Refactor gold to enable support for MIPS-64 relocation format.
[deliverable/binutils-gdb.git] / gold / mips.cc
CommitLineData
9810d34d
SS
1// mips.cc -- mips target support for gold.
2
6f2750fe 3// Copyright (C) 2011-2016 Free Software Foundation, Inc.
9810d34d
SS
4// Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5// and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6// This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8// This file is part of gold.
9
10// This program is free software; you can redistribute it and/or modify
11// it under the terms of the GNU General Public License as published by
12// the Free Software Foundation; either version 3 of the License, or
13// (at your option) any later version.
14
15// This program is distributed in the hope that it will be useful,
16// but WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19
20// You should have received a copy of the GNU General Public License
21// along with this program; if not, write to the Free Software
22// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23// MA 02110-1301, USA.
24
25#include "gold.h"
26
27#include <algorithm>
28#include <set>
29#include <sstream>
30#include "demangle.h"
31
32#include "elfcpp.h"
33#include "parameters.h"
34#include "reloc.h"
35#include "mips.h"
36#include "object.h"
37#include "symtab.h"
38#include "layout.h"
39#include "output.h"
40#include "copy-relocs.h"
41#include "target.h"
42#include "target-reloc.h"
43#include "target-select.h"
44#include "tls.h"
45#include "errors.h"
46#include "gc.h"
62661c93 47#include "nacl.h"
9810d34d
SS
48
49namespace
50{
51using namespace gold;
52
53template<int size, bool big_endian>
54class Mips_output_data_plt;
55
56template<int size, bool big_endian>
57class Mips_output_data_got;
58
59template<int size, bool big_endian>
60class Target_mips;
61
62template<int size, bool big_endian>
63class Mips_output_section_reginfo;
64
65template<int size, bool big_endian>
66class Mips_output_data_la25_stub;
67
68template<int size, bool big_endian>
69class Mips_output_data_mips_stubs;
70
71template<int size>
72class Mips_symbol;
73
74template<int size, bool big_endian>
75class Mips_got_info;
76
77template<int size, bool big_endian>
78class Mips_relobj;
79
80class Mips16_stub_section_base;
81
82template<int size, bool big_endian>
83class Mips16_stub_section;
84
85// The ABI says that every symbol used by dynamic relocations must have
86// a global GOT entry. Among other things, this provides the dynamic
87// linker with a free, directly-indexed cache. The GOT can therefore
88// contain symbols that are not referenced by GOT relocations themselves
89// (in other words, it may have symbols that are not referenced by things
90// like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92// GOT relocations are less likely to overflow if we put the associated
93// GOT entries towards the beginning. We therefore divide the global
94// GOT entries into two areas: "normal" and "reloc-only". Entries in
95// the first area can be used for both dynamic relocations and GP-relative
96// accesses, while those in the "reloc-only" area are for dynamic
97// relocations only.
98
99// These GGA_* ("Global GOT Area") values are organised so that lower
100// values are more general than higher values. Also, non-GGA_NONE
101// values are ordered by the position of the area in the GOT.
102
103enum Global_got_area
104{
105 GGA_NORMAL = 0,
106 GGA_RELOC_ONLY = 1,
107 GGA_NONE = 2
108};
109
110// The types of GOT entries needed for this platform.
111// These values are exposed to the ABI in an incremental link.
112// Do not renumber existing values without changing the version
113// number of the .gnu_incremental_inputs section.
114enum Got_type
115{
116 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
117 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
118 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
119
120 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121 GOT_TYPE_STANDARD_MULTIGOT = 3,
122 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124};
125
126// TLS type of GOT entry.
127enum Got_tls_type
128{
129 GOT_TLS_NONE = 0,
130 GOT_TLS_GD = 1,
131 GOT_TLS_LDM = 2,
132 GOT_TLS_IE = 4
133};
134
135// Return TRUE if a relocation of type R_TYPE from OBJECT might
136// require an la25 stub. See also local_pic_function, which determines
137// whether the destination function ever requires a stub.
138template<int size, bool big_endian>
139static inline bool
140relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141 unsigned int r_type, bool target_is_16_bit_code)
142{
143 // We specifically ignore branches and jumps from EF_PIC objects,
144 // where the onus is on the compiler or programmer to perform any
145 // necessary initialization of $25. Sometimes such initialization
146 // is unnecessary; for example, -mno-shared functions do not use
147 // the incoming value of $25, and may therefore be called directly.
148 if (object->is_pic())
149 return false;
150
151 switch (r_type)
152 {
153 case elfcpp::R_MIPS_26:
154 case elfcpp::R_MIPS_PC16:
155 case elfcpp::R_MICROMIPS_26_S1:
156 case elfcpp::R_MICROMIPS_PC7_S1:
157 case elfcpp::R_MICROMIPS_PC10_S1:
158 case elfcpp::R_MICROMIPS_PC16_S1:
159 case elfcpp::R_MICROMIPS_PC23_S2:
160 return true;
161
162 case elfcpp::R_MIPS16_26:
163 return !target_is_16_bit_code;
164
165 default:
166 return false;
167 }
168}
169
170// Return true if SYM is a locally-defined PIC function, in the sense
171// that it or its fn_stub might need $25 to be valid on entry.
172// Note that MIPS16 functions set up $gp using PC-relative instructions,
173// so they themselves never need $25 to be valid. Only non-MIPS16
174// entry points are of interest here.
175template<int size, bool big_endian>
176static inline bool
177local_pic_function(Mips_symbol<size>* sym)
178{
179 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180 && !sym->object()->is_dynamic()
181 && !sym->is_undefined());
182
183 if (sym->is_defined() && def_regular)
184 {
185 Mips_relobj<size, big_endian>* object =
186 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188 if ((object->is_pic() || sym->is_pic())
189 && (!sym->is_mips16()
190 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191 return true;
192 }
193 return false;
194}
195
196static inline bool
197hi16_reloc(int r_type)
198{
199 return (r_type == elfcpp::R_MIPS_HI16
200 || r_type == elfcpp::R_MIPS16_HI16
201 || r_type == elfcpp::R_MICROMIPS_HI16);
202}
203
204static inline bool
205lo16_reloc(int r_type)
206{
207 return (r_type == elfcpp::R_MIPS_LO16
208 || r_type == elfcpp::R_MIPS16_LO16
209 || r_type == elfcpp::R_MICROMIPS_LO16);
210}
211
212static inline bool
213got16_reloc(unsigned int r_type)
214{
215 return (r_type == elfcpp::R_MIPS_GOT16
216 || r_type == elfcpp::R_MIPS16_GOT16
217 || r_type == elfcpp::R_MICROMIPS_GOT16);
218}
219
220static inline bool
221call_lo16_reloc(unsigned int r_type)
222{
223 return (r_type == elfcpp::R_MIPS_CALL_LO16
224 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225}
226
227static inline bool
228got_lo16_reloc(unsigned int r_type)
229{
230 return (r_type == elfcpp::R_MIPS_GOT_LO16
231 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232}
233
234static inline bool
235got_disp_reloc(unsigned int r_type)
236{
237 return (r_type == elfcpp::R_MIPS_GOT_DISP
238 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239}
240
241static inline bool
242got_page_reloc(unsigned int r_type)
243{
244 return (r_type == elfcpp::R_MIPS_GOT_PAGE
245 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246}
247
248static inline bool
249tls_gd_reloc(unsigned int r_type)
250{
251 return (r_type == elfcpp::R_MIPS_TLS_GD
252 || r_type == elfcpp::R_MIPS16_TLS_GD
253 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254}
255
256static inline bool
257tls_gottprel_reloc(unsigned int r_type)
258{
259 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262}
263
264static inline bool
265tls_ldm_reloc(unsigned int r_type)
266{
267 return (r_type == elfcpp::R_MIPS_TLS_LDM
268 || r_type == elfcpp::R_MIPS16_TLS_LDM
269 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270}
271
272static inline bool
273mips16_call_reloc(unsigned int r_type)
274{
275 return (r_type == elfcpp::R_MIPS16_26
276 || r_type == elfcpp::R_MIPS16_CALL16);
277}
278
279static inline bool
280jal_reloc(unsigned int r_type)
281{
282 return (r_type == elfcpp::R_MIPS_26
283 || r_type == elfcpp::R_MIPS16_26
284 || r_type == elfcpp::R_MICROMIPS_26_S1);
285}
286
287static inline bool
288micromips_branch_reloc(unsigned int r_type)
289{
290 return (r_type == elfcpp::R_MICROMIPS_26_S1
291 || r_type == elfcpp::R_MICROMIPS_PC16_S1
292 || r_type == elfcpp::R_MICROMIPS_PC10_S1
293 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294}
295
296// Check if R_TYPE is a MIPS16 reloc.
297static inline bool
298mips16_reloc(unsigned int r_type)
299{
300 switch (r_type)
301 {
302 case elfcpp::R_MIPS16_26:
303 case elfcpp::R_MIPS16_GPREL:
304 case elfcpp::R_MIPS16_GOT16:
305 case elfcpp::R_MIPS16_CALL16:
306 case elfcpp::R_MIPS16_HI16:
307 case elfcpp::R_MIPS16_LO16:
308 case elfcpp::R_MIPS16_TLS_GD:
309 case elfcpp::R_MIPS16_TLS_LDM:
310 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312 case elfcpp::R_MIPS16_TLS_GOTTPREL:
313 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315 return true;
316
317 default:
318 return false;
319 }
320}
321
322// Check if R_TYPE is a microMIPS reloc.
323static inline bool
324micromips_reloc(unsigned int r_type)
325{
326 switch (r_type)
327 {
328 case elfcpp::R_MICROMIPS_26_S1:
329 case elfcpp::R_MICROMIPS_HI16:
330 case elfcpp::R_MICROMIPS_LO16:
331 case elfcpp::R_MICROMIPS_GPREL16:
332 case elfcpp::R_MICROMIPS_LITERAL:
333 case elfcpp::R_MICROMIPS_GOT16:
334 case elfcpp::R_MICROMIPS_PC7_S1:
335 case elfcpp::R_MICROMIPS_PC10_S1:
336 case elfcpp::R_MICROMIPS_PC16_S1:
337 case elfcpp::R_MICROMIPS_CALL16:
338 case elfcpp::R_MICROMIPS_GOT_DISP:
339 case elfcpp::R_MICROMIPS_GOT_PAGE:
340 case elfcpp::R_MICROMIPS_GOT_OFST:
341 case elfcpp::R_MICROMIPS_GOT_HI16:
342 case elfcpp::R_MICROMIPS_GOT_LO16:
343 case elfcpp::R_MICROMIPS_SUB:
344 case elfcpp::R_MICROMIPS_HIGHER:
345 case elfcpp::R_MICROMIPS_HIGHEST:
346 case elfcpp::R_MICROMIPS_CALL_HI16:
347 case elfcpp::R_MICROMIPS_CALL_LO16:
348 case elfcpp::R_MICROMIPS_SCN_DISP:
349 case elfcpp::R_MICROMIPS_JALR:
350 case elfcpp::R_MICROMIPS_HI0_LO16:
351 case elfcpp::R_MICROMIPS_TLS_GD:
352 case elfcpp::R_MICROMIPS_TLS_LDM:
353 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358 case elfcpp::R_MICROMIPS_GPREL7_S2:
359 case elfcpp::R_MICROMIPS_PC23_S2:
360 return true;
361
362 default:
363 return false;
364 }
365}
366
367static inline bool
368is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369{
370 switch (high_reloc)
371 {
372 case elfcpp::R_MIPS_HI16:
373 case elfcpp::R_MIPS_GOT16:
374 return lo16_reloc == elfcpp::R_MIPS_LO16;
375 case elfcpp::R_MIPS16_HI16:
376 case elfcpp::R_MIPS16_GOT16:
377 return lo16_reloc == elfcpp::R_MIPS16_LO16;
378 case elfcpp::R_MICROMIPS_HI16:
379 case elfcpp::R_MICROMIPS_GOT16:
380 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381 default:
382 return false;
383 }
384}
385
386// This class is used to hold information about one GOT entry.
387// There are three types of entry:
388//
389// (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390// (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391// (2) a SYMBOL address, where SYMBOL is not local to an input object
392// (object != NULL, symndx == -1)
393// (3) a TLS LDM slot
394// (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396template<int size, bool big_endian>
397class Mips_got_entry
398{
399 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401 public:
402 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403 Mips_address addend, unsigned char tls_type,
404 unsigned int shndx)
405 : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406 { this->d.addend = addend; }
407
408 Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409 unsigned char tls_type)
410 : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411 { this->d.sym = sym; }
412
413 // Return whether this entry is for a local symbol.
414 bool
415 is_for_local_symbol() const
416 { return this->symndx_ != -1U; }
417
418 // Return whether this entry is for a global symbol.
419 bool
420 is_for_global_symbol() const
421 { return this->symndx_ == -1U; }
422
423 // Return the hash of this entry.
424 size_t
425 hash() const
426 {
427 if (this->tls_type_ == GOT_TLS_LDM)
428 return this->symndx_ + (1 << 18);
429 if (this->symndx_ != -1U)
430 {
431 uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432 return this->symndx_ + object_id + this->d.addend;
433 }
434 else
435 {
436 uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437 return this->symndx_ + sym_id;
438 }
439 }
440
441 // Return whether this entry is equal to OTHER.
442 bool
443 equals(Mips_got_entry<size, big_endian>* other) const
444 {
445 if (this->symndx_ != other->symndx_
446 || this->tls_type_ != other->tls_type_)
447 return false;
448 if (this->tls_type_ == GOT_TLS_LDM)
449 return true;
450 if (this->symndx_ != -1U)
451 return (this->object() == other->object()
452 && this->d.addend == other->d.addend);
453 else
454 return this->d.sym == other->d.sym;
455 }
456
457 // Return input object that needs this GOT entry.
458 Mips_relobj<size, big_endian>*
459 object() const
460 {
461 gold_assert(this->object_ != NULL);
462 return this->object_;
463 }
464
465 // Return local symbol index for local GOT entries.
466 unsigned int
467 symndx() const
468 {
469 gold_assert(this->symndx_ != -1U);
470 return this->symndx_;
471 }
472
473 // Return the relocation addend for local GOT entries.
474 Mips_address
475 addend() const
476 {
477 gold_assert(this->symndx_ != -1U);
478 return this->d.addend;
479 }
480
481 // Return global symbol for global GOT entries.
482 Mips_symbol<size>*
483 sym() const
484 {
485 gold_assert(this->symndx_ == -1U);
486 return this->d.sym;
487 }
488
489 // Return whether this is a TLS GOT entry.
490 bool
491 is_tls_entry() const
492 { return this->tls_type_ != GOT_TLS_NONE; }
493
494 // Return TLS type of this GOT entry.
495 unsigned char
496 tls_type() const
497 { return this->tls_type_; }
498
499 // Return section index of the local symbol for local GOT entries.
500 unsigned int
501 shndx() const
502 { return this->shndx_; }
503
504 private:
505 // The input object that needs the GOT entry.
506 Mips_relobj<size, big_endian>* object_;
507 // The index of the symbol if we have a local symbol; -1 otherwise.
508 unsigned int symndx_;
509
510 union
511 {
512 // If symndx != -1, the addend of the relocation that should be added to the
513 // symbol value.
514 Mips_address addend;
515 // If symndx == -1, the global symbol corresponding to this GOT entry. The
516 // symbol's entry is in the local area if mips_sym->global_got_area is
517 // GGA_NONE, otherwise it is in the global area.
518 Mips_symbol<size>* sym;
519 } d;
520
521 // The TLS type of this GOT entry. An LDM GOT entry will be a local
522 // symbol entry with r_symndx == 0.
523 unsigned char tls_type_;
524
525 // For local GOT entries, section index of the local symbol.
526 unsigned int shndx_;
527};
528
529// Hash for Mips_got_entry.
530
531template<int size, bool big_endian>
532class Mips_got_entry_hash
533{
534 public:
535 size_t
536 operator()(Mips_got_entry<size, big_endian>* entry) const
537 { return entry->hash(); }
538};
539
540// Equality for Mips_got_entry.
541
542template<int size, bool big_endian>
543class Mips_got_entry_eq
544{
545 public:
546 bool
547 operator()(Mips_got_entry<size, big_endian>* e1,
548 Mips_got_entry<size, big_endian>* e2) const
549 { return e1->equals(e2); }
550};
551
552// Got_page_range. This class describes a range of addends: [MIN_ADDEND,
553// MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
554// increasing MIN_ADDEND.
555
556struct Got_page_range
557{
558 Got_page_range()
559 : next(NULL), min_addend(0), max_addend(0)
560 { }
561
562 Got_page_range* next;
563 int min_addend;
564 int max_addend;
565
566 // Return the maximum number of GOT page entries required.
567 int
568 get_max_pages()
569 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570};
571
572// Got_page_entry. This class describes the range of addends that are applied
573// to page relocations against a given symbol.
574
575struct Got_page_entry
576{
577 Got_page_entry()
578 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579 { }
580
581 Got_page_entry(Object* object_, unsigned int symndx_)
582 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583 { }
584
585 // The input object that needs the GOT page entry.
586 Object* object;
587 // The index of the symbol, as stored in the relocation r_info.
588 unsigned int symndx;
589 // The ranges for this page entry.
590 Got_page_range* ranges;
591 // The maximum number of page entries needed for RANGES.
592 unsigned int num_pages;
593};
594
595// Hash for Got_page_entry.
596
597struct Got_page_entry_hash
598{
599 size_t
600 operator()(Got_page_entry* entry) const
601 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602};
603
604// Equality for Got_page_entry.
605
606struct Got_page_entry_eq
607{
608 bool
609 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610 {
611 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612 }
613};
614
615// This class is used to hold .got information when linking.
616
617template<int size, bool big_endian>
618class Mips_got_info
619{
620 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622 Reloc_section;
623 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625 // Unordered set of GOT entries.
626 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627 Mips_got_entry_hash<size, big_endian>,
628 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630 // Unordered set of GOT page entries.
631 typedef Unordered_set<Got_page_entry*,
632 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634 public:
635 Mips_got_info()
636 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640 offset_(0)
641 { }
642
643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645 void
646 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647 unsigned int symndx, Mips_address addend,
648 unsigned int r_type, unsigned int shndx);
649
650 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651 // in OBJECT. FOR_CALL is true if the caller is only interested in
652 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
653 // relocation.
654 void
655 record_global_got_symbol(Mips_symbol<size>* mips_sym,
656 Mips_relobj<size, big_endian>* object,
657 unsigned int r_type, bool dyn_reloc, bool for_call);
658
659 // Add ENTRY to master GOT and to OBJECT's GOT.
660 void
661 record_got_entry(Mips_got_entry<size, big_endian>* entry,
662 Mips_relobj<size, big_endian>* object);
663
664 // Record that OBJECT has a page relocation against symbol SYMNDX and
665 // that ADDEND is the addend for that relocation.
666 void
667 record_got_page_entry(Mips_relobj<size, big_endian>* object,
668 unsigned int symndx, int addend);
669
670 // Create all entries that should be in the local part of the GOT.
671 void
672 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674 // Create GOT page entries.
675 void
676 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679 void
680 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681 unsigned int non_reloc_only_global_gotno);
682
683 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684 void
685 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687 // Create TLS GOT entries.
688 void
689 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691 // Decide whether the symbol needs an entry in the global part of the primary
692 // GOT, setting global_got_area accordingly. Count the number of global
693 // symbols that are in the primary GOT only because they have dynamic
694 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695 void
696 count_got_symbols(Symbol_table* symtab);
697
698 // Return the offset of GOT page entry for VALUE.
699 unsigned int
700 get_got_page_offset(Mips_address value,
701 Mips_output_data_got<size, big_endian>* got);
702
703 // Count the number of GOT entries required.
704 void
705 count_got_entries();
706
707 // Count the number of GOT entries required by ENTRY. Accumulate the result.
708 void
709 count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711 // Add FROM's GOT entries.
712 void
713 add_got_entries(Mips_got_info<size, big_endian>* from);
714
715 // Add FROM's GOT page entries.
716 void
717 add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719 // Return GOT size.
720 unsigned int
721 got_size() const
722 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723 + this->tls_gotno_) * size/8);
724 }
725
726 // Return the number of local GOT entries.
727 unsigned int
728 local_gotno() const
729 { return this->local_gotno_; }
730
731 // Return the maximum number of page GOT entries needed.
732 unsigned int
733 page_gotno() const
734 { return this->page_gotno_; }
735
736 // Return the number of global GOT entries.
737 unsigned int
738 global_gotno() const
739 { return this->global_gotno_; }
740
741 // Set the number of global GOT entries.
742 void
743 set_global_gotno(unsigned int global_gotno)
744 { this->global_gotno_ = global_gotno; }
745
746 // Return the number of GGA_RELOC_ONLY global GOT entries.
747 unsigned int
748 reloc_only_gotno() const
749 { return this->reloc_only_gotno_; }
750
751 // Return the number of TLS GOT entries.
752 unsigned int
753 tls_gotno() const
754 { return this->tls_gotno_; }
755
756 // Return the GOT type for this GOT. Used for multi-GOT links only.
757 unsigned int
758 multigot_got_type(unsigned int got_type) const
759 {
760 switch (got_type)
761 {
762 case GOT_TYPE_STANDARD:
763 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764 case GOT_TYPE_TLS_OFFSET:
765 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766 case GOT_TYPE_TLS_PAIR:
767 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768 default:
769 gold_unreachable();
770 }
771 }
772
773 // Remove lazy-binding stubs for global symbols in this GOT.
774 void
775 remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777 // Return offset of this GOT from the start of .got section.
778 unsigned int
779 offset() const
780 { return this->offset_; }
781
782 // Set offset of this GOT from the start of .got section.
783 void
784 set_offset(unsigned int offset)
785 { this->offset_ = offset; }
786
787 // Set index of this GOT in multi-GOT links.
788 void
789 set_index(unsigned int index)
790 { this->index_ = index; }
791
792 // Return next GOT in multi-GOT links.
793 Mips_got_info<size, big_endian>*
794 next() const
795 { return this->next_; }
796
797 // Set next GOT in multi-GOT links.
798 void
799 set_next(Mips_got_info<size, big_endian>* next)
800 { this->next_ = next; }
801
802 // Return the offset of TLS LDM entry for this GOT.
803 unsigned int
804 tls_ldm_offset() const
805 { return this->tls_ldm_offset_; }
806
807 // Set the offset of TLS LDM entry for this GOT.
808 void
809 set_tls_ldm_offset(unsigned int tls_ldm_offset)
810 { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812 Unordered_set<Mips_symbol<size>*>&
813 global_got_symbols()
814 { return this->global_got_symbols_; }
815
816 // Return the GOT_TLS_* type required by relocation type R_TYPE.
817 static int
818 mips_elf_reloc_tls_type(unsigned int r_type)
819 {
820 if (tls_gd_reloc(r_type))
821 return GOT_TLS_GD;
822
823 if (tls_ldm_reloc(r_type))
824 return GOT_TLS_LDM;
825
826 if (tls_gottprel_reloc(r_type))
827 return GOT_TLS_IE;
828
829 return GOT_TLS_NONE;
830 }
831
832 // Return the number of GOT slots needed for GOT TLS type TYPE.
833 static int
834 mips_tls_got_entries(unsigned int type)
835 {
836 switch (type)
837 {
838 case GOT_TLS_GD:
839 case GOT_TLS_LDM:
840 return 2;
841
842 case GOT_TLS_IE:
843 return 1;
844
845 case GOT_TLS_NONE:
846 return 0;
847
848 default:
849 gold_unreachable();
850 }
851 }
852
853 private:
854 // The number of local GOT entries.
855 unsigned int local_gotno_;
856 // The maximum number of page GOT entries needed.
857 unsigned int page_gotno_;
858 // The number of global GOT entries.
859 unsigned int global_gotno_;
860 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861 unsigned int reloc_only_gotno_;
862 // The number of TLS GOT entries.
863 unsigned int tls_gotno_;
864 // The offset of TLS LDM entry for this GOT.
865 unsigned int tls_ldm_offset_;
866 // All symbols that have global GOT entry.
867 Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868 // A hash table holding GOT entries.
869 Got_entry_set got_entries_;
870 // A hash table of GOT page entries.
871 Got_page_entry_set got_page_entries_;
872 // The offset of first GOT page entry for this GOT.
873 unsigned int got_page_offset_start_;
874 // The offset of next available GOT page entry for this GOT.
875 unsigned int got_page_offset_next_;
876 // A hash table that maps GOT page entry value to the GOT offset where
877 // the entry is located.
878 Got_page_offsets got_page_offsets_;
879 // In multi-GOT links, a pointer to the next GOT.
880 Mips_got_info<size, big_endian>* next_;
881 // Index of this GOT in multi-GOT links.
882 unsigned int index_;
883 // The offset of this GOT in multi-GOT links.
884 unsigned int offset_;
885};
886
887// This is a helper class used during relocation scan. It records GOT16 addend.
888
889template<int size, bool big_endian>
890struct got16_addend
891{
892 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896 Mips_address _addend)
897 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898 addend(_addend)
899 { }
900
901 const Sized_relobj_file<size, big_endian>* object;
902 unsigned int shndx;
903 unsigned int r_type;
904 unsigned int r_sym;
905 Mips_address addend;
906};
907
908// Mips_symbol class. Holds additional symbol information needed for Mips.
909
910template<int size>
911class Mips_symbol : public Sized_symbol<size>
912{
913 public:
914 Mips_symbol()
915 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922 { }
923
924 // Return whether this is a MIPS16 symbol.
925 bool
926 is_mips16() const
927 {
928 // (st_other & STO_MIPS16) == STO_MIPS16
929 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930 == elfcpp::STO_MIPS16 >> 2);
931 }
932
933 // Return whether this is a microMIPS symbol.
934 bool
935 is_micromips() const
936 {
937 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939 == elfcpp::STO_MICROMIPS >> 2);
940 }
941
942 // Return whether the symbol needs MIPS16 fn_stub.
943 bool
944 need_fn_stub() const
945 { return this->need_fn_stub_; }
946
947 // Set that the symbol needs MIPS16 fn_stub.
948 void
949 set_need_fn_stub()
950 { this->need_fn_stub_ = true; }
951
952 // Return whether this symbol is referenced by branch relocations from
953 // any non-PIC input file.
954 bool
955 has_nonpic_branches() const
956 { return this->has_nonpic_branches_; }
957
958 // Set that this symbol is referenced by branch relocations from
959 // any non-PIC input file.
960 void
961 set_has_nonpic_branches()
962 { this->has_nonpic_branches_ = true; }
963
964 // Return the offset of the la25 stub for this symbol from the start of the
965 // la25 stub section.
966 unsigned int
967 la25_stub_offset() const
968 { return this->la25_stub_offset_; }
969
970 // Set the offset of the la25 stub for this symbol from the start of the
971 // la25 stub section.
972 void
973 set_la25_stub_offset(unsigned int offset)
974 { this->la25_stub_offset_ = offset; }
975
976 // Return whether the symbol has la25 stub. This is true if this symbol is
977 // for a PIC function, and there are non-PIC branches and jumps to it.
978 bool
979 has_la25_stub() const
980 { return this->la25_stub_offset_ != -1U; }
981
982 // Return whether there is a relocation against this symbol that must be
983 // resolved by the static linker (that is, the relocation cannot possibly
984 // be made dynamic).
985 bool
986 has_static_relocs() const
987 { return this->has_static_relocs_; }
988
989 // Set that there is a relocation against this symbol that must be resolved
990 // by the static linker (that is, the relocation cannot possibly be made
991 // dynamic).
992 void
993 set_has_static_relocs()
994 { this->has_static_relocs_ = true; }
995
996 // Return whether we must not create a lazy-binding stub for this symbol.
997 bool
998 no_lazy_stub() const
999 { return this->no_lazy_stub_; }
1000
1001 // Set that we must not create a lazy-binding stub for this symbol.
1002 void
1003 set_no_lazy_stub()
1004 { this->no_lazy_stub_ = true; }
1005
1006 // Return the offset of the lazy-binding stub for this symbol from the start
1007 // of .MIPS.stubs section.
1008 unsigned int
1009 lazy_stub_offset() const
1010 { return this->lazy_stub_offset_; }
1011
1012 // Set the offset of the lazy-binding stub for this symbol from the start
1013 // of .MIPS.stubs section.
1014 void
1015 set_lazy_stub_offset(unsigned int offset)
1016 { this->lazy_stub_offset_ = offset; }
1017
1018 // Return whether there are any relocations for this symbol where
1019 // pointer equality matters.
1020 bool
1021 pointer_equality_needed() const
1022 { return this->pointer_equality_needed_; }
1023
1024 // Set that there are relocations for this symbol where pointer equality
1025 // matters.
1026 void
1027 set_pointer_equality_needed()
1028 { this->pointer_equality_needed_ = true; }
1029
1030 // Return global GOT area where this symbol in located.
1031 Global_got_area
1032 global_got_area() const
1033 { return this->global_got_area_; }
1034
1035 // Set global GOT area where this symbol in located.
1036 void
1037 set_global_got_area(Global_got_area global_got_area)
1038 { this->global_got_area_ = global_got_area; }
1039
1040 // Return the global GOT offset for this symbol. For multi-GOT links, this
1041 // returns the offset from the start of .got section to the first GOT entry
1042 // for the symbol. Note that in multi-GOT links the symbol can have entry
1043 // in more than one GOT.
1044 unsigned int
1045 global_gotoffset() const
1046 { return this->global_gotoffset_; }
1047
1048 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1049 // the symbol can have entry in more than one GOT. This method will set
1050 // the offset only if it is less than current offset.
1051 void
1052 set_global_gotoffset(unsigned int offset)
1053 {
1054 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055 this->global_gotoffset_ = offset;
1056 }
1057
1058 // Return whether all GOT relocations for this symbol are for calls.
1059 bool
1060 got_only_for_calls() const
1061 { return this->got_only_for_calls_; }
1062
1063 // Set that there is a GOT relocation for this symbol that is not for call.
1064 void
1065 set_got_not_only_for_calls()
1066 { this->got_only_for_calls_ = false; }
1067
1068 // Return whether this is a PIC symbol.
1069 bool
1070 is_pic() const
1071 {
1072 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074 == (elfcpp::STO_MIPS_PIC >> 2));
1075 }
1076
1077 // Set the flag in st_other field that marks this symbol as PIC.
1078 void
1079 set_pic()
1080 {
1081 if (this->is_mips16())
1082 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083 this->set_nonvis((this->nonvis()
1084 & ~((elfcpp::STO_MIPS16 >> 2)
1085 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086 | (elfcpp::STO_MIPS_PIC >> 2));
1087 else
1088 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090 | (elfcpp::STO_MIPS_PIC >> 2));
1091 }
1092
1093 // Set the flag in st_other field that marks this symbol as PLT.
1094 void
1095 set_mips_plt()
1096 {
1097 if (this->is_mips16())
1098 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099 this->set_nonvis((this->nonvis()
1100 & ((elfcpp::STO_MIPS16 >> 2)
1101 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102 | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104 else
1105 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107 | (elfcpp::STO_MIPS_PLT >> 2));
1108 }
1109
1110 // Downcast a base pointer to a Mips_symbol pointer.
1111 static Mips_symbol<size>*
1112 as_mips_sym(Symbol* sym)
1113 { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115 // Downcast a base pointer to a Mips_symbol pointer.
1116 static const Mips_symbol<size>*
1117 as_mips_sym(const Symbol* sym)
1118 { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120 // Return whether the symbol has lazy-binding stub.
1121 bool
1122 has_lazy_stub() const
1123 { return this->has_lazy_stub_; }
1124
1125 // Set whether the symbol has lazy-binding stub.
1126 void
1127 set_has_lazy_stub(bool has_lazy_stub)
1128 { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130 // Return whether the symbol needs a standard PLT entry.
1131 bool
1132 needs_mips_plt() const
1133 { return this->needs_mips_plt_; }
1134
1135 // Set whether the symbol needs a standard PLT entry.
1136 void
1137 set_needs_mips_plt(bool needs_mips_plt)
1138 { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141 // entry.
1142 bool
1143 needs_comp_plt() const
1144 { return this->needs_comp_plt_; }
1145
1146 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147 void
1148 set_needs_comp_plt(bool needs_comp_plt)
1149 { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151 // Return standard PLT entry offset, or -1 if none.
1152 unsigned int
1153 mips_plt_offset() const
1154 { return this->mips_plt_offset_; }
1155
1156 // Set standard PLT entry offset.
1157 void
1158 set_mips_plt_offset(unsigned int mips_plt_offset)
1159 { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161 // Return whether the symbol has standard PLT entry.
1162 bool
1163 has_mips_plt_offset() const
1164 { return this->mips_plt_offset_ != -1U; }
1165
1166 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167 unsigned int
1168 comp_plt_offset() const
1169 { return this->comp_plt_offset_; }
1170
1171 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172 void
1173 set_comp_plt_offset(unsigned int comp_plt_offset)
1174 { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177 bool
1178 has_comp_plt_offset() const
1179 { return this->comp_plt_offset_ != -1U; }
1180
1181 // Return MIPS16 fn stub for a symbol.
1182 template<bool big_endian>
1183 Mips16_stub_section<size, big_endian>*
1184 get_mips16_fn_stub() const
1185 {
1186 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187 }
1188
1189 // Set MIPS16 fn stub for a symbol.
1190 void
1191 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192 { this->mips16_fn_stub_ = stub; }
1193
1194 // Return whether symbol has MIPS16 fn stub.
1195 bool
1196 has_mips16_fn_stub() const
1197 { return this->mips16_fn_stub_ != NULL; }
1198
1199 // Return MIPS16 call stub for a symbol.
1200 template<bool big_endian>
1201 Mips16_stub_section<size, big_endian>*
1202 get_mips16_call_stub() const
1203 {
1204 return static_cast<Mips16_stub_section<size, big_endian>*>(
1205 mips16_call_stub_);
1206 }
1207
1208 // Set MIPS16 call stub for a symbol.
1209 void
1210 set_mips16_call_stub(Mips16_stub_section_base* stub)
1211 { this->mips16_call_stub_ = stub; }
1212
1213 // Return whether symbol has MIPS16 call stub.
1214 bool
1215 has_mips16_call_stub() const
1216 { return this->mips16_call_stub_ != NULL; }
1217
1218 // Return MIPS16 call_fp stub for a symbol.
1219 template<bool big_endian>
1220 Mips16_stub_section<size, big_endian>*
1221 get_mips16_call_fp_stub() const
1222 {
1223 return static_cast<Mips16_stub_section<size, big_endian>*>(
1224 mips16_call_fp_stub_);
1225 }
1226
1227 // Set MIPS16 call_fp stub for a symbol.
1228 void
1229 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230 { this->mips16_call_fp_stub_ = stub; }
1231
1232 // Return whether symbol has MIPS16 call_fp stub.
1233 bool
1234 has_mips16_call_fp_stub() const
1235 { return this->mips16_call_fp_stub_ != NULL; }
1236
1237 bool
1238 get_applied_secondary_got_fixup() const
1239 { return applied_secondary_got_fixup_; }
1240
1241 void
1242 set_applied_secondary_got_fixup()
1243 { this->applied_secondary_got_fixup_ = true; }
1244
1245 private:
1246 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1247 // appears in any relocs other than a 16 bit call.
1248 bool need_fn_stub_;
1249
1250 // True if this symbol is referenced by branch relocations from
1251 // any non-PIC input file. This is used to determine whether an
1252 // la25 stub is required.
1253 bool has_nonpic_branches_;
1254
1255 // The offset of the la25 stub for this symbol from the start of the
1256 // la25 stub section.
1257 unsigned int la25_stub_offset_;
1258
1259 // True if there is a relocation against this symbol that must be
1260 // resolved by the static linker (that is, the relocation cannot
1261 // possibly be made dynamic).
1262 bool has_static_relocs_;
1263
1264 // Whether we must not create a lazy-binding stub for this symbol.
1265 // This is true if the symbol has relocations related to taking the
1266 // function's address.
1267 bool no_lazy_stub_;
1268
1269 // The offset of the lazy-binding stub for this symbol from the start of
1270 // .MIPS.stubs section.
1271 unsigned int lazy_stub_offset_;
1272
1273 // True if there are any relocations for this symbol where pointer equality
1274 // matters.
1275 bool pointer_equality_needed_;
1276
1277 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278 // in the global part of the GOT.
1279 Global_got_area global_got_area_;
1280
1281 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1282 // from the start of .got section to the first GOT entry for the symbol.
1283 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284 unsigned int global_gotoffset_;
1285
1286 // Whether all GOT relocations for this symbol are for calls.
1287 bool got_only_for_calls_;
1288 // Whether the symbol has lazy-binding stub.
1289 bool has_lazy_stub_;
1290 // Whether the symbol needs a standard PLT entry.
1291 bool needs_mips_plt_;
1292 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293 bool needs_comp_plt_;
1294 // Standard PLT entry offset, or -1 if none.
1295 unsigned int mips_plt_offset_;
1296 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297 unsigned int comp_plt_offset_;
1298 // MIPS16 fn stub for a symbol.
1299 Mips16_stub_section_base* mips16_fn_stub_;
1300 // MIPS16 call stub for a symbol.
1301 Mips16_stub_section_base* mips16_call_stub_;
1302 // MIPS16 call_fp stub for a symbol.
1303 Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305 bool applied_secondary_got_fixup_;
1306};
1307
1308// Mips16_stub_section class.
1309
1310// The mips16 compiler uses a couple of special sections to handle
1311// floating point arguments.
1312
1313// Section names that look like .mips16.fn.FNNAME contain stubs that
1314// copy floating point arguments from the fp regs to the gp regs and
1315// then jump to FNNAME. If any 32 bit function calls FNNAME, the
1316// call should be redirected to the stub instead. If no 32 bit
1317// function calls FNNAME, the stub should be discarded. We need to
1318// consider any reference to the function, not just a call, because
1319// if the address of the function is taken we will need the stub,
1320// since the address might be passed to a 32 bit function.
1321
1322// Section names that look like .mips16.call.FNNAME contain stubs
1323// that copy floating point arguments from the gp regs to the fp
1324// regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1325// then any 16 bit function that calls FNNAME should be redirected
1326// to the stub instead. If FNNAME is not a 32 bit function, the
1327// stub should be discarded.
1328
1329// .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330// which call FNNAME and then copy the return value from the fp regs
1331// to the gp regs. These stubs store the return address in $18 while
1332// calling FNNAME; any function which might call one of these stubs
1333// must arrange to save $18 around the call. (This case is not
1334// needed for 32 bit functions that call 16 bit functions, because
1335// 16 bit functions always return floating point values in both
1336// $f0/$f1 and $2/$3.)
