1053 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
ca3bf3bd 1054
0dfff4cb 1055 return pc;
ca3bf3bd
DJ
1056}
1057
1058
1059static struct frame_id
5142f611 1060xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
ca3bf3bd
DJ
1061{
1062 CORE_ADDR pc, fp;
ca3bf3bd 1063
5142f611 1064 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
ca3bf3bd 1065
5142f611
MG
1066 pc = get_frame_pc (this_frame);
1067 fp = get_frame_register_unsigned
1068 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ca3bf3bd
DJ
1069
1070 /* Make dummy frame ID unique by adding a constant. */
bdb4c075 1071 return frame_id_build (fp + SP_ALIGNMENT, pc);
ca3bf3bd
DJ
1072}
1073
08b9c608
MG
1074/* Returns true, if instruction to execute next is unique to Xtensa Window
1075 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1076
1077static int
1078xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1079{
1080 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1081 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1082 unsigned int code;
1083
1084 if (byte_order == BFD_ENDIAN_BIG)
1085 {
1086 /* Check, if this is L32E or S32E. */
1087 code = insn & 0xf000ff00;
1088 if ((code == 0x00009000) || (code == 0x00009400))
1089 return 1;
1090 /* Check, if this is RFWU or RFWO. */
1091 code = insn & 0xffffff00;
1092 return ((code == 0x00430000) || (code == 0x00530000));
1093 }
1094 else
1095 {
1096 /* Check, if this is L32E or S32E. */
1097 code = insn & 0x00ff000f;
1098 if ((code == 0x090000) || (code == 0x490000))
1099 return 1;
1100 /* Check, if this is RFWU or RFWO. */
1101 code = insn & 0x00ffffff;
1102 return ((code == 0x00003400) || (code == 0x00003500));
1103 }
1104}
1105
ee967b5f
MG
1106/* Returns the best guess about which register is a frame pointer
1107 for the function containing CURRENT_PC. */
1108
d4709618
MG
1109#define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1110#define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
ee967b5f
MG
1111
1112static unsigned int
1113xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1114{
1115#define RETURN_FP goto done
1116
1117 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1118 CORE_ADDR start_addr;
1119 xtensa_isa isa;
1120 xtensa_insnbuf ins, slot;
948f8e3d 1121 gdb_byte ibuf[XTENSA_ISA_BSZ];
ee967b5f
MG
1122 CORE_ADDR ia, bt, ba;
1123 xtensa_format ifmt;
1124 int ilen, islots, is;
1125 xtensa_opcode opc;
1126 const char *opcname;
1127
1128 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1129 if (start_addr == 0)
1130 return fp_regnum;
1131
ee967b5f
MG
1132 isa = xtensa_default_isa;
1133 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1134 ins = xtensa_insnbuf_alloc (isa);
1135 slot = xtensa_insnbuf_alloc (isa);
1136 ba = 0;
1137
1138 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1139 {
1140 if (ia + xtensa_isa_maxlength (isa) > bt)
1141 {
1142 ba = ia;
1143 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1144 ? ba + XTENSA_ISA_BSZ : current_pc;
d4709618
MG
1145 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1146 RETURN_FP;
ee967b5f
MG
1147 }
1148
1149 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1150 ifmt = xtensa_format_decode (isa, ins);
1151 if (ifmt == XTENSA_UNDEFINED)
1152 RETURN_FP;
1153 ilen = xtensa_format_length (isa, ifmt);
1154 if (ilen == XTENSA_UNDEFINED)
1155 RETURN_FP;
1156 islots = xtensa_format_num_slots (isa, ifmt);
1157 if (islots == XTENSA_UNDEFINED)
1158 RETURN_FP;
1159
1160 for (is = 0; is < islots; ++is)
1161 {
1162 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1163 RETURN_FP;
1164
1165 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1166 if (opc == XTENSA_UNDEFINED)
1167 RETURN_FP;
1168
1169 opcname = xtensa_opcode_name (isa, opc);
1170
1171 if (strcasecmp (opcname, "mov.n") == 0
1172 || strcasecmp (opcname, "or") == 0)
1173 {
1174 unsigned int register_operand;
1175
1176 /* Possible candidate for setting frame pointer
581e13c1 1177 from A1. This is what we are looking for. */
ee967b5f
MG
1178
1179 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1180 is, slot, &register_operand) != 0)
1181 RETURN_FP;
1182 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1183 RETURN_FP;
1184 if (register_operand == 1) /* Mov{.n} FP A1. */
1185 {
1186 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1187 &register_operand) != 0)
1188 RETURN_FP;
1189 if (xtensa_operand_decode (isa, opc, 0,
1190 &register_operand) != 0)
1191 RETURN_FP;
1192
581e13c1
MS
1193 fp_regnum
1194 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
ee967b5f
MG
1195 RETURN_FP;
1196 }
1197 }
1198
1199 if (
1200 /* We have problems decoding the memory. */
1201 opcname == NULL
1202 || strcasecmp (opcname, "ill") == 0
1203 || strcasecmp (opcname, "ill.n") == 0
1204 /* Hit planted breakpoint. */
1205 || strcasecmp (opcname, "break") == 0
1206 || strcasecmp (opcname, "break.n") == 0
1207 /* Flow control instructions finish prologue. */
1208 || xtensa_opcode_is_branch (isa, opc) > 0
1209 || xtensa_opcode_is_jump (isa, opc) > 0
1210 || xtensa_opcode_is_loop (isa, opc) > 0
1211 || xtensa_opcode_is_call (isa, opc) > 0
1212 || strcasecmp (opcname, "simcall") == 0
1213 || strcasecmp (opcname, "syscall") == 0)
1214 /* Can not continue analysis. */
1215 RETURN_FP;
1216 }
1217 }
1218done:
1219 xtensa_insnbuf_free(isa, slot);
1220 xtensa_insnbuf_free(isa, ins);
1221 return fp_regnum;
1222}
1223
bdb4c075
MG
1224/* The key values to identify the frame using "cache" are
1225
ee967b5f 1226 cache->base = SP (or best guess about FP) of this frame;
bdb4c075 1227 cache->pc = entry-PC (entry point of the frame function);
581e13c1 1228 cache->prev_sp = SP of the previous frame. */
bdb4c075
MG
1229
1230static void
5142f611 1231call0_frame_cache (struct frame_info *this_frame,
dbab50de 1232 xtensa_frame_cache_t *cache, CORE_ADDR pc);
ca3bf3bd 1233
08b9c608
MG
1234static void
1235xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1236 xtensa_frame_cache_t *cache,
1237 CORE_ADDR pc);
1238
ca3bf3bd 1239static struct xtensa_frame_cache *
5142f611 1240xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1241{
1242 xtensa_frame_cache_t *cache;
ca3bf3bd 1243 CORE_ADDR ra, wb, ws, pc, sp, ps;
5142f611 1244 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 1245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ee967b5f 1246 unsigned int fp_regnum;
98689b25 1247 int windowed, ps_regnum;
ca3bf3bd 1248
ca3bf3bd 1249 if (*this_cache)
19ba03f4 1250 return (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1251
98689b25
MG
1252 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1253 ps_regnum = gdbarch_ps_regnum (gdbarch);
68d6df83
MG
1254 ps = (ps_regnum >= 0
1255 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
98689b25
MG
1256
1257 windowed = windowing_enabled (gdbarch, ps);
bdb4c075 1258
ca3bf3bd 1259 /* Get pristine xtensa-frame. */
bdb4c075 1260 cache = xtensa_alloc_frame_cache (windowed);
ca3bf3bd
DJ
1261 *this_cache = cache;
1262
bdb4c075 1263 if (windowed)
ca3bf3bd 1264 {
a08b52b5 1265 LONGEST op1;
98689b25 1266
bdb4c075 1267 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
5142f611
MG
1268 wb = get_frame_register_unsigned (this_frame,
1269 gdbarch_tdep (gdbarch)->wb_regnum);
1270 ws = get_frame_register_unsigned (this_frame,
1271 gdbarch_tdep (gdbarch)->ws_regnum);
ca3bf3bd 1272
a08b52b5
MF
1273 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1274 && XTENSA_IS_ENTRY (gdbarch, op1))
ca3bf3bd 1275 {
bdb4c075 1276 int callinc = CALLINC (ps);
5142f611
MG
1277 ra = get_frame_register_unsigned
1278 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
bdb4c075
MG
1279
1280 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1281 cache->wd.callsize = 0;
1282 cache->wd.wb = wb;
1283 cache->wd.ws = ws;
5142f611
MG
1284 cache->prev_sp = get_frame_register_unsigned
1285 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
ee967b5f
MG
1286
1287 /* This only can be the outermost frame since we are
1288 just about to execute ENTRY. SP hasn't been set yet.
1289 We can assume any frame size, because it does not
1290 matter, and, let's fake frame base in cache. */
98689b25 1291 cache->base = cache->prev_sp - 16;
ee967b5f
MG
1292
1293 cache->pc = pc;
1294 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1295 cache->ps = (ps & ~PS_CALLINC_MASK)
1296 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1297
1298 return cache;
bdb4c075
MG
1299 }
1300 else
1301 {
ee967b5f 1302 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
5142f611
MG
1303 ra = get_frame_register_unsigned (this_frame,
1304 gdbarch_tdep (gdbarch)->a0_base);
bdb4c075 1305 cache->wd.callsize = WINSIZE (ra);
304fe255 1306 cache->wd.wb = (wb - cache->wd.callsize / 4)
6b50c0b0 1307 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
bdb4c075 1308 cache->wd.ws = ws & ~(1 << wb);
ca3bf3bd 1309
5142f611 1310 cache->pc = get_frame_func (this_frame);
f6402f18 1311 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
ee967b5f
MG
1312 cache->ps = (ps & ~PS_CALLINC_MASK)
1313 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1314 }
bdb4c075
MG
1315
1316 if (cache->wd.ws == 0)
ca3bf3bd 1317 {
bdb4c075 1318 int i;
ca3bf3bd 1319
bdb4c075 1320 /* Set A0...A3. */
5142f611
MG
1321 sp = get_frame_register_unsigned
1322 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
bdb4c075
MG
1323
1324 for (i = 0; i < 4; i++, sp += 4)
1325 {
1326 cache->wd.aregs[i] = sp;
1327 }
ca3bf3bd 1328
bdb4c075 1329 if (cache->wd.callsize > 4)
ca3bf3bd 1330 {
bdb4c075 1331 /* Set A4...A7/A11. */
ee967b5f
MG
1332 /* Get the SP of the frame previous to the previous one.
1333 To achieve this, we have to dereference SP twice. */
e17a4113
UW
1334 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1335 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1336 sp -= cache->wd.callsize * 4;
1337
ee967b5f 1338 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
bdb4c075
MG
1339 {
1340 cache->wd.aregs[i] = sp;
1341 }
ca3bf3bd
DJ
1342 }
1343 }
ca3bf3bd 1344
bdb4c075 1345 if ((cache->prev_sp == 0) && ( ra != 0 ))
08b9c608
MG
1346 /* If RA is equal to 0 this frame is an outermost frame. Leave
1347 cache->prev_sp unchanged marking the boundary of the frame stack. */
ca3bf3bd 1348 {
ee967b5f 1349 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
bdb4c075
MG
1350 {
1351 /* Register window overflow already happened.
85102364 1352 We can read caller's SP from the proper spill location. */
5142f611
MG
1353 sp = get_frame_register_unsigned
1354 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
e17a4113 1355 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
bdb4c075
MG
1356 }
1357 else
1358 {
1359 /* Read caller's frame SP directly from the previous window. */
ee967b5f 1360 int regnum = arreg_number
91d8eb23 1361 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
304fe255 1362 cache->wd.wb);
ca3bf3bd 1363
08b9c608 1364 cache->prev_sp = xtensa_read_register (regnum);
bdb4c075 1365 }
ca3bf3bd
DJ
1366 }
1367 }
08b9c608
MG
1368 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1369 {
1370 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1371
1372 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1373 /* Everything was set already, including cache->base. */
1374 return cache;
1375 }
bdb4c075
MG
1376 else /* Call0 framework. */
1377 {
dbab50de 1378 call0_frame_cache (this_frame, cache, pc);
ee967b5f 1379 fp_regnum = cache->c0.fp_regnum;
bdb4c075 1380 }
ca3bf3bd 1381
5142f611 1382 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
ca3bf3bd 1383
ca3bf3bd
DJ
1384 return cache;
1385}
1386
dbab50de
MG
1387static int xtensa_session_once_reported = 1;
1388
1389/* Report a problem with prologue analysis while doing backtracing.
85102364 1390 But, do it only once to avoid annoying repeated messages. */
dbab50de 1391
4e6ca6d5
MG
1392static void
1393warning_once (void)
dbab50de
MG
1394{
1395 if (xtensa_session_once_reported == 0)
1396 warning (_("\
1397\nUnrecognised function prologue. Stack trace cannot be resolved. \
1398This message will not be repeated in this session.\n"));
1399
1400 xtensa_session_once_reported = 1;
1401}
1402
1403
ca3bf3bd 1404static void
5142f611 1405xtensa_frame_this_id (struct frame_info *this_frame,
ca3bf3bd
DJ
1406 void **this_cache,
1407 struct frame_id *this_id)
1408{
1409 struct xtensa_frame_cache *cache =
5142f611 1410 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1411
1412 if (cache->prev_sp == 0)
1413 return;
1414
5142f611 1415 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
bdb4c075 1416}
ca3bf3bd 1417
5142f611
MG
1418static struct value *
1419xtensa_frame_prev_register (struct frame_info *this_frame,
ca3bf3bd 1420 void **this_cache,
5142f611 1421 int regnum)
ca3bf3bd 1422{
5142f611
MG
1423 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1424 struct xtensa_frame_cache *cache;
1425 ULONGEST saved_reg = 0;
ca3bf3bd
DJ
1426 int done = 1;
1427
5142f611
MG
1428 if (*this_cache == NULL)
1429 *this_cache = xtensa_frame_cache (this_frame, this_cache);
19ba03f4 1430 cache = (struct xtensa_frame_cache *) *this_cache;
ca3bf3bd 1431
6b50c0b0 1432 if (regnum ==gdbarch_pc_regnum (gdbarch))
bdb4c075 1433 saved_reg = cache->ra;
6b50c0b0 1434 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
bdb4c075
MG
1435 saved_reg = cache->prev_sp;
1436 else if (!cache->call0)
ca3bf3bd 1437 {
6b50c0b0 1438 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
ee967b5f 1439 saved_reg = cache->wd.ws;
6b50c0b0 1440 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
bdb4c075 1441 saved_reg = cache->wd.wb;
6b50c0b0 1442 else if (regnum == gdbarch_ps_regnum (gdbarch))
bdb4c075 1443 saved_reg = cache->ps;
ca3bf3bd 1444 else
bdb4c075 1445 done = 0;
ca3bf3bd 1446 }
ca3bf3bd
DJ
1447 else
1448 done = 0;
1449
1450 if (done)
5142f611 1451 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
ca3bf3bd 1452
bdb4c075 1453 if (!cache->call0) /* Windowed ABI. */
ca3bf3bd 1454 {
ee967b5f
MG
1455 /* Convert A-register numbers to AR-register numbers,
1456 if we deal with A-register. */
94a0e877 1457 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
6b50c0b0 1458 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
ee967b5f 1459 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1460
ee967b5f 1461 /* Check, if we deal with AR-register saved on stack. */
6b50c0b0
UW
1462 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1463 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1464 + gdbarch_tdep (gdbarch)->num_aregs))
bdb4c075 1465 {
ee967b5f 1466 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
ca3bf3bd 1467
bdb4c075
MG
1468 if (areg >= 0
1469 && areg < XTENSA_NUM_SAVED_AREGS
1470 && cache->wd.aregs[areg] != -1)
5142f611
MG
1471 return frame_unwind_got_memory (this_frame, regnum,
1472 cache->wd.aregs[areg]);
ca3bf3bd
DJ
1473 }
1474 }
bdb4c075
MG
1475 else /* Call0 ABI. */
1476 {
6b50c0b0
UW
1477 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1478 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
304fe255 1479 + C0_NREGS))
6b50c0b0 1480 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
ca3bf3bd 1481
bdb4c075
MG
1482 if (reg < C0_NREGS)
1483 {
1484 CORE_ADDR spe;
1485 int stkofs;
1486
1487 /* If register was saved in the prologue, retrieve it. */
1488 stkofs = cache->c0.c0_rt[reg].to_stk;
1489 if (stkofs != C0_NOSTK)
1490 {
1491 /* Determine SP on entry based on FP. */
1492 spe = cache->c0.c0_fp
1493 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
5142f611 1494
581e13c1
MS
1495 return frame_unwind_got_memory (this_frame, regnum,
1496 spe + stkofs);
bdb4c075
MG
1497 }
1498 }
1499 }
1500
1501 /* All other registers have been either saved to
1502 the stack or are still alive in the processor. */
ca3bf3bd 1503
5142f611 1504 return frame_unwind_got_register (this_frame, regnum, regnum);
ca3bf3bd
DJ
1505}
1506
1507
1508static const struct frame_unwind
5142f611 1509xtensa_unwind =
ca3bf3bd
DJ
1510{
1511 NORMAL_FRAME,
8fbca658 1512 default_frame_unwind_stop_reason,
ca3bf3bd 1513 xtensa_frame_this_id,
5142f611
MG
1514 xtensa_frame_prev_register,
1515 NULL,
1516 default_frame_sniffer
ca3bf3bd
DJ
1517};
1518
ca3bf3bd 1519static CORE_ADDR
5142f611 1520xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
ca3bf3bd
DJ
1521{
1522 struct xtensa_frame_cache *cache =
5142f611 1523 xtensa_frame_cache (this_frame, this_cache);
ca3bf3bd
DJ
1524
1525 return cache->base;
1526}
1527
1528static const struct frame_base
1529xtensa_frame_base =
1530{
5142f611 1531 &xtensa_unwind,
ca3bf3bd
DJ
1532 xtensa_frame_base_address,
1533 xtensa_frame_base_address,
1534 xtensa_frame_base_address
1535};
1536
1537
1538static void
1539xtensa_extract_return_value (struct type *type,
1540 struct regcache *regcache,
1541 void *dst)
1542{
ac7936df 1543 struct gdbarch *gdbarch = regcache->arch ();
19ba03f4 1544 bfd_byte *valbuf = (bfd_byte *) dst;
ca3bf3bd
DJ
1545 int len = TYPE_LENGTH (type);
1546 ULONGEST pc, wb;
1547 int callsize, areg;
1548 int offset = 0;
1549
1550 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1551
1552 gdb_assert(len > 0);
1553
6b50c0b0 1554 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075
MG
1555 {
1556 /* First, we have to find the caller window in the register file. */
6b50c0b0 1557 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1558 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1559
bdb4c075
MG
1560 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1561 if (len > (callsize > 8 ? 8 : 16))
1562 internal_error (__FILE__, __LINE__,
581e13c1
MS
1563 _("cannot extract return value of %d bytes long"),
1564 len);
ca3bf3bd 1565
bdb4c075
MG
1566 /* Get the register offset of the return
1567 register (A2) in the caller window. */
304fe255 1568 regcache_raw_read_unsigned
6b50c0b0 1569 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
ee967b5f 1570 areg = arreg_number (gdbarch,
91d8eb23 1571 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
bdb4c075
MG
1572 }
1573 else
1574 {
1575 /* No windowing hardware - Call0 ABI. */
94a0e877 1576 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1577 }
ca3bf3bd
DJ
1578
1579 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1580
6b50c0b0 1581 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1582 offset = 4 - len;
1583
1584 for (; len > 0; len -= 4, areg++, valbuf += 4)
1585 {
1586 if (len < 4)
502fe83e 1587 regcache->raw_read_part (areg, offset, len, valbuf);
ca3bf3bd 1588 else
0b883586 1589 regcache->raw_read (areg, valbuf);
ca3bf3bd
DJ
1590 }
1591}
1592
1593
1594static void
1595xtensa_store_return_value (struct type *type,
1596 struct regcache *regcache,
1597 const void *dst)
1598{
ac7936df 1599 struct gdbarch *gdbarch = regcache->arch ();
19ba03f4 1600 const bfd_byte *valbuf = (const bfd_byte *) dst;
ca3bf3bd
DJ
1601 unsigned int areg;
1602 ULONGEST pc, wb;
1603 int callsize;
1604 int len = TYPE_LENGTH (type);
1605 int offset = 0;
1606