1337
1338// Note that in all cases FNNAME might be defined statically.
1339// Therefore, FNNAME is not used literally. Instead, the relocation
1340// information will indicate which symbol the section is for.
1341
1342// We record any stubs that we find in the symbol table.
1343
1344// TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346class Mips16_stub_section_base { };
1347
1348template<int size, bool big_endian>
1349class Mips16_stub_section : public Mips16_stub_section_base
1350{
1351 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353 public:
1354 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356 found_r_mips_none_(false)
1357 {
1358 gold_assert(object->is_mips16_fn_stub_section(shndx)
1359 || object->is_mips16_call_stub_section(shndx)
1360 || object->is_mips16_call_fp_stub_section(shndx));
1361 }
1362
1363 // Return the object of this stub section.
1364 Mips_relobj<size, big_endian>*
1365 object() const
1366 { return this->object_; }
1367
1368 // Return the size of a section.
1369 uint64_t
1370 section_size() const
1371 { return this->object_->section_size(this->shndx_); }
1372
1373 // Return section index of this stub section.
1374 unsigned int
1375 shndx() const
1376 { return this->shndx_; }
1377
1378 // Return symbol index, if stub is for a local function.
1379 unsigned int
1380 r_sym() const
1381 { return this->r_sym_; }
1382
1383 // Return symbol, if stub is for a global function.
1384 Mips_symbol<size>*
1385 gsym() const
1386 { return this->gsym_; }
1387
1388 // Return whether stub is for a local function.
1389 bool
1390 is_for_local_function() const
1391 { return this->gsym_ == NULL; }
1392
1393 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394 // is found in the stub section. Try to find stub target.
1395 void
1396 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397 {
1398 // To find target symbol for this stub, trust the first R_MIPS_NONE
1399 // relocation, if any. Otherwise trust the first relocation, whatever
1400 // its kind.
1401 if (this->found_r_mips_none_)
1402 return;
1403 if (r_type == elfcpp::R_MIPS_NONE)
1404 {
1405 this->r_sym_ = r_sym;
1406 this->gsym_ = NULL;
1407 this->found_r_mips_none_ = true;
1408 }
1409 else if (!is_target_found())
1410 this->r_sym_ = r_sym;
1411 }
1412
1413 // This method is called when a new relocation R_TYPE for global symbol GSYM
1414 // is found in the stub section. Try to find stub target.
1415 void
1416 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417 {
1418 // To find target symbol for this stub, trust the first R_MIPS_NONE
1419 // relocation, if any. Otherwise trust the first relocation, whatever
1420 // its kind.
1421 if (this->found_r_mips_none_)
1422 return;
1423 if (r_type == elfcpp::R_MIPS_NONE)
1424 {
1425 this->gsym_ = gsym;
1426 this->r_sym_ = 0;
1427 this->found_r_mips_none_ = true;
1428 }
1429 else if (!is_target_found())
1430 this->gsym_ = gsym;
1431 }
1432
1433 // Return whether we found the stub target.
1434 bool
1435 is_target_found() const
1436 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1437
1438 // Return whether this is a fn stub.
1439 bool
1440 is_fn_stub() const
1441 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443 // Return whether this is a call stub.
1444 bool
1445 is_call_stub() const
1446 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448 // Return whether this is a call_fp stub.
1449 bool
1450 is_call_fp_stub() const
1451 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453 // Return the output address.
1454 Mips_address
1455 output_address() const
1456 {
1457 return (this->object_->output_section(this->shndx_)->address()
1458 + this->object_->output_section_offset(this->shndx_));
1459 }
1460
1461 private:
1462 // The object of this stub section.
1463 Mips_relobj<size, big_endian>* object_;
1464 // The section index of this stub section.
1465 unsigned int shndx_;
1466 // The symbol index, if stub is for a local function.
1467 unsigned int r_sym_;
1468 // The symbol, if stub is for a global function.
1469 Mips_symbol<size>* gsym_;
1470 // True if we found R_MIPS_NONE relocation in this stub.
1471 bool found_r_mips_none_;
1472};
1473
1474// Mips_relobj class.
1475
1476template<int size, bool big_endian>
1477class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478{
1479 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481 Mips16_stubs_int_map;
1482 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484 public:
1485 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488 processor_specific_flags_(0), local_symbol_is_mips16_(),
1489 local_symbol_is_micromips_(), mips16_stub_sections_(),
1490 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491 local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495 {
1496 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498 this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499 }
1500
1501 ~Mips_relobj()
1502 { }
1503
1504 // Downcast a base pointer to a Mips_relobj pointer. This is
1505 // not type-safe but we only use Mips_relobj not the base class.
1506 static Mips_relobj<size, big_endian>*
1507 as_mips_relobj(Relobj* relobj)
1508 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510 // Downcast a base pointer to a Mips_relobj pointer. This is
1511 // not type-safe but we only use Mips_relobj not the base class.
1512 static const Mips_relobj<size, big_endian>*
1513 as_mips_relobj(const Relobj* relobj)
1514 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516 // Processor-specific flags in ELF file header. This is valid only after
1517 // reading symbols.
1518 elfcpp::Elf_Word
1519 processor_specific_flags() const
1520 { return this->processor_specific_flags_; }
1521
1522 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1523 // index. This is only valid after do_count_local_symbol is called.
1524 bool
1525 local_symbol_is_mips16(unsigned int r_sym) const
1526 {
1527 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528 return this->local_symbol_is_mips16_[r_sym];
1529 }
1530
1531 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1532 // index. This is only valid after do_count_local_symbol is called.
1533 bool
1534 local_symbol_is_micromips(unsigned int r_sym) const
1535 {
1536 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537 return this->local_symbol_is_micromips_[r_sym];
1538 }
1539
1540 // Get or create MIPS16 stub section.
1541 Mips16_stub_section<size, big_endian>*
1542 get_mips16_stub_section(unsigned int shndx)
1543 {
1544 typename Mips16_stubs_int_map::const_iterator it =
1545 this->mips16_stub_sections_.find(shndx);
1546 if (it != this->mips16_stub_sections_.end())
1547 return (*it).second;
1548
1549 Mips16_stub_section<size, big_endian>* stub_section =
1550 new Mips16_stub_section<size, big_endian>(this, shndx);
1551 this->mips16_stub_sections_.insert(
1552 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553 stub_section->shndx(), stub_section));
1554 return stub_section;
1555 }
1556
1557 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558 // object doesn't have fn stub for R_SYM.
1559 Mips16_stub_section<size, big_endian>*
1560 get_local_mips16_fn_stub(unsigned int r_sym) const
1561 {
1562 typename Mips16_stubs_int_map::const_iterator it =
1563 this->local_mips16_fn_stubs_.find(r_sym);
1564 if (it != this->local_mips16_fn_stubs_.end())
1565 return (*it).second;
1566 return NULL;
1567 }
1568
1569 // Record that this object has MIPS16 fn stub for local symbol. This method
1570 // is only called if we decided not to discard the stub.
1571 void
1572 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573 {
1574 gold_assert(stub->is_for_local_function());
1575 unsigned int r_sym = stub->r_sym();
1576 this->local_mips16_fn_stubs_.insert(
1577 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578 r_sym, stub));
1579 }
1580
1581 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582 // object doesn't have call stub for R_SYM.
1583 Mips16_stub_section<size, big_endian>*
1584 get_local_mips16_call_stub(unsigned int r_sym) const
1585 {
1586 typename Mips16_stubs_int_map::const_iterator it =
1587 this->local_mips16_call_stubs_.find(r_sym);
1588 if (it != this->local_mips16_call_stubs_.end())
1589 return (*it).second;
1590 return NULL;
1591 }
1592
1593 // Record that this object has MIPS16 call stub for local symbol. This method
1594 // is only called if we decided not to discard the stub.
1595 void
1596 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597 {
1598 gold_assert(stub->is_for_local_function());
1599 unsigned int r_sym = stub->r_sym();
1600 this->local_mips16_call_stubs_.insert(
1601 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602 r_sym, stub));
1603 }
1604
1605 // Record that we found "non 16-bit" call relocation against local symbol
1606 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1607 // is one.
1608 void
1609 add_local_non_16bit_call(unsigned int symndx)
1610 { this->local_non_16bit_calls_.insert(symndx); }
1611
1612 // Return true if there is any "non 16-bit" call relocation against local
1613 // symbol SYMNDX in this object.
1614 bool
1615 has_local_non_16bit_call_relocs(unsigned int symndx)
1616 {
1617 return (this->local_non_16bit_calls_.find(symndx)
1618 != this->local_non_16bit_calls_.end());
1619 }
1620
1621 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1623 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624 void
1625 add_local_16bit_call(unsigned int symndx)
1626 { this->local_16bit_calls_.insert(symndx); }
1627
1628 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629 // symbol SYMNDX in this object.
1630 bool
1631 has_local_16bit_call_relocs(unsigned int symndx)
1632 {
1633 return (this->local_16bit_calls_.find(symndx)
1634 != this->local_16bit_calls_.end());
1635 }
1636
1637 // Get gp value that was used to create this object.
1638 Mips_address
1639 gp_value() const
1640 { return this->gp_; }
1641
1642 // Return whether the object is a PIC object.
1643 bool
1644 is_pic() const
1645 { return this->is_pic_; }
1646
1647 // Return whether the object uses N32 ABI.
1648 bool
1649 is_n32() const
1650 { return this->is_n32_; }
1651
1652 // Return whether the object uses N64 ABI.
1653 bool
1654 is_n64() const
1655 { return this->is_n64_; }
1656
1657 // Return whether the object uses NewABI conventions.
1658 bool
1659 is_newabi() const
1660 { return this->is_n32_ || this->is_n64_; }
1661
1662 // Return Mips_got_info for this object.
1663 Mips_got_info<size, big_endian>*
1664 get_got_info() const
1665 { return this->got_info_; }
1666
1667 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1668 Mips_got_info<size, big_endian>*
1669 get_or_create_got_info()
1670 {
1671 if (!this->got_info_)
1672 this->got_info_ = new Mips_got_info<size, big_endian>();
1673 return this->got_info_;
1674 }
1675
1676 // Set Mips_got_info for this object.
1677 void
1678 set_got_info(Mips_got_info<size, big_endian>* got_info)
1679 { this->got_info_ = got_info; }
1680
1681 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1682 // after do_read_symbols is called.
1683 bool
1684 is_mips16_stub_section(unsigned int shndx)
1685 {
1686 return (is_mips16_fn_stub_section(shndx)
1687 || is_mips16_call_stub_section(shndx)
1688 || is_mips16_call_fp_stub_section(shndx));
1689 }
1690
1691 // Return TRUE if relocations in section SHNDX can refer directly to a
1692 // MIPS16 function rather than to a hard-float stub. This is only valid
1693 // after do_read_symbols is called.
1694 bool
1695 section_allows_mips16_refs(unsigned int shndx)
1696 {
1697 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698 }
1699
1700 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1701 // after do_read_symbols is called.
1702 bool
1703 is_mips16_fn_stub_section(unsigned int shndx)
1704 {
1705 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706 return this->section_is_mips16_fn_stub_[shndx];
1707 }
1708
1709 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1710 // after do_read_symbols is called.
1711 bool
1712 is_mips16_call_stub_section(unsigned int shndx)
1713 {
1714 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715 return this->section_is_mips16_call_stub_[shndx];
1716 }
1717
1718 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1719 // valid after do_read_symbols is called.
1720 bool
1721 is_mips16_call_fp_stub_section(unsigned int shndx)
1722 {
1723 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724 return this->section_is_mips16_call_fp_stub_[shndx];
1725 }
1726
1727 // Discard MIPS16 stub secions that are not needed.
1728 void
1729 discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731 // Return gprmask from the .reginfo section of this object.
1732 Valtype
1733 gprmask() const
1734 { return this->gprmask_; }
1735
1736 // Return cprmask1 from the .reginfo section of this object.
1737 Valtype
1738 cprmask1() const
1739 { return this->cprmask1_; }
1740
1741 // Return cprmask2 from the .reginfo section of this object.
1742 Valtype
1743 cprmask2() const
1744 { return this->cprmask2_; }
1745
1746 // Return cprmask3 from the .reginfo section of this object.
1747 Valtype
1748 cprmask3() const
1749 { return this->cprmask3_; }
1750
1751 // Return cprmask4 from the .reginfo section of this object.
1752 Valtype
1753 cprmask4() const
1754 { return this->cprmask4_; }
1755
1756 protected:
1757 // Count the local symbols.
1758 void
1759 do_count_local_symbols(Stringpool_template<char>*,
1760 Stringpool_template<char>*);
1761
1762 // Read the symbol information.
1763 void
1764 do_read_symbols(Read_symbols_data* sd);
1765
1766 private:
1767 // processor-specific flags in ELF file header.
1768 elfcpp::Elf_Word processor_specific_flags_;
1769
1770 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771 // This is only valid after do_count_local_symbol is called.
1772 std::vector<bool> local_symbol_is_mips16_;
1773
1774 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775 // This is only valid after do_count_local_symbol is called.
1776 std::vector<bool> local_symbol_is_micromips_;
1777
1778 // Map from section index to the MIPS16 stub for that section. This contains
1779 // all stubs found in this object.
1780 Mips16_stubs_int_map mips16_stub_sections_;
1781
1782 // Local symbols that have "non 16-bit" call relocation. This relocation
1783 // would need to refer to a MIPS16 fn stub, if there is one.
1784 std::set<unsigned int> local_non_16bit_calls_;
1785
1786 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1787 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788 // relocation that refers to the stub symbol.
1789 std::set<unsigned int> local_16bit_calls_;
1790
1791 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792 // This contains only the stubs that we decided not to discard.
1793 Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795 // Map from local symbol index to the MIPS16 call stub for that symbol.
1796 // This contains only the stubs that we decided not to discard.
1797 Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799 // gp value that was used to create this object.
1800 Mips_address gp_;
1801 // Whether the object is a PIC object.
1802 bool is_pic_ : 1;
1803 // Whether the object uses N32 ABI.
1804 bool is_n32_ : 1;
1805 // Whether the object uses N64 ABI.
1806 bool is_n64_ : 1;
1807 // The Mips_got_info for this object.
1808 Mips_got_info<size, big_endian>* got_info_;
1809
1810 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811 // This is only valid after do_read_symbols is called.
1812 std::vector<bool> section_is_mips16_fn_stub_;
1813
1814 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815 // This is only valid after do_read_symbols is called.
1816 std::vector<bool> section_is_mips16_call_stub_;
1817
1818 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819 // This is only valid after do_read_symbols is called.
1820 std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822 // .pdr section index.
1823 unsigned int pdr_shndx_;
1824
1825 // gprmask from the .reginfo section of this object.
1826 Valtype gprmask_;
1827 // cprmask1 from the .reginfo section of this object.
1828 Valtype cprmask1_;
1829 // cprmask2 from the .reginfo section of this object.
1830 Valtype cprmask2_;
1831 // cprmask3 from the .reginfo section of this object.
1832 Valtype cprmask3_;
1833 // cprmask4 from the .reginfo section of this object.
1834 Valtype cprmask4_;
1835};
1836
1837// Mips_output_data_got class.
1838
1839template<int size, bool big_endian>
1840class Mips_output_data_got : public Output_data_got<size, big_endian>
1841{
1842 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844 Reloc_section;
1845 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847 public:
1848 Mips_output_data_got(Target_mips<size, big_endian>* target,
1849 Symbol_table* symtab, Layout* layout)
1850 : Output_data_got<size, big_endian>(), target_(target),
1851 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853 secondary_got_relocs_()
1854 {
1855 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856 this->set_addralign(16);
1857 }
1858
1859 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861 void
1862 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863 unsigned int symndx, Mips_address addend,
1864 unsigned int r_type, unsigned int shndx)
1865 {
1866 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867 r_type, shndx);
1868 }
1869
1870 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871 // in OBJECT. FOR_CALL is true if the caller is only interested in
1872 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
1873 // relocation.
1874 void
1875 record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876 Mips_relobj<size, big_endian>* object,
1877 unsigned int r_type, bool dyn_reloc, bool for_call)
1878 {
1879 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880 dyn_reloc, for_call);
1881 }
1882
1883 // Record that OBJECT has a page relocation against symbol SYMNDX and
1884 // that ADDEND is the addend for that relocation.
1885 void
1886 record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887 unsigned int symndx, int addend)
1888 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1891 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892 // applied in a static link.
1893 void
1894 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895 Mips_symbol<size>* gsym)
1896 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1899 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1900 // relocation that needs to be applied in a static link.
1901 void
1902 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903 Sized_relobj_file<size, big_endian>* relobj,
1904 unsigned int index)
1905 {
1906 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907 index));
1908 }
1909
1910 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911 // secondary GOT at OFFSET.
1912 void
1913 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914 Mips_symbol<size>* gsym)
1915 {
1916 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917 r_type, gsym));
1918 }
1919
1920 // Update GOT entry at OFFSET with VALUE.
1921 void
1922 update_got_entry(unsigned int offset, Mips_address value)
1923 {
1924 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925 }
1926
1927 // Return the number of entries in local part of the GOT. This includes
1928 // local entries, page entries and 2 reserved entries.
1929 unsigned int
1930 get_local_gotno() const
1931 {
1932 if (!this->multi_got())
1933 {
1934 return (2 + this->master_got_info_->local_gotno()
1935 + this->master_got_info_->page_gotno());
1936 }
1937 else
1938 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939 }
1940
1941 // Return dynamic symbol table index of the first symbol with global GOT
1942 // entry.
1943 unsigned int
1944 first_global_got_dynsym_index() const
1945 { return this->first_global_got_dynsym_index_; }
1946
1947 // Set dynamic symbol table index of the first symbol with global GOT entry.
1948 void
1949 set_first_global_got_dynsym_index(unsigned int index)
1950 { this->first_global_got_dynsym_index_ = index; }
1951
1952 // Lay out the GOT. Add local, global and TLS entries. If GOT is
1953 // larger than 64K, create multi-GOT.
1954 void
1955 lay_out_got(Layout* layout, Symbol_table* symtab,
1956 const Input_objects* input_objects);
1957
1958 // Create multi-GOT. For every GOT, add local, global and TLS entries.
1959 void
1960 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962 // Attempt to merge GOTs of different input objects.
1963 void
1964 merge_gots(const Input_objects* input_objects);
1965
1966 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
1967 // this would lead to overflow, true if they were merged successfully.
1968 bool
1969 merge_got_with(Mips_got_info<size, big_endian>* from,
1970 Mips_relobj<size, big_endian>* object,
1971 Mips_got_info<size, big_endian>* to);
1972
1973 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
1974 // use OBJECT's GOT.
1975 unsigned int
1976 get_got_page_offset(Mips_address value,
1977 const Mips_relobj<size, big_endian>* object)
1978 {
1979 Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980 ? this->master_got_info_
1981 : object->get_got_info());
1982 gold_assert(g != NULL);
1983 return g->get_got_page_offset(value, this);
1984 }
1985
1986 // Return the GOT offset of type GOT_TYPE of the global symbol
1987 // GSYM. For multi-GOT links, use OBJECT's GOT.
1988 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989 Mips_relobj<size, big_endian>* object) const
1990 {
1991 if (!this->multi_got())
1992 return gsym->got_offset(got_type);
1993 else
1994 {
1995 Mips_got_info<size, big_endian>* g = object->get_got_info();
1996 gold_assert(g != NULL);
1997 return gsym->got_offset(g->multigot_got_type(got_type));
1998 }
1999 }
2000
2001 // Return the GOT offset of type GOT_TYPE of the local symbol
2002 // SYMNDX.
2003 unsigned int
2004 got_offset(unsigned int symndx, unsigned int got_type,
2005 Sized_relobj_file<size, big_endian>* object) const
2006 { return object->local_got_offset(symndx, got_type); }
2007
2008 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2009 unsigned int
2010 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011 {
2012 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013 ? this->master_got_info_
2014 : object->get_got_info());
2015 gold_assert(g != NULL);
2016 return g->tls_ldm_offset();
2017 }
2018
2019 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2020 void
2021 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022 Mips_relobj<size, big_endian>* object)
2023 {
2024 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025 ? this->master_got_info_
2026 : object->get_got_info());
2027 gold_assert(g != NULL);
2028 g->set_tls_ldm_offset(tls_ldm_offset);
2029 }
2030
2031 // Return true for multi-GOT links.
2032 bool
2033 multi_got() const
2034 { return this->primary_got_ != NULL; }
2035
2036 // Return the offset of OBJECT's GOT from the start of .got section.
2037 unsigned int
2038 get_got_offset(const Mips_relobj<size, big_endian>* object)
2039 {
2040 if (!this->multi_got())
2041 return 0;
2042 else
2043 {
2044 Mips_got_info<size, big_endian>* g = object->get_got_info();
2045 return g != NULL ? g->offset() : 0;
2046 }
2047 }
2048
2049 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050 void
2051 add_reloc_only_entries()
2052 { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054 // Return offset of the primary GOT's entry for global symbol.
2055 unsigned int
2056 get_primary_got_offset(const Mips_symbol<size>* sym) const
2057 {
2058 gold_assert(sym->global_got_area() != GGA_NONE);
2059 return (this->get_local_gotno() + sym->dynsym_index()
2060 - this->first_global_got_dynsym_index()) * size/8;
2061 }
2062
2063 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064 // Input argument GOT_OFFSET is always global offset from the start of
2065 // .got section, for both single and multi-GOT links.
2066 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2067 // links, the return value is object_got_offset - 0x7FF0, where
2068 // object_got_offset is offset in the OBJECT's GOT.
2069 int
2070 gp_offset(unsigned int got_offset,
2071 const Mips_relobj<size, big_endian>* object) const
2072 {
2073 return (this->address() + got_offset
2074 - this->target_->adjusted_gp_value(object));
2075 }
2076
2077 protected:
2078 // Write out the GOT table.
2079 void
2080 do_write(Output_file*);
2081
2082 private:
2083
2084 // This class represent dynamic relocations that need to be applied by
2085 // gold because we are using TLS relocations in a static link.
2086 class Static_reloc
2087 {
2088 public:
2089 Static_reloc(unsigned int got_offset, unsigned int r_type,
2090 Mips_symbol<size>* gsym)
2091 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092 { this->u_.global.symbol = gsym; }
2093
2094 Static_reloc(unsigned int got_offset, unsigned int r_type,
2095 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097 {
2098 this->u_.local.relobj = relobj;
2099 this->u_.local.index = index;
2100 }
2101
2102 // Return the GOT offset.
2103 unsigned int
2104 got_offset() const
2105 { return this->got_offset_; }
2106
2107 // Relocation type.
2108 unsigned int
2109 r_type() const
2110 { return this->r_type_; }
2111
2112 // Whether the symbol is global or not.
2113 bool
2114 symbol_is_global() const
2115 { return this->symbol_is_global_; }
2116
2117 // For a relocation against a global symbol, the global symbol.
2118 Mips_symbol<size>*
2119 symbol() const
2120 {
2121 gold_assert(this->symbol_is_global_);
2122 return this->u_.global.symbol;
2123 }
2124
2125 // For a relocation against a local symbol, the defining object.
2126 Sized_relobj_file<size, big_endian>*
2127 relobj() const
2128 {
2129 gold_assert(!this->symbol_is_global_);
2130 return this->u_.local.relobj;
2131 }
2132
2133 // For a relocation against a local symbol, the local symbol index.
2134 unsigned int
2135 index() const
2136 {
2137 gold_assert(!this->symbol_is_global_);
2138 return this->u_.local.index;
2139 }
2140
2141 private:
2142 // GOT offset of the entry to which this relocation is applied.
2143 unsigned int got_offset_;
2144 // Type of relocation.
2145 unsigned int r_type_;
2146 // Whether this relocation is against a global symbol.
2147 bool symbol_is_global_;
2148 // A global or local symbol.
2149 union
2150 {
2151 struct
2152 {
2153 // For a global symbol, the symbol itself.
2154 Mips_symbol<size>* symbol;
2155 } global;
2156 struct
2157 {
2158 // For a local symbol, the object defining object.
2159 Sized_relobj_file<size, big_endian>* relobj;
2160 // For a local symbol, the symbol index.
2161 unsigned int index;
2162 } local;
2163 } u_;
2164 };
2165
2166 // The target.
2167 Target_mips<size, big_endian>* target_;
2168 // The symbol table.
2169 Symbol_table* symbol_table_;
2170 // The layout.
2171 Layout* layout_;
2172 // Static relocs to be applied to the GOT.
2173 std::vector<Static_reloc> static_relocs_;
2174 // .got section view.
2175 unsigned char* got_view_;
2176 // The dynamic symbol table index of the first symbol with global GOT entry.
2177 unsigned int first_global_got_dynsym_index_;
2178 // The master GOT information.
2179 Mips_got_info<size, big_endian>* master_got_info_;
2180 // The primary GOT information.
2181 Mips_got_info<size, big_endian>* primary_got_;
2182 // Secondary GOT fixups.
2183 std::vector<Static_reloc> secondary_got_relocs_;
2184};
2185
2186// A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187// two ways of creating these interfaces. The first is to add:
2188//
2189// lui $25,%hi(func)
2190// j func
2191// addiu $25,$25,%lo(func)
2192//
2193// to a separate trampoline section. The second is to add:
2194//
2195// lui $25,%hi(func)
2196// addiu $25,$25,%lo(func)
2197//
2198// immediately before a PIC function "func", but only if a function is at the
2199// beginning of the section, and the section is not too heavily aligned (i.e we
2200// would need to add no more than 2 nops before the stub.)
2201//
2202// We only create stubs of the first type.
2203
2204template<int size, bool big_endian>
2205class Mips_output_data_la25_stub : public Output_section_data
2206{
2207 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209 public:
2210 Mips_output_data_la25_stub()
2211 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212 { }
2213
2214 // Create LA25 stub for a symbol.
2215 void
2216 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217 Mips_symbol<size>* gsym);
2218
2219 // Return output address of a stub.
2220 Mips_address
2221 stub_address(const Mips_symbol<size>* sym) const
2222 {
2223 gold_assert(sym->has_la25_stub());
2224 return this->address() + sym->la25_stub_offset();
2225 }
2226
2227 protected:
2228 void
2229 do_adjust_output_section(Output_section* os)
2230 { os->set_entsize(0); }
2231
2232 private:
2233 // Template for standard LA25 stub.
2234 static const uint32_t la25_stub_entry[];
2235 // Template for microMIPS LA25 stub.
2236 static const uint32_t la25_stub_micromips_entry[];
2237
2238 // Set the final size.
2239 void
2240 set_final_data_size()
2241 { this->set_data_size(this->symbols_.size() * 16); }
2242
2243 // Create a symbol for SYM stub's value and size, to help make the
2244 // disassembly easier to read.
2245 void
2246 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247 Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249 // Write out the LA25 stub section.
2250 void
2251 do_write(Output_file*);
2252
2253 // Symbols that have LA25 stubs.
2254 Unordered_set<Mips_symbol<size>*> symbols_;
2255};
2256
2257// A class to handle the PLT data.
2258
2259template<int size, bool big_endian>
2260class Mips_output_data_plt : public Output_section_data
2261{
2262 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2263 typedef Output_data_reloc<elfcpp::SHT_REL, true,
2264 size, big_endian> Reloc_section;
2265
2266 public:
2267 // Create the PLT section. The ordinary .got section is an argument,
2268 // since we need to refer to the start.
2269 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2270 Target_mips<size, big_endian>* target)
2271 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2272 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2273 target_(target)
2274 {
2275 this->rel_ = new Reloc_section(false);
2276 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2277 elfcpp::SHF_ALLOC, this->rel_,
2278 ORDER_DYNAMIC_PLT_RELOCS, false);
2279 }
2280
2281 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2282 void
2283 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2284
2285 // Return the .rel.plt section data.
2286 const Reloc_section*
2287 rel_plt() const
2288 { return this->rel_; }
2289
2290 // Return the number of PLT entries.
2291 unsigned int
2292 entry_count() const
2293 { return this->symbols_.size(); }
2294
2295 // Return the offset of the first non-reserved PLT entry.
2296 unsigned int
2297 first_plt_entry_offset() const
2298 { return sizeof(plt0_entry_o32); }
2299
2300 // Return the size of a PLT entry.
2301 unsigned int
2302 plt_entry_size() const
2303 { return sizeof(plt_entry); }
2304
2305 // Set final PLT offsets. For each symbol, determine whether standard or
2306 // compressed (MIPS16 or microMIPS) PLT entry is used.
2307 void
2308 set_plt_offsets();
2309
2310 // Return the offset of the first standard PLT entry.
2311 unsigned int
2312 first_mips_plt_offset() const
2313 { return this->plt_header_size_; }
2314
2315 // Return the offset of the first compressed PLT entry.
2316 unsigned int
2317 first_comp_plt_offset() const
2318 { return this->plt_header_size_ + this->plt_mips_offset_; }
2319
2320 // Return whether there are any standard PLT entries.
2321 bool
2322 has_standard_entries() const
2323 { return this->plt_mips_offset_ > 0; }
2324
2325 // Return the output address of standard PLT entry.
2326 Mips_address
2327 mips_entry_address(const Mips_symbol<size>* sym) const
2328 {
2329 gold_assert (sym->has_mips_plt_offset());
2330 return (this->address() + this->first_mips_plt_offset()
2331 + sym->mips_plt_offset());
2332 }
2333
2334 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2335 Mips_address
2336 comp_entry_address(const Mips_symbol<size>* sym) const
2337 {
2338 gold_assert (sym->has_comp_plt_offset());
2339 return (this->address() + this->first_comp_plt_offset()
2340 + sym->comp_plt_offset());
2341 }
2342
2343 protected:
2344 void
2345 do_adjust_output_section(Output_section* os)
2346 { os->set_entsize(0); }
2347
2348 // Write to a map file.
2349 void
2350 do_print_to_mapfile(Mapfile* mapfile) const
2351 { mapfile->print_output_data(this, _(".plt")); }
2352
2353 private:
2354 // Template for the first PLT entry.
2355 static const uint32_t plt0_entry_o32[];
2356 static const uint32_t plt0_entry_n32[];
2357 static const uint32_t plt0_entry_n64[];
2358 static const uint32_t plt0_entry_micromips_o32[];
2359 static const uint32_t plt0_entry_micromips32_o32[];
2360
2361 // Template for subsequent PLT entries.
2362 static const uint32_t plt_entry[];
2363 static const uint32_t plt_entry_mips16_o32[];
2364 static const uint32_t plt_entry_micromips_o32[];
2365 static const uint32_t plt_entry_micromips32_o32[];
2366
2367 // Set the final size.
2368 void
2369 set_final_data_size()
2370 {
2371 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2372 + this->plt_comp_offset_);
2373 }
2374
2375 // Write out the PLT data.
2376 void
2377 do_write(Output_file*);
2378
2379 // Return whether the plt header contains microMIPS code. For the sake of
2380 // cache alignment always use a standard header whenever any standard entries
2381 // are present even if microMIPS entries are present as well. This also lets
2382 // the microMIPS header rely on the value of $v0 only set by microMIPS
2383 // entries, for a small size reduction.
2384 bool
2385 is_plt_header_compressed() const
2386 {
2387 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2388 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2389 }
2390
2391 // Return the size of the PLT header.
2392 unsigned int
2393 get_plt_header_size() const
2394 {
2395 if (this->target_->is_output_n64())
2396 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2397 else if (this->target_->is_output_n32())
2398 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2399 else if (!this->is_plt_header_compressed())
2400 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2401 else if (this->target_->use_32bit_micromips_instructions())
2402 return (2 * sizeof(plt0_entry_micromips32_o32)
2403 / sizeof(plt0_entry_micromips32_o32[0]));
2404 else
2405 return (2 * sizeof(plt0_entry_micromips_o32)
2406 / sizeof(plt0_entry_micromips_o32[0]));
2407 }
2408
2409 // Return the PLT header entry.
2410 const uint32_t*
2411 get_plt_header_entry() const
2412 {
2413 if (this->target_->is_output_n64())
2414 return plt0_entry_n64;
2415 else if (this->target_->is_output_n32())
2416 return plt0_entry_n32;
2417 else if (!this->is_plt_header_compressed())
2418 return plt0_entry_o32;
2419 else if (this->target_->use_32bit_micromips_instructions())
2420 return plt0_entry_micromips32_o32;
2421 else
2422 return plt0_entry_micromips_o32;
2423 }
2424
2425 // Return the size of the standard PLT entry.
2426 unsigned int
2427 standard_plt_entry_size() const
2428 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2429
2430 // Return the size of the compressed PLT entry.
2431 unsigned int
2432 compressed_plt_entry_size() const
2433 {
2434 gold_assert(!this->target_->is_output_newabi());
2435
2436 if (!this->target_->is_output_micromips())
2437 return (2 * sizeof(plt_entry_mips16_o32)
2438 / sizeof(plt_entry_mips16_o32[0]));
2439 else if (this->target_->use_32bit_micromips_instructions())
2440 return (2 * sizeof(plt_entry_micromips32_o32)
2441 / sizeof(plt_entry_micromips32_o32[0]));
2442 else
2443 return (2 * sizeof(plt_entry_micromips_o32)
2444 / sizeof(plt_entry_micromips_o32[0]));
2445 }
2446
2447 // The reloc section.
2448 Reloc_section* rel_;
2449 // The .got.plt section.
2450 Output_data_space* got_plt_;
2451 // Symbols that have PLT entry.
2452 std::vector<Mips_symbol<size>*> symbols_;
2453 // The offset of the next standard PLT entry to create.
2454 unsigned int plt_mips_offset_;
2455 // The offset of the next compressed PLT entry to create.
2456 unsigned int plt_comp_offset_;
2457 // The size of the PLT header in bytes.
2458 unsigned int plt_header_size_;
2459 // The target.
2460 Target_mips<size, big_endian>* target_;
2461};
2462
2463// A class to handle the .MIPS.stubs data.
2464
2465template<int size, bool big_endian>
2466class Mips_output_data_mips_stubs : public Output_section_data
2467{
2468 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2469
2470 public:
2471 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2472 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2473 stub_offsets_are_set_(false), target_(target)
2474 { }
2475
2476 // Create entry for a symbol.
2477 void
2478 make_entry(Mips_symbol<size>*);
2479
2480 // Remove entry for a symbol.
2481 void
2482 remove_entry(Mips_symbol<size>* gsym);
2483
2484 // Set stub offsets for symbols. This method expects that the number of
2485 // entries in dynamic symbol table is set.
2486 void
2487 set_lazy_stub_offsets();
2488
2489 void
2490 set_needs_dynsym_value();
2491
2492 // Set the number of entries in dynamic symbol table.
2493 void
2494 set_dynsym_count(unsigned int dynsym_count)
2495 { this->dynsym_count_ = dynsym_count; }
2496
2497 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2498 // count is greater than 0x10000. If the dynamic symbol count is less than
2499 // 0x10000, the stub will be 4 bytes smaller.
2500 // There's no disadvantage from using microMIPS code here, so for the sake of
2501 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2502 // output produced at all. This has a benefit of stubs being shorter by
2503 // 4 bytes each too, unless in the insn32 mode.
2504 unsigned int
2505 stub_max_size() const
2506 {
2507 if (!this->target_->is_output_micromips()
2508 || this->target_->use_32bit_micromips_instructions())
2509 return 20;
2510 else
2511 return 16;
2512 }
2513
2514 // Return the size of the stub. This method expects that the final dynsym
2515 // count is set.
2516 unsigned int
2517 stub_size() const
2518 {
2519 gold_assert(this->dynsym_count_ != -1U);
2520 if (this->dynsym_count_ > 0x10000)
2521 return this->stub_max_size();
2522 else
2523 return this->stub_max_size() - 4;
2524 }
2525
2526 // Return output address of a stub.
2527 Mips_address
2528 stub_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert(sym->has_lazy_stub());
2531 return this->address() + sym->lazy_stub_offset();
2532 }
2533
2534 protected:
2535 void
2536 do_adjust_output_section(Output_section* os)
2537 { os->set_entsize(0); }
2538
2539 // Write to a map file.
2540 void
2541 do_print_to_mapfile(Mapfile* mapfile) const
2542 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2543
2544 private:
2545 static const uint32_t lazy_stub_normal_1[];
2546 static const uint32_t lazy_stub_normal_1_n64[];
2547 static const uint32_t lazy_stub_normal_2[];
2548 static const uint32_t lazy_stub_normal_2_n64[];
2549 static const uint32_t lazy_stub_big[];
2550 static const uint32_t lazy_stub_big_n64[];
2551
2552 static const uint32_t lazy_stub_micromips_normal_1[];
2553 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2554 static const uint32_t lazy_stub_micromips_normal_2[];
2555 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2556 static const uint32_t lazy_stub_micromips_big[];
2557 static const uint32_t lazy_stub_micromips_big_n64[];
2558
2559 static const uint32_t lazy_stub_micromips32_normal_1[];
2560 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2561 static const uint32_t lazy_stub_micromips32_normal_2[];
2562 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2563 static const uint32_t lazy_stub_micromips32_big[];
2564 static const uint32_t lazy_stub_micromips32_big_n64[];
2565
2566 // Set the final size.
2567 void
2568 set_final_data_size()
2569 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2570
2571 // Write out the .MIPS.stubs data.
2572 void
2573 do_write(Output_file*);
2574
2575 // .MIPS.stubs symbols
2576 Unordered_set<Mips_symbol<size>*> symbols_;
2577 // Number of entries in dynamic symbol table.
2578 unsigned int dynsym_count_;
2579 // Whether the stub offsets are set.
2580 bool stub_offsets_are_set_;
2581 // The target.
2582 Target_mips<size, big_endian>* target_;
2583};
2584
2585// This class handles Mips .reginfo output section.
2586
2587template<int size, bool big_endian>
2588class Mips_output_section_reginfo : public Output_section
2589{
2590 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2591
2592 public:
2593 Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2594 elfcpp::Elf_Xword flags,
2595 Target_mips<size, big_endian>* target)
2596 : Output_section(name, type, flags), target_(target), gprmask_(0),
2597 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2598 { }
2599
2600 // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2601 static Mips_output_section_reginfo<size, big_endian>*
2602 as_mips_output_section_reginfo(Output_section* os)
2603 { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2604
2605 // Set masks of the output .reginfo section.