1607 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1608
6b50c0b0 1609 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1610 {
6b50c0b0
UW
1611 regcache_raw_read_unsigned
1612 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1613 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
91d8eb23 1614 callsize = extract_call_winsize (gdbarch, pc);
ca3bf3bd 1615
bdb4c075
MG
1616 if (len > (callsize > 8 ? 8 : 16))
1617 internal_error (__FILE__, __LINE__,
cc1defb1
KS
1618 _("unimplemented for this length: %s"),
1619 pulongest (TYPE_LENGTH (type)));
ee967b5f
MG
1620 areg = arreg_number (gdbarch,
1621 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
ca3bf3bd 1622
bdb4c075 1623 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
ca3bf3bd 1624 callsize, (int) wb);
bdb4c075
MG
1625 }
1626 else
1627 {
94a0e877 1628 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
bdb4c075 1629 }
ca3bf3bd 1630
6b50c0b0 1631 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1632 offset = 4 - len;
1633
ca3bf3bd
DJ
1634 for (; len > 0; len -= 4, areg++, valbuf += 4)
1635 {
1636 if (len < 4)
4f0420fd 1637 regcache->raw_write_part (areg, offset, len, valbuf);
ca3bf3bd 1638 else
10eaee5f 1639 regcache->raw_write (areg, valbuf);
ca3bf3bd
DJ
1640 }
1641}
1642
1643
bdb4c075 1644static enum return_value_convention
ca3bf3bd 1645xtensa_return_value (struct gdbarch *gdbarch,
6a3a010b 1646 struct value *function,
ca3bf3bd
DJ
1647 struct type *valtype,
1648 struct regcache *regcache,
1649 gdb_byte *readbuf,
1650 const gdb_byte *writebuf)
1651{
bdb4c075 1652 /* Structures up to 16 bytes are returned in registers. */
ca3bf3bd
DJ
1653
1654 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1655 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1656 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1657 && TYPE_LENGTH (valtype) > 16);
1658
1659 if (struct_return)
1660 return RETURN_VALUE_STRUCT_CONVENTION;
1661
1662 DEBUGTRACE ("xtensa_return_value(...)\n");
1663
1664 if (writebuf != NULL)
1665 {
1666 xtensa_store_return_value (valtype, regcache, writebuf);
1667 }
1668
1669 if (readbuf != NULL)
1670 {
1671 gdb_assert (!struct_return);
1672 xtensa_extract_return_value (valtype, regcache, readbuf);
1673 }
1674 return RETURN_VALUE_REGISTER_CONVENTION;
1675}
1676
1677
1678/* DUMMY FRAME */
1679
1680static CORE_ADDR
1681xtensa_push_dummy_call (struct gdbarch *gdbarch,
1682 struct value *function,
1683 struct regcache *regcache,
1684 CORE_ADDR bp_addr,
1685 int nargs,
1686 struct value **args,
1687 CORE_ADDR sp,
cf84fa6b 1688 function_call_return_method return_method,
ca3bf3bd
DJ
1689 CORE_ADDR struct_addr)
1690{
e17a4113 1691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ca3bf3bd 1692 int size, onstack_size;
ff7a4c00 1693 gdb_byte *buf = (gdb_byte *) alloca (16);
ca3bf3bd
DJ
1694 CORE_ADDR ra, ps;
1695 struct argument_info
1696 {
1697 const bfd_byte *contents;
1698 int length;
1699 int onstack; /* onstack == 0 => in reg */
1700 int align; /* alignment */
1701 union
1702 {
581e13c1
MS
1703 int offset; /* stack offset if on stack. */
1704 int regno; /* regno if in register. */
ca3bf3bd
DJ
1705 } u;
1706 };
1707
1708 struct argument_info *arg_info =
1709 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1710
1711 CORE_ADDR osp = sp;
1712
1713 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1714
1715 if (xtensa_debug_level > 3)
1716 {
ca3bf3bd 1717 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
cf84fa6b 1718 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, return_method=%d, "
ca3bf3bd 1719 "struct_addr=0x%x\n",
cf84fa6b 1720 (int) sp, (int) return_method, (int) struct_addr);
ca3bf3bd 1721
b926417a 1722 for (int i = 0; i < nargs; i++)
ca3bf3bd
DJ
1723 {
1724 struct value *arg = args[i];
1725 struct type *arg_type = check_typedef (value_type (arg));
cc1defb1 1726 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3s ", i,
3329c4b5 1727 host_address_to_string (arg),
cc1defb1 1728 pulongest (TYPE_LENGTH (arg_type)));
ca3bf3bd
DJ
1729 switch (TYPE_CODE (arg_type))
1730 {
1731 case TYPE_CODE_INT:
1732 fprintf_unfiltered (gdb_stdlog, "int");
1733 break;
1734 case TYPE_CODE_STRUCT:
1735 fprintf_unfiltered (gdb_stdlog, "struct");
1736 break;
1737 default:
1738 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1739 break;
1740 }
3329c4b5
PM
1741 fprintf_unfiltered (gdb_stdlog, " %s\n",
1742 host_address_to_string (value_contents (arg)));
ca3bf3bd
DJ
1743 }
1744 }
1745
1746 /* First loop: collect information.
1747 Cast into type_long. (This shouldn't happen often for C because
1748 GDB already does this earlier.) It's possible that GDB could
1749 do it all the time but it's harmless to leave this code here. */
1750
1751 size = 0;
1752 onstack_size = 0;
ca3bf3bd 1753
cf84fa6b 1754 if (return_method == return_method_struct)
ca3bf3bd
DJ
1755 size = REGISTER_SIZE;
1756
b926417a 1757 for (int i = 0; i < nargs; i++)
ca3bf3bd
DJ
1758 {
1759 struct argument_info *info = &arg_info[i];
1760 struct value *arg = args[i];
1761 struct type *arg_type = check_typedef (value_type (arg));
1762
1763 switch (TYPE_CODE (arg_type))
1764 {
1765 case TYPE_CODE_INT:
1766 case TYPE_CODE_BOOL:
1767 case TYPE_CODE_CHAR:
1768 case TYPE_CODE_RANGE:
1769 case TYPE_CODE_ENUM:
1770
1771 /* Cast argument to long if necessary as the mask does it too. */
0dfff4cb
UW
1772 if (TYPE_LENGTH (arg_type)
1773 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
ca3bf3bd 1774 {
0dfff4cb 1775 arg_type = builtin_type (gdbarch)->builtin_long;
ca3bf3bd
DJ
1776 arg = value_cast (arg_type, arg);
1777 }
bdb4c075
MG
1778 /* Aligment is equal to the type length for the basic types. */
1779 info->align = TYPE_LENGTH (arg_type);
ca3bf3bd
DJ
1780 break;
1781
1782 case TYPE_CODE_FLT:
1783
1784 /* Align doubles correctly. */
0dfff4cb
UW
1785 if (TYPE_LENGTH (arg_type)
1786 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1787 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
ca3bf3bd 1788 else
0dfff4cb 1789 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1790 break;
1791
1792 case TYPE_CODE_STRUCT:
1793 default:
0dfff4cb 1794 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
ca3bf3bd
DJ
1795 break;
1796 }
1797 info->length = TYPE_LENGTH (arg_type);
1798 info->contents = value_contents (arg);
1799
1800 /* Align size and onstack_size. */
1801 size = (size + info->align - 1) & ~(info->align - 1);
1802 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1803
91d8eb23 1804 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
ca3bf3bd
DJ
1805 {
1806 info->onstack = 1;
1807 info->u.offset = onstack_size;
1808 onstack_size += info->length;
1809 }
1810 else
1811 {
1812 info->onstack = 0;
91d8eb23 1813 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
ca3bf3bd
DJ
1814 }
1815 size += info->length;
1816 }
1817
1818 /* Adjust the stack pointer and align it. */
1819 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1820
bdb4c075 1821 /* Simulate MOVSP, if Windowed ABI. */
6b50c0b0 1822 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
304fe255 1823 && (sp != osp))
ca3bf3bd
DJ
1824 {
1825 read_memory (osp - 16, buf, 16);
1826 write_memory (sp - 16, buf, 16);
1827 }
1828
1829 /* Second Loop: Load arguments. */
1830
cf84fa6b 1831 if (return_method == return_method_struct)
ca3bf3bd 1832 {
e17a4113 1833 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
b66f5587 1834 regcache->cooked_write (ARG_1ST (gdbarch), buf);
ca3bf3bd
DJ
1835 }
1836
b926417a 1837 for (int i = 0; i < nargs; i++)
ca3bf3bd
DJ
1838 {
1839 struct argument_info *info = &arg_info[i];
1840
1841 if (info->onstack)
1842 {
1843 int n = info->length;
1844 CORE_ADDR offset = sp + info->u.offset;
1845
1846 /* Odd-sized structs are aligned to the lower side of a memory
1847 word in big-endian mode and require a shift. This only
1848 applies for structures smaller than one word. */
1849
4c6b5505 1850 if (n < REGISTER_SIZE
6b50c0b0 1851 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ca3bf3bd
DJ
1852 offset += (REGISTER_SIZE - n);
1853
1854 write_memory (offset, info->contents, info->length);
1855
1856 }
1857 else
1858 {
1859 int n = info->length;
1860 const bfd_byte *cp = info->contents;
1861 int r = info->u.regno;
1862
1863 /* Odd-sized structs are aligned to the lower side of registers in
1864 big-endian mode and require a shift. The odd-sized leftover will
1865 be at the end. Note that this is only true for structures smaller
1866 than REGISTER_SIZE; for larger odd-sized structures the excess
1867 will be left-aligned in the register on both endiannesses. */
1868
e17a4113 1869 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
ca3bf3bd 1870 {
e17a4113
UW
1871 ULONGEST v;
1872 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
ca3bf3bd
DJ
1873 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1874
e17a4113 1875 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
b66f5587 1876 regcache->cooked_write (r, buf);
ca3bf3bd
DJ
1877
1878 cp += REGISTER_SIZE;
1879 n -= REGISTER_SIZE;
1880 r++;
1881 }
1882 else
1883 while (n > 0)
1884 {
b66f5587 1885 regcache->cooked_write (r, cp);
ca3bf3bd 1886
ca3bf3bd
DJ
1887 cp += REGISTER_SIZE;
1888 n -= REGISTER_SIZE;
1889 r++;
1890 }
1891 }
1892 }
1893
ca3bf3bd 1894 /* Set the return address of dummy frame to the dummy address.
bdb4c075 1895 The return address for the current function (in A0) is
85102364 1896 saved in the dummy frame, so we can safely overwrite A0 here. */
ca3bf3bd 1897
6b50c0b0 1898 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
bdb4c075 1899 {
98689b25 1900 ULONGEST val;
68d6df83 1901
bdb4c075 1902 ra = (bp_addr & 0x3fffffff) | 0x40000000;
98689b25
MG
1903 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1904 ps = (unsigned long) val & ~0x00030000;
304fe255 1905 regcache_cooked_write_unsigned
6b50c0b0 1906 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
bdb4c075 1907 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1908 gdbarch_ps_regnum (gdbarch),
bdb4c075 1909 ps | 0x00010000);
94a0e877
MG
1910
1911 /* All the registers have been saved. After executing
1912 dummy call, they all will be restored. So it's safe
1913 to modify WINDOWSTART register to make it look like there
1914 is only one register window corresponding to WINDOWEBASE. */
1915
0b883586 1916 regcache->raw_read (gdbarch_tdep (gdbarch)->wb_regnum, buf);
e17a4113
UW
1917 regcache_cooked_write_unsigned
1918 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1919 1 << extract_unsigned_integer (buf, 4, byte_order));
bdb4c075
MG
1920 }
1921 else
1922 {
1923 /* Simulate CALL0: write RA into A0 register. */
304fe255 1924 regcache_cooked_write_unsigned
94a0e877 1925 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
bdb4c075 1926 }
ca3bf3bd
DJ
1927
1928 /* Set new stack pointer and return it. */
304fe255 1929 regcache_cooked_write_unsigned (regcache,
6b50c0b0 1930 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
ca3bf3bd
DJ
1931 /* Make dummy frame ID unique by adding a constant. */
1932 return sp + SP_ALIGNMENT;
1933}
1934
cd6c3b4f
YQ
1935/* Implement the breakpoint_kind_from_pc gdbarch method. */
1936
d19280ad
YQ
1937static int
1938xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1939{
1940 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1941 return 2;
1942 else
1943 return 4;
1944}
ca3bf3bd
DJ
1945
1946/* Return a breakpoint for the current location of PC. We always use
1947 the density version if we have density instructions (regardless of the
1948 current instruction at PC), and use regular instructions otherwise. */
1949
1950#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1951#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1952#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1953#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1954
cd6c3b4f
YQ
1955/* Implement the sw_breakpoint_from_kind gdbarch method. */
1956
d19280ad
YQ
1957static const gdb_byte *
1958xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
ca3bf3bd 1959{
d19280ad 1960 *size = kind;
ca3bf3bd 1961
d19280ad 1962 if (kind == 4)
ca3bf3bd 1963 {
d19280ad
YQ
1964 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1965 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1966
67d57894 1967 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1968 return big_breakpoint;
ca3bf3bd 1969 else
d19280ad 1970 return little_breakpoint;
ca3bf3bd
DJ
1971 }
1972 else
1973 {
d19280ad
YQ
1974 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1975 static unsigned char density_little_breakpoint[]
1976 = DENSITY_LITTLE_BREAKPOINT;
1977
67d57894 1978 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 1979 return density_big_breakpoint;
ca3bf3bd 1980 else
d19280ad 1981 return density_little_breakpoint;
ca3bf3bd
DJ
1982 }
1983}
1984
bdb4c075
MG
1985/* Call0 ABI support routines. */
1986
f976a05d
MG
1987/* Return true, if PC points to "ret" or "ret.n". */
1988
1989static int
1990call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
1991{
1992#define RETURN_RET goto done
1993 xtensa_isa isa;
1994 xtensa_insnbuf ins, slot;
948f8e3d 1995 gdb_byte ibuf[XTENSA_ISA_BSZ];
f976a05d
MG
1996 CORE_ADDR ia, bt, ba;
1997 xtensa_format ifmt;
1998 int ilen, islots, is;
1999 xtensa_opcode opc;
2000 const char *opcname;
2001 int found_ret = 0;
2002
2003 isa = xtensa_default_isa;
2004 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2005 ins = xtensa_insnbuf_alloc (isa);
2006 slot = xtensa_insnbuf_alloc (isa);
2007 ba = 0;
2008
2009 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2010 {
2011 if (ia + xtensa_isa_maxlength (isa) > bt)
2012 {
2013 ba = ia;
2014 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2015 ? ba + XTENSA_ISA_BSZ : finish_pc;
2016 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2017 RETURN_RET;
2018 }
2019
2020 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2021 ifmt = xtensa_format_decode (isa, ins);
2022 if (ifmt == XTENSA_UNDEFINED)
2023 RETURN_RET;
2024 ilen = xtensa_format_length (isa, ifmt);
2025 if (ilen == XTENSA_UNDEFINED)
2026 RETURN_RET;
2027 islots = xtensa_format_num_slots (isa, ifmt);
2028 if (islots == XTENSA_UNDEFINED)
2029 RETURN_RET;
2030
2031 for (is = 0; is < islots; ++is)
2032 {
2033 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2034 RETURN_RET;
2035
2036 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2037 if (opc == XTENSA_UNDEFINED)
2038 RETURN_RET;
2039
2040 opcname = xtensa_opcode_name (isa, opc);
2041
2042 if ((strcasecmp (opcname, "ret.n") == 0)
2043 || (strcasecmp (opcname, "ret") == 0))
2044 {
2045 found_ret = 1;
2046 RETURN_RET;
2047 }
2048 }
2049 }
2050 done:
2051 xtensa_insnbuf_free(isa, slot);
2052 xtensa_insnbuf_free(isa, ins);
2053 return found_ret;
2054}
2055
bdb4c075
MG
2056/* Call0 opcode class. Opcodes are preclassified according to what they
2057 mean for Call0 prologue analysis, and their number of significant operands.
2058 The purpose of this is to simplify prologue analysis by separating
2059 instruction decoding (libisa) from the semantics of prologue analysis. */
2060
68d6df83
MG
2061typedef enum
2062{
bdb4c075
MG
2063 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2064 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2065 c0opc_flow, /* Flow control insn. */
2066 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2067 c0opc_break, /* Debugger software breakpoints. */
2068 c0opc_add, /* Adding two registers. */
2069 c0opc_addi, /* Adding a register and an immediate. */
dbab50de 2070 c0opc_and, /* Bitwise "and"-ing two registers. */
bdb4c075
MG
2071 c0opc_sub, /* Subtracting a register from a register. */
2072 c0opc_mov, /* Moving a register to a register. */
2073 c0opc_movi, /* Moving an immediate to a register. */
2074 c0opc_l32r, /* Loading a literal. */
08b9c608
MG
2075 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2076 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2077 c0opc_l32e, /* L32E instruction. */
2078 c0opc_s32e, /* S32E instruction. */
2079 c0opc_rfwo, /* RFWO instruction. */
2080 c0opc_rfwu, /* RFWU instruction. */
bdb4c075
MG
2081 c0opc_NrOf /* Number of opcode classifications. */
2082} xtensa_insn_kind;
2083
08b9c608
MG
2084/* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2085
2086static int
2087rwx_special_register (const char *opcname)
2088{
2089 char ch = *opcname++;
2090
2091 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2092 return 0;
2093 if (*opcname++ != 's')
2094 return 0;
2095 if (*opcname++ != 'r')
2096 return 0;
2097 if (*opcname++ != '.')