2606 void
2607 set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2608 Valtype cprmask3, Valtype cprmask4)
2609 {
2610 this->gprmask_ = gprmask;
2611 this->cprmask1_ = cprmask1;
2612 this->cprmask2_ = cprmask2;
2613 this->cprmask3_ = cprmask3;
2614 this->cprmask4_ = cprmask4;
2615 }
2616
2617 protected:
2618 // Set the final data size.
2619 void
2620 set_final_data_size()
2621 { this->set_data_size(24); }
2622
2623 // Write out reginfo section.
2624 void
2625 do_write(Output_file* of);
2626
2627 private:
2628 Target_mips<size, big_endian>* target_;
2629
2630 // gprmask of the output .reginfo section.
2631 Valtype gprmask_;
2632 // cprmask1 of the output .reginfo section.
2633 Valtype cprmask1_;
2634 // cprmask2 of the output .reginfo section.
2635 Valtype cprmask2_;
2636 // cprmask3 of the output .reginfo section.
2637 Valtype cprmask3_;
2638 // cprmask4 of the output .reginfo section.
2639 Valtype cprmask4_;
2640};
2641
2642// The MIPS target has relocation types which default handling of relocatable
2643// relocation cannot process. So we have to extend the default code.
2644
4d625b70 2645template<bool big_endian, typename Classify_reloc>
9810d34d 2646class Mips_scan_relocatable_relocs :
4d625b70 2647 public Default_scan_relocatable_relocs<Classify_reloc>
9810d34d
SS
2648{
2649 public:
2650 // Return the strategy to use for a local symbol which is a section
2651 // symbol, given the relocation type.
2652 inline Relocatable_relocs::Reloc_strategy
2653 local_section_strategy(unsigned int r_type, Relobj* object)
2654 {
4d625b70 2655 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
9810d34d
SS
2656 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2657 else
2658 {
2659 switch (r_type)
2660 {
2661 case elfcpp::R_MIPS_26:
2662 return Relocatable_relocs::RELOC_SPECIAL;
2663
2664 default:
4d625b70 2665 return Default_scan_relocatable_relocs<Classify_reloc>::
9810d34d
SS
2666 local_section_strategy(r_type, object);
2667 }
2668 }
2669 }
2670};
2671
2672// Mips_copy_relocs class. The only difference from the base class is the
2673// method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2674// Mips cannot convert all relocation types to dynamic relocs. If a reloc
2675// cannot be made dynamic, a COPY reloc is emitted.
2676
2677template<int sh_type, int size, bool big_endian>
2678class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2679{
2680 public:
2681 Mips_copy_relocs()
2682 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2683 { }
2684
2685 // Emit any saved relocations which turn out to be needed. This is
2686 // called after all the relocs have been scanned.
2687 void
2688 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2689 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2690
2691 private:
2692 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2693 Copy_reloc_entry;
2694
2695 // Emit this reloc if appropriate. This is called after we have
2696 // scanned all the relocations, so we know whether we emitted a
2697 // COPY relocation for SYM_.
2698 void
2699 emit_entry(Copy_reloc_entry& entry,
2700 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2701 Symbol_table* symtab, Layout* layout,
2702 Target_mips<size, big_endian>* target);
2703};
2704
2705
2706// Return true if the symbol SYM should be considered to resolve local
2707// to the current module, and false otherwise. The logic is taken from
2708// GNU ld's method _bfd_elf_symbol_refs_local_p.
2709static bool
2710symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2711 bool local_protected)
2712{
2713 // If it's a local sym, of course we resolve locally.
2714 if (sym == NULL)
2715 return true;
2716
2717 // STV_HIDDEN or STV_INTERNAL ones must be local.
2718 if (sym->visibility() == elfcpp::STV_HIDDEN
2719 || sym->visibility() == elfcpp::STV_INTERNAL)
2720 return true;
2721
2722 // If we don't have a definition in a regular file, then we can't
2723 // resolve locally. The sym is either undefined or dynamic.
2724 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2725 || sym->is_undefined())
2726 return false;
2727
2728 // Forced local symbols resolve locally.
2729 if (sym->is_forced_local())
2730 return true;
2731
2732 // As do non-dynamic symbols.
2733 if (!has_dynsym_entry)
2734 return true;
2735
2736 // At this point, we know the symbol is defined and dynamic. In an
2737 // executable it must resolve locally, likewise when building symbolic
2738 // shared libraries.
2739 if (parameters->options().output_is_executable()
2740 || parameters->options().Bsymbolic())
2741 return true;
2742
2743 // Now deal with defined dynamic symbols in shared libraries. Ones
2744 // with default visibility might not resolve locally.
2745 if (sym->visibility() == elfcpp::STV_DEFAULT)
2746 return false;
2747
2748 // STV_PROTECTED non-function symbols are local.
2749 if (sym->type() != elfcpp::STT_FUNC)
2750 return true;
2751
2752 // Function pointer equality tests may require that STV_PROTECTED
2753 // symbols be treated as dynamic symbols. If the address of a
2754 // function not defined in an executable is set to that function's
2755 // plt entry in the executable, then the address of the function in
2756 // a shared library must also be the plt entry in the executable.
2757 return local_protected;
2758}
2759
2760// Return TRUE if references to this symbol always reference the symbol in this
2761// object.
2762static bool
2763symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2764{
2765 return symbol_refs_local(sym, has_dynsym_entry, false);
2766}
2767
2768// Return TRUE if calls to this symbol always call the version in this object.
2769static bool
2770symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2771{
2772 return symbol_refs_local(sym, has_dynsym_entry, true);
2773}
2774
2775// Compare GOT offsets of two symbols.
2776
2777template<int size, bool big_endian>
2778static bool
2779got_offset_compare(Symbol* sym1, Symbol* sym2)
2780{
2781 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2782 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2783 unsigned int area1 = mips_sym1->global_got_area();
2784 unsigned int area2 = mips_sym2->global_got_area();
2785 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2786
2787 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2788 if (area1 != area2)
2789 return area1 < area2;
2790
2791 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2792}
2793
2794// This method divides dynamic symbols into symbols that have GOT entry, and
2795// symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
2796// Mips ABI requires that symbols with the GOT entry must be at the end of
2797// dynamic symbol table, and the order in dynamic symbol table must match the
2798// order in GOT.
2799
2800template<int size, bool big_endian>
2801static void
2802reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2803 std::vector<Symbol*>* non_got_symbols,
2804 std::vector<Symbol*>* got_symbols)
2805{
2806 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2807 p != dyn_symbols->end();
2808 ++p)
2809 {
2810 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2811 if (mips_sym->global_got_area() == GGA_NORMAL
2812 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2813 got_symbols->push_back(mips_sym);
2814 else
2815 non_got_symbols->push_back(mips_sym);
2816 }
2817
2818 std::sort(got_symbols->begin(), got_symbols->end(),
2819 got_offset_compare<size, big_endian>);
2820}
2821
2822// Functor class for processing the global symbol table.
2823
2824template<int size, bool big_endian>
2825class Symbol_visitor_check_symbols
2826{
2827 public:
2828 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2829 Layout* layout, Symbol_table* symtab)
2830 : target_(target), layout_(layout), symtab_(symtab)
2831 { }
2832
2833 void
2834 operator()(Sized_symbol<size>* sym)
2835 {
2836 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2837 if (local_pic_function<size, big_endian>(mips_sym))
2838 {
2839 // SYM is a function that might need $25 to be valid on entry.
2840 // If we're creating a non-PIC relocatable object, mark SYM as
2841 // being PIC. If we're creating a non-relocatable object with
2842 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2843 // stub.
2844 if (parameters->options().relocatable())
2845 {
2846 if (!parameters->options().output_is_position_independent())
2847 mips_sym->set_pic();
2848 }
2849 else if (mips_sym->has_nonpic_branches())
2850 {
2851 this->target_->la25_stub_section(layout_)
2852 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2853 }
2854 }
2855 }
2856
2857 private:
2858 Target_mips<size, big_endian>* target_;
2859 Layout* layout_;
2860 Symbol_table* symtab_;
2861};
2862
4d625b70
CC
2863// Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
2864// and endianness. The relocation format for MIPS-64 is non-standard.
2865
2866template<int sh_type, int size, bool big_endian>
2867struct Mips_reloc_types;
2868
2869template<bool big_endian>
2870struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
2871{
2872 typedef typename elfcpp::Rel<32, big_endian> Reloc;
2873 typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
2874
2875 static unsigned typename elfcpp::Elf_types<32>::Elf_Swxword
2876 get_r_addend(const Reloc*)
2877 { return 0; }
2878
2879 static inline void
2880 set_reloc_addend(Reloc_write*,
2881 typename elfcpp::Elf_types<32>::Elf_Swxword)
2882 { gold_unreachable(); }
2883};
2884
2885template<bool big_endian>
2886struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
2887{
2888 typedef typename elfcpp::Rela<32, big_endian> Reloc;
2889 typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
2890
2891 static unsigned typename elfcpp::Elf_types<32>::Elf_Swxword
2892 get_r_addend(const Reloc* reloc)
2893 { return reloc->get_r_addend(); }
2894
2895 static inline void
2896 set_reloc_addend(Reloc_write* p,
2897 typename elfcpp::Elf_types<32>::Elf_Swxword val)
2898 { p->put_r_addend(val); }
2899};
2900
2901template<bool big_endian>
2902struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
2903{
2904 typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
2905 typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
2906
2907 static unsigned typename elfcpp::Elf_types<64>::Elf_Swxword
2908 get_r_addend(const Reloc*)
2909 { return 0; }
2910
2911 static inline void
2912 set_reloc_addend(Reloc_write*,
2913 typename elfcpp::Elf_types<64>::Elf_Swxword)
2914 { gold_unreachable(); }
2915};
2916
2917template<bool big_endian>
2918struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
2919{
2920 typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
2921 typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
2922
2923 static unsigned typename elfcpp::Elf_types<64>::Elf_Swxword
2924 get_r_addend(const Reloc* reloc)
2925 { return reloc->get_r_addend(); }
2926
2927 static inline void
2928 set_reloc_addend(Reloc_write* p,
2929 typename elfcpp::Elf_types<64>::Elf_Swxword val)
2930 { p->put_r_addend(val); }
2931};
2932
2933// Forward declaration.
2934static unsigned int
2935mips_get_size_for_reloc(unsigned int, Relobj*);
2936
2937// A class for inquiring about properties of a relocation,
2938// used while scanning relocs during a relocatable link and
2939// garbage collection.
2940
2941template<int sh_type_, int size, bool big_endian>
2942class Mips_classify_reloc;
2943
2944template<int sh_type_, bool big_endian>
2945class Mips_classify_reloc<sh_type_, 32, big_endian> :
2946 public gold::Default_classify_reloc<sh_type_, 32, big_endian>
2947{
2948 public:
2949 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
2950 Reltype;
2951 typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
2952 Reltype_write;
2953
2954 // Return the symbol referred to by the relocation.
2955 static inline unsigned int
2956 get_r_sym(const Reltype* reloc)
2957 { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
2958
2959 // Return the type of the relocation.
2960 static inline unsigned int
2961 get_r_type(const Reltype* reloc)
2962 { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
2963
2964 // Return the explicit addend of the relocation (return 0 for SHT_REL).
2965 static inline unsigned int
2966 get_r_addend(const Reltype* reloc)
2967 { return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc); }
2968
2969 // Write the r_info field to a new reloc, using the r_info field from
2970 // the original reloc, replacing the r_sym field with R_SYM.
2971 static inline void
2972 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
2973 {
2974 unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
2975 new_reloc->put_r_info(elfcpp::elf_r_info<64>(r_sym, r_type));
2976 }
2977
2978 // Write the r_addend field to a new reloc.
2979 static inline void
2980 put_r_addend(Reltype_write* to,
2981 typename elfcpp::Elf_types<32>::Elf_Swxword addend)
2982 { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
2983
2984 // Return the size of the addend of the relocation (only used for SHT_REL).
2985 static unsigned int
2986 get_size_for_reloc(unsigned int r_type, Relobj* obj)
2987 { return mips_get_size_for_reloc(r_type, obj); }
2988};
2989
2990template<int sh_type_, bool big_endian>
2991class Mips_classify_reloc<sh_type_, 64, big_endian> :
2992 public gold::Default_classify_reloc<sh_type_, 64, big_endian>
2993{
2994 public:
2995 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
2996 Reltype;
2997 typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
2998 Reltype_write;
2999
3000 // Return the symbol referred to by the relocation.
3001 static inline unsigned int
3002 get_r_sym(const Reltype* reloc)
3003 { return reloc->get_r_sym(); }
3004
3005 // Return the type of the relocation.
3006 static inline unsigned int
3007 get_r_type(const Reltype* reloc)
3008 { return reloc->get_r_type(); }
3009
3010 // Return the explicit addend of the relocation (return 0 for SHT_REL).
3011 static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3012 get_r_addend(const Reltype* reloc)
3013 { return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc); }
3014
3015 // Write the r_info field to a new reloc, using the r_info field from
3016 // the original reloc, replacing the r_sym field with R_SYM.
3017 static inline void
3018 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3019 {
3020 new_reloc->put_r_sym(r_sym);
3021 new_reloc->put_r_ssym(reloc->get_r_ssym());
3022 new_reloc->put_r_type3(reloc->get_r_type3());
3023 new_reloc->put_r_type2(reloc->get_r_type2());
3024 new_reloc->put_r_type(reloc->get_r_type());
3025 }
3026
3027 // Write the r_addend field to a new reloc.
3028 static inline void
3029 put_r_addend(Reltype_write* to,
3030 typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3031 { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3032
3033 // Return the size of the addend of the relocation (only used for SHT_REL).
3034 static unsigned int
3035 get_size_for_reloc(unsigned int r_type, Relobj* obj)
3036 { return mips_get_size_for_reloc(r_type, obj); }
3037};
3038
9810d34d
SS
3039template<int size, bool big_endian>
3040class Target_mips : public Sized_target<size, big_endian>
3041{
3042 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3043 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3044 Reloc_section;
3045 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3046 Reloca_section;
3047 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3048 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4d625b70
CC
3049 typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3050 Reltype;
3051 typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3052 Relatype;
9810d34d
SS
3053
3054 public:
3055 Target_mips(const Target::Target_info* info = &mips_info)
3056 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3057 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
3058 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3059 mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
3060 got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
3061 {
3062 this->add_machine_extensions();
3063 }
3064
3065 // The offset of $gp from the beginning of the .got section.
3066 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3067
3068 // The maximum size of the GOT for it to be addressable using 16-bit
3069 // offsets from $gp.
3070 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3071
3072 // Make a new symbol table entry for the Mips target.
3073 Sized_symbol<size>*
3074 make_symbol() const
3075 { return new Mips_symbol<size>(); }
3076
3077 // Process the relocations to determine unreferenced sections for
3078 // garbage collection.
3079 void
3080 gc_process_relocs(Symbol_table* symtab,
3081 Layout* layout,
3082 Sized_relobj_file<size, big_endian>* object,
3083 unsigned int data_shndx,
3084 unsigned int sh_type,
3085 const unsigned char* prelocs,
3086 size_t reloc_count,
3087 Output_section* output_section,
3088 bool needs_special_offset_handling,
3089 size_t local_symbol_count,
3090 const unsigned char* plocal_symbols);
3091
3092 // Scan the relocations to look for symbol adjustments.
3093 void
3094 scan_relocs(Symbol_table* symtab,
3095 Layout* layout,
3096 Sized_relobj_file<size, big_endian>* object,
3097 unsigned int data_shndx,
3098 unsigned int sh_type,
3099 const unsigned char* prelocs,
3100 size_t reloc_count,
3101 Output_section* output_section,
3102 bool needs_special_offset_handling,
3103 size_t local_symbol_count,
3104 const unsigned char* plocal_symbols);
3105
3106 // Finalize the sections.
3107 void
3108 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3109
3110 // Relocate a section.
3111 void
3112 relocate_section(const Relocate_info<size, big_endian>*,
3113 unsigned int sh_type,
3114 const unsigned char* prelocs,
3115 size_t reloc_count,
3116 Output_section* output_section,
3117 bool needs_special_offset_handling,
3118 unsigned char* view,
3119 Mips_address view_address,
3120 section_size_type view_size,
3121 const Reloc_symbol_changes*);
3122
3123 // Scan the relocs during a relocatable link.
3124 void
3125 scan_relocatable_relocs(Symbol_table* symtab,
3126 Layout* layout,
3127 Sized_relobj_file<size, big_endian>* object,
3128 unsigned int data_shndx,
3129 unsigned int sh_type,
3130 const unsigned char* prelocs,
3131 size_t reloc_count,
3132 Output_section* output_section,
3133 bool needs_special_offset_handling,
3134 size_t local_symbol_count,
3135 const unsigned char* plocal_symbols,
3136 Relocatable_relocs*);
3137
4d625b70
CC
3138 // Scan the relocs for --emit-relocs.
3139 void
3140 emit_relocs_scan(Symbol_table* symtab,
3141 Layout* layout,
3142 Sized_relobj_file<size, big_endian>* object,
3143 unsigned int data_shndx,
3144 unsigned int sh_type,
3145 const unsigned char* prelocs,
3146 size_t reloc_count,
3147 Output_section* output_section,
3148 bool needs_special_offset_handling,
3149 size_t local_symbol_count,
3150 const unsigned char* plocal_syms,
3151 Relocatable_relocs* rr);
3152
9810d34d
SS
3153 // Emit relocations for a section.
3154 void
3155 relocate_relocs(const Relocate_info<size, big_endian>*,
3156 unsigned int sh_type,
3157 const unsigned char* prelocs,
3158 size_t reloc_count,
3159 Output_section* output_section,
3160 typename elfcpp::Elf_types<size>::Elf_Off
3161 offset_in_output_section,
9810d34d
SS
3162 unsigned char* view,
3163 Mips_address view_address,
3164 section_size_type view_size,
3165 unsigned char* reloc_view,
3166 section_size_type reloc_view_size);
3167
3168 // Perform target-specific processing in a relocatable link. This is
3169 // only used if we use the relocation strategy RELOC_SPECIAL.
3170 void
3171 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3172 unsigned int sh_type,
3173 const unsigned char* preloc_in,
3174 size_t relnum,
3175 Output_section* output_section,
3176 typename elfcpp::Elf_types<size>::Elf_Off
3177 offset_in_output_section,
3178 unsigned char* view,
3179 Mips_address view_address,
3180 section_size_type view_size,
3181 unsigned char* preloc_out);
3182
3183 // Return whether SYM is defined by the ABI.
3184 bool
3185 do_is_defined_by_abi(const Symbol* sym) const
3186 {
3187 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3188 || (strcmp(sym->name(), "_gp_disp") == 0)
3189 || (strcmp(sym->name(), "___tls_get_addr") == 0));
3190 }
3191
3192 // Return the number of entries in the GOT.
3193 unsigned int
3194 got_entry_count() const
3195 {
3196 if (!this->has_got_section())
3197 return 0;
3198 return this->got_size() / (size/8);
3199 }
3200
3201 // Return the number of entries in the PLT.
3202 unsigned int
3203 plt_entry_count() const
3204 {
3205 if (this->plt_ == NULL)
3206 return 0;
3207 return this->plt_->entry_count();
3208 }
3209
3210 // Return the offset of the first non-reserved PLT entry.
3211 unsigned int
3212 first_plt_entry_offset() const
3213 { return this->plt_->first_plt_entry_offset(); }
3214
3215 // Return the size of each PLT entry.
3216 unsigned int
3217 plt_entry_size() const
3218 { return this->plt_->plt_entry_size(); }
3219
3220 // Get the GOT section, creating it if necessary.
3221 Mips_output_data_got<size, big_endian>*
3222 got_section(Symbol_table*, Layout*);
3223
3224 // Get the GOT section.
3225 Mips_output_data_got<size, big_endian>*
3226 got_section() const
3227 {
3228 gold_assert(this->got_ != NULL);
3229 return this->got_;
3230 }
3231
3232 // Get the .MIPS.stubs section, creating it if necessary.
3233 Mips_output_data_mips_stubs<size, big_endian>*
3234 mips_stubs_section(Layout* layout);
3235
3236 // Get the .MIPS.stubs section.
3237 Mips_output_data_mips_stubs<size, big_endian>*
3238 mips_stubs_section() const
3239 {
3240 gold_assert(this->mips_stubs_ != NULL);
3241 return this->mips_stubs_;
3242 }
3243
3244 // Get the LA25 stub section, creating it if necessary.
3245 Mips_output_data_la25_stub<size, big_endian>*
3246 la25_stub_section(Layout*);
3247
3248 // Get the LA25 stub section.
3249 Mips_output_data_la25_stub<size, big_endian>*
3250 la25_stub_section()
3251 {
3252 gold_assert(this->la25_stub_ != NULL);
3253 return this->la25_stub_;
3254 }
3255
3256 // Get gp value. It has the value of .got + 0x7FF0.
3257 Mips_address
3258 gp_value() const
3259 {
3260 if (this->gp_ != NULL)
3261 return this->gp_->value();
3262 return 0;
3263 }
3264
3265 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3266 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3267 Mips_address
3268 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3269 {
3270 if (this->gp_ == NULL)
3271 return 0;
3272
3273 bool multi_got = false;
3274 if (this->has_got_section())
3275 multi_got = this->got_section()->multi_got();
3276 if (!multi_got)
3277 return this->gp_->value();
3278 else
3279 return this->gp_->value() + this->got_section()->get_got_offset(object);
3280 }
3281
3282 // Get the dynamic reloc section, creating it if necessary.
3283 Reloc_section*
3284 rel_dyn_section(Layout*);
3285
3286 bool
3287 do_has_custom_set_dynsym_indexes() const
3288 { return true; }
3289
3290 // Don't emit input .reginfo sections to output .reginfo.
3291 bool
3292 do_should_include_section(elfcpp::Elf_Word sh_type) const
3293 { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3294
3295 // Set the dynamic symbol indexes. INDEX is the index of the first
3296 // global dynamic symbol. Pointers to the symbols are stored into the
3297 // vector SYMS. The names are added to DYNPOOL. This returns an
3298 // updated dynamic symbol index.
3299 unsigned int
3300 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3301 std::vector<Symbol*>* syms, Stringpool* dynpool,
3302 Versions* versions, Symbol_table* symtab) const;
3303
3304 // Remove .MIPS.stubs entry for a symbol.
3305 void
3306 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3307 {
3308 if (this->mips_stubs_ != NULL)
3309 this->mips_stubs_->remove_entry(sym);
3310 }
3311
3312 // The value to write into got[1] for SVR4 targets, to identify it is
3313 // a GNU object. The dynamic linker can then use got[1] to store the
3314 // module pointer.
3315 uint64_t
3316 mips_elf_gnu_got1_mask()
3317 {
3318 if (this->is_output_n64())
3319 return (uint64_t)1 << 63;
3320 else
3321 return 1 << 31;
3322 }
3323
3324 // Whether the output has microMIPS code. This is valid only after
3325 // merge_processor_specific_flags() is called.
3326 bool
3327 is_output_micromips() const
3328 {
3329 gold_assert(this->are_processor_specific_flags_set());
3330 return elfcpp::is_micromips(this->processor_specific_flags());
3331 }
3332
3333 // Whether the output uses N32 ABI. This is valid only after
3334 // merge_processor_specific_flags() is called.
3335 bool
3336 is_output_n32() const
3337 {
3338 gold_assert(this->are_processor_specific_flags_set());
3339 return elfcpp::abi_n32(this->processor_specific_flags());
3340 }
3341
3342 // Whether the output uses N64 ABI. This is valid only after
3343 // merge_processor_specific_flags() is called.
3344 bool
3345 is_output_n64() const
3346 {
3347 gold_assert(this->are_processor_specific_flags_set());
3348 return elfcpp::abi_64(this->ei_class_);
3349 }
3350
3351 // Whether the output uses NEWABI. This is valid only after
3352 // merge_processor_specific_flags() is called.
3353 bool
3354 is_output_newabi() const
3355 { return this->is_output_n32() || this->is_output_n64(); }
3356
3357 // Whether we can only use 32-bit microMIPS instructions.
3358 bool
3359 use_32bit_micromips_instructions() const
3360 { return this->insn32_; }
3361
4d625b70
CC
3362 // Return the r_sym field from a relocation.
3363 unsigned int
3364 get_r_sym(const unsigned char* preloc) const
3365 {
3366 // Since REL and RELA relocs share the same structure through
3367 // the r_info field, we can just use REL here.
3368 Reltype rel(preloc);
3369 return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3370 get_r_sym(&rel);
3371 }
3372
9810d34d
SS
3373 protected:
3374 // Return the value to use for a dynamic symbol which requires special
3375 // treatment. This is how we support equality comparisons of function
3376 // pointers across shared library boundaries, as described in the
3377 // processor specific ABI supplement.
3378 uint64_t
3379 do_dynsym_value(const Symbol* gsym) const;
3380
3381 // Make an ELF object.
3382 Object*
3383 do_make_elf_object(const std::string&, Input_file*, off_t,
3384 const elfcpp::Ehdr<size, big_endian>& ehdr);
3385
3386 Object*
3387 do_make_elf_object(const std::string&, Input_file*, off_t,
3388 const elfcpp::Ehdr<size, !big_endian>&)
3389 { gold_unreachable(); }
3390
3391 // Make an output section.
3392 Output_section*
3393 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3394 elfcpp::Elf_Xword flags)
3395 {
3396 if (type == elfcpp::SHT_MIPS_REGINFO)
3397 return new Mips_output_section_reginfo<size, big_endian>(name, type,
3398 flags, this);
3399 else
3400 return new Output_section(name, type, flags);
3401 }
3402
3403 // Adjust ELF file header.
3404 void
3405 do_adjust_elf_header(unsigned char* view, int len);
3406
3407 // Get the custom dynamic tag value.
3408 unsigned int
3409 do_dynamic_tag_custom_value(elfcpp::DT) const;
3410
3411 // Adjust the value written to the dynamic symbol table.
3412 virtual void
3413 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3414 {
3415 elfcpp::Sym<size, big_endian> isym(view);
3416 elfcpp::Sym_write<size, big_endian> osym(view);
3417 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3418
3419 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3420 // to treat compressed symbols like any other.
3421 Mips_address value = isym.get_st_value();
3422 if (mips_sym->is_mips16() && value != 0)
3423 {
3424 if (!mips_sym->has_mips16_fn_stub())
3425 value |= 1;
3426 else
3427 {
3428 // If we have a MIPS16 function with a stub, the dynamic symbol
3429 // must refer to the stub, since only the stub uses the standard
3430 // calling conventions. Stub contains MIPS32 code, so don't add +1
3431 // in this case.
3432
3433 // There is a code which does this in the method
3434 // Target_mips::do_dynsym_value, but that code will only be
3435 // executed if the symbol is from dynobj.
3436 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3437 // table.
3438
3439 Mips16_stub_section<size, big_endian>* fn_stub =
3440 mips_sym->template get_mips16_fn_stub<big_endian>();
3441 value = fn_stub->output_address();
3442 osym.put_st_size(fn_stub->section_size());
3443 }
3444
3445 osym.put_st_value(value);
3446 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3447 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3448 }
3449 else if ((mips_sym->is_micromips()
3450 // Stubs are always microMIPS if there is any microMIPS code in
3451 // the output.
3452 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3453 && value != 0)
3454 {
3455 osym.put_st_value(value | 1);
3456 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3457 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3458 }
3459 }
3460
3461 private:
3462 // The class which scans relocations.
3463 class Scan
3464 {
3465 public:
3466 Scan()
3467 { }
3468
3469 static inline int
3470 get_reference_flags(unsigned int r_type);
3471
3472 inline void
3473 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3474 Sized_relobj_file<size, big_endian>* object,
3475 unsigned int data_shndx,
3476 Output_section* output_section,
4d625b70 3477 const Reltype& reloc, unsigned int r_type,
9810d34d
SS
3478 const elfcpp::Sym<size, big_endian>& lsym,
3479 bool is_discarded);
3480
3481 inline void
3482 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3483 Sized_relobj_file<size, big_endian>* object,
3484 unsigned int data_shndx,
3485 Output_section* output_section,
4d625b70 3486 const Relatype& reloc, unsigned int r_type,
9810d34d
SS
3487 const elfcpp::Sym<size, big_endian>& lsym,
3488 bool is_discarded);
3489
3490 inline void
3491 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3492 Sized_relobj_file<size, big_endian>* object,
3493 unsigned int data_shndx,
3494 Output_section* output_section,
4d625b70
CC
3495 const Relatype* rela,
3496 const Reltype* rel,
9810d34d
SS
3497 unsigned int rel_type,
3498 unsigned int r_type,
3499 const elfcpp::Sym<size, big_endian>& lsym,
3500 bool is_discarded);
3501
3502 inline void
3503 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3504 Sized_relobj_file<size, big_endian>* object,
3505 unsigned int data_shndx,
3506 Output_section* output_section,
4d625b70 3507 const Reltype& reloc, unsigned int r_type,
9810d34d
SS
3508 Symbol* gsym);
3509
3510 inline void
3511 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3512 Sized_relobj_file<size, big_endian>* object,
3513 unsigned int data_shndx,
3514 Output_section* output_section,
4d625b70 3515 const Relatype& reloc, unsigned int r_type,
9810d34d
SS
3516 Symbol* gsym);
3517
3518 inline void
3519 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3520 Sized_relobj_file<size, big_endian>* object,
3521 unsigned int data_shndx,
3522 Output_section* output_section,
4d625b70
CC
3523 const Relatype* rela,
3524 const Reltype* rel,
9810d34d
SS
3525 unsigned int rel_type,
3526 unsigned int r_type,
3527 Symbol* gsym);
3528
3529 inline bool
3530 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3531 Target_mips*,
3532 Sized_relobj_file<size, big_endian>*,
3533 unsigned int,
3534 Output_section*,
4d625b70 3535 const Reltype&,
9810d34d
SS
3536 unsigned int,
3537 const elfcpp::Sym<size, big_endian>&)
3538 { return false; }
3539
3540 inline bool
3541 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3542 Target_mips*,
3543 Sized_relobj_file<size, big_endian>*,
3544 unsigned int,
3545 Output_section*,
4d625b70 3546 const Reltype&,
9810d34d
SS
3547 unsigned int, Symbol*)
3548 { return false; }
3549
3550 inline bool
3551 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3552 Target_mips*,
3553 Sized_relobj_file<size, big_endian>*,
3554 unsigned int,
3555 Output_section*,
4d625b70 3556 const Relatype&,
9810d34d
SS
3557 unsigned int,
3558 const elfcpp::Sym<size, big_endian>&)
3559 { return false; }
3560
3561 inline bool
3562 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3563 Target_mips*,
3564 Sized_relobj_file<size, big_endian>*,
3565 unsigned int,
3566 Output_section*,
4d625b70 3567 const Relatype&,
9810d34d
SS
3568 unsigned int, Symbol*)
3569 { return false; }
3570 private:
3571 static void
3572 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3573 unsigned int r_type);
3574
3575 static void
3576 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3577 unsigned int r_type, Symbol*);
3578 };
3579
3580 // The class which implements relocation.
3581 class Relocate
3582 {
3583 public:
3584 Relocate()
3585 { }
3586
3587 ~Relocate()
3588 { }
3589
3590 // Return whether the R_MIPS_32 relocation needs to be applied.
3591 inline bool
3592 should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3593 unsigned int r_type,
3594 Output_section* output_section,
3595 Target_mips* target);
3596
3597 // Do a relocation. Return false if the caller should not issue
3598 // any warnings about this relocation.
3599 inline bool
91a65d2f
AM
3600 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3601 Target_mips*, Output_section*, size_t, const unsigned char*,
3602 const Sized_symbol<size>*, const Symbol_value<size>*,
3603 unsigned char*, Mips_address, section_size_type);
9810d34d
SS
3604 };
3605
9810d34d
SS
3606 // This POD class holds the dynamic relocations that should be emitted instead
3607 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3608 // relocations if it turns out that the symbol does not have static
3609 // relocations.
3610 class Dyn_reloc
3611 {
3612 public:
3613 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3614 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3615 Output_section* output_section, Mips_address r_offset)
3616 : sym_(sym), r_type_(r_type), relobj_(relobj),
3617 shndx_(shndx), output_section_(output_section),
3618 r_offset_(r_offset)
3619 { }
3620
3621 // Emit this reloc if appropriate. This is called after we have
3622 // scanned all the relocations, so we know whether the symbol has
3623 // static relocations.
3624 void
3625 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3626 Symbol_table* symtab)
3627 {
3628 if (!this->sym_->has_static_relocs())
3629 {
3630 got->record_global_got_symbol(this->sym_, this->relobj_,
3631 this->r_type_, true, false);
3632 if (!symbol_references_local(this->sym_,
3633 this->sym_->should_add_dynsym_entry(symtab)))
3634 rel_dyn->add_global(this->sym_, this->r_type_,
3635 this->output_section_, this->relobj_,
3636 this->shndx_, this->r_offset_);
3637 else
3638 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3639 this->output_section_, this->relobj_,
3640 this->shndx_, this->r_offset_);
3641 }
3642 }
3643
3644 private:
3645 Mips_symbol<size>* sym_;
3646 unsigned int r_type_;
3647 Mips_relobj<size, big_endian>* relobj_;
3648 unsigned int shndx_;
3649 Output_section* output_section_;
3650 Mips_address r_offset_;
3651 };
3652
3653 // Adjust TLS relocation type based on the options and whether this
3654 // is a local symbol.
3655 static tls::Tls_optimization
3656 optimize_tls_reloc(bool is_final, int r_type);
3657
3658 // Return whether there is a GOT section.
3659 bool
3660 has_got_section() const
3661 { return this->got_ != NULL; }
3662
3663 // Check whether the given ELF header flags describe a 32-bit binary.
3664 bool
3665 mips_32bit_flags(elfcpp::Elf_Word);
3666
3667 enum Mips_mach {
3668 mach_mips3000 = 3000,
3669 mach_mips3900 = 3900,
3670 mach_mips4000 = 4000,
3671 mach_mips4010 = 4010,
3672 mach_mips4100 = 4100,
3673 mach_mips4111 = 4111,
3674 mach_mips4120 = 4120,
3675 mach_mips4300 = 4300,
3676 mach_mips4400 = 4400,
3677 mach_mips4600 = 4600,
3678 mach_mips4650 = 4650,
3679 mach_mips5000 = 5000,
3680 mach_mips5400 = 5400,
3681 mach_mips5500 = 5500,
3682 mach_mips6000 = 6000,
3683 mach_mips7000 = 7000,
3684 mach_mips8000 = 8000,
3685 mach_mips9000 = 9000,
3686 mach_mips10000 = 10000,
3687 mach_mips12000 = 12000,
3688 mach_mips14000 = 14000,
3689 mach_mips16000 = 16000,
3690 mach_mips16 = 16,
3691 mach_mips5 = 5,
3692 mach_mips_loongson_2e = 3001,
3693 mach_mips_loongson_2f = 3002,
3694 mach_mips_loongson_3a = 3003,
3695 mach_mips_sb1 = 12310201, // octal 'SB', 01
3696 mach_mips_octeon = 6501,
3697 mach_mips_octeonp = 6601,
3698 mach_mips_octeon2 = 6502,
3699 mach_mips_xlr = 887682, // decimal 'XLR'
3700 mach_mipsisa32 = 32,
3701 mach_mipsisa32r2 = 33,
3702 mach_mipsisa64 = 64,
3703 mach_mipsisa64r2 = 65,
3704 mach_mips_micromips = 96
3705 };
3706
3707 // Return the MACH for a MIPS e_flags value.
3708 unsigned int
3709 elf_mips_mach(elfcpp::Elf_Word);
3710
3711 // Check whether machine EXTENSION is an extension of machine BASE.
3712 bool
3713 mips_mach_extends(unsigned int, unsigned int);
3714
3715 // Merge processor specific flags.
3716 void
3717 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3718 unsigned char, bool);
3719
3720 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3721 static inline bool
3722 jal_to_bal()
3723 { return false; }
3724
3725 // True if we are linking for CPUs that are faster if JALR is converted to
3726 // BAL. This should be safe for all architectures. We enable this predicate
3727 // for all CPUs.
3728 static inline bool
3729 jalr_to_bal()
3730 { return true; }
3731
3732 // True if we are linking for CPUs that are faster if JR is converted to B.
3733 // This should be safe for all architectures. We enable this predicate for
3734 // all CPUs.
3735 static inline bool
3736 jr_to_b()
3737 { return true; }
3738
3739 // Return the size of the GOT section.
3740 section_size_type
3741 got_size() const
3742 {
3743 gold_assert(this->got_ != NULL);
3744 return this->got_->data_size();
3745 }
3746
3747 // Create a PLT entry for a global symbol referenced by r_type relocation.
3748 void
3749 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3750 unsigned int r_type);
3751
3752 // Get the PLT section.
3753 Mips_output_data_plt<size, big_endian>*
3754 plt_section() const
3755 {
3756 gold_assert(this->plt_ != NULL);
3757 return this->plt_;
3758 }
3759
3760 // Get the GOT PLT section.
3761 const Mips_output_data_plt<size, big_endian>*
3762 got_plt_section() const
3763 {
3764 gold_assert(this->got_plt_ != NULL);
3765 return this->got_plt_;
3766 }
3767
3768 // Copy a relocation against a global symbol.
3769 void
3770 copy_reloc(Symbol_table* symtab, Layout* layout,
3771 Sized_relobj_file<size, big_endian>* object,
3772 unsigned int shndx, Output_section* output_section,
4d625b70 3773 Symbol* sym, const Reltype& reloc)
9810d34d 3774 {
4d625b70
CC
3775 unsigned int r_type =
3776 Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3777 get_r_type(&reloc);
9810d34d
SS
3778 this->copy_relocs_.copy_reloc(symtab, layout,
3779 symtab->get_sized_symbol<size>(sym),
3780 object, shndx, output_section,
859d7987
CC
3781 r_type, reloc.get_r_offset(), 0,
3782 this->rel_dyn_section(layout));
9810d34d
SS
3783 }
3784
3785 void
3786 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3787 Mips_relobj<size, big_endian>* relobj,
3788 unsigned int shndx, Output_section* output_section,
3789 Mips_address r_offset)
3790 {
3791 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3792 output_section, r_offset));
3793 }
3794
3795 // Calculate value of _gp symbol.
3796 void
3797 set_gp(Layout*, Symbol_table*);
3798
3799 const char*
3800 elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3801 const char*
3802 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3803
3804 // Adds entries that describe how machines relate to one another. The entries
3805 // are ordered topologically with MIPS I extensions listed last. First
3806 // element is extension, second element is base.