2098 return 0;
2099
2100 return 1;
2101}
bdb4c075
MG
2102
2103/* Classify an opcode based on what it means for Call0 prologue analysis. */
2104
2105static xtensa_insn_kind
2106call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2107{
2108 const char *opcname;
2109 xtensa_insn_kind opclass = c0opc_uninteresting;
2110
2111 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2112
2113 /* Get opcode name and handle special classifications. */
2114
2115 opcname = xtensa_opcode_name (isa, opc);
2116
2117 if (opcname == NULL
2118 || strcasecmp (opcname, "ill") == 0
2119 || strcasecmp (opcname, "ill.n") == 0)
2120 opclass = c0opc_illegal;
2121 else if (strcasecmp (opcname, "break") == 0
2122 || strcasecmp (opcname, "break.n") == 0)
2123 opclass = c0opc_break;
2124 else if (strcasecmp (opcname, "entry") == 0)
2125 opclass = c0opc_entry;
08b9c608
MG
2126 else if (strcasecmp (opcname, "rfwo") == 0)
2127 opclass = c0opc_rfwo;
2128 else if (strcasecmp (opcname, "rfwu") == 0)
2129 opclass = c0opc_rfwu;
bdb4c075
MG
2130 else if (xtensa_opcode_is_branch (isa, opc) > 0
2131 || xtensa_opcode_is_jump (isa, opc) > 0
2132 || xtensa_opcode_is_loop (isa, opc) > 0
2133 || xtensa_opcode_is_call (isa, opc) > 0
2134 || strcasecmp (opcname, "simcall") == 0
2135 || strcasecmp (opcname, "syscall") == 0)
2136 opclass = c0opc_flow;
2137
2138 /* Also, classify specific opcodes that need to be tracked. */
2139 else if (strcasecmp (opcname, "add") == 0
2140 || strcasecmp (opcname, "add.n") == 0)
2141 opclass = c0opc_add;
dbab50de
MG
2142 else if (strcasecmp (opcname, "and") == 0)
2143 opclass = c0opc_and;
bdb4c075
MG
2144 else if (strcasecmp (opcname, "addi") == 0
2145 || strcasecmp (opcname, "addi.n") == 0
2146 || strcasecmp (opcname, "addmi") == 0)
2147 opclass = c0opc_addi;
2148 else if (strcasecmp (opcname, "sub") == 0)
2149 opclass = c0opc_sub;
2150 else if (strcasecmp (opcname, "mov.n") == 0
2151 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2152 opclass = c0opc_mov;
2153 else if (strcasecmp (opcname, "movi") == 0
2154 || strcasecmp (opcname, "movi.n") == 0)
2155 opclass = c0opc_movi;
2156 else if (strcasecmp (opcname, "l32r") == 0)
2157 opclass = c0opc_l32r;
2158 else if (strcasecmp (opcname, "s32i") == 0
2159 || strcasecmp (opcname, "s32i.n") == 0)
2160 opclass = c0opc_s32i;
08b9c608
MG
2161 else if (strcasecmp (opcname, "l32e") == 0)
2162 opclass = c0opc_l32e;
2163 else if (strcasecmp (opcname, "s32e") == 0)
2164 opclass = c0opc_s32e;
2165 else if (rwx_special_register (opcname))
2166 opclass = c0opc_rwxsr;
bdb4c075
MG
2167
2168 return opclass;
2169}
2170
2171/* Tracks register movement/mutation for a given operation, which may
2172 be within a bundle. Updates the destination register tracking info
2173 accordingly. The pc is needed only for pc-relative load instructions
2174 (eg. l32r). The SP register number is needed to identify stores to
85102364 2175 the stack frame. Returns 0, if analysis was successful, non-zero
dbab50de 2176 otherwise. */
bdb4c075 2177
dbab50de
MG
2178static int
2179call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
bdb4c075 2180 xtensa_insn_kind opclass, int nods, unsigned odv[],
dbab50de 2181 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
bdb4c075 2182{
e17a4113 2183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
dbab50de 2184 unsigned litbase, litaddr, litval;
bdb4c075
MG
2185
2186 switch (opclass)
2187 {
2188 case c0opc_addi:
2189 /* 3 operands: dst, src, imm. */
2190 gdb_assert (nods == 3);
2191 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2192 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2193 break;
2194 case c0opc_add:
2195 /* 3 operands: dst, src1, src2. */
08b9c608 2196 gdb_assert (nods == 3);
bdb4c075
MG
2197 if (src[odv[1]].fr_reg == C0_CONST)
2198 {
2199 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2200 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2201 }
2202 else if (src[odv[2]].fr_reg == C0_CONST)
2203 {
2204 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2205 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2206 }
2207 else dst[odv[0]].fr_reg = C0_INEXP;
2208 break;
dbab50de
MG
2209 case c0opc_and:
2210 /* 3 operands: dst, src1, src2. */
2211 gdb_assert (nods == 3);
2212 if (cache->c0.c0_fpalign == 0)
2213 {
2214 /* Handle dynamic stack alignment. */
2215 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2216 {
2217 if (src[odv[2]].fr_reg == C0_CONST)
2218 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2219 break;
2220 }
2221 else if ((src[odv[0]].fr_reg == spreg)
2222 && (src[odv[2]].fr_reg == spreg))
2223 {
2224 if (src[odv[1]].fr_reg == C0_CONST)
2225 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2226 break;
2227 }
2228 /* else fall through. */
2229 }
2230 if (src[odv[1]].fr_reg == C0_CONST)
2231 {
2232 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2233 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2234 }
2235 else if (src[odv[2]].fr_reg == C0_CONST)
2236 {
2237 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2238 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2239 }
2240 else dst[odv[0]].fr_reg = C0_INEXP;
2241 break;
bdb4c075
MG
2242 case c0opc_sub:
2243 /* 3 operands: dst, src1, src2. */
2244 gdb_assert (nods == 3);
2245 if (src[odv[2]].fr_reg == C0_CONST)
2246 {
2247 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2248 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2249 }
2250 else dst[odv[0]].fr_reg = C0_INEXP;
2251 break;
2252 case c0opc_mov:
2253 /* 2 operands: dst, src [, src]. */
2254 gdb_assert (nods == 2);
dbab50de
MG
2255 /* First, check if it's a special case of saving unaligned SP
2256 to a spare register in case of dynamic stack adjustment.
2257 But, only do it one time. The second time could be initializing
2258 frame pointer. We don't want to overwrite the first one. */
2259 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2260 cache->c0.c0_old_sp = odv[0];
2261
bdb4c075
MG
2262 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2263 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2264 break;
2265 case c0opc_movi:
2266 /* 2 operands: dst, imm. */
2267 gdb_assert (nods == 2);
2268 dst[odv[0]].fr_reg = C0_CONST;
2269 dst[odv[0]].fr_ofs = odv[1];
2270 break;
2271 case c0opc_l32r:
2272 /* 2 operands: dst, literal offset. */
2273 gdb_assert (nods == 2);
dbab50de
MG
2274 /* litbase = xtensa_get_litbase (pc); can be also used. */
2275 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2276 ? 0 : xtensa_read_register
2277 (gdbarch_tdep (gdbarch)->litbase_regnum);
bdb4c075
MG
2278 litaddr = litbase & 1
2279 ? (litbase & ~1) + (signed)odv[1]
2280 : (pc + 3 + (signed)odv[1]) & ~3;
e17a4113 2281 litval = read_memory_integer (litaddr, 4, byte_order);
bdb4c075
MG
2282 dst[odv[0]].fr_reg = C0_CONST;
2283 dst[odv[0]].fr_ofs = litval;
2284 break;
2285 case c0opc_s32i:
2286 /* 3 operands: value, base, offset. */
2287 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
dbab50de
MG
2288 /* First, check if it's a spill for saved unaligned SP,
2289 when dynamic stack adjustment was applied to this frame. */
2290 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2291 && (odv[1] == spreg) /* SP usage indicates spill. */
2292 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2293 cache->c0.c0_sp_ofs = odv[2];
2294
bdb4c075
MG
2295 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2296 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2297 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2298 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2299 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2300 {
2301 /* ISA encoding guarantees alignment. But, check it anyway. */
2302 gdb_assert ((odv[2] & 3) == 0);
2303 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2304 }
2305 break;
dbab50de
MG
2306 /* If we end up inside Window Overflow / Underflow interrupt handler
2307 report an error because these handlers should have been handled
2308 already in a different way. */
2309 case c0opc_l32e:
2310 case c0opc_s32e:
2311 case c0opc_rfwo:
2312 case c0opc_rfwu:
2313 return 1;
bdb4c075 2314 default:
dbab50de 2315 return 1;
bdb4c075 2316 }
dbab50de 2317 return 0;
bdb4c075
MG
2318}
2319
dbab50de 2320/* Analyze prologue of the function at start address to determine if it uses
bdb4c075 2321 the Call0 ABI, and if so track register moves and linear modifications
dbab50de
MG
2322 in the prologue up to the PC or just beyond the prologue, whichever is
2323 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2324 prologue. The prologue may overlap non-prologue instructions but is
2325 guaranteed to end by the first flow-control instruction (jump, branch,
2326 call or return). Since an optimized function may move information around
2327 and change the stack frame arbitrarily during the prologue, the information
2328 is guaranteed valid only at the point in the function indicated by the PC.
bdb4c075
MG
2329 May be used to skip the prologue or identify the ABI, w/o tracking.
2330
2331 Returns: Address of first instruction after prologue, or PC (whichever
2332 is first), or 0, if decoding failed (in libisa).
2333 Input args:
2334 start Start address of function/prologue.
2335 pc Program counter to stop at. Use 0 to continue to end of prologue.
2336 If 0, avoids infinite run-on in corrupt code memory by bounding
2337 the scan to the end of the function if that can be determined.
dbab50de 2338 nregs Number of general registers to track.
bdb4c075 2339 InOut args:
dbab50de 2340 cache Xtensa frame cache.
bdb4c075
MG
2341
2342 Note that these may produce useful results even if decoding fails
2343 because they begin with default assumptions that analysis may change. */
2344
2345static CORE_ADDR
e17a4113 2346call0_analyze_prologue (struct gdbarch *gdbarch,
dbab50de
MG
2347 CORE_ADDR start, CORE_ADDR pc,
2348 int nregs, xtensa_frame_cache_t *cache)
bdb4c075
MG
2349{
2350 CORE_ADDR ia; /* Current insn address in prologue. */
2351 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2352 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
948f8e3d 2353 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
bdb4c075
MG
2354 xtensa_isa isa; /* libisa ISA handle. */
2355 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2356 xtensa_format ifmt; /* libisa instruction format. */
2357 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2358 xtensa_opcode opc; /* Opcode in current slot. */
2359 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2360 int nods; /* Opcode number of operands. */
2361 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2362 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2363 int j; /* General loop counter. */
2364 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2365 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2366 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2367
2368 struct symtab_and_line prologue_sal;
2369
2370 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2371 (int)start, (int)pc);
2372
2373 /* Try to limit the scan to the end of the function if a non-zero pc
2374 arg was not supplied to avoid probing beyond the end of valid memory.
2375 If memory is full of garbage that classifies as c0opc_uninteresting.
2376 If this fails (eg. if no symbols) pc ends up 0 as it was.
26c4b26f 2377 Initialize the Call0 frame and register tracking info.