3807 void
3808 add_machine_extensions()
3809 {
3810 // MIPS64r2 extensions.
3811 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3812 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3813 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3814
3815 // MIPS64 extensions.
3816 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3817 this->add_extension(mach_mips_sb1, mach_mipsisa64);
3818 this->add_extension(mach_mips_xlr, mach_mipsisa64);
3819 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3820
3821 // MIPS V extensions.
3822 this->add_extension(mach_mipsisa64, mach_mips5);
3823
3824 // R10000 extensions.
3825 this->add_extension(mach_mips12000, mach_mips10000);
3826 this->add_extension(mach_mips14000, mach_mips10000);
3827 this->add_extension(mach_mips16000, mach_mips10000);
3828
3829 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
3830 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
3831 // better to allow vr5400 and vr5500 code to be merged anyway, since
3832 // many libraries will just use the core ISA. Perhaps we could add
3833 // some sort of ASE flag if this ever proves a problem.
3834 this->add_extension(mach_mips5500, mach_mips5400);
3835 this->add_extension(mach_mips5400, mach_mips5000);
3836
3837 // MIPS IV extensions.
3838 this->add_extension(mach_mips5, mach_mips8000);
3839 this->add_extension(mach_mips10000, mach_mips8000);
3840 this->add_extension(mach_mips5000, mach_mips8000);
3841 this->add_extension(mach_mips7000, mach_mips8000);
3842 this->add_extension(mach_mips9000, mach_mips8000);
3843
3844 // VR4100 extensions.
3845 this->add_extension(mach_mips4120, mach_mips4100);
3846 this->add_extension(mach_mips4111, mach_mips4100);
3847
3848 // MIPS III extensions.
3849 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3850 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3851 this->add_extension(mach_mips8000, mach_mips4000);
3852 this->add_extension(mach_mips4650, mach_mips4000);
3853 this->add_extension(mach_mips4600, mach_mips4000);
3854 this->add_extension(mach_mips4400, mach_mips4000);
3855 this->add_extension(mach_mips4300, mach_mips4000);
3856 this->add_extension(mach_mips4100, mach_mips4000);
3857 this->add_extension(mach_mips4010, mach_mips4000);
3858
3859 // MIPS32 extensions.
3860 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3861
3862 // MIPS II extensions.
3863 this->add_extension(mach_mips4000, mach_mips6000);
3864 this->add_extension(mach_mipsisa32, mach_mips6000);
3865
3866 // MIPS I extensions.
3867 this->add_extension(mach_mips6000, mach_mips3000);
3868 this->add_extension(mach_mips3900, mach_mips3000);
3869 }
3870
3871 // Add value to MIPS extenstions.
3872 void
3873 add_extension(unsigned int base, unsigned int extension)
3874 {
3875 std::pair<unsigned int, unsigned int> ext(base, extension);
3876 this->mips_mach_extensions_.push_back(ext);
3877 }
3878
3879 // Return the number of entries in the .dynsym section.
3880 unsigned int get_dt_mips_symtabno() const
3881 {
3882 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3883 / elfcpp::Elf_sizes<size>::sym_size));
3884 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3885 }
3886
3887 // Information about this specific target which we pass to the
3888 // general Target structure.
62661c93 3889 static const Target::Target_info mips_info;
9810d34d
SS
3890 // The GOT section.
3891 Mips_output_data_got<size, big_endian>* got_;
3892 // gp symbol. It has the value of .got + 0x7FF0.
3893 Sized_symbol<size>* gp_;
3894 // The PLT section.
3895 Mips_output_data_plt<size, big_endian>* plt_;
3896 // The GOT PLT section.
3897 Output_data_space* got_plt_;
3898 // The dynamic reloc section.
3899 Reloc_section* rel_dyn_;
3900 // Relocs saved to avoid a COPY reloc.
3901 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3902
3903 // A list of dyn relocs to be saved.
3904 std::vector<Dyn_reloc> dyn_relocs_;
3905
3906 // The LA25 stub section.
3907 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3908 // Architecture extensions.
3909 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3910 // .MIPS.stubs
3911 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3912
3913 unsigned char ei_class_;
3914 unsigned int mach_;
3915 Layout* layout_;
3916
3917 typename std::list<got16_addend<size, big_endian> > got16_addends_;
3918
3919 // Whether the entry symbol is mips16 or micromips.
3920 bool entry_symbol_is_compressed_;
3921
3922 // Whether we can use only 32-bit microMIPS instructions.
3923 // TODO(sasa): This should be a linker option.
3924 bool insn32_;
3925};
3926
9810d34d
SS
3927// Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3928// It records high part of the relocation pair.
3929
3930template<int size, bool big_endian>
3931struct reloc_high
3932{
3933 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3934
3935 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3936 const Symbol_value<size>* _psymval, Mips_address _addend,
3d0064a9 3937 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
9810d34d
SS
3938 Mips_address _address = 0, bool _gp_disp = false)
3939 : view(_view), object(_object), psymval(_psymval), addend(_addend),
3d0064a9
CC
3940 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
3941 address(_address), gp_disp(_gp_disp)
9810d34d
SS
3942 { }
3943
3944 unsigned char* view;
3945 const Mips_relobj<size, big_endian>* object;
3946 const Symbol_value<size>* psymval;
3947 Mips_address addend;
3948 unsigned int r_type;
3d0064a9 3949 unsigned int r_sym;
9810d34d
SS
3950 bool extract_addend;
3951 Mips_address address;
3952 bool gp_disp;
3953};
3954
3955template<int size, bool big_endian>
3956class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3957{
3958 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3959 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3960 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3961
3962 public:
3963 typedef enum
3964 {
3965 STATUS_OKAY, // No error during relocation.
3966 STATUS_OVERFLOW, // Relocation overflow.
3967 STATUS_BAD_RELOC // Relocation cannot be applied.
3968 } Status;
3969
3970 private:
3971 typedef Relocate_functions<size, big_endian> Base;
3972 typedef Mips_relocate_functions<size, big_endian> This;
3973
3974 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3975 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3976
3977 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3978 // Most mips16 instructions are 16 bits, but these instructions
3979 // are 32 bits.
3980 //
3981 // The format of these instructions is:
3982 //
3983 // +--------------+--------------------------------+
3984 // | JALX | X| Imm 20:16 | Imm 25:21 |
3985 // +--------------+--------------------------------+
3986 // | Immediate 15:0 |
3987 // +-----------------------------------------------+
3988 //
3989 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3990 // Note that the immediate value in the first word is swapped.
3991 //
3992 // When producing a relocatable object file, R_MIPS16_26 is
3993 // handled mostly like R_MIPS_26. In particular, the addend is
3994 // stored as a straight 26-bit value in a 32-bit instruction.
3995 // (gas makes life simpler for itself by never adjusting a
3996 // R_MIPS16_26 reloc to be against a section, so the addend is
3997 // always zero). However, the 32 bit instruction is stored as 2
3998 // 16-bit values, rather than a single 32-bit value. In a
3999 // big-endian file, the result is the same; in a little-endian
4000 // file, the two 16-bit halves of the 32 bit value are swapped.
4001 // This is so that a disassembler can recognize the jal
4002 // instruction.
4003 //
4004 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
4005 // instruction stored as two 16-bit values. The addend A is the
4006 // contents of the targ26 field. The calculation is the same as
4007 // R_MIPS_26. When storing the calculated value, reorder the
4008 // immediate value as shown above, and don't forget to store the
4009 // value as two 16-bit values.
4010 //
4011 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4012 // defined as
4013 //
4014 // big-endian:
4015 // +--------+----------------------+
4016 // | | |
4017 // | | targ26-16 |
4018 // |31 26|25 0|
4019 // +--------+----------------------+
4020 //
4021 // little-endian:
4022 // +----------+------+-------------+
4023 // | | | |
4024 // | sub1 | | sub2 |
4025 // |0 9|10 15|16 31|
4026 // +----------+--------------------+
4027 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4028 // ((sub1 << 16) | sub2)).
4029 //
4030 // When producing a relocatable object file, the calculation is
4031 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4032 // When producing a fully linked file, the calculation is
4033 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4034 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4035 //
4036 // The table below lists the other MIPS16 instruction relocations.
4037 // Each one is calculated in the same way as the non-MIPS16 relocation
4038 // given on the right, but using the extended MIPS16 layout of 16-bit
4039 // immediate fields:
4040 //
4041 // R_MIPS16_GPREL R_MIPS_GPREL16
4042 // R_MIPS16_GOT16 R_MIPS_GOT16
4043 // R_MIPS16_CALL16 R_MIPS_CALL16
4044 // R_MIPS16_HI16 R_MIPS_HI16
4045 // R_MIPS16_LO16 R_MIPS_LO16
4046 //
4047 // A typical instruction will have a format like this:
4048 //
4049 // +--------------+--------------------------------+
4050 // | EXTEND | Imm 10:5 | Imm 15:11 |
4051 // +--------------+--------------------------------+
4052 // | Major | rx | ry | Imm 4:0 |
4053 // +--------------+--------------------------------+
4054 //
4055 // EXTEND is the five bit value 11110. Major is the instruction
4056 // opcode.
4057 //
4058 // All we need to do here is shuffle the bits appropriately.
4059 // As above, the two 16-bit halves must be swapped on a
4060 // little-endian system.
4061
4062 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4063 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
4064 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4065
4066 static inline bool
4067 should_shuffle_micromips_reloc(unsigned int r_type)
4068 {
4069 return (micromips_reloc(r_type)
4070 && r_type != elfcpp::R_MICROMIPS_PC7_S1
4071 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4072 }
4073
4074 static void
4075 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4076 bool jal_shuffle)
4077 {
4078 if (!mips16_reloc(r_type)
4079 && !should_shuffle_micromips_reloc(r_type))
4080 return;
4081
4082 // Pick up the first and second halfwords of the instruction.
4083 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4084 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4085 Valtype32 val;
4086
4087 if (micromips_reloc(r_type)
4088 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4089 val = first << 16 | second;
4090 else if (r_type != elfcpp::R_MIPS16_26)
4091 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4092 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4093 else
4094 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4095 | ((first & 0x1f) << 21) | second);
4096
4097 elfcpp::Swap<32, big_endian>::writeval(view, val);
4098 }
4099
4100 static void
4101 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4102 {
4103 if (!mips16_reloc(r_type)
4104 && !should_shuffle_micromips_reloc(r_type))
4105 return;
4106
4107 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4108 Valtype16 first, second;
4109
4110 if (micromips_reloc(r_type)
4111 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4112 {
4113 second = val & 0xffff;
4114 first = val >> 16;
4115 }
4116 else if (r_type != elfcpp::R_MIPS16_26)
4117 {
4118 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4119 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4120 }
4121 else
4122 {
4123 second = val & 0xffff;
4124 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4125 | ((val >> 21) & 0x1f);
4126 }
4127
4128 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4129 elfcpp::Swap<16, big_endian>::writeval(view, first);
4130 }
4131
4132 public:
4133 // R_MIPS_16: S + sign-extend(A)
4134 static inline typename This::Status
4135 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4136 const Symbol_value<size>* psymval, Mips_address addend_a,
4137 bool extract_addend, unsigned int r_type)
4138 {
4139 mips_reloc_unshuffle(view, r_type, false);
4140 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4141 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4142
4143 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
4144 : Bits<16>::sign_extend32(addend_a));
4145
4146 Valtype32 x = psymval->value(object, addend);
4147 val = Bits<16>::bit_select32(val, x, 0xffffU);
4148 elfcpp::Swap<16, big_endian>::writeval(wv, val);
4149 mips_reloc_shuffle(view, r_type, false);
4150 return (Bits<16>::has_overflow32(x)
4151 ? This::STATUS_OVERFLOW
4152 : This::STATUS_OKAY);
4153 }
4154
4155 // R_MIPS_32: S + A
4156 static inline typename This::Status
4157 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4158 const Symbol_value<size>* psymval, Mips_address addend_a,
4159 bool extract_addend, unsigned int r_type)
4160 {
4161 mips_reloc_unshuffle(view, r_type, false);
4162 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4163 Valtype32 addend = (extract_addend
4164 ? elfcpp::Swap<32, big_endian>::readval(wv)
4165 : Bits<32>::sign_extend32(addend_a));
4166 Valtype32 x = psymval->value(object, addend);
4167 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4168 mips_reloc_shuffle(view, r_type, false);
4169 return This::STATUS_OKAY;
4170 }
4171
4172 // R_MIPS_JALR, R_MICROMIPS_JALR
4173 static inline typename This::Status
4174 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4175 const Symbol_value<size>* psymval, Mips_address address,
4176 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4177 unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
4178 {
4179 mips_reloc_unshuffle(view, r_type, false);
4180 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4181 Valtype32 addend = extract_addend ? 0 : addend_a;
4182 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4183
4184 // Try converting J(AL)R to B(AL), if the target is in range.
4185 if (!parameters->options().relocatable()
4186 && r_type == elfcpp::R_MIPS_JALR
4187 && !cross_mode_jump
4188 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4189 || (jr_to_b && val == 0x03200008))) // jr t9
4190 {
4191 int offset = psymval->value(object, addend) - (address + 4);
4192 if (!Bits<18>::has_overflow32(offset))
4193 {
4194 if (val == 0x03200008) // jr t9
4195 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4196 else
4197 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4198 }
4199 }
4200
4201 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4202 mips_reloc_shuffle(view, r_type, false);
4203 return This::STATUS_OKAY;
4204 }
4205
4206 // R_MIPS_PC32: S + A - P
4207 static inline typename This::Status
4208 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4209 const Symbol_value<size>* psymval, Mips_address address,
4210 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4211 {
4212 mips_reloc_unshuffle(view, r_type, false);
4213 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4214 Valtype32 addend = (extract_addend
4215 ? elfcpp::Swap<32, big_endian>::readval(wv)
4216 : Bits<32>::sign_extend32(addend_a));
4217 Valtype32 x = psymval->value(object, addend) - address;
4218 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4219 mips_reloc_shuffle(view, r_type, false);
4220 return This::STATUS_OKAY;
4221 }
4222
4223 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4224 static inline typename This::Status
4225 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4226 const Symbol_value<size>* psymval, Mips_address address,
4227 bool local, Mips_address addend_a, bool extract_addend,
4228 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4229 bool jal_to_bal)
4230 {
4231 mips_reloc_unshuffle(view, r_type, false);
4232 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4233 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4234
4235 Valtype32 addend;
4236 if (extract_addend)
4237 {
4238 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4239 addend = (val & 0x03ffffff) << 1;
4240 else
4241 addend = (val & 0x03ffffff) << 2;
4242 }
4243 else
4244 addend = addend_a;
4245
4246 // Make sure the target of JALX is word-aligned. Bit 0 must be
4247 // the correct ISA mode selector and bit 1 must be 0.
4248 if (cross_mode_jump
4249 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4250 {
4251 gold_warning(_("JALX to a non-word-aligned address"));
4252 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4253 return This::STATUS_BAD_RELOC;
4254 }
4255
4256 // Shift is 2, unusually, for microMIPS JALX.
4257 unsigned int shift =
4258 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4259
4260 Valtype32 x;
4261 if (local)
4262 x = addend | ((address + 4) & (0xfc000000 << shift));
4263 else
4264 {
4265 if (shift == 1)
4266 x = Bits<27>::sign_extend32(addend);
4267 else
4268 x = Bits<28>::sign_extend32(addend);
4269 }
4270 x = psymval->value(object, x) >> shift;
4271
4272 if (!local && !gsym->is_weak_undefined())
4273 {
4274 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4275 {
4276 gold_error(_("relocation truncated to fit: %u against '%s'"),
4277 r_type, gsym->name());
4278 return This::STATUS_OVERFLOW;
4279 }
4280 }
4281
4282 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4283
4284 // If required, turn JAL into JALX.
4285 if (cross_mode_jump)
4286 {
4287 bool ok;
4288 Valtype32 opcode = val >> 26;
4289 Valtype32 jalx_opcode;
4290
4291 // Check to see if the opcode is already JAL or JALX.
4292 if (r_type == elfcpp::R_MIPS16_26)
4293 {
4294 ok = (opcode == 0x6) || (opcode == 0x7);
4295 jalx_opcode = 0x7;
4296 }
4297 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4298 {
4299 ok = (opcode == 0x3d) || (opcode == 0x3c);
4300 jalx_opcode = 0x3c;
4301 }
4302 else
4303 {
4304 ok = (opcode == 0x3) || (opcode == 0x1d);
4305 jalx_opcode = 0x1d;
4306 }
4307
4308 // If the opcode is not JAL or JALX, there's a problem. We cannot
4309 // convert J or JALS to JALX.
4310 if (!ok)
4311 {
4312 gold_error(_("Unsupported jump between ISA modes; consider "
4313 "recompiling with interlinking enabled."));
4314 return This::STATUS_BAD_RELOC;
4315 }
4316
4317 // Make this the JALX opcode.
4318 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4319 }
4320
4321 // Try converting JAL to BAL, if the target is in range.
4322 if (!parameters->options().relocatable()
4323 && !cross_mode_jump
4324 && ((jal_to_bal
4325 && r_type == elfcpp::R_MIPS_26
4326 && (val >> 26) == 0x3))) // jal addr
4327 {
4328 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4329 int offset = dest - (address + 4);
4330 if (!Bits<18>::has_overflow32(offset))
4331 {
4332 if (val == 0x03200008) // jr t9
4333 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4334 else
4335 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4336 }
4337 }
4338
4339 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4340 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4341 return This::STATUS_OKAY;
4342 }
4343
4344 // R_MIPS_PC16
4345 static inline typename This::Status
4346 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4347 const Symbol_value<size>* psymval, Mips_address address,
4348 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4349 {
4350 mips_reloc_unshuffle(view, r_type, false);
4351 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4352 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4353
4354 Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4355 addend = Bits<18>::sign_extend32(addend);
4356
4357 Valtype32 x = psymval->value(object, addend) - address;
4358 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4359 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4360 mips_reloc_shuffle(view, r_type, false);
4361 return (Bits<18>::has_overflow32(x)
4362 ? This::STATUS_OVERFLOW
4363 : This::STATUS_OKAY);
4364 }
4365
4366 // R_MICROMIPS_PC7_S1
4367 static inline typename This::Status
4368 relmicromips_pc7_s1(unsigned char* view,
4369 const Mips_relobj<size, big_endian>* object,
4370 const Symbol_value<size>* psymval, Mips_address address,
4371 Mips_address addend_a, bool extract_addend,
4372 unsigned int r_type)
4373 {
4374 mips_reloc_unshuffle(view, r_type, false);
4375 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4376 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4377
4378 Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4379 addend = Bits<8>::sign_extend32(addend);
4380
4381 Valtype32 x = psymval->value(object, addend) - address;
4382 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4383 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4384 mips_reloc_shuffle(view, r_type, false);
4385 return (Bits<8>::has_overflow32(x)
4386 ? This::STATUS_OVERFLOW
4387 : This::STATUS_OKAY);
4388 }
4389
4390 // R_MICROMIPS_PC10_S1
4391 static inline typename This::Status
4392 relmicromips_pc10_s1(unsigned char* view,
4393 const Mips_relobj<size, big_endian>* object,
4394 const Symbol_value<size>* psymval, Mips_address address,
4395 Mips_address addend_a, bool extract_addend,
4396 unsigned int r_type)
4397 {
4398 mips_reloc_unshuffle(view, r_type, false);
4399 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4400 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4401
4402 Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4403 addend = Bits<11>::sign_extend32(addend);
4404
4405 Valtype32 x = psymval->value(object, addend) - address;
4406 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4407 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4408 mips_reloc_shuffle(view, r_type, false);
4409 return (Bits<11>::has_overflow32(x)
4410 ? This::STATUS_OVERFLOW
4411 : This::STATUS_OKAY);
4412 }
4413
4414 // R_MICROMIPS_PC16_S1
4415 static inline typename This::Status
4416 relmicromips_pc16_s1(unsigned char* view,
4417 const Mips_relobj<size, big_endian>* object,
4418 const Symbol_value<size>* psymval, Mips_address address,
4419 Mips_address addend_a, bool extract_addend,
4420 unsigned int r_type)
4421 {
4422 mips_reloc_unshuffle(view, r_type, false);
4423 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4424 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4425
4426 Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4427 addend = Bits<17>::sign_extend32(addend);
4428
4429 Valtype32 x = psymval->value(object, addend) - address;
4430 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4431 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4432 mips_reloc_shuffle(view, r_type, false);
4433 return (Bits<17>::has_overflow32(x)
4434 ? This::STATUS_OVERFLOW
4435 : This::STATUS_OKAY);
4436 }
4437
4438 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4439 static inline typename This::Status
4440 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4441 const Symbol_value<size>* psymval, Mips_address addend,
4442 Mips_address address, bool gp_disp, unsigned int r_type,
3d0064a9 4443 unsigned int r_sym, bool extract_addend)
9810d34d
SS
4444 {
4445 // Record the relocation. It will be resolved when we find lo16 part.
4446 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
3d0064a9
CC
4447 addend, r_type, r_sym, extract_addend, address,
4448 gp_disp));
9810d34d
SS
4449 return This::STATUS_OKAY;
4450 }
4451
4452 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4453 static inline typename This::Status
4454 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4455 const Symbol_value<size>* psymval, Mips_address addend_hi,
4456 Mips_address address, bool is_gp_disp, unsigned int r_type,
4457 bool extract_addend, Valtype32 addend_lo,
4458 Target_mips<size, big_endian>* target)
4459 {
4460 mips_reloc_unshuffle(view, r_type, false);
4461 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4462 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4463
4464 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4465 : addend_hi);
4466
4467 Valtype32 value;
4468 if (!is_gp_disp)
4469 value = psymval->value(object, addend);
4470 else
4471 {
4472 // For MIPS16 ABI code we generate this sequence
4473 // 0: li $v0,%hi(_gp_disp)
4474 // 4: addiupc $v1,%lo(_gp_disp)
4475 // 8: sll $v0,16
4476 // 12: addu $v0,$v1
4477 // 14: move $gp,$v0
4478 // So the offsets of hi and lo relocs are the same, but the
4479 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4480 // ADDIUPC clears the low two bits of the instruction address,
4481 // so the base is ($t9 + 4) & ~3.
4482 Valtype32 gp_disp;
4483 if (r_type == elfcpp::R_MIPS16_HI16)
4484 gp_disp = (target->adjusted_gp_value(object)
4485 - ((address + 4) & ~0x3));
4486 // The microMIPS .cpload sequence uses the same assembly
4487 // instructions as the traditional psABI version, but the
4488 // incoming $t9 has the low bit set.
4489 else if (r_type == elfcpp::R_MICROMIPS_HI16)
4490 gp_disp = target->adjusted_gp_value(object) - address - 1;
4491 else
4492 gp_disp = target->adjusted_gp_value(object) - address;
4493 value = gp_disp + addend;
4494 }
4495 Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4496 val = Bits<32>::bit_select32(val, x, 0xffff);
4497 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4498 mips_reloc_shuffle(view, r_type, false);
4499 return (is_gp_disp && Bits<16>::has_overflow32(x)
4500 ? This::STATUS_OVERFLOW
4501 : This::STATUS_OKAY);
4502 }
4503
4504 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4505 static inline typename This::Status
4506 relgot16_local(unsigned char* view,
4507 const Mips_relobj<size, big_endian>* object,
4508 const Symbol_value<size>* psymval, Mips_address addend_a,
3d0064a9 4509 bool extract_addend, unsigned int r_type, unsigned int r_sym)
9810d34d
SS
4510 {
4511 // Record the relocation. It will be resolved when we find lo16 part.
4512 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
3d0064a9 4513 addend_a, r_type, r_sym, extract_addend));
9810d34d
SS
4514 return This::STATUS_OKAY;
4515 }
4516
4517 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4518 static inline typename This::Status
4519 do_relgot16_local(unsigned char* view,
4520 const Mips_relobj<size, big_endian>* object,
4521 const Symbol_value<size>* psymval, Mips_address addend_hi,
4522 unsigned int r_type, bool extract_addend,
4523 Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4524 {
4525 mips_reloc_unshuffle(view, r_type, false);
4526 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4527 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4528
4529 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4530 : addend_hi);
4531
4532 // Find GOT page entry.
4533 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4534 & 0xffff;
4535 value <<= 16;
4536 unsigned int got_offset =
4537 target->got_section()->get_got_page_offset(value, object);
4538
4539 // Resolve the relocation.
4540 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4541 val = Bits<32>::bit_select32(val, x, 0xffff);
4542 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4543 mips_reloc_shuffle(view, r_type, false);
4544 return (Bits<16>::has_overflow32(x)
4545 ? This::STATUS_OVERFLOW
4546 : This::STATUS_OKAY);
4547 }
4548
4549 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4550 static inline typename This::Status
4551 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4552 const Mips_relobj<size, big_endian>* object,
4553 const Symbol_value<size>* psymval, Mips_address addend_a,
4554 bool extract_addend, Mips_address address, bool is_gp_disp,
3d0064a9 4555 unsigned int r_type, unsigned int r_sym)
9810d34d
SS
4556 {
4557 mips_reloc_unshuffle(view, r_type, false);
4558 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4559 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4560
4561 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4562 : addend_a);
4563
4564 // Resolve pending R_MIPS_HI16 relocations.
4565 typename std::list<reloc_high<size, big_endian> >::iterator it =
4566 hi16_relocs.begin();
4567 while (it != hi16_relocs.end())
4568 {
4569 reloc_high<size, big_endian> hi16 = *it;
3d0064a9
CC
4570 if (hi16.r_sym == r_sym
4571 && is_matching_lo16_reloc(hi16.r_type, r_type))
9810d34d
SS
4572 {
4573 if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4574 hi16.address, hi16.gp_disp, hi16.r_type,
4575 hi16.extract_addend, addend, target)
4576 == This::STATUS_OVERFLOW)
4577 return This::STATUS_OVERFLOW;
4578 it = hi16_relocs.erase(it);
4579 }
4580 else
4581 ++it;
4582 }
4583
4584 // Resolve pending local R_MIPS_GOT16 relocations.
4585 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4586 got16_relocs.begin();
4587 while (it2 != got16_relocs.end())
4588 {
4589 reloc_high<size, big_endian> got16 = *it2;
3d0064a9
CC
4590 if (got16.r_sym == r_sym
4591 && is_matching_lo16_reloc(got16.r_type, r_type))
9810d34d
SS
4592 {
4593 if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4594 got16.addend, got16.r_type,
4595 got16.extract_addend, addend,
4596 target) == This::STATUS_OVERFLOW)
4597 return This::STATUS_OVERFLOW;
4598 it2 = got16_relocs.erase(it2);
4599 }
4600 else
4601 ++it2;
4602 }
4603
4604 // Resolve R_MIPS_LO16 relocation.
4605 Valtype32 x;
4606 if (!is_gp_disp)
4607 x = psymval->value(object, addend);
4608 else
4609 {
4610 // See the comment for R_MIPS16_HI16 above for the reason
4611 // for this conditional.
4612 Valtype32 gp_disp;
4613 if (r_type == elfcpp::R_MIPS16_LO16)
4614 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4615 else if (r_type == elfcpp::R_MICROMIPS_LO16
4616 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4617 gp_disp = target->adjusted_gp_value(object) - address + 3;
4618 else
4619 gp_disp = target->adjusted_gp_value(object) - address + 4;
4620 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4621 // for overflow. Relocations against _gp_disp are normally
4622 // generated from the .cpload pseudo-op. It generates code
4623 // that normally looks like this:
4624
4625 // lui $gp,%hi(_gp_disp)
4626 // addiu $gp,$gp,%lo(_gp_disp)
4627 // addu $gp,$gp,$t9
4628
4629 // Here $t9 holds the address of the function being called,
4630 // as required by the MIPS ELF ABI. The R_MIPS_LO16
4631 // relocation can easily overflow in this situation, but the
4632 // R_MIPS_HI16 relocation will handle the overflow.
4633 // Therefore, we consider this a bug in the MIPS ABI, and do
4634 // not check for overflow here.
4635 x = gp_disp + addend;
4636 }
4637 val = Bits<32>::bit_select32(val, x, 0xffff);
4638 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4639 mips_reloc_shuffle(view, r_type, false);
4640 return This::STATUS_OKAY;
4641 }
4642
4643 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4644 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4645 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4646 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4647 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4648 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4649 static inline typename This::Status
4650 relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4651 {
4652 mips_reloc_unshuffle(view, r_type, false);
4653 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4654 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4655 Valtype32 x = gp_offset;
4656 val = Bits<32>::bit_select32(val, x, 0xffff);
4657 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4658 mips_reloc_shuffle(view, r_type, false);
4659 return (Bits<16>::has_overflow32(x)
4660 ? This::STATUS_OVERFLOW
4661 : This::STATUS_OKAY);
4662 }
4663
4664 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4665 static inline typename This::Status
4666 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4667 const Mips_relobj<size, big_endian>* object,
4668 const Symbol_value<size>* psymval, Mips_address addend_a,
4669 bool extract_addend, unsigned int r_type)
4670 {
4671 mips_reloc_unshuffle(view, r_type, false);
4672 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4673 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4674 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4675
4676 // Find a GOT page entry that points to within 32KB of symbol + addend.
4677 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4678 unsigned int got_offset =
4679 target->got_section()->get_got_page_offset(value, object);
4680
4681 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4682 val = Bits<32>::bit_select32(val, x, 0xffff);
4683 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4684 mips_reloc_shuffle(view, r_type, false);
4685 return (Bits<16>::has_overflow32(x)
4686 ? This::STATUS_OVERFLOW
4687 : This::STATUS_OKAY);
4688 }
4689
4690 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4691 static inline typename This::Status
4692 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4693 const Mips_relobj<size, big_endian>* object,
4694 const Symbol_value<size>* psymval, Mips_address addend_a,
4695 bool extract_addend, bool local, unsigned int r_type)
4696 {
4697 mips_reloc_unshuffle(view, r_type, false);
4698 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4699 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4700 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4701
4702 // For a local symbol, find a GOT page entry that points to within 32KB of
4703 // symbol + addend. Relocation value is the offset of the GOT page entry's
4704 // value from symbol + addend.
4705 // For a global symbol, relocation value is addend.
4706 Valtype32 x;
4707 if (local)
4708 {
4709 // Find GOT page entry.
4710 Mips_address value = ((psymval->value(object, addend) + 0x8000)
4711 & ~0xffff);
4712 target->got_section()->get_got_page_offset(value, object);
4713
4714 x = psymval->value(object, addend) - value;
4715 }
4716 else
4717 x = addend;
4718 val = Bits<32>::bit_select32(val, x, 0xffff);
4719 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4720 mips_reloc_shuffle(view, r_type, false);
4721 return (Bits<16>::has_overflow32(x)
4722 ? This::STATUS_OVERFLOW
4723 : This::STATUS_OKAY);
4724 }
4725
4726 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4727 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4728 static inline typename This::Status
4729 relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4730 {
4731 mips_reloc_unshuffle(view, r_type, false);
4732 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4733 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4734 Valtype32 x = gp_offset;
4735 x = ((x + 0x8000) >> 16) & 0xffff;
4736 val = Bits<32>::bit_select32(val, x, 0xffff);
4737 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4738 mips_reloc_shuffle(view, r_type, false);
4739 return This::STATUS_OKAY;
4740 }
4741
4742 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4743 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4744 static inline typename This::Status
4745 relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4746 {
4747 mips_reloc_unshuffle(view, r_type, false);
4748 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4749 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4750 Valtype32 x = gp_offset;
4751 val = Bits<32>::bit_select32(val, x, 0xffff);
4752 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4753 mips_reloc_shuffle(view, r_type, false);
4754 return This::STATUS_OKAY;
4755 }
4756
4757 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4758 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4759 static inline typename This::Status
4760 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4761 const Symbol_value<size>* psymval, Mips_address gp,
4762 Mips_address addend_a, bool extract_addend, bool local,
4763 unsigned int r_type)
4764 {
4765 mips_reloc_unshuffle(view, r_type, false);
4766 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4767 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4768
4769 Valtype32 addend;
4770 if (extract_addend)
4771 {
4772 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4773 addend = (val & 0x7f) << 2;
4774 else
4775 addend = val & 0xffff;
4776 // Only sign-extend the addend if it was extracted from the
4777 // instruction. If the addend was separate, leave it alone,
4778 // otherwise we may lose significant bits.
4779 addend = Bits<16>::sign_extend32(addend);
4780 }
4781 else
4782 addend = addend_a;
4783
4784 Valtype32 x = psymval->value(object, addend) - gp;
4785
4786 // If the symbol was local, any earlier relocatable links will
4787 // have adjusted its addend with the gp offset, so compensate
4788 // for that now. Don't do it for symbols forced local in this
4789 // link, though, since they won't have had the gp offset applied
4790 // to them before.
4791 if (local)
4792 x += object->gp_value();
4793
4794 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4795 val = Bits<32>::bit_select32(val, x, 0x7f);
4796 else
4797 val = Bits<32>::bit_select32(val, x, 0xffff);
4798 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4799 mips_reloc_shuffle(view, r_type, false);
4800 if (Bits<16>::has_overflow32(x))
4801 {
4802 gold_error(_("small-data section exceeds 64KB; lower small-data size "
4803 "limit (see option -G)"));
4804 return This::STATUS_OVERFLOW;
4805 }
4806 return This::STATUS_OKAY;
4807 }
4808
4809 // R_MIPS_GPREL32
4810 static inline typename This::Status
4811 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4812 const Symbol_value<size>* psymval, Mips_address gp,
4813 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4814 {
4815 mips_reloc_unshuffle(view, r_type, false);
4816 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4817 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4818 Valtype32 addend = extract_addend ? val : addend_a;
4819
4820 // R_MIPS_GPREL32 relocations are defined for local symbols only.
4821 Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4822 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4823 mips_reloc_shuffle(view, r_type, false);
4824 return This::STATUS_OKAY;
4825 }
4826
4827 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4828 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4829 // R_MICROMIPS_TLS_DTPREL_HI16
4830 static inline typename This::Status
4831 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4832 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4833 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4834 {
4835 mips_reloc_unshuffle(view, r_type, false);
4836 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4837 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4838 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4839
4840 // tls symbol values are relative to tls_segment()->vaddr()
4841 Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4842 val = Bits<32>::bit_select32(val, x, 0xffff);
4843 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4844 mips_reloc_shuffle(view, r_type, false);
4845 return This::STATUS_OKAY;
4846 }
4847
4848 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4849 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4850 // R_MICROMIPS_TLS_DTPREL_LO16,
4851 static inline typename This::Status
4852 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4853 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4854 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4855 {
4856 mips_reloc_unshuffle(view, r_type, false);
4857 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4858 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4859 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4860
4861 // tls symbol values are relative to tls_segment()->vaddr()
4862 Valtype32 x = psymval->value(object, addend) - tp_offset;
4863 val = Bits<32>::bit_select32(val, x, 0xffff);
4864 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4865 mips_reloc_shuffle(view, r_type, false);
4866 return This::STATUS_OKAY;
4867 }
4868
4869 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4870 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4871 static inline typename This::Status
4872 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4873 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4874 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4875 {
4876 mips_reloc_unshuffle(view, r_type, false);
4877 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4878 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4879 Valtype32 addend = extract_addend ? val : addend_a;
4880
4881 // tls symbol values are relative to tls_segment()->vaddr()
4882 Valtype32 x = psymval->value(object, addend) - tp_offset;
4883 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4884 mips_reloc_shuffle(view, r_type, false);
4885 return This::STATUS_OKAY;
4886 }
4887
4888 // R_MIPS_SUB, R_MICROMIPS_SUB
4889 static inline typename This::Status
4890 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4891 const Symbol_value<size>* psymval, Mips_address addend_a,
4892 bool extract_addend, unsigned int r_type)
4893 {
4894 mips_reloc_unshuffle(view, r_type, false);
4895 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4896 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4897 Valtype32 addend = extract_addend ? val : addend_a;
4898
4899 Valtype32 x = psymval->value(object, -addend);
4900 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4901 mips_reloc_shuffle(view, r_type, false);
4902 return This::STATUS_OKAY;
4903 }
4904};
4905
4906template<int size, bool big_endian>
4907typename std::list<reloc_high<size, big_endian> >
4908 Mips_relocate_functions<size, big_endian>::hi16_relocs;
4909
4910template<int size, bool big_endian>
4911typename std::list<reloc_high<size, big_endian> >
4912 Mips_relocate_functions<size, big_endian>::got16_relocs;
4913
4914// Mips_got_info methods.
4915
4916// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4917// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4918
4919template<int size, bool big_endian>
4920void
4921Mips_got_info<size, big_endian>::record_local_got_symbol(
4922 Mips_relobj<size, big_endian>* object, unsigned int symndx,
4923 Mips_address addend, unsigned int r_type, unsigned int shndx)
4924{
4925 Mips_got_entry<size, big_endian>* entry =
4926 new Mips_got_entry<size, big_endian>(object, symndx, addend,
4927 mips_elf_reloc_tls_type(r_type),
4928 shndx);
4929 this->record_got_entry(entry, object);
4930}
4931
4932// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4933// in OBJECT. FOR_CALL is true if the caller is only interested in
4934// using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
4935// relocation.
4936
4937template<int size, bool big_endian>
4938void
4939Mips_got_info<size, big_endian>::record_global_got_symbol(
4940 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4941 unsigned int r_type, bool dyn_reloc, bool for_call)
4942{
4943 if (!for_call)
4944 mips_sym->set_got_not_only_for_calls();
4945
4946 // A global symbol in the GOT must also be in the dynamic symbol table.
4947 if (!mips_sym->needs_dynsym_entry())
4948 {
4949 switch (mips_sym->visibility())
4950 {
4951 case elfcpp::STV_INTERNAL:
4952 case elfcpp::STV_HIDDEN:
4953 mips_sym->set_is_forced_local();
4954 break;
4955 default:
4956 mips_sym->set_needs_dynsym_entry();
4957 break;
4958 }
4959 }
4960
4961 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4962 if (tls_type == GOT_TLS_NONE)
4963 this->global_got_symbols_.insert(mips_sym);
4964
4965 if (dyn_reloc)
4966 {
4967 if (mips_sym->global_got_area() == GGA_NONE)
4968 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4969 return;
4970 }
4971
4972 Mips_got_entry<size, big_endian>* entry =
4973 new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4974
4975 this->record_got_entry(entry, object);
4976}
4977
4978// Add ENTRY to master GOT and to OBJECT's GOT.
4979
4980template<int size, bool big_endian>
4981void
4982Mips_got_info<size, big_endian>::record_got_entry(
4983 Mips_got_entry<size, big_endian>* entry,
4984 Mips_relobj<size, big_endian>* object)
4985{
4986 if (this->got_entries_.find(entry) == this->got_entries_.end())
4987 this->got_entries_.insert(entry);
4988
4989 // Create the GOT entry for the OBJECT's GOT.
4990 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4991 Mips_got_entry<size, big_endian>* entry2 =
4992 new Mips_got_entry<size, big_endian>(*entry);
4993
4994 if (g->got_entries_.find(entry2) == g->got_entries_.end())
4995 g->got_entries_.insert(entry2);
4996}
4997
4998// Record that OBJECT has a page relocation against symbol SYMNDX and
4999// that ADDEND is the addend for that relocation.
5000// This function creates an upper bound on the number of GOT slots
5001// required; no attempt is made to combine references to non-overridable
5002// global symbols across multiple input files.
5003
5004template<int size, bool big_endian>
5005void
5006Mips_got_info<size, big_endian>::record_got_page_entry(
5007 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5008{
5009 struct Got_page_range **range_ptr, *range;
5010 int old_pages, new_pages;
5011
5012 // Find the Got_page_entry for this symbol.
5013 Got_page_entry* entry = new Got_page_entry(object, symndx);
5014 typename Got_page_entry_set::iterator it =
5015 this->got_page_entries_.find(entry);
5016 if (it != this->got_page_entries_.end())
5017 entry = *it;
5018 else
5019 this->got_page_entries_.insert(entry);
5020
5021 // Add the same entry to the OBJECT's GOT.
5022 Got_page_entry* entry2 = NULL;
5023 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5024 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5025 {
5026 entry2 = new Got_page_entry(*entry);
5027 g2->got_page_entries_.insert(entry2);
5028 }
5029
5030 // Skip over ranges whose maximum extent cannot share a page entry
5031 // with ADDEND.
5032 range_ptr = &entry->ranges;
5033 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5034 range_ptr = &(*range_ptr)->next;
5035
5036 // If we scanned to the end of the list, or found a range whose
5037 // minimum extent cannot share a page entry with ADDEND, create
5038 // a new singleton range.
5039 range = *range_ptr;
5040 if (!range || addend < range->min_addend - 0xffff)
5041 {
5042 range = new Got_page_range();
5043 range->next = *range_ptr;
5044 range->min_addend = addend;
5045 range->max_addend = addend;
5046
5047 *range_ptr = range;
5048 ++entry->num_pages;
5049 if (entry2 != NULL)
5050 ++entry2->num_pages;
5051 ++this->page_gotno_;
5052 ++g2->page_gotno_;
5053 return;
5054 }
5055
5056 // Remember how many pages the old range contributed.
5057 old_pages = range->get_max_pages();
5058
5059 // Update the ranges.
5060 if (addend < range->min_addend)
5061 range->min_addend = addend;
5062 else if (addend > range->max_addend)
5063 {
5064 if (range->next && addend >= range->next->min_addend - 0xffff)
5065 {
5066 old_pages += range->next->get_max_pages();
5067 range->max_addend = range->next->max_addend;
5068 range->next = range->next->next;
5069 }
5070 else
5071 range->max_addend = addend;
5072 }
5073
5074 // Record any change in the total estimate.
5075 new_pages = range->get_max_pages();
5076 if (old_pages != new_pages)
5077 {
5078 entry->num_pages += new_pages - old_pages;
5079 if (entry2 != NULL)
5080 entry2->num_pages += new_pages - old_pages;
5081 this->page_gotno_ += new_pages - old_pages;
5082 g2->page_gotno_ += new_pages - old_pages;
5083 }
5084}
5085
5086// Create all entries that should be in the local part of the GOT.
5087
5088template<int size, bool big_endian>
5089void
5090Mips_got_info<size, big_endian>::add_local_entries(
5091 Target_mips<size, big_endian>* target, Layout* layout)
5092{
5093 Mips_output_data_got<size, big_endian>* got = target->got_section();
5094 // First two GOT entries are reserved. The first entry will be filled at
5095 // runtime. The second entry will be used by some runtime loaders.
5096 got->add_constant(0);
5097 got->add_constant(target->mips_elf_gnu_got1_mask());
5098
5099 for (typename Got_entry_set::iterator
5100 p = this->got_entries_.begin();
5101 p != this->got_entries_.end();
5102 ++p)
5103 {
5104 Mips_got_entry<size, big_endian>* entry = *p;
5105 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5106 {
5107 got->add_local(entry->object(), entry->symndx(),
5108 GOT_TYPE_STANDARD);
5109 unsigned int got_offset = entry->object()->local_got_offset(
5110 entry->symndx(), GOT_TYPE_STANDARD);
5111 if (got->multi_got() && this->index_ > 0
5112 && parameters->options().output_is_position_independent())
5113 target->rel_dyn_section(layout)->add_local(entry->object(),
5114 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5115 }
5116 }
5117
5118 this->add_page_entries(target, layout);
5119
5120 // Add global entries that should be in the local area.
5121 for (typename Got_entry_set::iterator
5122 p = this->got_entries_.begin();
5123 p != this->got_entries_.end();
5124 ++p)
5125 {
5126 Mips_got_entry<size, big_endian>* entry = *p;
5127 if (!entry->is_for_global_symbol())
5128 continue;
5129
5130 Mips_symbol<size>* mips_sym = entry->sym();
5131 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5132 {
5133 unsigned int got_type;
5134 if (!got->multi_got())
5135 got_type = GOT_TYPE_STANDARD;
5136 else
5137 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5138 if (got->add_global(mips_sym, got_type))
5139 {
5140 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5141 if (got->multi_got() && this->index_ > 0
5142 && parameters->options().output_is_position_independent())
5143 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5144 mips_sym, elfcpp::R_MIPS_REL32, got,
5145 mips_sym->got_offset(got_type));
5146 }
5147 }
5148 }
5149}
5150
5151// Create GOT page entries.
5152
5153template<int size, bool big_endian>
5154void
5155Mips_got_info<size, big_endian>::add_page_entries(
5156 Target_mips<size, big_endian>* target, Layout* layout)
5157{
5158 if (this->page_gotno_ == 0)
5159 return;
5160
5161 Mips_output_data_got<size, big_endian>* got = target->got_section();
5162 this->got_page_offset_start_ = got->add_constant(0);
5163 if (got->multi_got() && this->index_ > 0
5164 && parameters->options().output_is_position_independent())
5165 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5166 this->got_page_offset_start_);
5167 int num_entries = this->page_gotno_;
5168 unsigned int prev_offset = this->got_page_offset_start_;
5169 while (--num_entries > 0)
5170 {
5171 unsigned int next_offset = got->add_constant(0);
5172 if (got->multi_got() && this->index_ > 0
5173 && parameters->options().output_is_position_independent())
5174 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5175 next_offset);
5176 gold_assert(next_offset == prev_offset + size/8);
5177 prev_offset = next_offset;
5178 }
5179 this->got_page_offset_next_ = this->got_page_offset_start_;
5180}
5181
5182// Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5183
5184template<int size, bool big_endian>
5185void
5186Mips_got_info<size, big_endian>::add_global_entries(
5187 Target_mips<size, big_endian>* target, Layout* layout,
5188 unsigned int non_reloc_only_global_gotno)
5189{
5190 Mips_output_data_got<size, big_endian>* got = target->got_section();
5191 // Add GGA_NORMAL entries.
5192 unsigned int count = 0;
5193 for (typename Got_entry_set::iterator
5194 p = this->got_entries_.begin();
5195 p != this->got_entries_.end();
5196 ++p)
5197 {
5198 Mips_got_entry<size, big_endian>* entry = *p;
5199 if (!entry->is_for_global_symbol())
5200 continue;
5201
5202 Mips_symbol<size>* mips_sym = entry->sym();
5203 if (mips_sym->global_got_area() != GGA_NORMAL)
5204 continue;
5205
5206 unsigned int got_type;
5207 if (!got->multi_got())
5208 got_type = GOT_TYPE_STANDARD;
5209 else
5210 // In multi-GOT links, global symbol can be in both primary and
5211 // secondary GOT(s). By creating custom GOT type
5212 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5213 // is added to secondary GOT(s).
5214 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5215 if (!got->add_global(mips_sym, got_type))
5216 continue;
5217
5218 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5219 if (got->multi_got() && this->index_ == 0)
5220 count++;
5221 if (got->multi_got() && this->index_ > 0)
5222 {
5223 if (parameters->options().output_is_position_independent()
5224 || (!parameters->doing_static_link()
5225 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5226 {
5227 target->rel_dyn_section(layout)->add_global(
5228 mips_sym, elfcpp::R_MIPS_REL32, got,
5229 mips_sym->got_offset(got_type));
5230 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5231 elfcpp::R_MIPS_REL32, mips_sym);
5232 }
5233 }
5234 }
5235
5236 if (!got->multi_got() || this->index_ == 0)
5237 {
5238 if (got->multi_got())
5239 {
5240 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5241 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5242 // entries correspond to dynamic symbol indexes.
5243 while (count < non_reloc_only_global_gotno)
5244 {
5245 got->add_constant(0);
5246 ++count;
5247 }
5248 }
5249
5250 // Add GGA_RELOC_ONLY entries.
5251 got->add_reloc_only_entries();
5252 }
5253}
5254
5255// Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5256
5257template<int size, bool big_endian>
5258void
5259Mips_got_info<size, big_endian>::add_reloc_only_entries(
5260 Mips_output_data_got<size, big_endian>* got)
5261{
5262 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5263 p = this->global_got_symbols_.begin();
5264 p != this->global_got_symbols_.end();
5265 ++p)
5266 {
5267 Mips_symbol<size>* mips_sym = *p;
5268 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5269 {
5270 unsigned int got_type;
5271 if (!got->multi_got())
5272 got_type = GOT_TYPE_STANDARD;
5273 else
5274 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5275 if (got->add_global(mips_sym, got_type))
5276 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5277 }
5278 }
5279}
5280
5281// Create TLS GOT entries.
5282
5283template<int size, bool big_endian>
5284void
5285Mips_got_info<size, big_endian>::add_tls_entries(
5286 Target_mips<size, big_endian>* target, Layout* layout)
5287{
5288 Mips_output_data_got<size, big_endian>* got = target->got_section();
5289 // Add local tls entries.
5290 for (typename Got_entry_set::iterator
5291 p = this->got_entries_.begin();
5292 p != this->got_entries_.end();
5293 ++p)
5294 {
5295 Mips_got_entry<size, big_endian>* entry = *p;
5296 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5297 continue;
5298
5299 if (entry->tls_type() == GOT_TLS_GD)
5300 {
5301 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5302 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5303 : elfcpp::R_MIPS_TLS_DTPMOD64);
5304 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5305 : elfcpp::R_MIPS_TLS_DTPREL64);
5306
5307 if (!parameters->doing_static_link())
5308 {
5309 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5310 entry->shndx(), got_type,
5311 target->rel_dyn_section(layout),
5312 r_type1);
5313 unsigned int got_offset =
5314 entry->object()->local_got_offset(entry->symndx(), got_type);
5315 got->add_static_reloc(got_offset + size/8, r_type2,
5316 entry->object(), entry->symndx());
5317 }
5318 else
5319 {
5320 // We are doing a static link. Mark it as belong to module 1,
5321 // the executable.
5322 unsigned int got_offset = got->add_constant(1);
5323 entry->object()->set_local_got_offset(entry->symndx(), got_type,
5324 got_offset);
5325 got->add_constant(0);
5326 got->add_static_reloc(got_offset + size/8, r_type2,
5327 entry->object(), entry->symndx());
5328 }
5329 }
5330 else if (entry->tls_type() == GOT_TLS_IE)
5331 {
5332 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5333 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5334 : elfcpp::R_MIPS_TLS_TPREL64);
5335 if (!parameters->doing_static_link())
5336 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5337 target->rel_dyn_section(layout), r_type);
5338 else
5339 {
5340 got->add_local(entry->object(), entry->symndx(), got_type);
5341 unsigned int got_offset =
5342 entry->object()->local_got_offset(entry->symndx(), got_type);
5343 got->add_static_reloc(got_offset, r_type, entry->object(),
5344 entry->symndx());
5345 }
5346 }
5347 else if (entry->tls_type() == GOT_TLS_LDM)
5348 {
5349 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5350 : elfcpp::R_MIPS_TLS_DTPMOD64);
5351 unsigned int got_offset;
5352 if (!parameters->doing_static_link())
5353 {
5354 got_offset = got->add_constant(0);
5355 target->rel_dyn_section(layout)->add_local(
5356 entry->object(), 0, r_type, got, got_offset);
5357 }
5358 else
5359 // We are doing a static link. Just mark it as belong to module 1,
5360 // the executable.
5361 got_offset = got->add_constant(1);
5362
5363 got->add_constant(0);
5364 got->set_tls_ldm_offset(got_offset, entry->object());
5365 }
5366 else
5367 gold_unreachable();
5368 }
5369
5370 // Add global tls entries.
5371 for (typename Got_entry_set::iterator
5372 p = this->got_entries_.begin();
5373 p != this->got_entries_.end();
5374 ++p)
5375 {
5376 Mips_got_entry<size, big_endian>* entry = *p;
5377 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5378 continue;
5379
5380 Mips_symbol<size>* mips_sym = entry->sym();
5381 if (entry->tls_type() == GOT_TLS_GD)
5382 {
5383 unsigned int got_type;
5384 if (!got->multi_got())
5385 got_type = GOT_TYPE_TLS_PAIR;
5386 else
5387 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5388 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5389 : elfcpp::R_MIPS_TLS_DTPMOD64);
5390 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5391 : elfcpp::R_MIPS_TLS_DTPREL64);
5392 if (!parameters->doing_static_link())
5393 got->add_global_pair_with_rel(mips_sym, got_type,
5394 target->rel_dyn_section(layout), r_type1, r_type2);
5395 else
5396 {
5397 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
5398 // GOT entries. The first one is initialized to be 1, which is the
5399 // module index for the main executable and the second one 0. A
5400 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5401 // the second GOT entry and will be applied by gold.
5402 unsigned int got_offset = got->add_constant(1);
5403 mips_sym->set_got_offset(got_type, got_offset);
5404 got->add_constant(0);
5405 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5406 }
5407 }
5408 else if (entry->tls_type() == GOT_TLS_IE)
5409 {
5410 unsigned int got_type;
5411 if (!got->multi_got())
5412 got_type = GOT_TYPE_TLS_OFFSET;
5413 else
5414 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5415 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5416 : elfcpp::R_MIPS_TLS_TPREL64);
5417 if (!parameters->doing_static_link())
5418 got->add_global_with_rel(mips_sym, got_type,
5419 target->rel_dyn_section(layout), r_type);
5420 else
5421 {
5422 got->add_global(mips_sym, got_type);
5423 unsigned int got_offset = mips_sym->got_offset(got_type);
5424 got->add_static_reloc(got_offset, r_type, mips_sym);
5425 }
5426 }
5427 else
5428 gold_unreachable();
5429 }
5430}
5431
5432// Decide whether the symbol needs an entry in the global part of the primary
5433// GOT, setting global_got_area accordingly. Count the number of global
5434// symbols that are in the primary GOT only because they have dynamic
5435// relocations R_MIPS_REL32 against them (reloc_only_gotno).
5436
5437template<int size, bool big_endian>
5438void
5439Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5440{
5441 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5442 p = this->global_got_symbols_.begin();
5443 p != this->global_got_symbols_.end();
5444 ++p)
5445 {
5446 Mips_symbol<size>* sym = *p;
5447 // Make a final decision about whether the symbol belongs in the
5448 // local or global GOT. Symbols that bind locally can (and in the
5449 // case of forced-local symbols, must) live in the local GOT.
5450 // Those that are aren't in the dynamic symbol table must also
5451 // live in the local GOT.
5452
5453 if (!sym->should_add_dynsym_entry(symtab)
5454 || (sym->got_only_for_calls()
5455 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5456 : symbol_references_local(sym,
5457 sym->should_add_dynsym_entry(symtab))))
5458 // The symbol belongs in the local GOT. We no longer need this
5459 // entry if it was only used for relocations; those relocations
5460 // will be against the null or section symbol instead.
5461 sym->set_global_got_area(GGA_NONE);
5462 else if (sym->global_got_area() == GGA_RELOC_ONLY)
5463 {
5464 ++this->reloc_only_gotno_;
5465 ++this->global_gotno_ ;
5466 }
5467 }
5468}
5469
5470// Return the offset of GOT page entry for VALUE. Initialize the entry with
5471// VALUE if it is not initialized.
5472
5473template<int size, bool big_endian>
5474unsigned int
5475Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5476 Mips_output_data_got<size, big_endian>* got)
5477{
5478 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5479 if (it != this->got_page_offsets_.end())
5480 return it->second;
5481
5482 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5483 + (size/8) * this->page_gotno_);
5484
5485 unsigned int got_offset = this->got_page_offset_next_;
5486 this->got_page_offsets_[value] = got_offset;
5487 this->got_page_offset_next_ += size/8;
5488 got->update_got_entry(got_offset, value);
5489 return got_offset;
5490}
5491
5492// Remove lazy-binding stubs for global symbols in this GOT.
5493
5494template<int size, bool big_endian>
5495void
5496Mips_got_info<size, big_endian>::remove_lazy_stubs(
5497 Target_mips<size, big_endian>* target)
5498{
5499 for (typename Got_entry_set::iterator
5500 p = this->got_entries_.begin();
5501 p != this->got_entries_.end();
5502 ++p)
5503 {
5504 Mips_got_entry<size, big_endian>* entry = *p;
5505 if (entry->is_for_global_symbol())
5506 target->remove_lazy_stub_entry(entry->sym());
5507 }
5508}
5509
5510// Count the number of GOT entries required.
5511
5512template<int size, bool big_endian>
5513void
5514Mips_got_info<size, big_endian>::count_got_entries()
5515{
5516 for (typename Got_entry_set::iterator
5517 p = this->got_entries_.begin();
5518 p != this->got_entries_.end();
5519 ++p)
5520 {
5521 this->count_got_entry(*p);
5522 }
5523}
5524
5525// Count the number of GOT entries required by ENTRY. Accumulate the result.
5526
5527template<int size, bool big_endian>
5528void
5529Mips_got_info<size, big_endian>::count_got_entry(
5530 Mips_got_entry<size, big_endian>* entry)
5531{
5532 if (entry->is_tls_entry())
5533 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5534 else if (entry->is_for_local_symbol()
5535 || entry->sym()->global_got_area() == GGA_NONE)
5536 ++this->local_gotno_;
5537 else
5538 ++this->global_gotno_;
5539}
5540
5541// Add FROM's GOT entries.
5542
5543template<int size, bool big_endian>
5544void
5545Mips_got_info<size, big_endian>::add_got_entries(
5546 Mips_got_info<size, big_endian>* from)
5547{
5548 for (typename Got_entry_set::iterator
5549 p = from->got_entries_.begin();
5550 p != from->got_entries_.end();
5551 ++p)
5552 {
5553 Mips_got_entry<size, big_endian>* entry = *p;
5554 if (this->got_entries_.find(entry) == this->got_entries_.end())
5555 {
5556 Mips_got_entry<size, big_endian>* entry2 =
5557 new Mips_got_entry<size, big_endian>(*entry);
5558 this->got_entries_.insert(entry2);
5559 this->count_got_entry(entry);
5560 }
5561 }
5562}
5563
5564// Add FROM's GOT page entries.
5565
5566template<int size, bool big_endian>
5567void
5568Mips_got_info<size, big_endian>::add_got_page_entries(
5569 Mips_got_info<size, big_endian>* from)
5570{
5571 for (typename Got_page_entry_set::iterator
5572 p = from->got_page_entries_.begin();
5573 p != from->got_page_entries_.end();
5574 ++p)
5575 {
5576 Got_page_entry* entry = *p;
5577 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5578 {
5579 Got_page_entry* entry2 = new Got_page_entry(*entry);
5580 this->got_page_entries_.insert(entry2);
5581 this->page_gotno_ += entry->num_pages;
5582 }
5583 }
5584}
5585
5586// Mips_output_data_got methods.
5587
5588// Lay out the GOT. Add local, global and TLS entries. If GOT is
5589// larger than 64K, create multi-GOT.
5590
5591template<int size, bool big_endian>
5592void
5593Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5594 Symbol_table* symtab, const Input_objects* input_objects)
5595{
5596 // Decide which symbols need to go in the global part of the GOT and
5597 // count the number of reloc-only GOT symbols.
5598 this->master_got_info_->count_got_symbols(symtab);
5599
5600 // Count the number of GOT entries.
5601 this->master_got_info_->count_got_entries();
5602
5603 unsigned int got_size = this->master_got_info_->got_size();
5604 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5605 this->lay_out_multi_got(layout, input_objects);
5606 else
5607 {
5608 // Record that all objects use single GOT.
5609 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5610 p != input_objects->relobj_end();
5611 ++p)
5612 {
5613 Mips_relobj<size, big_endian>* object =
5614 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5615 if (object->get_got_info() != NULL)
5616 object->set_got_info(this->master_got_info_);
5617 }
5618
5619 this->master_got_info_->add_local_entries(this->target_, layout);
5620 this->master_got_info_->add_global_entries(this->target_, layout,
5621 /*not used*/-1U);
5622 this->master_got_info_->add_tls_entries(this->target_, layout);
5623 }
5624}
5625
5626// Create multi-GOT. For every GOT, add local, global and TLS entries.
5627
5628template<int size, bool big_endian>
5629void
5630Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5631 const Input_objects* input_objects)
5632{
5633 // Try to merge the GOTs of input objects together, as long as they
5634 // don't seem to exceed the maximum GOT size, choosing one of them
5635 // to be the primary GOT.
5636 this->merge_gots(input_objects);
5637
5638 // Every symbol that is referenced in a dynamic relocation must be
5639 // present in the primary GOT.
5640 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5641
5642 // Add GOT entries.
5643 unsigned int i = 0;
5644 unsigned int offset = 0;
5645 Mips_got_info<size, big_endian>* g = this->primary_got_;
5646 do
5647 {
5648 g->set_index(i);
5649 g->set_offset(offset);
5650
5651 g->add_local_entries(this->target_, layout);
5652 if (i == 0)
5653 g->add_global_entries(this->target_, layout,
5654 (this->master_got_info_->global_gotno()
5655 - this->master_got_info_->reloc_only_gotno()));
5656 else
5657 g->add_global_entries(this->target_, layout, /*not used*/-1U);
5658 g->add_tls_entries(this->target_, layout);
5659
5660 // Forbid global symbols in every non-primary GOT from having
5661 // lazy-binding stubs.
5662 if (i > 0)
5663 g->remove_lazy_stubs(this->target_);
5664
5665 ++i;
5666 offset += g->got_size();
5667 g = g->next();
5668 }
5669 while (g);
5670}
5671
5672// Attempt to merge GOTs of different input objects. Try to use as much as
5673// possible of the primary GOT, since it doesn't require explicit dynamic
5674// relocations, but don't use objects that would reference global symbols
5675// out of the addressable range. Failing the primary GOT, attempt to merge
5676// with the current GOT, or finish the current GOT and then make make the new
5677// GOT current.
5678
5679template<int size, bool big_endian>
5680void
5681Mips_output_data_got<size, big_endian>::merge_gots(
5682 const Input_objects* input_objects)
5683{
5684 gold_assert(this->primary_got_ == NULL);
5685 Mips_got_info<size, big_endian>* current = NULL;
5686
5687 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5688 p != input_objects->relobj_end();
5689 ++p)
5690 {
5691 Mips_relobj<size, big_endian>* object =
5692 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5693
5694 Mips_got_info<size, big_endian>* g = object->get_got_info();
5695 if (g == NULL)
5696 continue;
5697
5698 g->count_got_entries();
5699
5700 // Work out the number of page, local and TLS entries.
5701 unsigned int estimate = this->master_got_info_->page_gotno();
5702 if (estimate > g->page_gotno())
5703 estimate = g->page_gotno();
5704 estimate += g->local_gotno() + g->tls_gotno();
5705
5706 // We place TLS GOT entries after both locals and globals. The globals
5707 // for the primary GOT may overflow the normal GOT size limit, so be
5708 // sure not to merge a GOT which requires TLS with the primary GOT in that
5709 // case. This doesn't affect non-primary GOTs.
5710 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5711 : g->global_gotno());
5712
5713 unsigned int max_count =
5714 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5715 if (estimate <= max_count)
5716 {
5717 // If we don't have a primary GOT, use it as
5718 // a starting point for the primary GOT.
5719 if (!this->primary_got_)
5720 {
5721 this->primary_got_ = g;
5722 continue;
5723 }
5724
5725 // Try merging with the primary GOT.
5726 if (this->merge_got_with(g, object, this->primary_got_))
5727 continue;
5728 }
5729
5730 // If we can merge with the last-created GOT, do it.
5731 if (current && this->merge_got_with(g, object, current))
5732 continue;
5733
5734 // Well, we couldn't merge, so create a new GOT. Don't check if it
5735 // fits; if it turns out that it doesn't, we'll get relocation
5736 // overflows anyway.
5737 g->set_next(current);
5738 current = g;
5739 }
5740
5741 // If we do not find any suitable primary GOT, create an empty one.
5742 if (this->primary_got_ == NULL)
5743 this->primary_got_ = new Mips_got_info<size, big_endian>();
5744
5745 // Link primary GOT with secondary GOTs.
5746 this->primary_got_->set_next(current);
5747}
5748
5749// Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
5750// this would lead to overflow, true if they were merged successfully.
5751
5752template<int size, bool big_endian>
5753bool
5754Mips_output_data_got<size, big_endian>::merge_got_with(
5755 Mips_got_info<size, big_endian>* from,
5756 Mips_relobj<size, big_endian>* object,
5757 Mips_got_info<size, big_endian>* to)
5758{
5759 // Work out how many page entries we would need for the combined GOT.
5760 unsigned int estimate = this->master_got_info_->page_gotno();
5761 if (estimate >= from->page_gotno() + to->page_gotno())
5762 estimate = from->page_gotno() + to->page_gotno();
5763
5764 // Conservatively estimate how many local and TLS entries would be needed.
5765 estimate += from->local_gotno() + to->local_gotno();
5766 estimate += from->tls_gotno() + to->tls_gotno();
5767
5768 // If we're merging with the primary got, any TLS relocations will
5769 // come after the full set of global entries. Otherwise estimate those
5770 // conservatively as well.
5771 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5772 estimate += this->master_got_info_->global_gotno();
5773 else
5774 estimate += from->global_gotno() + to->global_gotno();
5775
5776 // Bail out if the combined GOT might be too big.
5777 unsigned int max_count =
5778 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5779 if (estimate > max_count)
5780 return false;
5781
5782 // Transfer the object's GOT information from FROM to TO.
5783 to->add_got_entries(from);
5784 to->add_got_page_entries(from);
5785
5786 // Record that OBJECT should use output GOT TO.
5787 object->set_got_info(to);
5788
5789 return true;
5790}
5791
5792// Write out the GOT.
5793
5794template<int size, bool big_endian>
5795void
5796Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5797{
5798 // Call parent to write out GOT.
5799 Output_data_got<size, big_endian>::do_write(of);
5800
5801 const off_t offset = this->offset();
5802 const section_size_type oview_size =
5803 convert_to_section_size_type(this->data_size());
5804 unsigned char* const oview = of->get_output_view(offset, oview_size);
5805
5806 // Needed for fixing values of .got section.
5807 this->got_view_ = oview;
5808
5809 // Write lazy stub addresses.
5810 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5811 p = this->master_got_info_->global_got_symbols().begin();
5812 p != this->master_got_info_->global_got_symbols().end();
5813 ++p)
5814 {
5815 Mips_symbol<size>* mips_sym = *p;
5816 if (mips_sym->has_lazy_stub())
5817 {
5818 Valtype* wv = reinterpret_cast<Valtype*>(
5819 oview + this->get_primary_got_offset(mips_sym));
5820 Valtype value =
5821 this->target_->mips_stubs_section()->stub_address(mips_sym);
5822 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5823 }
5824 }
5825
5826 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5827 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5828 p = this->master_got_info_->global_got_symbols().begin();
5829 p != this->master_got_info_->global_got_symbols().end();
5830 ++p)
5831 {
5832 Mips_symbol<size>* mips_sym = *p;
5833 if (!this->multi_got()
5834 && (mips_sym->is_mips16() || mips_sym->is_micromips())
5835 && mips_sym->global_got_area() == GGA_NONE
5836 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5837 {
5838 Valtype* wv = reinterpret_cast<Valtype*>(
5839 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5840 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5841 if (value != 0)
5842 {
5843 value |= 1;
5844 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5845 }
5846 }
5847 }
5848
5849 if (!this->secondary_got_relocs_.empty())
5850 {
5851 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
5852 // secondary GOT entries with non-zero initial value copy the value
5853 // to the corresponding primary GOT entry, and set the secondary GOT
5854 // entry to zero.
5855 // TODO(sasa): This is workaround. It needs to be investigated further.
5856
5857 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5858 {
5859 Static_reloc& reloc(this->secondary_got_relocs_[i]);
5860 if (reloc.symbol_is_global())
5861 {
5862 Mips_symbol<size>* gsym = reloc.symbol();
5863 gold_assert(gsym != NULL);
5864
5865 unsigned got_offset = reloc.got_offset();
5866 gold_assert(got_offset < oview_size);
5867
5868 // Find primary GOT entry.
5869 Valtype* wv_prim = reinterpret_cast<Valtype*>(
5870 oview + this->get_primary_got_offset(gsym));
5871
5872 // Find secondary GOT entry.
5873 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5874
5875 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5876 if (value != 0)
5877 {
5878 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5879 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5880 gsym->set_applied_secondary_got_fixup();
5881 }
5882 }
5883 }
5884
5885 of->write_output_view(offset, oview_size, oview);
5886 }
5887
5888 // We are done if there is no fix up.
5889 if (this->static_relocs_.empty())
5890 return;
5891
5892 Output_segment* tls_segment = this->layout_->tls_segment();
5893 gold_assert(tls_segment != NULL);
5894
5895 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5896 {
5897 Static_reloc& reloc(this->static_relocs_[i]);
5898
5899 Mips_address value;
5900 if (!reloc.symbol_is_global())
5901 {
5902 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5903 const Symbol_value<size>* psymval =
5904 object->local_symbol(reloc.index());
5905
5906 // We are doing static linking. Issue an error and skip this
5907 // relocation if the symbol is undefined or in a discarded_section.
5908 bool is_ordinary;
5909 unsigned int shndx = psymval->input_shndx(&is_ordinary);
5910 if ((shndx == elfcpp::SHN_UNDEF)
5911 || (is_ordinary
5912 && shndx != elfcpp::SHN_UNDEF
5913 && !object->is_section_included(shndx)
5914 && !this->symbol_table_->is_section_folded(object, shndx)))
5915 {
5916 gold_error(_("undefined or discarded local symbol %u from "
5917 " object %s in GOT"),
5918 reloc.index(), reloc.relobj()->name().c_str());
5919 continue;
5920 }
5921
5922 value = psymval->value(object, 0);
5923 }
5924 else
5925 {
5926 const Mips_symbol<size>* gsym = reloc.symbol();
5927 gold_assert(gsym != NULL);
5928
5929 // We are doing static linking. Issue an error and skip this
5930 // relocation if the symbol is undefined or in a discarded_section
5931 // unless it is a weakly_undefined symbol.
5932 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5933 && !gsym->is_weak_undefined())
5934 {
5935 gold_error(_("undefined or discarded symbol %s in GOT"),
5936 gsym->name());
5937 continue;
5938 }
5939
5940 if (!gsym->is_weak_undefined())
5941 value = gsym->value();
5942 else
5943 value = 0;
5944 }
5945
5946 unsigned got_offset = reloc.got_offset();
5947 gold_assert(got_offset < oview_size);
5948
5949 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5950 Valtype x;
5951
5952 switch (reloc.r_type())
5953 {
5954 case elfcpp::R_MIPS_TLS_DTPMOD32:
5955 case elfcpp::R_MIPS_TLS_DTPMOD64:
5956 x = value;
5957 break;
5958 case elfcpp::R_MIPS_TLS_DTPREL32:
5959 case elfcpp::R_MIPS_TLS_DTPREL64:
5960 x = value - elfcpp::DTP_OFFSET;
5961 break;
5962 case elfcpp::R_MIPS_TLS_TPREL32:
5963 case elfcpp::R_MIPS_TLS_TPREL64:
5964 x = value - elfcpp::TP_OFFSET;
5965 break;
5966 default:
5967 gold_unreachable();
5968 break;
5969 }
5970
5971 elfcpp::Swap<size, big_endian>::writeval(wv, x);
5972 }
5973
5974 of->write_output_view(offset, oview_size, oview);
5975}
5976
5977// Mips_relobj methods.
5978
5979// Count the local symbols. The Mips backend needs to know if a symbol
5980// is a MIPS16 or microMIPS function or not. For global symbols, it is easy
5981// because the Symbol object keeps the ELF symbol type and st_other field.
5982// For local symbol it is harder because we cannot access this information.
5983// So we override the do_count_local_symbol in parent and scan local symbols to
5984// mark MIPS16 and microMIPS functions. This is not the most efficient way but
5985// I do not want to slow down other ports by calling a per symbol target hook
5986// inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5987
5988template<int size, bool big_endian>
5989void
5990Mips_relobj<size, big_endian>::do_count_local_symbols(
5991 Stringpool_template<char>* pool,
5992 Stringpool_template<char>* dynpool)
5993{
5994 // Ask parent to count the local symbols.
5995 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5996 const unsigned int loccount = this->local_symbol_count();
5997 if (loccount == 0)
5998 return;
5999
6000 // Initialize the mips16 and micromips function bit-vector.
6001 this->local_symbol_is_mips16_.resize(loccount, false);
6002 this->local_symbol_is_micromips_.resize(loccount, false);
6003
6004 // Read the symbol table section header.
6005 const unsigned int symtab_shndx = this->symtab_shndx();
6006 elfcpp::Shdr<size, big_endian>
6007 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6008 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6009
6010 // Read the local symbols.
6011 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6012 gold_assert(loccount == symtabshdr.get_sh_info());
6013 off_t locsize = loccount * sym_size;
6014 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6015 locsize, true, true);
6016
6017 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6018
6019 // Skip the first dummy symbol.
6020 psyms += sym_size;
6021 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6022 {
6023 elfcpp::Sym<size, big_endian> sym(psyms);
6024 unsigned char st_other = sym.get_st_other();
6025 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6026 this->local_symbol_is_micromips_[i] =
6027 elfcpp::elf_st_is_micromips(st_other);
6028 }
6029}
6030
6031// Read the symbol information.
6032
6033template<int size, bool big_endian>
6034void
6035Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6036{
6037 // Call parent class to read symbol information.
f35c4853 6038 this->base_read_symbols(sd);
9810d34d
SS
6039
6040 // Read processor-specific flags in ELF file header.
6041 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6042 elfcpp::Elf_sizes<size>::ehdr_size,
6043 true, false);
6044 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6045 this->processor_specific_flags_ = ehdr.get_e_flags();
6046
6047 // Get the section names.
6048 const unsigned char* pnamesu = sd->section_names->data();
6049 const char* pnames = reinterpret_cast<const char*>(pnamesu);
6050
6051 // Initialize the mips16 stub section bit-vectors.
6052 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6053 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6054 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6055
6056 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6057 const unsigned char* pshdrs = sd->section_headers->data();
6058 const unsigned char* ps = pshdrs + shdr_size;
6059 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6060 {
6061 elfcpp::Shdr<size, big_endian> shdr(ps);
6062
6063 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6064 {
6065 // Read the gp value that was used to create this object. We need the
6066 // gp value while processing relocs. The .reginfo section is not used
6067 // in the 64-bit MIPS ELF ABI.
6068 section_offset_type section_offset = shdr.get_sh_offset();
6069 section_size_type section_size =
6070 convert_to_section_size_type(shdr.get_sh_size());
6071 const unsigned char* view =
6072 this->get_view(section_offset, section_size, true, false);
6073
6074 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6075
6076 // Read the rest of .reginfo.
6077 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6078 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6079 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6080 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6081 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6082 }
6083
6084 const char* name = pnames + shdr.get_sh_name();
6085 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6086 this->section_is_mips16_call_stub_[i] =
6087 is_prefix_of(".mips16.call.", name);
6088 this->section_is_mips16_call_fp_stub_[i] =
6089 is_prefix_of(".mips16.call.fp.", name);
6090
6091 if (strcmp(name, ".pdr") == 0)
6092 {
6093 gold_assert(this->pdr_shndx_ == -1U);
6094 this->pdr_shndx_ = i;
6095 }
6096 }
6097}
6098
6099// Discard MIPS16 stub secions that are not needed.
6100
6101template<int size, bool big_endian>
6102void
6103Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6104{
6105 for (typename Mips16_stubs_int_map::const_iterator
6106 it = this->mips16_stub_sections_.begin();
6107 it != this->mips16_stub_sections_.end(); ++it)
6108 {
6109 Mips16_stub_section<size, big_endian>* stub_section = it->second;
6110 if (!stub_section->is_target_found())
6111 {
6112 gold_error(_("no relocation found in mips16 stub section '%s'"),
6113 stub_section->object()
6114 ->section_name(stub_section->shndx()).c_str());
6115 }
6116
6117 bool discard = false;
6118 if (stub_section->is_for_local_function())
6119 {
6120 if (stub_section->is_fn_stub())
6121 {
6122 // This stub is for a local symbol. This stub will only
6123 // be needed if there is some relocation in this object,
6124 // other than a 16 bit function call, which refers to this
6125 // symbol.
6126 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6127 discard = true;
6128 else
6129 this->add_local_mips16_fn_stub(stub_section);
6130 }
6131 else
6132 {
6133 // This stub is for a local symbol. This stub will only
6134 // be needed if there is some relocation (R_MIPS16_26) in
6135 // this object that refers to this symbol.
6136 gold_assert(stub_section->is_call_stub()
6137 || stub_section->is_call_fp_stub());
6138 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6139 discard = true;
6140 else
6141 this->add_local_mips16_call_stub(stub_section);
6142 }
6143 }
6144 else
6145 {
6146 Mips_symbol<size>* gsym = stub_section->gsym();
6147 if (stub_section->is_fn_stub())
6148 {
6149 if (gsym->has_mips16_fn_stub())
6150 // We already have a stub for this function.