bdb4c075
MG
2378 Assume it's Call0 until an 'entry' instruction is encountered.
2379 Assume we may be in the prologue until we hit a flow control instr. */
2380
2381 rtmp = NULL;
8179e739 2382 body_pc = UINT_MAX;
bdb4c075
MG
2383 end_pc = 0;
2384
2385 /* Find out, if we have an information about the prologue from DWARF. */
2386 prologue_sal = find_pc_line (start, 0);
2387 if (prologue_sal.line != 0) /* Found debug info. */
2388 body_pc = prologue_sal.end;
2389
2390 /* If we are going to analyze the prologue in general without knowing about
85102364 2391 the current PC, make the best assumption for the end of the prologue. */
bdb4c075
MG
2392 if (pc == 0)
2393 {
2394 find_pc_partial_function (start, 0, NULL, &end_pc);
325fac50 2395 body_pc = std::min (end_pc, body_pc);
bdb4c075
MG
2396 }
2397 else
325fac50 2398 body_pc = std::min (pc, body_pc);
bdb4c075 2399
dbab50de
MG
2400 cache->call0 = 1;
2401 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
bdb4c075
MG
2402
2403 isa = xtensa_default_isa;
2ff5e605 2404 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
bdb4c075
MG
2405 ins = xtensa_insnbuf_alloc (isa);
2406 slot = xtensa_insnbuf_alloc (isa);
2407
2408 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2409 {
2410 /* (Re)fill instruction buffer from memory if necessary, but do not
2411 read memory beyond PC to be sure we stay within text section
2412 (this protection only works if a non-zero pc is supplied). */
2413
2414 if (ia + xtensa_isa_maxlength (isa) > bt)
2415 {
2416 ba = ia;
2ff5e605 2417 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
dbab50de
MG
2418 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2419 error (_("Unable to read target memory ..."));
bdb4c075
MG
2420 }
2421
2422 /* Decode format information. */
2423
2424 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2425 ifmt = xtensa_format_decode (isa, ins);
2426 if (ifmt == XTENSA_UNDEFINED)
2427 {
2428 fail = 1;
2429 goto done;
2430 }
2431 ilen = xtensa_format_length (isa, ifmt);
2432 if (ilen == XTENSA_UNDEFINED)
2433 {
2434 fail = 1;
2435 goto done;
2436 }
2437 islots = xtensa_format_num_slots (isa, ifmt);
2438 if (islots == XTENSA_UNDEFINED)
2439 {
2440 fail = 1;
2441 goto done;
2442 }
2443
2444 /* Analyze a bundle or a single instruction, using a snapshot of
2445 the register tracking info as input for the entire bundle so that
2446 register changes do not take effect within this bundle. */
ca3bf3bd 2447
bdb4c075 2448 for (j = 0; j < nregs; ++j)
dbab50de 2449 rtmp[j] = cache->c0.c0_rt[j];
bdb4c075
MG
2450
2451 for (is = 0; is < islots; ++is)
2452 {
2453 /* Decode a slot and classify the opcode. */
2454
2455 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2456 if (fail)
2457 goto done;
2458
2459 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
dbab50de 2460 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
bdb4c075
MG
2461 (unsigned)ia, opc);
2462 if (opc == XTENSA_UNDEFINED)
2463 opclass = c0opc_illegal;
2464 else
2465 opclass = call0_classify_opcode (isa, opc);
2466
2467 /* Decide whether to track this opcode, ignore it, or bail out. */
2468
2469 switch (opclass)
2470 {
2471 case c0opc_illegal:
2472 case c0opc_break:
2473 fail = 1;
2474 goto done;
2475
2476 case c0opc_uninteresting:
2477 continue;
2478
dbab50de
MG
2479 case c0opc_flow: /* Flow control instructions stop analysis. */
2480 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
bdb4c075
MG
2481 goto done;
2482
2483 case c0opc_entry:
dbab50de 2484 cache->call0 = 0;
bdb4c075
MG
2485 ia += ilen; /* Skip over 'entry' insn. */
2486 goto done;
2487
2488 default:
dbab50de 2489 cache->call0 = 1;
bdb4c075
MG
2490 }
2491
2492 /* Only expected opcodes should get this far. */
bdb4c075
MG
2493
2494 /* Extract and decode the operands. */
2495 nods = xtensa_opcode_num_operands (isa, opc);
2496 if (nods == XTENSA_UNDEFINED)
2497 {
2498 fail = 1;
2499 goto done;
2500 }
2501
2502 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2503 {
2504 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2505 is, slot, &odv[j]);
2506 if (fail)
2507 goto done;
2508
2509 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2510 if (fail)
2511 goto done;
2512 }
2513
2514 /* Check operands to verify use of 'mov' assembler macro. */
2515 if (opclass == c0opc_mov && nods == 3)
2516 {
2517 if (odv[2] == odv[1])
dbab50de
MG
2518 {
2519 nods = 2;
2520 if ((odv[0] == 1) && (odv[1] != 1))
2521 /* OR A1, An, An , where n != 1.
2522 This means we are inside epilogue already. */
2523 goto done;
2524 }
bdb4c075
MG
2525 else
2526 {
2527 opclass = c0opc_uninteresting;
2528 continue;
2529 }
2530 }
2531
2532 /* Track register movement and modification for this operation. */
dbab50de
MG
2533 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2534 opclass, nods, odv, ia, 1, cache);
2535 if (fail)
2536 goto done;
bdb4c075
MG
2537 }
2538 }
2539done:
2540 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2541 (unsigned)ia, fail ? "failed" : "succeeded");
2542 xtensa_insnbuf_free(isa, slot);
2543 xtensa_insnbuf_free(isa, ins);
d4709618 2544 return fail ? XTENSA_ISA_BADPC : ia;
bdb4c075
MG
2545}
2546
5142f611 2547/* Initialize frame cache for the current frame in CALL0 ABI. */
bdb4c075
MG
2548
2549static void
5142f611 2550call0_frame_cache (struct frame_info *this_frame,
dbab50de 2551 xtensa_frame_cache_t *cache, CORE_ADDR pc)
bdb4c075 2552{
5142f611 2553 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bdb4c075
MG
2555 CORE_ADDR start_pc; /* The beginning of the function. */
2556 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2557 CORE_ADDR sp, fp, ra;
dbab50de 2558 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
bdb4c075 2559
dbab50de
MG
2560 sp = get_frame_register_unsigned
2561 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2562 fp = sp; /* Assume FP == SP until proven otherwise. */
2563
bdb4c075
MG
2564 /* Find the beginning of the prologue of the function containing the PC
2565 and analyze it up to the PC or the end of the prologue. */
2566
2567 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2568 {
dbab50de 2569 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
d4709618
MG
2570
2571 if (body_pc == XTENSA_ISA_BADPC)
dbab50de
MG
2572 {
2573 warning_once ();
2574 ra = 0;
2575 goto finish_frame_analysis;
2576 }
bdb4c075
MG
2577 }
2578
bdb4c075
MG
2579 /* Get the frame information and FP (if used) at the current PC.
2580 If PC is in the prologue, the prologue analysis is more reliable
dbab50de
MG
2581 than DWARF info. We don't not know for sure, if PC is in the prologue,
2582 but we do know no calls have yet taken place, so we can almost
bdb4c075
MG
2583 certainly rely on the prologue analysis. */
2584
2585 if (body_pc <= pc)
2586 {
2587 /* Prologue analysis was successful up to the PC.
2588 It includes the cases when PC == START_PC. */
2589 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2590 /* c0_hasfp == true means there is a frame pointer because
2591 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2592 was derived from SP. Otherwise, it would be C0_FP. */
2593 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2594 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
6b50c0b0 2595 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
bdb4c075
MG
2596 }
2597 else /* No data from the prologue analysis. */
2598 {
2599 c0_hasfp = 0;
6b50c0b0 2600 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
bdb4c075
MG
2601 c0_frmsz = 0;
2602 start_pc = pc;
2603 }
2604
dbab50de
MG
2605 if (cache->c0.c0_fpalign)
2606 {
2607 /* This frame has a special prologue with a dynamic stack adjustment
2608 to force an alignment, which is bigger than standard 16 bytes. */
2609
2610 CORE_ADDR unaligned_sp;
2611
2612 if (cache->c0.c0_old_sp == C0_INEXP)
2613 /* This can't be. Prologue code should be consistent.
2614 Unaligned stack pointer should be saved in a spare register. */
2615 {
2616 warning_once ();
2617 ra = 0;
2618 goto finish_frame_analysis;
2619 }
2620
2621 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2622 /* Saved unaligned value of SP is kept in a register. */
2623 unaligned_sp = get_frame_register_unsigned
2624 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2625 else
2626 /* Get the value from stack. */
2627 unaligned_sp = (CORE_ADDR)
2628 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2629
2630 prev_sp = unaligned_sp + c0_frmsz;
2631 }
2632 else
2633 prev_sp = fp + c0_frmsz;
bdb4c075
MG
2634
2635 /* Frame size from debug info or prologue tracking does not account for
2636 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2637 if (c0_hasfp)
2638 {
5142f611 2639 fp = get_frame_register_unsigned (this_frame, fp_regnum);
bdb4c075 2640
bdb4c075
MG
2641 /* Update the stack frame size. */
2642 c0_frmsz += fp - sp;
2643 }
2644
2645 /* Get the return address (RA) from the stack if saved,
2646 or try to get it from a register. */
2647
2648 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2649 if (to_stk != C0_NOSTK)
2650 ra = (CORE_ADDR)
e17a4113
UW
2651 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2652 4, byte_order);
bdb4c075
MG
2653
2654 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2655 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2656 {
dbab50de
MG
2657 /* Special case for terminating backtrace at a function that wants to
2658 be seen as the outermost one. Such a function will clear it's RA (A0)
2659 register to 0 in the prologue instead of saving its original value. */
bdb4c075
MG
2660 ra = 0;
2661 }
2662 else
2663 {
dbab50de
MG
2664 /* RA was copied to another register or (before any function call) may
2665 still be in the original RA register. This is not always reliable:
2666 even in a leaf function, register tracking stops after prologue, and
2667 even in prologue, non-prologue instructions (not tracked) may overwrite
2668 RA or any register it was copied to. If likely in prologue or before
2669 any call, use retracking info and hope for the best (compiler should
2670 have saved RA in stack if not in a leaf function). If not in prologue,
2671 too bad. */
bdb4c075
MG
2672
2673 int i;
1448a0a2
PM
2674 for (i = 0;
2675 (i < C0_NREGS)
2676 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
bdb4c075
MG
2677 ++i);
2678 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2679 i = C0_RA;
5142f611 2680 if (i < C0_NREGS)
bdb4c075 2681 {
5142f611
MG
2682 ra = get_frame_register_unsigned
2683 (this_frame,
2684 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
bdb4c075
MG
2685 }
2686 else ra = 0;
2687 }
2688
dbab50de 2689 finish_frame_analysis:
bdb4c075
MG
2690 cache->pc = start_pc;
2691 cache->ra = ra;
2692 /* RA == 0 marks the outermost frame. Do not go past it. */
2693 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2694 cache->c0.fp_regnum = fp_regnum;
2695 cache->c0.c0_frmsz = c0_frmsz;
2696 cache->c0.c0_hasfp = c0_hasfp;
2697 cache->c0.c0_fp = fp;
2698}
2699
08b9c608
MG
2700static CORE_ADDR a0_saved;
2701static CORE_ADDR a7_saved;
2702static CORE_ADDR a11_saved;
2703static int a0_was_saved;
2704static int a7_was_saved;
2705static int a11_was_saved;
2706
68d6df83 2707/* Simulate L32E instruction: AT <-- ref (AS + offset). */
08b9c608
MG
2708static void
2709execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2710{
2711 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2712 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2713 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2714 unsigned int spilled_value
2715 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2716
2717 if ((at == 0) && !a0_was_saved)
2718 {
2719 a0_saved = xtensa_read_register (atreg);
2720 a0_was_saved = 1;
2721 }
2722 else if ((at == 7) && !a7_was_saved)
2723 {
2724 a7_saved = xtensa_read_register (atreg);
2725 a7_was_saved = 1;
2726 }
2727 else if ((at == 11) && !a11_was_saved)
2728 {
2729 a11_saved = xtensa_read_register (atreg);
2730 a11_was_saved = 1;
2731 }
2732
2733 xtensa_write_register (atreg, spilled_value);
2734}
2735
68d6df83 2736/* Simulate S32E instruction: AT --> ref (AS + offset). */
08b9c608
MG
2737static void
2738execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2739{
2740 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2741 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2742 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2743 ULONGEST spilled_value = xtensa_read_register (atreg);
2744
2745 write_memory_unsigned_integer (addr, 4,
2746 gdbarch_byte_order (gdbarch),
2747 spilled_value);
2748}
2749
2750#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2751
68d6df83
MG
2752typedef enum
2753{
08b9c608
MG
2754 xtWindowOverflow,
2755 xtWindowUnderflow,
2756 xtNoExceptionHandler
2757} xtensa_exception_handler_t;
2758
68d6df83 2759/* Execute instruction stream from current PC until hitting RFWU or RFWO.