6151 discard = true;
6152 else
6153 {
6154 gsym->set_mips16_fn_stub(stub_section);
6155 if (gsym->should_add_dynsym_entry(symtab))
6156 {
6157 // If we have a MIPS16 function with a stub, the
6158 // dynamic symbol must refer to the stub, since only
6159 // the stub uses the standard calling conventions.
6160 gsym->set_need_fn_stub();
6161 if (gsym->is_from_dynobj())
6162 gsym->set_needs_dynsym_value();
6163 }
6164 }
6165 if (!gsym->need_fn_stub())
6166 discard = true;
6167 }
6168 else if (stub_section->is_call_stub())
6169 {
6170 if (gsym->is_mips16())
6171 // We don't need the call_stub; this is a 16 bit
6172 // function, so calls from other 16 bit functions are
6173 // OK.
6174 discard = true;
6175 else if (gsym->has_mips16_call_stub())
6176 // We already have a stub for this function.
6177 discard = true;
6178 else
6179 gsym->set_mips16_call_stub(stub_section);
6180 }
6181 else
6182 {
6183 gold_assert(stub_section->is_call_fp_stub());
6184 if (gsym->is_mips16())
6185 // We don't need the call_stub; this is a 16 bit
6186 // function, so calls from other 16 bit functions are
6187 // OK.
6188 discard = true;
6189 else if (gsym->has_mips16_call_fp_stub())
6190 // We already have a stub for this function.
6191 discard = true;
6192 else
6193 gsym->set_mips16_call_fp_stub(stub_section);
6194 }
6195 }
6196 if (discard)
6197 this->set_output_section(stub_section->shndx(), NULL);
6198 }
6199}
6200
6201// Mips_output_data_la25_stub methods.
6202
6203// Template for standard LA25 stub.
6204template<int size, bool big_endian>
6205const uint32_t
6206Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6207{
6208 0x3c190000, // lui $25,%hi(func)
6209 0x08000000, // j func
6210 0x27390000, // add $25,$25,%lo(func)
6211 0x00000000 // nop
6212};
6213
6214// Template for microMIPS LA25 stub.
6215template<int size, bool big_endian>
6216const uint32_t
6217Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6218{
6219 0x41b9, 0x0000, // lui t9,%hi(func)
6220 0xd400, 0x0000, // j func
6221 0x3339, 0x0000, // addiu t9,t9,%lo(func)
6222 0x0000, 0x0000 // nop
6223};
6224
6225// Create la25 stub for a symbol.
6226
6227template<int size, bool big_endian>
6228void
6229Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6230 Symbol_table* symtab, Target_mips<size, big_endian>* target,
6231 Mips_symbol<size>* gsym)
6232{
6233 if (!gsym->has_la25_stub())
6234 {
6235 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6236 this->symbols_.insert(gsym);
6237 this->create_stub_symbol(gsym, symtab, target, 16);
6238 }
6239}
6240
6241// Create a symbol for SYM stub's value and size, to help make the disassembly
6242// easier to read.
6243
6244template<int size, bool big_endian>
6245void
6246Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6247 Mips_symbol<size>* sym, Symbol_table* symtab,
6248 Target_mips<size, big_endian>* target, uint64_t symsize)
6249{
6250 std::string name(".pic.");
6251 name += sym->name();
6252
6253 unsigned int offset = sym->la25_stub_offset();
6254 if (sym->is_micromips())
6255 offset |= 1;
6256
6257 // Make it a local function.
6258 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6259 Symbol_table::PREDEFINED,
6260 target->la25_stub_section(),
6261 offset, symsize, elfcpp::STT_FUNC,
6262 elfcpp::STB_LOCAL,
6263 elfcpp::STV_DEFAULT, 0,
6264 false, false);
6265 new_sym->set_is_forced_local();
6266}
6267
6268// Write out la25 stubs. This uses the hand-coded instructions above,
6269// and adjusts them as needed.
6270
6271template<int size, bool big_endian>
6272void
6273Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6274{
6275 const off_t offset = this->offset();
6276 const section_size_type oview_size =
6277 convert_to_section_size_type(this->data_size());
6278 unsigned char* const oview = of->get_output_view(offset, oview_size);
6279
6280 for (typename Unordered_set<Mips_symbol<size>*>::iterator
6281 p = this->symbols_.begin();
6282 p != this->symbols_.end();
6283 ++p)
6284 {
6285 Mips_symbol<size>* sym = *p;
6286 unsigned char* pov = oview + sym->la25_stub_offset();
6287
6288 Mips_address target = sym->value();
6289 if (!sym->is_micromips())
6290 {
6291 elfcpp::Swap<32, big_endian>::writeval(pov,
6292 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6293 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6294 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6295 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6296 la25_stub_entry[2] | (target & 0xffff));
6297 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6298 }
6299 else
6300 {
6301 target |= 1;
6302 // First stub instruction. Paste high 16-bits of the target.
6303 elfcpp::Swap<16, big_endian>::writeval(pov,
6304 la25_stub_micromips_entry[0]);
6305 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6306 ((target + 0x8000) >> 16) & 0xffff);
6307 // Second stub instruction. Paste low 26-bits of the target, shifted
6308 // right by 1.
6309 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6310 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6311 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6312 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6313 // Third stub instruction. Paste low 16-bits of the target.
6314 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6315 la25_stub_micromips_entry[4]);
6316 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6317 // Fourth stub instruction.
6318 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6319 la25_stub_micromips_entry[6]);
6320 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6321 la25_stub_micromips_entry[7]);
6322 }
6323 }
6324
6325 of->write_output_view(offset, oview_size, oview);
6326}
6327
6328// Mips_output_data_plt methods.
6329
6330// The format of the first PLT entry in an O32 executable.
6331template<int size, bool big_endian>
6332const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6333{
6334 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
6335 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
6336 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
6337 0x031cc023, // subu $24, $24, $28
40fc1451 6338 0x03e07825, // or $15, $31, zero
9810d34d
SS
6339 0x0018c082, // srl $24, $24, 2
6340 0x0320f809, // jalr $25
6341 0x2718fffe // subu $24, $24, 2
6342};
6343
6344// The format of the first PLT entry in an N32 executable. Different
6345// because gp ($28) is not available; we use t2 ($14) instead.
6346template<int size, bool big_endian>
6347const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6348{
6349 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6350 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
6351 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6352 0x030ec023, // subu $24, $24, $14
40fc1451 6353 0x03e07825, // or $15, $31, zero
9810d34d
SS
6354 0x0018c082, // srl $24, $24, 2
6355 0x0320f809, // jalr $25
6356 0x2718fffe // subu $24, $24, 2
6357};
6358
6359// The format of the first PLT entry in an N64 executable. Different
6360// from N32 because of the increased size of GOT entries.
6361template<int size, bool big_endian>
6362const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6363{
6364 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6365 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
6366 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6367 0x030ec023, // subu $24, $24, $14
40fc1451 6368 0x03e07825, // or $15, $31, zero
9810d34d
SS
6369 0x0018c0c2, // srl $24, $24, 3
6370 0x0320f809, // jalr $25
6371 0x2718fffe // subu $24, $24, 2
6372};
6373
6374// The format of the microMIPS first PLT entry in an O32 executable.
6375// We rely on v0 ($2) rather than t8 ($24) to contain the address
6376// of the GOTPLT entry handled, so this stub may only be used when
6377// all the subsequent PLT entries are microMIPS code too.
6378//
6379// The trailing NOP is for alignment and correct disassembly only.
6380template<int size, bool big_endian>
6381const uint32_t Mips_output_data_plt<size, big_endian>::
6382plt0_entry_micromips_o32[] =
6383{
6384 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
6385 0xff23, 0x0000, // lw $25, 0($3)
6386 0x0535, // subu $2, $2, $3
6387 0x2525, // srl $2, $2, 2
6388 0x3302, 0xfffe, // subu $24, $2, 2
6389 0x0dff, // move $15, $31
6390 0x45f9, // jalrs $25
6391 0x0f83, // move $28, $3
6392 0x0c00 // nop
6393};
6394
6395// The format of the microMIPS first PLT entry in an O32 executable
6396// in the insn32 mode.
6397template<int size, bool big_endian>
6398const uint32_t Mips_output_data_plt<size, big_endian>::
6399plt0_entry_micromips32_o32[] =
6400{
6401 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
6402 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
6403 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
6404 0x0398, 0xc1d0, // subu $24, $24, $28
40fc1451 6405 0x001f, 0x7a90, // or $15, $31, zero
9810d34d
SS
6406 0x0318, 0x1040, // srl $24, $24, 2
6407 0x03f9, 0x0f3c, // jalr $25
6408 0x3318, 0xfffe // subu $24, $24, 2
6409};
6410
6411// The format of subsequent standard entries in the PLT.
6412template<int size, bool big_endian>
6413const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6414{
6415 0x3c0f0000, // lui $15, %hi(.got.plt entry)
6416 0x8df90000, // l[wd] $25, %lo(.got.plt entry)($15)
6417 0x03200008, // jr $25
6418 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
6419};
6420
6421// The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
6422// temporary because t8 ($24) and t9 ($25) are not directly addressable.
6423// Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6424// We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6425// target function address in register v0.
6426template<int size, bool big_endian>
6427const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6428{
6429 0xb303, // lw $3, 12($pc)
6430 0x651b, // move $24, $3
6431 0x9b60, // lw $3, 0($3)
6432 0xeb00, // jr $3
6433 0x653b, // move $25, $3
6434 0x6500, // nop
6435 0x0000, 0x0000 // .word (.got.plt entry)
6436};
6437
6438// The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
6439// as a temporary because t8 ($24) is not addressable with ADDIUPC.
6440template<int size, bool big_endian>
6441const uint32_t Mips_output_data_plt<size, big_endian>::
6442plt_entry_micromips_o32[] =
6443{
6444 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
6445 0xff22, 0x0000, // lw $25, 0($2)
6446 0x4599, // jr $25
6447 0x0f02 // move $24, $2
6448};
6449
6450// The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6451template<int size, bool big_endian>
6452const uint32_t Mips_output_data_plt<size, big_endian>::
6453plt_entry_micromips32_o32[] =
6454{
6455 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
6456 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
6457 0x0019, 0x0f3c, // jr $25
6458 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
6459};
6460
6461// Add an entry to the PLT for a symbol referenced by r_type relocation.
6462
6463template<int size, bool big_endian>
6464void
6465Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6466 unsigned int r_type)
6467{
6468 gold_assert(!gsym->has_plt_offset());
6469
6470 // Final PLT offset for a symbol will be set in method set_plt_offsets().
6471 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6472 + sizeof(plt0_entry_o32));
6473 this->symbols_.push_back(gsym);
6474
6475 // Record whether the relocation requires a standard MIPS
6476 // or a compressed code entry.
6477 if (jal_reloc(r_type))
6478 {
6479 if (r_type == elfcpp::R_MIPS_26)
6480 gsym->set_needs_mips_plt(true);
6481 else
6482 gsym->set_needs_comp_plt(true);
6483 }
6484
6485 section_offset_type got_offset = this->got_plt_->current_data_size();
6486
6487 // Every PLT entry needs a GOT entry which points back to the PLT
6488 // entry (this will be changed by the dynamic linker, normally
6489 // lazily when the function is called).
6490 this->got_plt_->set_current_data_size(got_offset + size/8);
6491
6492 gsym->set_needs_dynsym_entry();
6493 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6494 got_offset);
6495}
6496
6497// Set final PLT offsets. For each symbol, determine whether standard or
6498// compressed (MIPS16 or microMIPS) PLT entry is used.
6499
6500template<int size, bool big_endian>
6501void
6502Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6503{
6504 // The sizes of individual PLT entries.
6505 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6506 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6507 ? this->compressed_plt_entry_size() : 0);
6508
6509 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6510 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6511 {
6512 Mips_symbol<size>* mips_sym = *p;
6513
6514 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6515 // so always use a standard entry there.
6516 //
6517 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6518 // all MIPS16 calls will go via that stub, and there is no benefit
6519 // to having a MIPS16 entry. And in the case of call_stub a
6520 // standard entry actually has to be used as the stub ends with a J
6521 // instruction.
6522 if (this->target_->is_output_newabi()
6523 || mips_sym->has_mips16_call_stub()
6524 || mips_sym->has_mips16_call_fp_stub())
6525 {
6526 mips_sym->set_needs_mips_plt(true);
6527 mips_sym->set_needs_comp_plt(false);
6528 }
6529
6530 // Otherwise, if there are no direct calls to the function, we
6531 // have a free choice of whether to use standard or compressed
6532 // entries. Prefer microMIPS entries if the object is known to
6533 // contain microMIPS code, so that it becomes possible to create
6534 // pure microMIPS binaries. Prefer standard entries otherwise,
6535 // because MIPS16 ones are no smaller and are usually slower.
6536 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6537 {
6538 if (this->target_->is_output_micromips())
6539 mips_sym->set_needs_comp_plt(true);
6540 else
6541 mips_sym->set_needs_mips_plt(true);
6542 }
6543
6544 if (mips_sym->needs_mips_plt())
6545 {
6546 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6547 this->plt_mips_offset_ += plt_mips_entry_size;
6548 }
6549 if (mips_sym->needs_comp_plt())
6550 {
6551 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6552 this->plt_comp_offset_ += plt_comp_entry_size;
6553 }
6554 }
6555
6556 // Figure out the size of the PLT header if we know that we are using it.
6557 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6558 this->plt_header_size_ = this->get_plt_header_size();
6559}
6560
6561// Write out the PLT. This uses the hand-coded instructions above,
6562// and adjusts them as needed.
6563
6564template<int size, bool big_endian>
6565void
6566Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6567{
6568 const off_t offset = this->offset();
6569 const section_size_type oview_size =
6570 convert_to_section_size_type(this->data_size());
6571 unsigned char* const oview = of->get_output_view(offset, oview_size);
6572
6573 const off_t gotplt_file_offset = this->got_plt_->offset();
6574 const section_size_type gotplt_size =
6575 convert_to_section_size_type(this->got_plt_->data_size());
6576 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6577 gotplt_size);
6578 unsigned char* pov = oview;
6579
6580 Mips_address plt_address = this->address();
6581
6582 // Calculate the address of .got.plt.
6583 Mips_address gotplt_addr = this->got_plt_->address();
6584 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6585 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6586
6587 // The PLT sequence is not safe for N64 if .got.plt's address can
6588 // not be loaded in two instructions.
6589 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6590 || ~(gotplt_addr | 0x7fffffff) == 0);
6591
6592 // Write the PLT header.
6593 const uint32_t* plt0_entry = this->get_plt_header_entry();
6594 if (plt0_entry == plt0_entry_micromips_o32)
6595 {
6596 // Write microMIPS PLT header.
6597 gold_assert(gotplt_addr % 4 == 0);
6598
6599 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6600
6601 // ADDIUPC has a span of +/-16MB, check we're in range.
6602 if (gotpc_offset + 0x1000000 >= 0x2000000)
6603 {
6604 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6605 "ADDIUPC"), (long)gotpc_offset);
6606 return;
6607 }
6608
6609 elfcpp::Swap<16, big_endian>::writeval(pov,
6610 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6611 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6612 (gotpc_offset >> 2) & 0xffff);
6613 pov += 4;
6614 for (unsigned int i = 2;
6615 i < (sizeof(plt0_entry_micromips_o32)
6616 / sizeof(plt0_entry_micromips_o32[0]));
6617 i++)
6618 {
6619 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6620 pov += 2;
6621 }
6622 }
6623 else if (plt0_entry == plt0_entry_micromips32_o32)
6624 {
6625 // Write microMIPS PLT header in insn32 mode.
6626 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6627 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6628 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6629 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6630 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6631 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6632 pov += 12;
6633 for (unsigned int i = 6;
6634 i < (sizeof(plt0_entry_micromips32_o32)
6635 / sizeof(plt0_entry_micromips32_o32[0]));
6636 i++)
6637 {
6638 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6639 pov += 2;
6640 }
6641 }
6642 else
6643 {
6644 // Write standard PLT header.
6645 elfcpp::Swap<32, big_endian>::writeval(pov,
6646 plt0_entry[0] | gotplt_addr_high);
6647 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6648 plt0_entry[1] | gotplt_addr_low);
6649 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6650 plt0_entry[2] | gotplt_addr_low);
6651 pov += 12;
6652 for (int i = 3; i < 8; i++)
6653 {
6654 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6655 pov += 4;
6656 }
6657 }
6658
6659
6660 unsigned char* gotplt_pov = gotplt_view;
6661 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6662
6663 // The first two entries in .got.plt are reserved.
6664 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6665 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6666
6667 unsigned int gotplt_offset = 2 * got_entry_size;
6668 gotplt_pov += 2 * got_entry_size;
6669
6670 // Calculate the address of the PLT header.
6671 Mips_address header_address = (plt_address
6672 + (this->is_plt_header_compressed() ? 1 : 0));
6673
6674 // Initialize compressed PLT area view.
6675 unsigned char* pov2 = pov + this->plt_mips_offset_;
6676
6677 // Write the PLT entries.
6678 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6679 p = this->symbols_.begin();
6680 p != this->symbols_.end();
6681 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6682 {
6683 Mips_symbol<size>* mips_sym = *p;
6684
6685 // Calculate the address of the .got.plt entry.
6686 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6687 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6688 & 0xffff);
6689 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6690
6691 // Initially point the .got.plt entry at the PLT header.
6692 if (this->target_->is_output_n64())
6693 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6694 else
6695 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6696
6697 // Now handle the PLT itself. First the standard entry.
6698 if (mips_sym->has_mips_plt_offset())
6699 {
6700 // Pick the load opcode (LW or LD).
6701 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6702 : 0x8c000000;
6703
6704 // Fill in the PLT entry itself.
6705 elfcpp::Swap<32, big_endian>::writeval(pov,
6706 plt_entry[0] | gotplt_entry_addr_hi);
6707 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6708 plt_entry[1] | gotplt_entry_addr_lo | load);
6709 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6710 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6711 plt_entry[3] | gotplt_entry_addr_lo);
6712 pov += 16;
6713 }
6714
6715 // Now the compressed entry. They come after any standard ones.
6716 if (mips_sym->has_comp_plt_offset())
6717 {
6718 if (!this->target_->is_output_micromips())
6719 {
6720 // Write MIPS16 PLT entry.
6721 const uint32_t* plt_entry = plt_entry_mips16_o32;
6722
6723 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6724 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6725 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6726 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6727 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6728 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6729 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6730 gotplt_entry_addr);
6731 pov2 += 16;
6732 }
6733 else if (this->target_->use_32bit_micromips_instructions())
6734 {
6735 // Write microMIPS PLT entry in insn32 mode.
6736 const uint32_t* plt_entry = plt_entry_micromips32_o32;
6737
6738 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6739 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6740 gotplt_entry_addr_hi);
6741 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6742 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6743 gotplt_entry_addr_lo);
6744 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6745 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6746 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6747 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6748 gotplt_entry_addr_lo);
6749 pov2 += 16;
6750 }
6751 else
6752 {
6753 // Write microMIPS PLT entry.
6754 const uint32_t* plt_entry = plt_entry_micromips_o32;
6755
6756 gold_assert(gotplt_entry_addr % 4 == 0);
6757
6758 Mips_address loc_address = plt_address + pov2 - oview;
6759 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6760
6761 // ADDIUPC has a span of +/-16MB, check we're in range.
6762 if (gotpc_offset + 0x1000000 >= 0x2000000)
6763 {
6764 gold_error(_(".got.plt offset of %ld from .plt beyond the "
6765 "range of ADDIUPC"), (long)gotpc_offset);
6766 return;
6767 }
6768
6769 elfcpp::Swap<16, big_endian>::writeval(pov2,
6770 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6771 elfcpp::Swap<16, big_endian>::writeval(
6772 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6773 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6774 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6775 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6776 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6777 pov2 += 12;
6778 }
6779 }
6780 }
6781
6782 // Check the number of bytes written for standard entries.
6783 gold_assert(static_cast<section_size_type>(
6784 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6785 // Check the number of bytes written for compressed entries.
6786 gold_assert((static_cast<section_size_type>(pov2 - pov)
6787 == this->plt_comp_offset_));
6788 // Check the total number of bytes written.
6789 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6790
6791 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6792 == gotplt_size);
6793
6794 of->write_output_view(offset, oview_size, oview);
6795 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6796}
6797
6798// Mips_output_data_mips_stubs methods.
6799
6800// The format of the lazy binding stub when dynamic symbol count is less than
6801// 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6802template<int size, bool big_endian>
6803const uint32_t
6804Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6805{
6806 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6807 0x03e07825, // or t7,ra,zero
9810d34d
SS
6808 0x0320f809, // jalr t9,ra
6809 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
6810};
6811
6812// The format of the lazy binding stub when dynamic symbol count is less than
6813// 64K, dynamic symbol index is less than 32K, and ABI is N64.
6814template<int size, bool big_endian>
6815const uint32_t
6816Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6817{
6818 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6819 0x03e07825, // or t7,ra,zero
9810d34d
SS
6820 0x0320f809, // jalr t9,ra
6821 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
6822};
6823
6824// The format of the lazy binding stub when dynamic symbol count is less than
6825// 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6826template<int size, bool big_endian>
6827const uint32_t
6828Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6829{
6830 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6831 0x03e07825, // or t7,ra,zero
9810d34d
SS
6832 0x0320f809, // jalr t9,ra
6833 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6834};
6835
6836// The format of the lazy binding stub when dynamic symbol count is less than
6837// 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6838template<int size, bool big_endian>
6839const uint32_t
6840Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6841{
6842 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6843 0x03e07825, // or t7,ra,zero
9810d34d
SS
6844 0x0320f809, // jalr t9,ra
6845 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6846};
6847
6848// The format of the lazy binding stub when dynamic symbol count is greater than
6849// 64K, and ABI is not N64.
6850template<int size, bool big_endian>
6851const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6852{
6853 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6854 0x03e07825, // or t7,ra,zero
9810d34d
SS
6855 0x3c180000, // lui t8,DYN_INDEX
6856 0x0320f809, // jalr t9,ra
6857 0x37180000 // ori t8,t8,DYN_INDEX
6858};
6859
6860// The format of the lazy binding stub when dynamic symbol count is greater than
6861// 64K, and ABI is N64.
6862template<int size, bool big_endian>
6863const uint32_t
6864Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6865{
6866 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6867 0x03e07825, // or t7,ra,zero
9810d34d
SS
6868 0x3c180000, // lui t8,DYN_INDEX
6869 0x0320f809, // jalr t9,ra
6870 0x37180000 // ori t8,t8,DYN_INDEX
6871};
6872
6873// microMIPS stubs.
6874
6875// The format of the microMIPS lazy binding stub when dynamic symbol count is
6876// less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6877template<int size, bool big_endian>
6878const uint32_t
6879Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6880{
6881 0xff3c, 0x8010, // lw t9,0x8010(gp)
6882 0x0dff, // move t7,ra
6883 0x45d9, // jalr t9
6884 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6885};
6886
6887// The format of the microMIPS lazy binding stub when dynamic symbol count is
6888// less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6889template<int size, bool big_endian>
6890const uint32_t
6891Mips_output_data_mips_stubs<size, big_endian>::
6892lazy_stub_micromips_normal_1_n64[] =
6893{
6894 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6895 0x0dff, // move t7,ra
6896 0x45d9, // jalr t9
6897 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6898};
6899
6900// The format of the microMIPS lazy binding stub when dynamic symbol
6901// count is less than 64K, dynamic symbol index is between 32K and 64K,
6902// and ABI is not N64.
6903template<int size, bool big_endian>
6904const uint32_t
6905Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6906{
6907 0xff3c, 0x8010, // lw t9,0x8010(gp)
6908 0x0dff, // move t7,ra
6909 0x45d9, // jalr t9
6910 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6911};
6912
6913// The format of the microMIPS lazy binding stub when dynamic symbol
6914// count is less than 64K, dynamic symbol index is between 32K and 64K,
6915// and ABI is N64.
6916template<int size, bool big_endian>
6917const uint32_t
6918Mips_output_data_mips_stubs<size, big_endian>::
6919lazy_stub_micromips_normal_2_n64[] =
6920{
6921 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6922 0x0dff, // move t7,ra
6923 0x45d9, // jalr t9
6924 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6925};
6926
6927// The format of the microMIPS lazy binding stub when dynamic symbol count is
6928// greater than 64K, and ABI is not N64.
6929template<int size, bool big_endian>
6930const uint32_t
6931Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6932{
6933 0xff3c, 0x8010, // lw t9,0x8010(gp)
6934 0x0dff, // move t7,ra
6935 0x41b8, 0x0000, // lui t8,DYN_INDEX
6936 0x45d9, // jalr t9
6937 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6938};
6939
6940// The format of the microMIPS lazy binding stub when dynamic symbol count is
6941// greater than 64K, and ABI is N64.
6942template<int size, bool big_endian>
6943const uint32_t
6944Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6945{
6946 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6947 0x0dff, // move t7,ra
6948 0x41b8, 0x0000, // lui t8,DYN_INDEX
6949 0x45d9, // jalr t9
6950 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6951};
6952
6953// 32-bit microMIPS stubs.
6954
6955// The format of the microMIPS lazy binding stub when dynamic symbol count is
6956// less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6957// can use only 32-bit instructions.
6958template<int size, bool big_endian>
6959const uint32_t
6960Mips_output_data_mips_stubs<size, big_endian>::
6961lazy_stub_micromips32_normal_1[] =
6962{
6963 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6964 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6965 0x03f9, 0x0f3c, // jalr ra,t9
6966 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6967};
6968
6969// The format of the microMIPS lazy binding stub when dynamic symbol count is
6970// less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6971// use only 32-bit instructions.
6972template<int size, bool big_endian>
6973const uint32_t
6974Mips_output_data_mips_stubs<size, big_endian>::
6975lazy_stub_micromips32_normal_1_n64[] =
6976{
6977 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6978 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6979 0x03f9, 0x0f3c, // jalr ra,t9
6980 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6981};
6982
6983// The format of the microMIPS lazy binding stub when dynamic symbol
6984// count is less than 64K, dynamic symbol index is between 32K and 64K,
6985// ABI is not N64, and we can use only 32-bit instructions.
6986template<int size, bool big_endian>
6987const uint32_t
6988Mips_output_data_mips_stubs<size, big_endian>::
6989lazy_stub_micromips32_normal_2[] =
6990{
6991 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6992 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6993 0x03f9, 0x0f3c, // jalr ra,t9
6994 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6995};
6996
6997// The format of the microMIPS lazy binding stub when dynamic symbol
6998// count is less than 64K, dynamic symbol index is between 32K and 64K,
6999// ABI is N64, and we can use only 32-bit instructions.
7000template<int size, bool big_endian>
7001const uint32_t
7002Mips_output_data_mips_stubs<size, big_endian>::
7003lazy_stub_micromips32_normal_2_n64[] =
7004{
7005 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 7006 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
7007 0x03f9, 0x0f3c, // jalr ra,t9
7008 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
7009};
7010
7011// The format of the microMIPS lazy binding stub when dynamic symbol count is
7012// greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7013template<int size, bool big_endian>
7014const uint32_t
7015Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7016{
7017 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 7018 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
7019 0x41b8, 0x0000, // lui t8,DYN_INDEX
7020 0x03f9, 0x0f3c, // jalr ra,t9
7021 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7022};
7023
7024// The format of the microMIPS lazy binding stub when dynamic symbol count is
7025// greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7026template<int size, bool big_endian>
7027const uint32_t
7028Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7029{
7030 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 7031 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
7032 0x41b8, 0x0000, // lui t8,DYN_INDEX
7033 0x03f9, 0x0f3c, // jalr ra,t9
7034 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
7035};
7036
7037// Create entry for a symbol.
7038
7039template<int size, bool big_endian>
7040void
7041Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7042 Mips_symbol<size>* gsym)
7043{
7044 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7045 {
7046 this->symbols_.insert(gsym);
7047 gsym->set_has_lazy_stub(true);
7048 }
7049}
7050
7051// Remove entry for a symbol.
7052
7053template<int size, bool big_endian>
7054void
7055Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7056 Mips_symbol<size>* gsym)
7057{
7058 if (gsym->has_lazy_stub())
7059 {
7060 this->symbols_.erase(gsym);
7061 gsym->set_has_lazy_stub(false);
7062 }
7063}
7064
7065// Set stub offsets for symbols. This method expects that the number of
7066// entries in dynamic symbol table is set.
7067
7068template<int size, bool big_endian>
7069void
7070Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7071{
7072 gold_assert(this->dynsym_count_ != -1U);
7073
7074 if (this->stub_offsets_are_set_)
7075 return;
7076
7077 unsigned int stub_size = this->stub_size();
7078 unsigned int offset = 0;
7079 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7080 p = this->symbols_.begin();
7081 p != this->symbols_.end();
7082 ++p, offset += stub_size)
7083 {
7084 Mips_symbol<size>* mips_sym = *p;
7085 mips_sym->set_lazy_stub_offset(offset);
7086 }
7087 this->stub_offsets_are_set_ = true;
7088}
7089
7090template<int size, bool big_endian>
7091void
7092Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7093{
7094 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7095 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7096 {
7097 Mips_symbol<size>* sym = *p;
7098 if (sym->is_from_dynobj())
7099 sym->set_needs_dynsym_value();
7100 }
7101}
7102
7103// Write out the .MIPS.stubs. This uses the hand-coded instructions and
7104// adjusts them as needed.
7105
7106template<int size, bool big_endian>
7107void
7108Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7109{
7110 const off_t offset = this->offset();
7111 const section_size_type oview_size =
7112 convert_to_section_size_type(this->data_size());
7113 unsigned char* const oview = of->get_output_view(offset, oview_size);
7114
7115 bool big_stub = this->dynsym_count_ > 0x10000;
7116
7117 unsigned char* pov = oview;
7118 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
7119 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7120 {
7121 Mips_symbol<size>* sym = *p;
7122 const uint32_t* lazy_stub;
7123 bool n64 = this->target_->is_output_n64();
7124
7125 if (!this->target_->is_output_micromips())
7126 {
7127 // Write standard (non-microMIPS) stub.
7128 if (!big_stub)
7129 {
7130 if (sym->dynsym_index() & ~0x7fff)
7131 // Dynsym index is between 32K and 64K.
7132 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7133 else
7134 // Dynsym index is less than 32K.
7135 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7136 }
7137 else
7138 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7139
7140 unsigned int i = 0;
7141 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7142 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7143 pov += 8;
7144
7145 i += 2;
7146 if (big_stub)
7147 {
7148 // LUI instruction of the big stub. Paste high 16 bits of the
7149 // dynsym index.
7150 elfcpp::Swap<32, big_endian>::writeval(pov,
7151 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7152 pov += 4;
7153 i += 1;
7154 }
7155 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7156 // Last stub instruction. Paste low 16 bits of the dynsym index.
7157 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7158 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
7159 pov += 8;
7160 }
7161 else if (this->target_->use_32bit_micromips_instructions())
7162 {
7163 // Write microMIPS stub in insn32 mode.
7164 if (!big_stub)
7165 {
7166 if (sym->dynsym_index() & ~0x7fff)
7167 // Dynsym index is between 32K and 64K.
7168 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
7169 : lazy_stub_micromips32_normal_2;
7170 else
7171 // Dynsym index is less than 32K.
7172 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
7173 : lazy_stub_micromips32_normal_1;
7174 }
7175 else
7176 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
7177 : lazy_stub_micromips32_big;
7178
7179 unsigned int i = 0;
7180 // First stub instruction. We emit 32-bit microMIPS instructions by
7181 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7182 // the instruction where the opcode is must always come first, for
7183 // both little and big endian.
7184 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7185 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7186 // Second stub instruction.
7187 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7188 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7189 pov += 8;
7190 i += 4;
7191 if (big_stub)
7192 {
7193 // LUI instruction of the big stub. Paste high 16 bits of the
7194 // dynsym index.
7195 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7196 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7197 (sym->dynsym_index() >> 16) & 0x7fff);
7198 pov += 4;
7199 i += 2;
7200 }
7201 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7202 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7203 // Last stub instruction. Paste low 16 bits of the dynsym index.
7204 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7205 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7206 sym->dynsym_index() & 0xffff);
7207 pov += 8;
7208 }
7209 else
7210 {
7211 // Write microMIPS stub.
7212 if (!big_stub)
7213 {
7214 if (sym->dynsym_index() & ~0x7fff)
7215 // Dynsym index is between 32K and 64K.
7216 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7217 : lazy_stub_micromips_normal_2;
7218 else
7219 // Dynsym index is less than 32K.
7220 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7221 : lazy_stub_micromips_normal_1;
7222 }
7223 else
7224 lazy_stub = n64 ? lazy_stub_micromips_big_n64
7225 : lazy_stub_micromips_big;
7226
7227 unsigned int i = 0;
7228 // First stub instruction. We emit 32-bit microMIPS instructions by
7229 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7230 // the instruction where the opcode is must always come first, for
7231 // both little and big endian.
7232 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7233 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7234 // Second stub instruction.
7235 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7236 pov += 6;
7237 i += 3;
7238 if (big_stub)
7239 {
7240 // LUI instruction of the big stub. Paste high 16 bits of the
7241 // dynsym index.
7242 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7243 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7244 (sym->dynsym_index() >> 16) & 0x7fff);
7245 pov += 4;
7246 i += 2;
7247 }
7248 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7249 // Last stub instruction. Paste low 16 bits of the dynsym index.
7250 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7251 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7252 sym->dynsym_index() & 0xffff);
7253 pov += 6;
7254 }
7255 }
7256
7257 // We always allocate 20 bytes for every stub, because final dynsym count is
7258 // not known in method do_finalize_sections. There are 4 unused bytes per
7259 // stub if final dynsym count is less than 0x10000.
7260 unsigned int used = pov - oview;
7261 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7262 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7263
7264 // Fill the unused space with zeroes.
7265 // TODO(sasa): Can we strip unused bytes during the relaxation?
7266 if (unused > 0)
7267 memset(pov, 0, unused);
7268
7269 of->write_output_view(offset, oview_size, oview);
7270}
7271
7272// Mips_output_section_reginfo methods.
7273
7274template<int size, bool big_endian>
7275void
7276Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7277{
7278 off_t offset = this->offset();
7279 off_t data_size = this->data_size();
7280
7281 unsigned char* view = of->get_output_view(offset, data_size);
7282 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7283 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7284 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7285 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7286 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7287 // Write the gp value.
7288 elfcpp::Swap<size, big_endian>::writeval(view + 20,
7289 this->target_->gp_value());
7290
7291 of->write_output_view(offset, data_size, view);
7292}
7293
7294// Mips_copy_relocs methods.
7295
7296// Emit any saved relocs.
7297
7298template<int sh_type, int size, bool big_endian>
7299void
7300Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7301 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7302 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7303{
7304 for (typename Copy_relocs<sh_type, size, big_endian>::
7305 Copy_reloc_entries::iterator p = this->entries_.begin();
7306 p != this->entries_.end();
7307 ++p)
7308 emit_entry(*p, reloc_section, symtab, layout, target);
7309
7310 // We no longer need the saved information.
7311 this->entries_.clear();
7312}
7313
7314// Emit the reloc if appropriate.
7315
7316template<int sh_type, int size, bool big_endian>
7317void
7318Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7319 Copy_reloc_entry& entry,
7320 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7321 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7322{
7323 // If the symbol is no longer defined in a dynamic object, then we
7324 // emitted a COPY relocation, and we do not want to emit this
7325 // dynamic relocation.
7326 if (!entry.sym_->is_from_dynobj())
7327 return;
7328
7329 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7330 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7331 || entry.reloc_type_ == elfcpp::R_MIPS_64);
7332
7333 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7334 if (can_make_dynamic && !sym->has_static_relocs())
7335 {
7336 Mips_relobj<size, big_endian>* object =
7337 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7338 target->got_section(symtab, layout)->record_global_got_symbol(
7339 sym, object, entry.reloc_type_, true, false);
7340 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7341 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7342 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7343 else
7344 target->rel_dyn_section(layout)->add_symbolless_global_addend(
7345 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7346 entry.shndx_, entry.address_);
7347 }
7348 else
7349 this->make_copy_reloc(symtab, layout,
7350 static_cast<Sized_symbol<size>*>(entry.sym_),
7351 reloc_section);
7352}
7353
7354// Target_mips methods.
7355
7356// Return the value to use for a dynamic symbol which requires special
7357// treatment. This is how we support equality comparisons of function
7358// pointers across shared library boundaries, as described in the
7359// processor specific ABI supplement.
7360
7361template<int size, bool big_endian>
7362uint64_t
7363Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7364{
7365 uint64_t value = 0;
7366 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7367
7368 if (!mips_sym->has_lazy_stub())
7369 {
7370 if (mips_sym->has_plt_offset())
7371 {
7372 // We distinguish between PLT entries and lazy-binding stubs by
7373 // giving the former an st_other value of STO_MIPS_PLT. Set the
7374 // value to the stub address if there are any relocations in the
7375 // binary where pointer equality matters.
7376 if (mips_sym->pointer_equality_needed())
7377 {
7378 // Prefer a standard MIPS PLT entry.
7379 if (mips_sym->has_mips_plt_offset())
7380 value = this->plt_section()->mips_entry_address(mips_sym);
7381 else
7382 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7383 }
7384 else
7385 value = 0;
7386 }
7387 }
7388 else
7389 {
7390 // First, set stub offsets for symbols. This method expects that the
7391 // number of entries in dynamic symbol table is set.
7392 this->mips_stubs_section()->set_lazy_stub_offsets();
7393
7394 // The run-time linker uses the st_value field of the symbol
7395 // to reset the global offset table entry for this external
7396 // to its stub address when unlinking a shared object.
7397 value = this->mips_stubs_section()->stub_address(mips_sym);
7398 }
7399
7400 if (mips_sym->has_mips16_fn_stub())
7401 {
7402 // If we have a MIPS16 function with a stub, the dynamic symbol must
7403 // refer to the stub, since only the stub uses the standard calling
7404 // conventions.
7405 value = mips_sym->template
7406 get_mips16_fn_stub<big_endian>()->output_address();
7407 }
7408
7409 return value;
7410}
7411
7412// Get the dynamic reloc section, creating it if necessary. It's always
7413// .rel.dyn, even for MIPS64.
7414
7415template<int size, bool big_endian>
7416typename Target_mips<size, big_endian>::Reloc_section*
7417Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7418{
7419 if (this->rel_dyn_ == NULL)
7420 {
7421 gold_assert(layout != NULL);
7422 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7423 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7424 elfcpp::SHF_ALLOC, this->rel_dyn_,
7425 ORDER_DYNAMIC_RELOCS, false);
7426
7427 // First entry in .rel.dyn has to be null.
7428 // This is hack - we define dummy output data and set its address to 0,
7429 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7430 // This ensures that the entry is null.
7431 Output_data* od = new Output_data_zero_fill(0, 0);
7432 od->set_address(0);
7433 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7434 }
7435 return this->rel_dyn_;
7436}
7437
7438// Get the GOT section, creating it if necessary.
7439
7440template<int size, bool big_endian>
7441Mips_output_data_got<size, big_endian>*
7442Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7443 Layout* layout)
7444{
7445 if (this->got_ == NULL)
7446 {
7447 gold_assert(symtab != NULL && layout != NULL);
7448
7449 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7450 layout);
7451 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7452 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7453 elfcpp::SHF_MIPS_GPREL),
7454 this->got_, ORDER_DATA, false);
7455
7456 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7457 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7458 Symbol_table::PREDEFINED,
7459 this->got_,
7460 0, 0, elfcpp::STT_OBJECT,
7461 elfcpp::STB_GLOBAL,
7462 elfcpp::STV_DEFAULT, 0,
7463 false, false);
7464 }
7465
7466 return this->got_;
7467}
7468
7469// Calculate value of _gp symbol.
7470
7471template<int size, bool big_endian>
7472void
7473Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7474{
7475 if (this->gp_ != NULL)
7476 return;
7477
7478 Output_data* section = layout->find_output_section(".got");
7479 if (section == NULL)
7480 {
7481 // If there is no .got section, gp should be based on .sdata.
7482 // TODO(sasa): This is probably not needed. This was needed for older
7483 // MIPS architectures which accessed both GOT and .sdata section using
7484 // gp-relative addressing. Modern Mips Linux ELF architectures don't
7485 // access .sdata using gp-relative addressing.
7486 for (Layout::Section_list::const_iterator
7487 p = layout->section_list().begin();
7488 p != layout->section_list().end();
7489 ++p)
7490 {
7491 if (strcmp((*p)->name(), ".sdata") == 0)
7492 {
7493 section = *p;
7494 break;
7495 }
7496 }
7497 }
7498
7499 Sized_symbol<size>* gp =
7500 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7501 if (gp != NULL)
7502 {
7503 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7504 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7505 elfcpp::STT_OBJECT,
7506 elfcpp::STB_GLOBAL,
7507 elfcpp::STV_DEFAULT, 0,
7508 false, false);
7509 this->gp_ = gp;
7510 }
7511 else if (section != NULL)
7512 {
7513 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7514 "_gp", NULL, Symbol_table::PREDEFINED,
7515 section, MIPS_GP_OFFSET, 0,
7516 elfcpp::STT_OBJECT,
7517 elfcpp::STB_GLOBAL,
7518 elfcpp::STV_DEFAULT,
7519 0, false, false));
7520 this->gp_ = gp;
7521 }
7522}
7523
7524// Set the dynamic symbol indexes. INDEX is the index of the first
7525// global dynamic symbol. Pointers to the symbols are stored into the
7526// vector SYMS. The names are added to DYNPOOL. This returns an
7527// updated dynamic symbol index.
7528
7529template<int size, bool big_endian>
7530unsigned int
7531Target_mips<size, big_endian>::do_set_dynsym_indexes(
7532 std::vector<Symbol*>* dyn_symbols, unsigned int index,
7533 std::vector<Symbol*>* syms, Stringpool* dynpool,
7534 Versions* versions, Symbol_table* symtab) const
7535{
7536 std::vector<Symbol*> non_got_symbols;
7537 std::vector<Symbol*> got_symbols;
7538
7539 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7540 &got_symbols);
7541
7542 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7543 p != non_got_symbols.end();
7544 ++p)
7545 {
7546 Symbol* sym = *p;
7547
7548 // Note that SYM may already have a dynamic symbol index, since
7549 // some symbols appear more than once in the symbol table, with
7550 // and without a version.
7551
7552 if (!sym->has_dynsym_index())
7553 {
7554 sym->set_dynsym_index(index);
7555 ++index;
7556 syms->push_back(sym);
7557 dynpool->add(sym->name(), false, NULL);
7558
7559 // Record any version information.
7560 if (sym->version() != NULL)
7561 versions->record_version(symtab, dynpool, sym);
7562
7563 // If the symbol is defined in a dynamic object and is
7564 // referenced in a regular object, then mark the dynamic
7565 // object as needed. This is used to implement --as-needed.
7566 if (sym->is_from_dynobj() && sym->in_reg())
7567 sym->object()->set_is_needed();
7568 }
7569 }
7570
7571 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7572 p != got_symbols.end();
7573 ++p)
7574 {
7575 Symbol* sym = *p;
7576 if (!sym->has_dynsym_index())
7577 {
7578 // Record any version information.
7579 if (sym->version() != NULL)
7580 versions->record_version(symtab, dynpool, sym);
7581 }
7582 }
7583
7584 index = versions->finalize(symtab, index, syms);
7585
7586 int got_sym_count = 0;
7587 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7588 p != got_symbols.end();
7589 ++p)
7590 {
7591 Symbol* sym = *p;
7592
7593 if (!sym->has_dynsym_index())
7594 {
7595 ++got_sym_count;
7596 sym->set_dynsym_index(index);
7597 ++index;
7598 syms->push_back(sym);
7599 dynpool->add(sym->name(), false, NULL);
7600
7601 // If the symbol is defined in a dynamic object and is
7602 // referenced in a regular object, then mark the dynamic
7603 // object as needed. This is used to implement --as-needed.
7604 if (sym->is_from_dynobj() && sym->in_reg())
7605 sym->object()->set_is_needed();
7606 }
7607 }
7608
7609 // Set index of the first symbol that has .got entry.
7610 this->got_->set_first_global_got_dynsym_index(
7611 got_sym_count > 0 ? index - got_sym_count : -1U);
7612
7613 if (this->mips_stubs_ != NULL)
7614 this->mips_stubs_->set_dynsym_count(index);
7615
7616 return index;
7617}
7618
7619// Create a PLT entry for a global symbol referenced by r_type relocation.
7620
7621template<int size, bool big_endian>
7622void
7623Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7624 Layout* layout,
7625 Mips_symbol<size>* gsym,
7626 unsigned int r_type)
7627{
7628 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7629 return;
7630
7631 if (this->plt_ == NULL)
7632 {
7633 // Create the GOT section first.
7634 this->got_section(symtab, layout);
7635
7636 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7637 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7638 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7639 this->got_plt_, ORDER_DATA, false);
7640
7641 // The first two entries are reserved.
7642 this->got_plt_->set_current_data_size(2 * size/8);
7643
7644 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7645 this->got_plt_,
7646 this);
7647 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7648 (elfcpp::SHF_ALLOC
7649 | elfcpp::SHF_EXECINSTR),
7650 this->plt_, ORDER_PLT, false);
7651 }
7652
7653 this->plt_->add_entry(gsym, r_type);
7654}
7655
7656
7657// Get the .MIPS.stubs section, creating it if necessary.
7658
7659template<int size, bool big_endian>
7660Mips_output_data_mips_stubs<size, big_endian>*
7661Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7662{
7663 if (this->mips_stubs_ == NULL)
7664 {
7665 this->mips_stubs_ =
7666 new Mips_output_data_mips_stubs<size, big_endian>(this);
7667 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7668 (elfcpp::SHF_ALLOC
7669 | elfcpp::SHF_EXECINSTR),
7670 this->mips_stubs_, ORDER_PLT, false);
7671 }
7672 return this->mips_stubs_;
7673}
7674
7675// Get the LA25 stub section, creating it if necessary.
7676
7677template<int size, bool big_endian>
7678Mips_output_data_la25_stub<size, big_endian>*
7679Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7680{
7681 if (this->la25_stub_ == NULL)
7682 {
7683 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7684 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7685 (elfcpp::SHF_ALLOC
7686 | elfcpp::SHF_EXECINSTR),
7687 this->la25_stub_, ORDER_TEXT, false);
7688 }
7689 return this->la25_stub_;
7690}
7691
7692// Process the relocations to determine unreferenced sections for
7693// garbage collection.
7694
7695template<int size, bool big_endian>
7696void
7697Target_mips<size, big_endian>::gc_process_relocs(
7698 Symbol_table* symtab,
7699 Layout* layout,
7700 Sized_relobj_file<size, big_endian>* object,
7701 unsigned int data_shndx,
7702 unsigned int,
7703 const unsigned char* prelocs,
7704 size_t reloc_count,
7705 Output_section* output_section,
7706 bool needs_special_offset_handling,
7707 size_t local_symbol_count,
7708 const unsigned char* plocal_symbols)
7709{
7710 typedef Target_mips<size, big_endian> Mips;
4d625b70
CC
7711 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
7712 Classify_reloc;
9810d34d 7713
4d625b70 7714 gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
9810d34d
SS
7715 symtab,
7716 layout,
7717 this,
7718 object,
7719 data_shndx,
7720 prelocs,
7721 reloc_count,
7722 output_section,
7723 needs_special_offset_handling,
7724 local_symbol_count,
7725 plocal_symbols);
7726}
7727
7728// Scan relocations for a section.
7729
7730template<int size, bool big_endian>
7731void
7732Target_mips<size, big_endian>::scan_relocs(
7733 Symbol_table* symtab,
7734 Layout* layout,
7735 Sized_relobj_file<size, big_endian>* object,
7736 unsigned int data_shndx,
7737 unsigned int sh_type,
7738 const unsigned char* prelocs,
7739 size_t reloc_count,
7740 Output_section* output_section,
7741 bool needs_special_offset_handling,
7742 size_t local_symbol_count,
7743 const unsigned char* plocal_symbols)
7744{
7745 typedef Target_mips<size, big_endian> Mips;
9810d34d
SS
7746
7747 if (sh_type == elfcpp::SHT_REL)
4d625b70
CC
7748 {
7749 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
7750 Classify_reloc;
7751
7752 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
7753 symtab,
7754 layout,
7755 this,
7756 object,
7757 data_shndx,
7758 prelocs,
7759 reloc_count,
7760 output_section,
7761 needs_special_offset_handling,
7762 local_symbol_count,
7763 plocal_symbols);
7764 }
9810d34d 7765 else if (sh_type == elfcpp::SHT_RELA)
4d625b70
CC
7766 {
7767 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7768 Classify_reloc;
7769
7770 gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
7771 symtab,
7772 layout,
7773 this,
7774 object,
7775 data_shndx,
7776 prelocs,
7777 reloc_count,
7778 output_section,
7779 needs_special_offset_handling,
7780 local_symbol_count,
7781 plocal_symbols);
7782 }
9810d34d
SS
7783}
7784
7785template<int size, bool big_endian>
7786bool
7787Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7788{
7789 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7790 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7791 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7792 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7793 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7794 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7795 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7796}
7797
7798// Return the MACH for a MIPS e_flags value.
7799template<int size, bool big_endian>
7800unsigned int
7801Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7802{
7803 switch (flags & elfcpp::EF_MIPS_MACH)
7804 {
7805 case elfcpp::E_MIPS_MACH_3900:
7806 return mach_mips3900;
7807
7808 case elfcpp::E_MIPS_MACH_4010:
7809 return mach_mips4010;
7810
7811 case elfcpp::E_MIPS_MACH_4100:
7812 return mach_mips4100;
7813
7814 case elfcpp::E_MIPS_MACH_4111:
7815 return mach_mips4111;
7816
7817 case elfcpp::E_MIPS_MACH_4120:
7818 return mach_mips4120;
7819
7820 case elfcpp::E_MIPS_MACH_4650:
7821 return mach_mips4650;
7822
7823 case elfcpp::E_MIPS_MACH_5400:
7824 return mach_mips5400;
7825
7826 case elfcpp::E_MIPS_MACH_5500:
7827 return mach_mips5500;
7828
7829 case elfcpp::E_MIPS_MACH_9000:
7830 return mach_mips9000;
7831
7832 case elfcpp::E_MIPS_MACH_SB1:
7833 return mach_mips_sb1;
7834
7835 case elfcpp::E_MIPS_MACH_LS2E:
7836 return mach_mips_loongson_2e;
7837
7838 case elfcpp::E_MIPS_MACH_LS2F:
7839 return mach_mips_loongson_2f;
7840
7841 case elfcpp::E_MIPS_MACH_LS3A:
7842 return mach_mips_loongson_3a;
7843
7844 case elfcpp::E_MIPS_MACH_OCTEON2:
7845 return mach_mips_octeon2;
7846
7847 case elfcpp::E_MIPS_MACH_OCTEON:
7848 return mach_mips_octeon;
7849
7850 case elfcpp::E_MIPS_MACH_XLR:
7851 return mach_mips_xlr;
7852
7853 default:
7854 switch (flags & elfcpp::EF_MIPS_ARCH)
7855 {
7856 default:
7857 case elfcpp::E_MIPS_ARCH_1:
7858 return mach_mips3000;
7859
7860 case elfcpp::E_MIPS_ARCH_2:
7861 return mach_mips6000;
7862
7863 case elfcpp::E_MIPS_ARCH_3:
7864 return mach_mips4000;
7865
7866 case elfcpp::E_MIPS_ARCH_4:
7867 return mach_mips8000;
7868
7869 case elfcpp::E_MIPS_ARCH_5:
7870 return mach_mips5;
7871
7872 case elfcpp::E_MIPS_ARCH_32:
7873 return mach_mipsisa32;
7874
7875 case elfcpp::E_MIPS_ARCH_64:
7876 return mach_mipsisa64;
7877
7878 case elfcpp::E_MIPS_ARCH_32R2:
7879 return mach_mipsisa32r2;
7880
7881 case elfcpp::E_MIPS_ARCH_64R2:
7882 return mach_mipsisa64r2;
7883 }
7884 }
7885
7886 return 0;
7887}
7888
7889// Check whether machine EXTENSION is an extension of machine BASE.
7890template<int size, bool big_endian>
7891bool
7892Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7893 unsigned int extension)
7894{
7895 if (extension == base)
7896 return true;
7897
7898 if ((base == mach_mipsisa32)
7899 && this->mips_mach_extends(mach_mipsisa64, extension))
7900 return true;
7901
7902 if ((base == mach_mipsisa32r2)
7903 && this->mips_mach_extends(mach_mipsisa64r2, extension))
7904 return true;
7905
7906 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7907 if (extension == this->mips_mach_extensions_[i].first)
7908 {
7909 extension = this->mips_mach_extensions_[i].second;
7910 if (extension == base)
7911 return true;
7912 }
7913
7914 return false;
7915}
7916
7917template<int size, bool big_endian>
7918void
7919Target_mips<size, big_endian>::merge_processor_specific_flags(
7920 const std::string& name, elfcpp::Elf_Word in_flags,
7921 unsigned char in_ei_class, bool dyn_obj)
7922{
7923 // If flags are not set yet, just copy them.
7924 if (!this->are_processor_specific_flags_set())
7925 {
7926 this->set_processor_specific_flags(in_flags);
7927 this->ei_class_ = in_ei_class;
7928 this->mach_ = this->elf_mips_mach(in_flags);
7929 return;
7930 }
7931
7932 elfcpp::Elf_Word new_flags = in_flags;
7933 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7934 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7935 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7936
7937 // Check flag compatibility.
7938 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7939 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7940
7941 // Some IRIX 6 BSD-compatibility objects have this bit set. It
7942 // doesn't seem to matter.
7943 new_flags &= ~elfcpp::EF_MIPS_XGOT;
7944 old_flags &= ~elfcpp::EF_MIPS_XGOT;
7945
7946 // MIPSpro generates ucode info in n64 objects. Again, we should
7947 // just be able to ignore this.
7948 new_flags &= ~elfcpp::EF_MIPS_UCODE;
7949 old_flags &= ~elfcpp::EF_MIPS_UCODE;
7950
7951 // DSOs should only be linked with CPIC code.
7952 if (dyn_obj)
7953 new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7954
7955 if (new_flags == old_flags)
7956 {
7957 this->set_processor_specific_flags(merged_flags);
7958 return;
7959 }
7960
7961 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7962 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7963 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7964 name.c_str());
7965
7966 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7967 merged_flags |= elfcpp::EF_MIPS_CPIC;
7968 if (!(new_flags & elfcpp::EF_MIPS_PIC))
7969 merged_flags &= ~elfcpp::EF_MIPS_PIC;
7970
7971 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7972 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7973
7974 // Compare the ISAs.
7975 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7976 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7977 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7978 {
7979 // Output ISA isn't the same as, or an extension of, input ISA.
7980 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7981 {
7982 // Copy the architecture info from input object to output. Also copy
7983 // the 32-bit flag (if set) so that we continue to recognise
7984 // output as a 32-bit binary.
7985 this->mach_ = this->elf_mips_mach(in_flags);
7986 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7987 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7988 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7989
7990 // Copy across the ABI flags if output doesn't use them
7991 // and if that was what caused us to treat input object as 32-bit.
7992 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7993 && this->mips_32bit_flags(new_flags)
7994 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7995 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7996 }
7997 else
7998 // The ISAs aren't compatible.
7999 gold_error(_("%s: linking %s module with previous %s modules"),
8000 name.c_str(), this->elf_mips_mach_name(in_flags),
8001 this->elf_mips_mach_name(merged_flags));
8002 }
8003
8004 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
8005 | elfcpp::EF_MIPS_32BITMODE));
8006 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
8007 | elfcpp::EF_MIPS_32BITMODE));
8008
8009 // Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
8010 // EI_CLASS differently from any 32-bit ABI.
8011 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
8012 || (in_ei_class != this->ei_class_))
8013 {
8014 // Only error if both are set (to different values).
8015 if (((new_flags & elfcpp::EF_MIPS_ABI)
8016 && (old_flags & elfcpp::EF_MIPS_ABI))
8017 || (in_ei_class != this->ei_class_))
8018 gold_error(_("%s: ABI mismatch: linking %s module with "
8019 "previous %s modules"), name.c_str(),
8020 this->elf_mips_abi_name(in_flags, in_ei_class),
8021 this->elf_mips_abi_name(merged_flags, this->ei_class_));
8022
8023 new_flags &= ~elfcpp::EF_MIPS_ABI;
8024 old_flags &= ~elfcpp::EF_MIPS_ABI;
8025 }
8026
8027 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
8028 // and allow arbitrary mixing of the remaining ASEs (retain the union).
8029 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
8030 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
8031 {
8032 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
8033 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
8034 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
8035 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
8036 int micro_mis = old_m16 && new_micro;
8037 int m16_mis = old_micro && new_m16;
8038
8039 if (m16_mis || micro_mis)
8040 gold_error(_("%s: ASE mismatch: linking %s module with "
8041 "previous %s modules"), name.c_str(),
8042 m16_mis ? "MIPS16" : "microMIPS",
8043 m16_mis ? "microMIPS" : "MIPS16");
8044
8045 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
8046
8047 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
8048 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
8049 }
8050
8051 // Warn about any other mismatches.
8052 if (new_flags != old_flags)
8053 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
8054 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
8055
8056 this->set_processor_specific_flags(merged_flags);
8057}
8058
8059// Adjust ELF file header.
8060
8061template<int size, bool big_endian>
8062void
8063Target_mips<size, big_endian>::do_adjust_elf_header(
8064 unsigned char* view,
8065 int len)
8066{
8067 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
8068
8069 elfcpp::Ehdr<size, big_endian> ehdr(view);
8070 unsigned char e_ident[elfcpp::EI_NIDENT];
8071 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
8072
8073 e_ident[elfcpp::EI_CLASS] = this->ei_class_;
8074
8075 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
8076 oehdr.put_e_ident(e_ident);
8077 if (this->entry_symbol_is_compressed_)
8078 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
8079}
8080
8081// do_make_elf_object to override the same function in the base class.
8082// We need to use a target-specific sub-class of
8083// Sized_relobj_file<size, big_endian> to store Mips specific information.
8084// Hence we need to have our own ELF object creation.
8085
8086template<int size, bool big_endian>
8087Object*
8088Target_mips<size, big_endian>::do_make_elf_object(
8089 const std::string& name,
8090 Input_file* input_file,
8091 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
8092{
8093 int et = ehdr.get_e_type();
8094 // ET_EXEC files are valid input for --just-symbols/-R,
8095 // and we treat them as relocatable objects.
8096 if (et == elfcpp::ET_REL
8097 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
8098 {
8099 Mips_relobj<size, big_endian>* obj =
8100 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
8101 obj->setup();
8102 return obj;
8103 }
8104 else if (et == elfcpp::ET_DYN)
8105 {
8106 // TODO(sasa): Should we create Mips_dynobj?
8107 return Target::do_make_elf_object(name, input_file, offset, ehdr);
8108 }
8109 else
8110 {
8111 gold_error(_("%s: unsupported ELF file type %d"),
8112 name.c_str(), et);
8113 return NULL;
8114 }
8115}
8116
8117// Finalize the sections.
8118
8119template <int size, bool big_endian>
8120void
8121Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
8122 const Input_objects* input_objects,
8123 Symbol_table* symtab)
8124{
8125 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
8126 // DT_FINI have correct values.
8127 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
8128 symtab->lookup(parameters->options().init()));
8129 if (init != NULL && (init->is_mips16() || init->is_micromips()))
8130 init->set_value(init->value() | 1);
8131 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
8132 symtab->lookup(parameters->options().fini()));
8133 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
8134 fini->set_value(fini->value() | 1);
8135
8136 // Check whether the entry symbol is mips16 or micromips. This is needed to
8137 // adjust entry address in ELF header.
8138 Mips_symbol<size>* entry =
8139 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
8140 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
8141 || entry->is_micromips()));
8142
8143 if (!parameters->doing_static_link()
8144 && (strcmp(parameters->options().hash_style(), "gnu") == 0
8145 || strcmp(parameters->options().hash_style(), "both") == 0))
8146 {
8147 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
8148 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
8149 // MIPS ABI requires a mapping between the GOT and the symbol table.
8150 gold_error(".gnu.hash is incompatible with the MIPS ABI");
8151 }
8152
8153 // Check whether the final section that was scanned has HI16 or GOT16
8154 // relocations without the corresponding LO16 part.
8155 if (this->got16_addends_.size() > 0)
8156 gold_error("Can't find matching LO16 reloc");
8157
8158 // Set _gp value.
8159 this->set_gp(layout, symtab);
8160
8161 // Check for any mips16 stub sections that we can discard.
8162 if (!parameters->options().relocatable())
8163 {
8164 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8165 p != input_objects->relobj_end();
8166 ++p)
8167 {
8168 Mips_relobj<size, big_endian>* object =
8169 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8170 object->discard_mips16_stub_sections(symtab);
8171 }
8172 }
8173
8174 // Merge processor-specific flags.
8175 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8176 p != input_objects->relobj_end();
8177 ++p)
8178 {
8179 Mips_relobj<size, big_endian>* relobj =
8180 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8181
8182 Input_file::Format format = relobj->input_file()->format();
8183 if (format == Input_file::FORMAT_ELF)
8184 {
8185 // Read processor-specific flags in ELF file header.
8186 const unsigned char* pehdr = relobj->get_view(
8187 elfcpp::file_header_offset,
8188 elfcpp::Elf_sizes<size>::ehdr_size,
8189 true, false);
8190
8191 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8192 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8193 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8194
8195 this->merge_processor_specific_flags(relobj->name(), in_flags,
8196 ei_class, false);
8197 }
8198 }
8199
8200 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8201 p != input_objects->dynobj_end();
8202 ++p)
8203 {
8204 Sized_dynobj<size, big_endian>* dynobj =
8205 static_cast<Sized_dynobj<size, big_endian>*>(*p);
8206
8207 // Read processor-specific flags.
8208 const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8209 elfcpp::Elf_sizes<size>::ehdr_size,
8210 true, false);
8211
8212 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8213 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8214 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8215
8216 this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8217 true);
8218 }
8219
8220 // Merge .reginfo contents of input objects.
8221 Valtype gprmask = 0;
8222 Valtype cprmask1 = 0;
8223 Valtype cprmask2 = 0;
8224 Valtype cprmask3 = 0;
8225 Valtype cprmask4 = 0;
8226 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8227 p != input_objects->relobj_end();
8228 ++p)
8229 {
8230 Mips_relobj<size, big_endian>* relobj =
8231 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8232
8233 gprmask |= relobj->gprmask();
8234 cprmask1 |= relobj->cprmask1();
8235 cprmask2 |= relobj->cprmask2();
8236 cprmask3 |= relobj->cprmask3();
8237 cprmask4 |= relobj->cprmask4();
8238 }
8239
8240 if (this->plt_ != NULL)
8241 {
8242 // Set final PLT offsets for symbols.
8243 this->plt_section()->set_plt_offsets();
8244
8245 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8246 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8247 // there are no standard PLT entries present.
8248 unsigned char nonvis = 0;
8249 if (this->is_output_micromips()
8250 && !this->plt_section()->has_standard_entries())
8251 nonvis = elfcpp::STO_MICROMIPS >> 2;
8252 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8253 Symbol_table::PREDEFINED,
8254 this->plt_,
8255 0, 0, elfcpp::STT_FUNC,
8256 elfcpp::STB_LOCAL,
8257 elfcpp::STV_DEFAULT, nonvis,
8258 false, false);
8259 }
8260
8261 if (this->mips_stubs_ != NULL)
8262 {
8263 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8264 unsigned char nonvis = 0;
8265 if (this->is_output_micromips())
8266 nonvis = elfcpp::STO_MICROMIPS >> 2;
8267 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8268 Symbol_table::PREDEFINED,
8269 this->mips_stubs_,
8270 0, 0, elfcpp::STT_FUNC,
8271 elfcpp::STB_LOCAL,
8272 elfcpp::STV_DEFAULT, nonvis,
8273 false, false);
8274 }
8275
8276 if (!parameters->options().relocatable() && !parameters->doing_static_link())
8277 // In case there is no .got section, create one.
8278 this->got_section(symtab, layout);
8279
8280 // Emit any relocs we saved in an attempt to avoid generating COPY
8281 // relocs.
8282 if (this->copy_relocs_.any_saved_relocs())
8283 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8284 this);
8285
8286 // Emit dynamic relocs.
8287 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8288 p != this->dyn_relocs_.end();
8289 ++p)
8290 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8291
8292 if (this->has_got_section())
8293 this->got_section()->lay_out_got(layout, symtab, input_objects);
8294
8295 if (this->mips_stubs_ != NULL)
8296 this->mips_stubs_->set_needs_dynsym_value();
8297
8298 // Check for functions that might need $25 to be valid on entry.
8299 // TODO(sasa): Can we do this without iterating over all symbols?
8300 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8301 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8302 symtab));
8303
8304 // Add NULL segment.
8305 if (!parameters->options().relocatable())
8306 layout->make_output_segment(elfcpp::PT_NULL, 0);
8307
8308 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8309 p != layout->section_list().end();
8310 ++p)
8311 {
8312 if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8313 {
8314 Mips_output_section_reginfo<size, big_endian>* reginfo =
8315 Mips_output_section_reginfo<size, big_endian>::
8316 as_mips_output_section_reginfo(*p);
8317
8318 reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8319
8320 if (!parameters->options().relocatable())
8321 {
8322 Output_segment* reginfo_segment =
8323 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8324 elfcpp::PF_R);
8325 reginfo_segment->add_output_section_to_nonload(reginfo,
8326 elfcpp::PF_R);
8327 }
8328 }
8329 }
8330
8331 // Fill in some more dynamic tags.
8332 // TODO(sasa): Add more dynamic tags.
8333 const Reloc_section* rel_plt = (this->plt_ == NULL
8334 ? NULL : this->plt_->rel_plt());
8335 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8336 this->rel_dyn_, true, false);
8337
8338 Output_data_dynamic* const odyn = layout->dynamic_data();
8339 if (odyn != NULL
8340 && !parameters->options().relocatable()
8341 && !parameters->doing_static_link())
8342 {
8343 unsigned int d_val;
8344 // This element holds a 32-bit version id for the Runtime
8345 // Linker Interface. This will start at integer value 1.
8346 d_val = 0x01;
8347 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8348
8349 // Dynamic flags
8350 d_val = elfcpp::RHF_NOTPOT;
8351 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8352
8353 // Save layout for using when emiting custom dynamic tags.
8354 this->layout_ = layout;
8355
8356 // This member holds the base address of the segment.
8357 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8358
8359 // This member holds the number of entries in the .dynsym section.
8360 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8361
8362 // This member holds the index of the first dynamic symbol
8363 // table entry that corresponds to an entry in the global offset table.
8364 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8365
8366 // This member holds the number of local GOT entries.
8367 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8368 this->got_->get_local_gotno());
8369
8370 if (this->plt_ != NULL)
8371 // DT_MIPS_PLTGOT dynamic tag
8372 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8373 }
8374 }
8375
8376// Get the custom dynamic tag value.
8377template<int size, bool big_endian>
8378unsigned int
8379Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8380{
8381 switch (tag)
8382 {
8383 case elfcpp::DT_MIPS_BASE_ADDRESS:
8384 {
8385 // The base address of the segment.
8386 // At this point, the segment list has been sorted into final order,
8387 // so just return vaddr of the first readable PT_LOAD segment.
8388 Output_segment* seg =
8389 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8390 gold_assert(seg != NULL);
8391 return seg->vaddr();
8392 }
8393
8394 case elfcpp::DT_MIPS_SYMTABNO:
8395 // The number of entries in the .dynsym section.
8396 return this->get_dt_mips_symtabno();
8397
8398 case elfcpp::DT_MIPS_GOTSYM:
8399 {
8400 // The index of the first dynamic symbol table entry that corresponds
8401 // to an entry in the GOT.
8402 if (this->got_->first_global_got_dynsym_index() != -1U)
8403 return this->got_->first_global_got_dynsym_index();
8404 else
8405 // In case if we don't have global GOT symbols we default to setting
8406 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8407 return this->get_dt_mips_symtabno();
8408 }
8409
8410 default:
8411 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8412 }
8413
8414 return (unsigned int)-1;
8415}
8416
8417// Relocate section data.
8418
8419template<int size, bool big_endian>
8420void
8421Target_mips<size, big_endian>::relocate_section(
8422 const Relocate_info<size, big_endian>* relinfo,
8423 unsigned int sh_type,
8424 const unsigned char* prelocs,
8425 size_t reloc_count,
8426 Output_section* output_section,
8427 bool needs_special_offset_handling,
8428 unsigned char* view,
8429 Mips_address address,
8430 section_size_type view_size,
8431 const Reloc_symbol_changes* reloc_symbol_changes)
8432{
8433 typedef Target_mips<size, big_endian> Mips;
8434 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8435
8436 if (sh_type == elfcpp::SHT_REL)
4d625b70
CC
8437 {
8438 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8439 Classify_reloc;
8440
8441 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
8442 gold::Default_comdat_behavior, Classify_reloc>(
8443 relinfo,
8444 this,
8445 prelocs,
8446 reloc_count,
8447 output_section,
8448 needs_special_offset_handling,
8449 view,
8450 address,
8451 view_size,
8452 reloc_symbol_changes);
8453 }
9810d34d 8454 else if (sh_type == elfcpp::SHT_RELA)
4d625b70
CC
8455 {
8456 typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8457 Classify_reloc;
8458
8459 gold::relocate_section<size, big_endian, Mips, Mips_relocate,
8460 gold::Default_comdat_behavior, Classify_reloc>(
8461 relinfo,
8462 this,
8463 prelocs,
8464 reloc_count,
8465 output_section,
8466 needs_special_offset_handling,
8467 view,
8468 address,
8469 view_size,
8470 reloc_symbol_changes);
8471 }
9810d34d
SS
8472}
8473
8474// Return the size of a relocation while scanning during a relocatable
8475// link.
8476
9810d34d 8477unsigned int
4d625b70 8478mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9810d34d
SS
8479{
8480 switch (r_type)
8481 {
8482 case elfcpp::R_MIPS_NONE:
8483 case elfcpp::R_MIPS_TLS_DTPMOD64:
8484 case elfcpp::R_MIPS_TLS_DTPREL64:
8485 case elfcpp::R_MIPS_TLS_TPREL64:
8486 return 0;
8487
8488 case elfcpp::R_MIPS_32:
8489 case elfcpp::R_MIPS_TLS_DTPMOD32:
8490 case elfcpp::R_MIPS_TLS_DTPREL32:
8491 case elfcpp::R_MIPS_TLS_TPREL32:
8492 case elfcpp::R_MIPS_REL32:
8493 case elfcpp::R_MIPS_PC32:
8494 case elfcpp::R_MIPS_GPREL32:
8495 case elfcpp::R_MIPS_JALR:
8496 return 4;
8497
8498 case elfcpp::R_MIPS_16:
8499 case elfcpp::R_MIPS_HI16:
8500 case elfcpp::R_MIPS_LO16:
8501 case elfcpp::R_MIPS_GPREL16:
8502 case elfcpp::R_MIPS16_HI16:
8503 case elfcpp::R_MIPS16_LO16:
8504 case elfcpp::R_MIPS_PC16:
8505 case elfcpp::R_MIPS_GOT16:
8506 case elfcpp::R_MIPS16_GOT16:
8507 case elfcpp::R_MIPS_CALL16:
8508 case elfcpp::R_MIPS16_CALL16:
8509 case elfcpp::R_MIPS_GOT_HI16:
8510 case elfcpp::R_MIPS_CALL_HI16:
8511 case elfcpp::R_MIPS_GOT_LO16:
8512 case elfcpp::R_MIPS_CALL_LO16:
8513 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8514 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8515 case elfcpp::R_MIPS_TLS_TPREL_HI16:
8516 case elfcpp::R_MIPS_TLS_TPREL_LO16:
8517 case elfcpp::R_MIPS16_GPREL:
8518 case elfcpp::R_MIPS_GOT_DISP:
8519 case elfcpp::R_MIPS_LITERAL:
8520 case elfcpp::R_MIPS_GOT_PAGE:
8521 case elfcpp::R_MIPS_GOT_OFST:
8522 case elfcpp::R_MIPS_TLS_GD:
8523 case elfcpp::R_MIPS_TLS_LDM:
8524 case elfcpp::R_MIPS_TLS_GOTTPREL:
8525 return 2;
8526
8527 // These relocations are not byte sized
8528 case elfcpp::R_MIPS_26:
8529 case elfcpp::R_MIPS16_26:
8530 return 4;
8531
8532 case elfcpp::R_MIPS_COPY:
8533 case elfcpp::R_MIPS_JUMP_SLOT:
8534 object->error(_("unexpected reloc %u in object file"), r_type);
8535 return 0;
8536
8537 default:
8538 object->error(_("unsupported reloc %u in object file"), r_type);
8539 return 0;
8540 }
8541}
8542
8543// Scan the relocs during a relocatable link.
8544
8545template<int size, bool big_endian>
8546void
8547Target_mips<size, big_endian>::scan_relocatable_relocs(
8548 Symbol_table* symtab,
8549 Layout* layout,
8550 Sized_relobj_file<size, big_endian>* object,
8551 unsigned int data_shndx,
8552 unsigned int sh_type,
8553 const unsigned char* prelocs,
8554 size_t reloc_count,
8555 Output_section* output_section,
8556 bool needs_special_offset_handling,
8557 size_t local_symbol_count,
8558 const unsigned char* plocal_symbols,
8559 Relocatable_relocs* rr)
8560{
4d625b70
CC
8561 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8562 Classify_reloc;
8563 typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
8564 Scan_relocatable_relocs;
9810d34d 8565
4d625b70 8566 gold_assert(sh_type == elfcpp::SHT_REL);
9810d34d 8567
4d625b70 8568 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
9810d34d
SS
8569 symtab,
8570 layout,
8571 object,
8572 data_shndx,
8573 prelocs,
8574 reloc_count,
8575 output_section,
8576 needs_special_offset_handling,
8577 local_symbol_count,
8578 plocal_symbols,
8579 rr);
8580}
8581
4d625b70
CC
8582// Scan the relocs for --emit-relocs.
8583
8584template<int size, bool big_endian>
8585void
8586Target_mips<size, big_endian>::emit_relocs_scan(
8587 Symbol_table* symtab,
8588 Layout* layout,
8589 Sized_relobj_file<size, big_endian>* object,
8590 unsigned int data_shndx,
8591 unsigned int sh_type,
8592 const unsigned char* prelocs,
8593 size_t reloc_count,
8594 Output_section* output_section,
8595 bool needs_special_offset_handling,
8596 size_t local_symbol_count,
8597 const unsigned char* plocal_syms,
8598 Relocatable_relocs* rr)
8599{
8600 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8601 Classify_reloc;
8602 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8603 Emit_relocs_strategy;
8604
8605 gold_assert(sh_type == elfcpp::SHT_REL);
8606
8607 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8608 symtab,
8609 layout,
8610 object,
8611 data_shndx,
8612 prelocs,
8613 reloc_count,
8614 output_section,
8615 needs_special_offset_handling,
8616 local_symbol_count,
8617 plocal_syms,
8618 rr);
8619}
8620
9810d34d
SS
8621// Emit relocations for a section.
8622
8623template<int size, bool big_endian>
8624void
8625Target_mips<size, big_endian>::relocate_relocs(
8626 const Relocate_info<size, big_endian>* relinfo,
8627 unsigned int sh_type,
8628 const unsigned char* prelocs,
8629 size_t reloc_count,
8630 Output_section* output_section,
8631 typename elfcpp::Elf_types<size>::Elf_Off
8632 offset_in_output_section,
9810d34d
SS
8633 unsigned char* view,
8634 Mips_address view_address,
8635 section_size_type view_size,
8636 unsigned char* reloc_view,
8637 section_size_type reloc_view_size)
8638{
4d625b70
CC
8639 typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8640 Classify_reloc;
8641
9810d34d
SS
8642 gold_assert(sh_type == elfcpp::SHT_REL);
8643
4d625b70 8644 gold::relocate_relocs<size, big_endian, Classify_reloc>(
9810d34d
SS
8645 relinfo,
8646 prelocs,
8647 reloc_count,
8648 output_section,
8649 offset_in_output_section,
9810d34d
SS
8650 view,
8651 view_address,
8652 view_size,
8653 reloc_view,
8654 reloc_view_size);
8655}
8656
8657// Perform target-specific processing in a relocatable link. This is
8658// only used if we use the relocation strategy RELOC_SPECIAL.