08b9c608
MG
2760 Return type of Xtensa Window Interrupt Handler on success. */
2761static xtensa_exception_handler_t
2762execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2763{
2764 xtensa_isa isa;
2765 xtensa_insnbuf ins, slot;
948f8e3d 2766 gdb_byte ibuf[XTENSA_ISA_BSZ];
08b9c608
MG
2767 CORE_ADDR ia, bt, ba;
2768 xtensa_format ifmt;
2769 int ilen, islots, is;
2770 xtensa_opcode opc;
2771 int insn_num = 0;
08b9c608
MG
2772 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2773
19afdd07 2774 uint32_t at, as, offset;
08b9c608
MG
2775
2776 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2777 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2778
2779 isa = xtensa_default_isa;
2780 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2781 ins = xtensa_insnbuf_alloc (isa);
2782 slot = xtensa_insnbuf_alloc (isa);
2783 ba = 0;
2784 ia = current_pc;
2785 bt = ia;
2786
2787 a0_was_saved = 0;
2788 a7_was_saved = 0;
2789 a11_was_saved = 0;
2790
2791 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2792 {
2793 if (ia + xtensa_isa_maxlength (isa) > bt)
2794 {
2795 ba = ia;
2796 bt = (ba + XTENSA_ISA_BSZ);
2797 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2798 return xtNoExceptionHandler;
2799 }
2800 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2801 ifmt = xtensa_format_decode (isa, ins);
2802 if (ifmt == XTENSA_UNDEFINED)
2803 return xtNoExceptionHandler;
2804 ilen = xtensa_format_length (isa, ifmt);
2805 if (ilen == XTENSA_UNDEFINED)
2806 return xtNoExceptionHandler;
2807 islots = xtensa_format_num_slots (isa, ifmt);
2808 if (islots == XTENSA_UNDEFINED)
2809 return xtNoExceptionHandler;
2810 for (is = 0; is < islots; ++is)
2811 {
2812 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2813 return xtNoExceptionHandler;
2814 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2815 if (opc == XTENSA_UNDEFINED)
2816 return xtNoExceptionHandler;
2817 switch (call0_classify_opcode (isa, opc))
2818 {
2819 case c0opc_illegal:
2820 case c0opc_flow:
2821 case c0opc_entry:
2822 case c0opc_break:
2823 /* We expect none of them here. */
2824 return xtNoExceptionHandler;
2825 case c0opc_l32e:
2826 func = execute_l32e;
2827 break;
2828 case c0opc_s32e:
2829 func = execute_s32e;
2830 break;
2831 case c0opc_rfwo: /* RFWO. */
2832 /* Here, we return from WindowOverflow handler and,
2833 if we stopped at the very beginning, which means
2834 A0 was saved, we have to restore it now. */
2835 if (a0_was_saved)
2836 {
2837 int arreg = arreg_number (gdbarch,
2838 gdbarch_tdep (gdbarch)->a0_base,
2839 wb);
2840 xtensa_write_register (arreg, a0_saved);
2841 }
2842 return xtWindowOverflow;
2843 case c0opc_rfwu: /* RFWU. */
2844 /* Here, we return from WindowUnderflow handler.
2845 Let's see if either A7 or A11 has to be restored. */
2846 if (WindowUnderflow12)
2847 {
2848 if (a11_was_saved)
2849 {
2850 int arreg = arreg_number (gdbarch,
2851 gdbarch_tdep (gdbarch)->a0_base + 11,
2852 wb);
2853 xtensa_write_register (arreg, a11_saved);
2854 }
2855 }
2856 else if (a7_was_saved)
2857 {
2858 int arreg = arreg_number (gdbarch,
2859 gdbarch_tdep (gdbarch)->a0_base + 7,
2860 wb);
2861 xtensa_write_register (arreg, a7_saved);
2862 }
2863 return xtWindowUnderflow;
2864 default: /* Simply skip this insns. */
2865 continue;
2866 }
2867
2868 /* Decode arguments for L32E / S32E and simulate their execution. */
2869 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2870 return xtNoExceptionHandler;
2871 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2872 return xtNoExceptionHandler;
2873 if (xtensa_operand_decode (isa, opc, 0, &at))
2874 return xtNoExceptionHandler;
2875 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2876 return xtNoExceptionHandler;
2877 if (xtensa_operand_decode (isa, opc, 1, &as))
2878 return xtNoExceptionHandler;
2879 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2880 return xtNoExceptionHandler;
2881 if (xtensa_operand_decode (isa, opc, 2, &offset))
2882 return xtNoExceptionHandler;
2883
2884 (*func) (gdbarch, at, as, offset, wb);
2885 }
2886
2887 ia += ilen;
2888 }
2889 return xtNoExceptionHandler;
2890}
2891
2892/* Handle Window Overflow / Underflow exception frames. */
2893
2894static void
2895xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2896 xtensa_frame_cache_t *cache,
2897 CORE_ADDR pc)
2898{
2899 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2900 CORE_ADDR ps, wb, ws, ra;
2901 int epc1_regnum, i, regnum;
2902 xtensa_exception_handler_t eh_type;
2903
2904 /* Read PS, WB, and WS from the hardware. Note that PS register
2905 must be present, if Windowed ABI is supported. */
2906 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2907 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2908 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2909
2910 /* Execute all the remaining instructions from Window Interrupt Handler
2911 by simulating them on the remote protocol level. On return, set the
2912 type of Xtensa Window Interrupt Handler, or report an error. */
2913 eh_type = execute_code (gdbarch, pc, wb);
2914 if (eh_type == xtNoExceptionHandler)
2915 error (_("\
2916Unable to decode Xtensa Window Interrupt Handler's code."));
2917
2918 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2919 cache->call0 = 0; /* It's Windowed ABI. */
2920
2921 /* All registers for the cached frame will be alive. */
2922 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2923 cache->wd.aregs[i] = -1;
2924
2925 if (eh_type == xtWindowOverflow)
2926 cache->wd.ws = ws ^ (1 << wb);
2927 else /* eh_type == xtWindowUnderflow. */
2928 cache->wd.ws = ws | (1 << wb);
2929
2930 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2931 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2932 cache->wd.wb);
2933 ra = xtensa_read_register (regnum);
2934 cache->wd.callsize = WINSIZE (ra);
2935 cache->prev_sp = xtensa_read_register (regnum + 1);
2936 /* Set regnum to a frame pointer of the frame being cached. */
2937 regnum = xtensa_scan_prologue (gdbarch, pc);
2938 regnum = arreg_number (gdbarch,
2939 gdbarch_tdep (gdbarch)->a0_base + regnum,
2940 cache->wd.wb);
2941 cache->base = get_frame_register_unsigned (this_frame, regnum);
2942
2943 /* Read PC of interrupted function from EPC1 register. */
2944 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2945 if (epc1_regnum < 0)
2946 error(_("Unable to read Xtensa register EPC1"));
2947 cache->ra = xtensa_read_register (epc1_regnum);
2948 cache->pc = get_frame_func (this_frame);
2949}
2950
bdb4c075
MG
2951
2952/* Skip function prologue.
2953
2954 Return the pc of the first instruction after prologue. GDB calls this to
2955 find the address of the first line of the function or (if there is no line
2956 number information) to skip the prologue for planting breakpoints on
2957 function entries. Use debug info (if present) or prologue analysis to skip
2958 the prologue to achieve reliable debugging behavior. For windowed ABI,
2959 only the 'entry' instruction is skipped. It is not strictly necessary to
2960 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2961 backtrace at any point in the prologue, however certain potential hazards
2962 are avoided and a more "normal" debugging experience is ensured by
2963 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2964 For example, if we don't skip the prologue:
2965 - Some args may not yet have been saved to the stack where the debug
2966 info expects to find them (true anyway when only 'entry' is skipped);
2967 - Software breakpoints ('break' instrs) may not have been unplanted
2968 when the prologue analysis is done on initializing the frame cache,
2969 and breaks in the prologue will throw off the analysis.
ca3bf3bd
DJ
2970
2971 If we have debug info ( line-number info, in particular ) we simply skip
2972 the code associated with the first function line effectively skipping
bdb4c075 2973 the prologue code. It works even in cases like
ca3bf3bd
DJ
2974
2975 int main()
2976 { int local_var = 1;
2977 ....
2978 }
2979
2980 because, for this source code, both Xtensa compilers will generate two
2981 separate entries ( with the same line number ) in dwarf line-number
2982 section to make sure there is a boundary between the prologue code and
2983 the rest of the function.
2984
bdb4c075
MG
2985 If there is no debug info, we need to analyze the code. */
2986
2987/* #define DONT_SKIP_PROLOGUE */
ca3bf3bd 2988
63807e1d 2989static CORE_ADDR
6093d2eb 2990xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
ca3bf3bd 2991{
bdb4c075
MG
2992 struct symtab_and_line prologue_sal;
2993 CORE_ADDR body_pc;
2994
ca3bf3bd
DJ
2995 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
2996
bdb4c075
MG
2997#if DONT_SKIP_PROLOGUE
2998 return start_pc;
2999#endif
3000
3001 /* Try to find first body line from debug info. */
3002
3003 prologue_sal = find_pc_line (start_pc, 0);
3004 if (prologue_sal.line != 0) /* Found debug info. */
ca3bf3bd 3005 {
f976a05d
MG
3006 /* In Call0, it is possible to have a function with only one instruction
3007 ('ret') resulting from a one-line optimized function that does nothing.
3008 In that case, prologue_sal.end may actually point to the start of the
3009 next function in the text section, causing a breakpoint to be set at
3010 the wrong place. Check, if the end address is within a different
3011 function, and if so return the start PC. We know we have symbol
3012 information. */
ca3bf3bd 3013
bdb4c075
MG
3014 CORE_ADDR end_func;
3015
f976a05d
MG
3016 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3017 && call0_ret (start_pc, prologue_sal.end))
3018 return start_pc;
3019
bdb4c075
MG
3020 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3021 if (end_func != start_pc)
ca3bf3bd
DJ
3022 return start_pc;
3023
bdb4c075 3024 return prologue_sal.end;
ca3bf3bd 3025 }
ca3bf3bd 3026
bdb4c075 3027 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
dbab50de
MG
3028 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3029 xtensa_alloc_frame_cache (0));
bdb4c075
MG
3030 return body_pc != 0 ? body_pc : start_pc;
3031}
ca3bf3bd
DJ
3032
3033/* Verify the current configuration. */
ca3bf3bd
DJ
3034static void
3035xtensa_verify_config (struct gdbarch *gdbarch)
3036{
d7e74731
PA
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3038 string_file log;
ca3bf3bd
DJ
3039
3040 /* Verify that we got a reasonable number of AREGS. */
3041 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
d7e74731 3042 log.printf (_("\
bdb4c075 3043\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
d7e74731 3044 tdep->num_aregs);
ca3bf3bd
DJ
3045
3046 /* Verify that certain registers exist. */
bdb4c075 3047
ca3bf3bd 3048 if (tdep->pc_regnum == -1)
d7e74731 3049 log.printf (_("\n\tpc_regnum: No PC register"));
bdb4c075 3050 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
d7e74731 3051 log.printf (_("\n\tps_regnum: No PS register"));
bdb4c075
MG
3052
3053 if (tdep->isa_use_windowed_registers)
3054 {
3055 if (tdep->wb_regnum == -1)
d7e74731 3056 log.printf (_("\n\twb_regnum: No WB register"));
bdb4c075 3057 if (tdep->ws_regnum == -1)
d7e74731 3058 log.printf (_("\n\tws_regnum: No WS register"));
bdb4c075 3059 if (tdep->ar_base == -1)
d7e74731 3060 log.printf (_("\n\tar_base: No AR registers"));
bdb4c075
MG
3061 }
3062
ca3bf3bd 3063 if (tdep->a0_base == -1)
d7e74731 3064 log.printf (_("\n\ta0_base: No Ax registers"));
ca3bf3bd 3065
d7e74731 3066 if (!log.empty ())
ca3bf3bd 3067 internal_error (__FILE__, __LINE__,
d7e74731 3068 _("the following are invalid: %s"), log.c_str ());
ca3bf3bd
DJ
3069}
3070
94a0e877
MG
3071
3072/* Derive specific register numbers from the array of registers. */
3073
63807e1d 3074static void
94a0e877
MG
3075xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3076{
3077 xtensa_register_t* rmap;
3078 int n, max_size = 4;
3079
3080 tdep->num_regs = 0;
3081 tdep->num_nopriv_regs = 0;
3082
3083/* Special registers 0..255 (core). */
3084#define XTENSA_DBREGN_SREG(n) (0x0200+(n))
f74f865e
MF
3085/* User registers 0..255. */
3086#define XTENSA_DBREGN_UREG(n) (0x0300+(n))
94a0e877
MG
3087
3088 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3089 {
3090 if (rmap->target_number == 0x0020)
3091 tdep->pc_regnum = n;
3092 else if (rmap->target_number == 0x0100)
3093 tdep->ar_base = n;
3094 else if (rmap->target_number == 0x0000)
3095 tdep->a0_base = n;
3096 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3097 tdep->wb_regnum = n;
3098 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3099 tdep->ws_regnum = n;
3100 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3101 tdep->debugcause_regnum = n;
3102 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3103 tdep->exccause_regnum = n;
3104 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3105 tdep->excvaddr_regnum = n;
3106 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3107 tdep->lbeg_regnum = n;
3108 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3109 tdep->lend_regnum = n;
3110 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3111 tdep->lcount_regnum = n;
3112 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3113 tdep->sar_regnum = n;
3114 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3115 tdep->litbase_regnum = n;
3116 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3117 tdep->ps_regnum = n;
f74f865e
MF
3118 else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
3119 tdep->threadptr_regnum = n;
94a0e877
MG
3120#if 0
3121 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3122 tdep->interrupt_regnum = n;
3123 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3124 tdep->interrupt2_regnum = n;
3125 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3126 tdep->cpenable_regnum = n;
3127#endif
3128
3129 if (rmap->byte_size > max_size)
3130 max_size = rmap->byte_size;
3131 if (rmap->mask != 0 && tdep->num_regs == 0)
3132 tdep->num_regs = n;
94a0e877 3133 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
37d9e062
MF
3134 && tdep->num_nopriv_regs == 0)
3135 tdep->num_nopriv_regs = n;
94a0e877 3136 }
37d9e062
MF
3137 if (tdep->num_regs == 0)
3138 tdep->num_regs = tdep->num_nopriv_regs;
94a0e877
MG
3139
3140 /* Number of pseudo registers. */
3141 tdep->num_pseudo_regs = n - tdep->num_regs;
3142
3143 /* Empirically determined maximum sizes. */
3144 tdep->max_register_raw_size = max_size;
3145 tdep->max_register_virtual_size = max_size;
3146}
3147
ca3bf3bd
DJ
3148/* Module "constructor" function. */
3149
94a0e877
MG
3150extern struct gdbarch_tdep xtensa_tdep;
3151
ca3bf3bd
DJ
3152static struct gdbarch *
3153xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3154{
3155 struct gdbarch_tdep *tdep;
3156 struct gdbarch *gdbarch;
ca3bf3bd
DJ
3157
3158 DEBUGTRACE ("gdbarch_init()\n");
3159
a4398628
MF
3160 if (!xtensa_default_isa)
3161 xtensa_default_isa = xtensa_isa_init (0, 0);
3162
ca3bf3bd 3163 /* We have to set the byte order before we call gdbarch_alloc. */
94a0e877 3164 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
ca3bf3bd 3165
94a0e877 3166 tdep = &xtensa_tdep;
ca3bf3bd 3167 gdbarch = gdbarch_alloc (&info, tdep);
94a0e877 3168 xtensa_derive_tdep (tdep);
ca3bf3bd
DJ
3169
3170 /* Verify our configuration. */
3171 xtensa_verify_config (gdbarch);
dbab50de 3172 xtensa_session_once_reported = 0;
ca3bf3bd 3173
53375380
PA
3174 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3175 set_gdbarch_wchar_signed (gdbarch, 0);
3176
bdb4c075 3177 /* Pseudo-Register read/write. */
ca3bf3bd
DJ
3178 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3179 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3180
3181 /* Set target information. */
3182 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3183 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3184 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3185 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3186 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3187
ba2b1c56 3188 /* Renumber registers for known formats (stabs and dwarf2). */
ca3bf3bd 3189 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
ca3bf3bd
DJ
3190 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3191
3192 /* We provide our own function to get register information. */
3193 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3194 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3195
581e13c1 3196 /* To call functions from GDB using dummy frame. */
ca3bf3bd
DJ
3197 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3198
3199 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3200
3201 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3202
3203 /* Advance PC across any prologue instructions to reach "real" code. */
3204 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3205
3206 /* Stack grows downward. */
3207 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3208
3209 /* Set breakpoints. */
04180708
YQ
3210 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3211 xtensa_breakpoint_kind_from_pc);
3212 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3213 xtensa_sw_breakpoint_from_kind);
ca3bf3bd
DJ
3214
3215 /* After breakpoint instruction or illegal instruction, pc still
3216 points at break instruction, so don't decrement. */
3217 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3218
3219 /* We don't skip args. */
3220 set_gdbarch_frame_args_skip (gdbarch, 0);
3221
3222 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3223
3224 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3225
5142f611 3226 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
ca3bf3bd
DJ
3227
3228 /* Frame handling. */
3229 frame_base_set_default (gdbarch, &xtensa_frame_base);
5142f611
MG
3230 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3231 dwarf2_append_unwinders (gdbarch);
ca3bf3bd 3232
ca3bf3bd
DJ
3233 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3234
3235 xtensa_add_reggroups (gdbarch);
3236 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3237
97094034
AA
3238 set_gdbarch_iterate_over_regset_sections
3239 (gdbarch, xtensa_iterate_over_regset_sections);
ca3bf3bd 3240
ee967b5f
MG
3241 set_solib_svr4_fetch_link_map_offsets
3242 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3243
40045d91
MF
3244 /* Hook in the ABI-specific overrides, if they have been registered. */
3245 gdbarch_init_osabi (info, gdbarch);
3246
ca3bf3bd
DJ
3247 return gdbarch;
3248}
3249
ca3bf3bd 3250static void
6b50c0b0 3251xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
ca3bf3bd
DJ
3252{
3253 error (_("xtensa_dump_tdep(): not implemented"));
3254}
3255
ca3bf3bd
DJ
3256void
3257_initialize_xtensa_tdep (void)
3258{
ca3bf3bd
DJ
3259 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3260 xtensa_init_reggroups ();
3261
ccce17b0
YQ
3262 add_setshow_zuinteger_cmd ("xtensa",
3263 class_maintenance,
3264 &xtensa_debug_level,
581e13c1
MS
3265 _("Set Xtensa debugging."),
3266 _("Show Xtensa debugging."), _("\
ca3bf3bd
DJ
3267When non-zero, Xtensa-specific debugging is enabled. \
3268Can be 1, 2, 3, or 4 indicating the level of debugging."),
ccce17b0
YQ
3269 NULL,
3270 NULL,
3271 &setdebuglist, &showdebuglist);
ca3bf3bd 3272}
This page took 2.076805 seconds and 4 git commands to generate.