8659
8660template<int size, bool big_endian>
8661void
8662Target_mips<size, big_endian>::relocate_special_relocatable(
8663 const Relocate_info<size, big_endian>* relinfo,
8664 unsigned int sh_type,
8665 const unsigned char* preloc_in,
8666 size_t relnum,
8667 Output_section* output_section,
8668 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8669 unsigned char* view,
8670 Mips_address view_address,
8671 section_size_type,
8672 unsigned char* preloc_out)
8673{
8674 // We can only handle REL type relocation sections.
8675 gold_assert(sh_type == elfcpp::SHT_REL);
8676
8677 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8678 Reltype;
8679 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8680 Reltype_write;
8681
8682 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8683
8684 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8685
8686 Mips_relobj<size, big_endian>* object =
8687 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8688 const unsigned int local_count = object->local_symbol_count();
8689
8690 Reltype reloc(preloc_in);
8691 Reltype_write reloc_write(preloc_out);
8692
8693 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8694 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8695 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8696
8697 // Get the new symbol index.
8698 // We only use RELOC_SPECIAL strategy in local relocations.
8699 gold_assert(r_sym < local_count);
8700
8701 // We are adjusting a section symbol. We need to find
8702 // the symbol table index of the section symbol for
8703 // the output section corresponding to input section
8704 // in which this symbol is defined.
8705 bool is_ordinary;
8706 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8707 gold_assert(is_ordinary);
8708 Output_section* os = object->output_section(shndx);
8709 gold_assert(os != NULL);
8710 gold_assert(os->needs_symtab_index());
8711 unsigned int new_symndx = os->symtab_index();
8712
8713 // Get the new offset--the location in the output section where
8714 // this relocation should be applied.
8715
8716 Mips_address offset = reloc.get_r_offset();
8717 Mips_address new_offset;
8718 if (offset_in_output_section != invalid_address)
8719 new_offset = offset + offset_in_output_section;
8720 else
8721 {
8722 section_offset_type sot_offset =
8723 convert_types<section_offset_type, Mips_address>(offset);
8724 section_offset_type new_sot_offset =
8725 output_section->output_offset(object, relinfo->data_shndx,
8726 sot_offset);
8727 gold_assert(new_sot_offset != -1);
8728 new_offset = new_sot_offset;
8729 }
8730
8731 // In an object file, r_offset is an offset within the section.
8732 // In an executable or dynamic object, generated by
8733 // --emit-relocs, r_offset is an absolute address.
8734 if (!parameters->options().relocatable())
8735 {
8736 new_offset += view_address;
8737 if (offset_in_output_section != invalid_address)
8738 new_offset -= offset_in_output_section;
8739 }
8740
8741 reloc_write.put_r_offset(new_offset);
8742 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8743
8744 // Handle the reloc addend.
8745 // The relocation uses a section symbol in the input file.
8746 // We are adjusting it to use a section symbol in the output
8747 // file. The input section symbol refers to some address in
8748 // the input section. We need the relocation in the output
8749 // file to refer to that same address. This adjustment to
8750 // the addend is the same calculation we use for a simple
8751 // absolute relocation for the input section symbol.
8752
8753 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8754
8755 unsigned char* paddend = view + offset;
8756 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8757 switch (r_type)
8758 {
8759 case elfcpp::R_MIPS_26:
8760 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8761 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8762 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8763 break;
8764
8765 default:
8766 gold_unreachable();
8767 }
8768
8769 // Report any errors.
8770 switch (reloc_status)
8771 {
8772 case Reloc_funcs::STATUS_OKAY:
8773 break;
8774 case Reloc_funcs::STATUS_OVERFLOW:
8775 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8776 _("relocation overflow"));
8777 break;
8778 case Reloc_funcs::STATUS_BAD_RELOC:
8779 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8780 _("unexpected opcode while processing relocation"));
8781 break;
8782 default:
8783 gold_unreachable();
8784 }
8785}
8786
8787// Optimize the TLS relocation type based on what we know about the
8788// symbol. IS_FINAL is true if the final address of this symbol is
8789// known at link time.
8790
8791template<int size, bool big_endian>
8792tls::Tls_optimization
8793Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8794{
8795 // FIXME: Currently we do not do any TLS optimization.
8796 return tls::TLSOPT_NONE;
8797}
8798
8799// Scan a relocation for a local symbol.
8800
8801template<int size, bool big_endian>
8802inline void
8803Target_mips<size, big_endian>::Scan::local(
8804 Symbol_table* symtab,
8805 Layout* layout,
8806 Target_mips<size, big_endian>* target,
8807 Sized_relobj_file<size, big_endian>* object,
8808 unsigned int data_shndx,
8809 Output_section* output_section,
4d625b70
CC
8810 const Relatype* rela,
8811 const Reltype* rel,
9810d34d
SS
8812 unsigned int rel_type,
8813 unsigned int r_type,
8814 const elfcpp::Sym<size, big_endian>& lsym,
8815 bool is_discarded)
8816{
8817 if (is_discarded)
8818 return;
8819
8820 Mips_address r_offset;
4d625b70 8821 unsigned int r_sym;
9810d34d
SS
8822 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8823
8824 if (rel_type == elfcpp::SHT_RELA)
8825 {
8826 r_offset = rela->get_r_offset();
4d625b70
CC
8827 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
8828 get_r_sym(rela);
9810d34d
SS
8829 r_addend = rela->get_r_addend();
8830 }
8831 else
8832 {
8833 r_offset = rel->get_r_offset();
4d625b70
CC
8834 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
8835 get_r_sym(rel);
9810d34d
SS
8836 r_addend = 0;
8837 }
8838
9810d34d
SS
8839 Mips_relobj<size, big_endian>* mips_obj =
8840 Mips_relobj<size, big_endian>::as_mips_relobj(object);
8841
8842 if (mips_obj->is_mips16_stub_section(data_shndx))
8843 {
8844 mips_obj->get_mips16_stub_section(data_shndx)
8845 ->new_local_reloc_found(r_type, r_sym);
8846 }
8847
8848 if (r_type == elfcpp::R_MIPS_NONE)
8849 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8850 // mips16 stub.
8851 return;
8852
8853 if (!mips16_call_reloc(r_type)
8854 && !mips_obj->section_allows_mips16_refs(data_shndx))
8855 // This reloc would need to refer to a MIPS16 hard-float stub, if
8856 // there is one. We ignore MIPS16 stub sections and .pdr section when
8857 // looking for relocs that would need to refer to MIPS16 stubs.
8858 mips_obj->add_local_non_16bit_call(r_sym);
8859
8860 if (r_type == elfcpp::R_MIPS16_26
8861 && !mips_obj->section_allows_mips16_refs(data_shndx))
8862 mips_obj->add_local_16bit_call(r_sym);
8863
8864 switch (r_type)
8865 {
8866 case elfcpp::R_MIPS_GOT16:
8867 case elfcpp::R_MIPS_CALL16:
8868 case elfcpp::R_MIPS_CALL_HI16:
8869 case elfcpp::R_MIPS_CALL_LO16:
8870 case elfcpp::R_MIPS_GOT_HI16:
8871 case elfcpp::R_MIPS_GOT_LO16:
8872 case elfcpp::R_MIPS_GOT_PAGE:
8873 case elfcpp::R_MIPS_GOT_OFST:
8874 case elfcpp::R_MIPS_GOT_DISP:
8875 case elfcpp::R_MIPS_TLS_GOTTPREL:
8876 case elfcpp::R_MIPS_TLS_GD:
8877 case elfcpp::R_MIPS_TLS_LDM:
8878 case elfcpp::R_MIPS16_GOT16:
8879 case elfcpp::R_MIPS16_CALL16:
8880 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8881 case elfcpp::R_MIPS16_TLS_GD:
8882 case elfcpp::R_MIPS16_TLS_LDM:
8883 case elfcpp::R_MICROMIPS_GOT16:
8884 case elfcpp::R_MICROMIPS_CALL16:
8885 case elfcpp::R_MICROMIPS_CALL_HI16:
8886 case elfcpp::R_MICROMIPS_CALL_LO16:
8887 case elfcpp::R_MICROMIPS_GOT_HI16:
8888 case elfcpp::R_MICROMIPS_GOT_LO16:
8889 case elfcpp::R_MICROMIPS_GOT_PAGE:
8890 case elfcpp::R_MICROMIPS_GOT_OFST:
8891 case elfcpp::R_MICROMIPS_GOT_DISP:
8892 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8893 case elfcpp::R_MICROMIPS_TLS_GD:
8894 case elfcpp::R_MICROMIPS_TLS_LDM:
8895 // We need a GOT section.
8896 target->got_section(symtab, layout);
8897 break;
8898
8899 default:
8900 break;
8901 }
8902
8903 if (call_lo16_reloc(r_type)
8904 || got_lo16_reloc(r_type)
8905 || got_disp_reloc(r_type))
8906 {
8907 // We may need a local GOT entry for this relocation. We
8908 // don't count R_MIPS_GOT_PAGE because we can estimate the
8909 // maximum number of pages needed by looking at the size of
8910 // the segment. Similar comments apply to R_MIPS*_GOT16 and
8911 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
8912 // R_MIPS_CALL_HI16 because these are always followed by an
8913 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8914 Mips_output_data_got<size, big_endian>* got =
8915 target->got_section(symtab, layout);
9810d34d
SS
8916 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8917 }
8918
8919 switch (r_type)
8920 {
8921 case elfcpp::R_MIPS_CALL16:
8922 case elfcpp::R_MIPS16_CALL16:
8923 case elfcpp::R_MICROMIPS_CALL16:
8924 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8925 (unsigned long)r_offset);
8926 return;
8927
8928 case elfcpp::R_MIPS_GOT_PAGE:
8929 case elfcpp::R_MICROMIPS_GOT_PAGE:
8930 case elfcpp::R_MIPS16_GOT16:
8931 case elfcpp::R_MIPS_GOT16:
8932 case elfcpp::R_MIPS_GOT_HI16:
8933 case elfcpp::R_MIPS_GOT_LO16:
8934 case elfcpp::R_MICROMIPS_GOT16:
8935 case elfcpp::R_MICROMIPS_GOT_HI16:
8936 case elfcpp::R_MICROMIPS_GOT_LO16:
8937 {
8938 // This relocation needs a page entry in the GOT.
8939 // Get the section contents.
8940 section_size_type view_size = 0;
8941 const unsigned char* view = object->section_contents(data_shndx,
8942 &view_size, false);
8943 view += r_offset;
8944
8945 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8946 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8947 : r_addend);
8948
8949 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8950 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8951 object, data_shndx, r_type, r_sym, addend));
8952 else
8953 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8954 break;
8955 }
8956
8957 case elfcpp::R_MIPS_HI16:
8958 case elfcpp::R_MIPS16_HI16:
8959 case elfcpp::R_MICROMIPS_HI16:
8960 // Record the reloc so that we can check whether the corresponding LO16
8961 // part exists.
8962 if (rel_type == elfcpp::SHT_REL)
8963 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8964 object, data_shndx, r_type, r_sym, 0));
8965 break;
8966
8967 case elfcpp::R_MIPS_LO16:
8968 case elfcpp::R_MIPS16_LO16:
8969 case elfcpp::R_MICROMIPS_LO16:
8970 {
8971 if (rel_type != elfcpp::SHT_REL)
8972 break;
8973
8974 // Find corresponding GOT16/HI16 relocation.
8975
8976 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8977 // be immediately following. However, for the IRIX6 ABI, the next
8978 // relocation may be a composed relocation consisting of several
8979 // relocations for the same address. In that case, the R_MIPS_LO16
8980 // relocation may occur as one of these. We permit a similar
8981 // extension in general, as that is useful for GCC.
8982
8983 // In some cases GCC dead code elimination removes the LO16 but
8984 // keeps the corresponding HI16. This is strictly speaking a
8985 // violation of the ABI but not immediately harmful.
8986
8987 typename std::list<got16_addend<size, big_endian> >::iterator it =
8988 target->got16_addends_.begin();
8989 while (it != target->got16_addends_.end())
8990 {
8991 got16_addend<size, big_endian> _got16_addend = *it;
8992
8993 // TODO(sasa): Split got16_addends_ list into two lists - one for
8994 // GOT16 relocs and the other for HI16 relocs.
8995
8996 // Report an error if we find HI16 or GOT16 reloc from the
8997 // previous section without the matching LO16 part.
8998 if (_got16_addend.object != object
8999 || _got16_addend.shndx != data_shndx)
9000 {
9001 gold_error("Can't find matching LO16 reloc");
9002 break;
9003 }
9004
9005 if (_got16_addend.r_sym != r_sym
9006 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
9007 {
9008 ++it;
9009 continue;
9010 }
9011
9012 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
9013 // For GOT16, we need to calculate combined addend and record GOT page
9014 // entry.
9015 if (got16_reloc(_got16_addend.r_type))
9016 {
9017
9018 section_size_type view_size = 0;
9019 const unsigned char* view = object->section_contents(data_shndx,
9020 &view_size,
9021 false);
9022 view += r_offset;
9023
9024 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9025 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
9026
9027 addend = (_got16_addend.addend << 16) + addend;
9028 target->got_section()->record_got_page_entry(mips_obj, r_sym,
9029 addend);
9030 }
9031
9032 it = target->got16_addends_.erase(it);
9033 }
9034 break;
9035 }
9036 }
9037
9038 switch (r_type)
9039 {
9040 case elfcpp::R_MIPS_32:
9041 case elfcpp::R_MIPS_REL32:
9042 case elfcpp::R_MIPS_64:
9043 {
9044 if (parameters->options().output_is_position_independent())
9045 {
9046 // If building a shared library (or a position-independent
9047 // executable), we need to create a dynamic relocation for
9048 // this location.
9049 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9810d34d
SS
9050 rel_dyn->add_symbolless_local_addend(object, r_sym,
9051 elfcpp::R_MIPS_REL32,
9052 output_section, data_shndx,
9053 r_offset);
9054 }
9055 break;
9056 }
9057
9058 case elfcpp::R_MIPS_TLS_GOTTPREL:
9059 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9060 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9061 case elfcpp::R_MIPS_TLS_LDM:
9062 case elfcpp::R_MIPS16_TLS_LDM:
9063 case elfcpp::R_MICROMIPS_TLS_LDM:
9064 case elfcpp::R_MIPS_TLS_GD:
9065 case elfcpp::R_MIPS16_TLS_GD:
9066 case elfcpp::R_MICROMIPS_TLS_GD:
9067 {
9810d34d
SS
9068 bool output_is_shared = parameters->options().shared();
9069 const tls::Tls_optimization optimized_type
9070 = Target_mips<size, big_endian>::optimize_tls_reloc(
9071 !output_is_shared, r_type);
9072 switch (r_type)
9073 {
9074 case elfcpp::R_MIPS_TLS_GD:
9075 case elfcpp::R_MIPS16_TLS_GD:
9076 case elfcpp::R_MICROMIPS_TLS_GD:
9077 if (optimized_type == tls::TLSOPT_NONE)
9078 {
9079 // Create a pair of GOT entries for the module index and
9080 // dtv-relative offset.
9081 Mips_output_data_got<size, big_endian>* got =
9082 target->got_section(symtab, layout);
9083 unsigned int shndx = lsym.get_st_shndx();
9084 bool is_ordinary;
9085 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
9086 if (!is_ordinary)
9087 {
9088 object->error(_("local symbol %u has bad shndx %u"),
9089 r_sym, shndx);
9090 break;
9091 }
9092 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
9093 shndx);
9094 }
9095 else
9096 {
9097 // FIXME: TLS optimization not supported yet.
9098 gold_unreachable();
9099 }
9100 break;
9101
9102 case elfcpp::R_MIPS_TLS_LDM:
9103 case elfcpp::R_MIPS16_TLS_LDM:
9104 case elfcpp::R_MICROMIPS_TLS_LDM:
9105 if (optimized_type == tls::TLSOPT_NONE)
9106 {
9107 // We always record LDM symbols as local with index 0.
9108 target->got_section()->record_local_got_symbol(mips_obj, 0,
9109 r_addend, r_type,
9110 -1U);
9111 }
9112 else
9113 {
9114 // FIXME: TLS optimization not supported yet.
9115 gold_unreachable();
9116 }
9117 break;
9118 case elfcpp::R_MIPS_TLS_GOTTPREL:
9119 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9120 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9121 layout->set_has_static_tls();
9122 if (optimized_type == tls::TLSOPT_NONE)
9123 {
9124 // Create a GOT entry for the tp-relative offset.
9125 Mips_output_data_got<size, big_endian>* got =
9126 target->got_section(symtab, layout);
9127 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
9128 -1U);
9129 }
9130 else
9131 {
9132 // FIXME: TLS optimization not supported yet.
9133 gold_unreachable();
9134 }
9135 break;
9136
9137 default:
9138 gold_unreachable();
9139 }
9140 }
9141 break;
9142
9143 default:
9144 break;
9145 }
9146
9147 // Refuse some position-dependent relocations when creating a
9148 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9149 // not PIC, but we can create dynamic relocations and the result
9150 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9151 // combined with R_MIPS_GOT16.
9152 if (parameters->options().shared())
9153 {
9154 switch (r_type)
9155 {
9156 case elfcpp::R_MIPS16_HI16:
9157 case elfcpp::R_MIPS_HI16:
9158 case elfcpp::R_MICROMIPS_HI16:
9159 // Don't refuse a high part relocation if it's against
9160 // no symbol (e.g. part of a compound relocation).
9161 if (r_sym == 0)
9162 break;
9163
9164 // FALLTHROUGH
9165
9166 case elfcpp::R_MIPS16_26:
9167 case elfcpp::R_MIPS_26:
9168 case elfcpp::R_MICROMIPS_26_S1:
9169 gold_error(_("%s: relocation %u against `%s' can not be used when "
9170 "making a shared object; recompile with -fPIC"),
9171 object->name().c_str(), r_type, "a local symbol");
9172 default:
9173 break;
9174 }
9175 }
9176}
9177
9178template<int size, bool big_endian>
9179inline void
9180Target_mips<size, big_endian>::Scan::local(
9181 Symbol_table* symtab,
9182 Layout* layout,
9183 Target_mips<size, big_endian>* target,
9184 Sized_relobj_file<size, big_endian>* object,
9185 unsigned int data_shndx,
9186 Output_section* output_section,
4d625b70 9187 const Reltype& reloc,
9810d34d
SS
9188 unsigned int r_type,
9189 const elfcpp::Sym<size, big_endian>& lsym,
9190 bool is_discarded)
9191{
9192 if (is_discarded)
9193 return;
9194
9195 local(
9196 symtab,
9197 layout,
9198 target,
9199 object,
9200 data_shndx,
9201 output_section,
4d625b70 9202 (const Relatype*) NULL,
9810d34d
SS
9203 &reloc,
9204 elfcpp::SHT_REL,
9205 r_type,
9206 lsym, is_discarded);
9207}
9208
9209
9210template<int size, bool big_endian>
9211inline void
9212Target_mips<size, big_endian>::Scan::local(
9213 Symbol_table* symtab,
9214 Layout* layout,
9215 Target_mips<size, big_endian>* target,
9216 Sized_relobj_file<size, big_endian>* object,
9217 unsigned int data_shndx,
9218 Output_section* output_section,
4d625b70 9219 const Relatype& reloc,
9810d34d
SS
9220 unsigned int r_type,
9221 const elfcpp::Sym<size, big_endian>& lsym,
9222 bool is_discarded)
9223{
9224 if (is_discarded)
9225 return;
9226
9227 local(
9228 symtab,
9229 layout,
9230 target,
9231 object,
9232 data_shndx,
9233 output_section,
9234 &reloc,
4d625b70 9235 (const Reltype*) NULL,
9810d34d
SS
9236 elfcpp::SHT_RELA,
9237 r_type,
9238 lsym, is_discarded);
9239}
9240
9241// Scan a relocation for a global symbol.
9242
9243template<int size, bool big_endian>
9244inline void
9245Target_mips<size, big_endian>::Scan::global(
9246 Symbol_table* symtab,
9247 Layout* layout,
9248 Target_mips<size, big_endian>* target,
9249 Sized_relobj_file<size, big_endian>* object,
9250 unsigned int data_shndx,
9251 Output_section* output_section,
4d625b70
CC
9252 const Relatype* rela,
9253 const Reltype* rel,
9810d34d
SS
9254 unsigned int rel_type,
9255 unsigned int r_type,
9256 Symbol* gsym)
9257{
9258 Mips_address r_offset;
4d625b70 9259 unsigned int r_sym;
9810d34d
SS
9260 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9261
9262 if (rel_type == elfcpp::SHT_RELA)
9263 {
9264 r_offset = rela->get_r_offset();
4d625b70
CC
9265 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9266 get_r_sym(rela);
9810d34d
SS
9267 r_addend = rela->get_r_addend();
9268 }
9269 else
9270 {
9271 r_offset = rel->get_r_offset();
4d625b70
CC
9272 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9273 get_r_sym(rel);
9810d34d
SS
9274 r_addend = 0;
9275 }
9276
9810d34d
SS
9277 Mips_relobj<size, big_endian>* mips_obj =
9278 Mips_relobj<size, big_endian>::as_mips_relobj(object);
9279 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9280
9281 if (mips_obj->is_mips16_stub_section(data_shndx))
9282 {
9283 mips_obj->get_mips16_stub_section(data_shndx)
9284 ->new_global_reloc_found(r_type, mips_sym);
9285 }
9286
9287 if (r_type == elfcpp::R_MIPS_NONE)
9288 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9289 // mips16 stub.
9290 return;
9291
9292 if (!mips16_call_reloc(r_type)
9293 && !mips_obj->section_allows_mips16_refs(data_shndx))
9294 // This reloc would need to refer to a MIPS16 hard-float stub, if
9295 // there is one. We ignore MIPS16 stub sections and .pdr section when
9296 // looking for relocs that would need to refer to MIPS16 stubs.
9297 mips_sym->set_need_fn_stub();
9298
9299 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9300 // section. We check here to avoid creating a dynamic reloc against
9301 // _GLOBAL_OFFSET_TABLE_.
9302 if (!target->has_got_section()
9303 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9304 target->got_section(symtab, layout);
9305
9306 // We need PLT entries if there are static-only relocations against
9307 // an externally-defined function. This can technically occur for
9308 // shared libraries if there are branches to the symbol, although it
9309 // is unlikely that this will be used in practice due to the short
9310 // ranges involved. It can occur for any relative or absolute relocation
9311 // in executables; in that case, the PLT entry becomes the function's
9312 // canonical address.
9313 bool static_reloc = false;
9314
9315 // Set CAN_MAKE_DYNAMIC to true if we can convert this
9316 // relocation into a dynamic one.
9317 bool can_make_dynamic = false;
9318 switch (r_type)
9319 {
9320 case elfcpp::R_MIPS_GOT16:
9321 case elfcpp::R_MIPS_CALL16:
9322 case elfcpp::R_MIPS_CALL_HI16:
9323 case elfcpp::R_MIPS_CALL_LO16:
9324 case elfcpp::R_MIPS_GOT_HI16:
9325 case elfcpp::R_MIPS_GOT_LO16:
9326 case elfcpp::R_MIPS_GOT_PAGE:
9327 case elfcpp::R_MIPS_GOT_OFST:
9328 case elfcpp::R_MIPS_GOT_DISP:
9329 case elfcpp::R_MIPS_TLS_GOTTPREL:
9330 case elfcpp::R_MIPS_TLS_GD:
9331 case elfcpp::R_MIPS_TLS_LDM:
9332 case elfcpp::R_MIPS16_GOT16:
9333 case elfcpp::R_MIPS16_CALL16:
9334 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9335 case elfcpp::R_MIPS16_TLS_GD:
9336 case elfcpp::R_MIPS16_TLS_LDM:
9337 case elfcpp::R_MICROMIPS_GOT16:
9338 case elfcpp::R_MICROMIPS_CALL16:
9339 case elfcpp::R_MICROMIPS_CALL_HI16:
9340 case elfcpp::R_MICROMIPS_CALL_LO16:
9341 case elfcpp::R_MICROMIPS_GOT_HI16:
9342 case elfcpp::R_MICROMIPS_GOT_LO16:
9343 case elfcpp::R_MICROMIPS_GOT_PAGE:
9344 case elfcpp::R_MICROMIPS_GOT_OFST:
9345 case elfcpp::R_MICROMIPS_GOT_DISP:
9346 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9347 case elfcpp::R_MICROMIPS_TLS_GD:
9348 case elfcpp::R_MICROMIPS_TLS_LDM:
9349 // We need a GOT section.
9350 target->got_section(symtab, layout);
9351 break;
9352
9353 // This is just a hint; it can safely be ignored. Don't set
9354 // has_static_relocs for the corresponding symbol.
9355 case elfcpp::R_MIPS_JALR:
9356 case elfcpp::R_MICROMIPS_JALR:
9357 break;
9358
9359 case elfcpp::R_MIPS_GPREL16:
9360 case elfcpp::R_MIPS_GPREL32:
9361 case elfcpp::R_MIPS16_GPREL:
9362 case elfcpp::R_MICROMIPS_GPREL16:
9363 // TODO(sasa)
9364 // GP-relative relocations always resolve to a definition in a
9365 // regular input file, ignoring the one-definition rule. This is
9366 // important for the GP setup sequence in NewABI code, which
9367 // always resolves to a local function even if other relocations
9368 // against the symbol wouldn't.
9369 //constrain_symbol_p = FALSE;
9370 break;
9371
9372 case elfcpp::R_MIPS_32:
9373 case elfcpp::R_MIPS_REL32:
9374 case elfcpp::R_MIPS_64:
9375 if (parameters->options().shared()
9376 || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9377 {
9378 if (r_type != elfcpp::R_MIPS_REL32)
9379 {
9380 static_reloc = true;
9381 mips_sym->set_pointer_equality_needed();
9382 }
9383 can_make_dynamic = true;
9384 break;
9385 }
9386 // Fall through.
9387
9388 default:
9389 // Most static relocations require pointer equality, except
9390 // for branches.
9391 mips_sym->set_pointer_equality_needed();
9392
9393 // Fall through.
9394
9395 case elfcpp::R_MIPS_26:
9396 case elfcpp::R_MIPS_PC16:
9397 case elfcpp::R_MIPS16_26:
9398 case elfcpp::R_MICROMIPS_26_S1:
9399 case elfcpp::R_MICROMIPS_PC7_S1:
9400 case elfcpp::R_MICROMIPS_PC10_S1:
9401 case elfcpp::R_MICROMIPS_PC16_S1:
9402 case elfcpp::R_MICROMIPS_PC23_S2:
9403 static_reloc = true;
9404 mips_sym->set_has_static_relocs();
9405 break;
9406 }
9407
9408 // If there are call relocations against an externally-defined symbol,
9409 // see whether we can create a MIPS lazy-binding stub for it. We can
9410 // only do this if all references to the function are through call
9411 // relocations, and in that case, the traditional lazy-binding stubs
9412 // are much more efficient than PLT entries.
9413 switch (r_type)
9414 {
9415 case elfcpp::R_MIPS16_CALL16:
9416 case elfcpp::R_MIPS_CALL16:
9417 case elfcpp::R_MIPS_CALL_HI16:
9418 case elfcpp::R_MIPS_CALL_LO16:
9419 case elfcpp::R_MIPS_JALR:
9420 case elfcpp::R_MICROMIPS_CALL16:
9421 case elfcpp::R_MICROMIPS_CALL_HI16:
9422 case elfcpp::R_MICROMIPS_CALL_LO16:
9423 case elfcpp::R_MICROMIPS_JALR:
9424 if (!mips_sym->no_lazy_stub())
9425 {
9426 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9427 // Calls from shared objects to undefined symbols of type
9428 // STT_NOTYPE need lazy-binding stub.
9429 || (mips_sym->is_undefined() && parameters->options().shared()))
9430 target->mips_stubs_section(layout)->make_entry(mips_sym);
9431 }
9432 break;
9433 default:
9434 {
9435 // We must not create a stub for a symbol that has relocations
9436 // related to taking the function's address.
9437 mips_sym->set_no_lazy_stub();
9438 target->remove_lazy_stub_entry(mips_sym);
9439 break;
9440 }
9441 }
9442
9443 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9444 mips_sym->is_mips16()))
9445 mips_sym->set_has_nonpic_branches();
9446
9447 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9448 // and has a special meaning.
9449 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9450 && strcmp(gsym->name(), "_gp_disp") == 0
9451 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9452 if (static_reloc && gsym->needs_plt_entry())
9453 {
9454 target->make_plt_entry(symtab, layout, mips_sym, r_type);
9455
9456 // Since this is not a PC-relative relocation, we may be
9457 // taking the address of a function. In that case we need to
9458 // set the entry in the dynamic symbol table to the address of
9459 // the PLT entry.
9460 if (gsym->is_from_dynobj() && !parameters->options().shared())
9461 {
9462 gsym->set_needs_dynsym_value();
9463 // We distinguish between PLT entries and lazy-binding stubs by
9464 // giving the former an st_other value of STO_MIPS_PLT. Set the
9465 // flag if there are any relocations in the binary where pointer
9466 // equality matters.
9467 if (mips_sym->pointer_equality_needed())
9468 mips_sym->set_mips_plt();
9469 }
9470 }
9471 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9472 {
9473 // Absolute addressing relocations.
9474 // Make a dynamic relocation if necessary.
9475 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9476 {
9477 if (gsym->may_need_copy_reloc())
9478 {
9479 target->copy_reloc(symtab, layout, object,
9480 data_shndx, output_section, gsym, *rel);
9481 }
9482 else if (can_make_dynamic)
9483 {
9484 // Create .rel.dyn section.
9485 target->rel_dyn_section(layout);
9486 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9487 data_shndx, output_section, r_offset);
9488 }
9489 else
9490 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9491 gsym->name());
9492 }
9493 }
9494
9495 bool for_call = false;
9496 switch (r_type)
9497 {
9498 case elfcpp::R_MIPS_CALL16:
9499 case elfcpp::R_MIPS16_CALL16:
9500 case elfcpp::R_MICROMIPS_CALL16:
9501 case elfcpp::R_MIPS_CALL_HI16:
9502 case elfcpp::R_MIPS_CALL_LO16:
9503 case elfcpp::R_MICROMIPS_CALL_HI16:
9504 case elfcpp::R_MICROMIPS_CALL_LO16:
9505 for_call = true;
9506 // Fall through.
9507
9508 case elfcpp::R_MIPS16_GOT16:
9509 case elfcpp::R_MIPS_GOT16:
9510 case elfcpp::R_MIPS_GOT_HI16:
9511 case elfcpp::R_MIPS_GOT_LO16:
9512 case elfcpp::R_MICROMIPS_GOT16:
9513 case elfcpp::R_MICROMIPS_GOT_HI16:
9514 case elfcpp::R_MICROMIPS_GOT_LO16:
9515 case elfcpp::R_MIPS_GOT_DISP:
9516 case elfcpp::R_MICROMIPS_GOT_DISP:
9517 {
9518 // The symbol requires a GOT entry.
9519 Mips_output_data_got<size, big_endian>* got =
9520 target->got_section(symtab, layout);
9521 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9522 for_call);
9523 mips_sym->set_global_got_area(GGA_NORMAL);
9524 }
9525 break;
9526
9527 case elfcpp::R_MIPS_GOT_PAGE:
9528 case elfcpp::R_MICROMIPS_GOT_PAGE:
9529 {
9530 // This relocation needs a page entry in the GOT.
9531 // Get the section contents.
9532 section_size_type view_size = 0;
9533 const unsigned char* view =
9534 object->section_contents(data_shndx, &view_size, false);
9535 view += r_offset;
9536
9537 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9538 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9539 : r_addend);
9540 Mips_output_data_got<size, big_endian>* got =
9541 target->got_section(symtab, layout);
9542 got->record_got_page_entry(mips_obj, r_sym, addend);
9543
9544 // If this is a global, overridable symbol, GOT_PAGE will
9545 // decay to GOT_DISP, so we'll need a GOT entry for it.
9546 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9547 && !mips_sym->object()->is_dynamic()
9548 && !mips_sym->is_undefined());
9549 if (!def_regular
9550 || (parameters->options().output_is_position_independent()
9551 && !parameters->options().Bsymbolic()
9552 && !mips_sym->is_forced_local()))
9553 {
9554 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9555 for_call);
9556 mips_sym->set_global_got_area(GGA_NORMAL);
9557 }
9558 }
9559 break;
9560
9561 case elfcpp::R_MIPS_TLS_GOTTPREL:
9562 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9563 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9564 case elfcpp::R_MIPS_TLS_LDM:
9565 case elfcpp::R_MIPS16_TLS_LDM:
9566 case elfcpp::R_MICROMIPS_TLS_LDM:
9567 case elfcpp::R_MIPS_TLS_GD:
9568 case elfcpp::R_MIPS16_TLS_GD:
9569 case elfcpp::R_MICROMIPS_TLS_GD:
9570 {
9571 const bool is_final = gsym->final_value_is_known();
9572 const tls::Tls_optimization optimized_type =
9573 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9574
9575 switch (r_type)
9576 {
9577 case elfcpp::R_MIPS_TLS_GD:
9578 case elfcpp::R_MIPS16_TLS_GD:
9579 case elfcpp::R_MICROMIPS_TLS_GD:
9580 if (optimized_type == tls::TLSOPT_NONE)
9581 {
9582 // Create a pair of GOT entries for the module index and
9583 // dtv-relative offset.
9584 Mips_output_data_got<size, big_endian>* got =
9585 target->got_section(symtab, layout);
9586 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9587 false);
9588 }
9589 else
9590 {
9591 // FIXME: TLS optimization not supported yet.
9592 gold_unreachable();
9593 }
9594 break;
9595
9596 case elfcpp::R_MIPS_TLS_LDM:
9597 case elfcpp::R_MIPS16_TLS_LDM:
9598 case elfcpp::R_MICROMIPS_TLS_LDM:
9599 if (optimized_type == tls::TLSOPT_NONE)
9600 {
9601 // We always record LDM symbols as local with index 0.
9602 target->got_section()->record_local_got_symbol(mips_obj, 0,
9603 r_addend, r_type,
9604 -1U);
9605 }
9606 else
9607 {
9608 // FIXME: TLS optimization not supported yet.
9609 gold_unreachable();
9610 }
9611 break;
9612 case elfcpp::R_MIPS_TLS_GOTTPREL:
9613 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9614 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9615 layout->set_has_static_tls();
9616 if (optimized_type == tls::TLSOPT_NONE)
9617 {
9618 // Create a GOT entry for the tp-relative offset.
9619 Mips_output_data_got<size, big_endian>* got =
9620 target->got_section(symtab, layout);
9621 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9622 false);
9623 }
9624 else
9625 {
9626 // FIXME: TLS optimization not supported yet.
9627 gold_unreachable();
9628 }
9629 break;
9630
9631 default:
9632 gold_unreachable();
9633 }
9634 }
9635 break;
9636 case elfcpp::R_MIPS_COPY:
9637 case elfcpp::R_MIPS_JUMP_SLOT:
9638 // These are relocations which should only be seen by the
9639 // dynamic linker, and should never be seen here.
9640 gold_error(_("%s: unexpected reloc %u in object file"),
9641 object->name().c_str(), r_type);
9642 break;
9643
9644 default:
9645 break;
9646 }
9647
9648 // Refuse some position-dependent relocations when creating a
9649 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9650 // not PIC, but we can create dynamic relocations and the result
9651 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9652 // combined with R_MIPS_GOT16.
9653 if (parameters->options().shared())
9654 {
9655 switch (r_type)
9656 {
9657 case elfcpp::R_MIPS16_HI16:
9658 case elfcpp::R_MIPS_HI16:
9659 case elfcpp::R_MICROMIPS_HI16:
9660 // Don't refuse a high part relocation if it's against
9661 // no symbol (e.g. part of a compound relocation).
9662 if (r_sym == 0)
9663 break;
9664
9665 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9666 // and has a special meaning.
9667 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9668 break;
9669
9670 // FALLTHROUGH
9671
9672 case elfcpp::R_MIPS16_26:
9673 case elfcpp::R_MIPS_26:
9674 case elfcpp::R_MICROMIPS_26_S1:
9675 gold_error(_("%s: relocation %u against `%s' can not be used when "
9676 "making a shared object; recompile with -fPIC"),
9677 object->name().c_str(), r_type, gsym->name());
9678 default:
9679 break;
9680 }
9681 }
9682}
9683
9684template<int size, bool big_endian>
9685inline void
9686Target_mips<size, big_endian>::Scan::global(
9687 Symbol_table* symtab,
9688 Layout* layout,
9689 Target_mips<size, big_endian>* target,
9690 Sized_relobj_file<size, big_endian>* object,
9691 unsigned int data_shndx,
9692 Output_section* output_section,
4d625b70 9693 const Relatype& reloc,
9810d34d
SS
9694 unsigned int r_type,
9695 Symbol* gsym)
9696{
9697 global(
9698 symtab,
9699 layout,
9700 target,
9701 object,
9702 data_shndx,
9703 output_section,
9704 &reloc,
4d625b70 9705 (const Reltype*) NULL,
9810d34d
SS
9706 elfcpp::SHT_RELA,
9707 r_type,
9708 gsym);
9709}
9710
9711template<int size, bool big_endian>
9712inline void
9713Target_mips<size, big_endian>::Scan::global(
9714 Symbol_table* symtab,
9715 Layout* layout,
9716 Target_mips<size, big_endian>* target,
9717 Sized_relobj_file<size, big_endian>* object,
9718 unsigned int data_shndx,
9719 Output_section* output_section,
4d625b70 9720 const Reltype& reloc,
9810d34d
SS
9721 unsigned int r_type,
9722 Symbol* gsym)
9723{
9724 global(
9725 symtab,
9726 layout,
9727 target,
9728 object,
9729 data_shndx,
9730 output_section,
4d625b70 9731 (const Relatype*) NULL,
9810d34d
SS
9732 &reloc,
9733 elfcpp::SHT_REL,
9734 r_type,
9735 gsym);
9736}
9737
9738// Return whether a R_MIPS_32 relocation needs to be applied.
9739
9740template<int size, bool big_endian>
9741inline bool
9742Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9743 const Mips_symbol<size>* gsym,
9744 unsigned int r_type,
9745 Output_section* output_section,
9746 Target_mips* target)
9747{
9748 // If the output section is not allocated, then we didn't call
9749 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9750 // the reloc here.
9751 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9752 return true;
9753
9754 if (gsym == NULL)
9755 return true;
9756 else
9757 {
9758 // For global symbols, we use the same helper routines used in the
9759 // scan pass.
9760 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9761 && !gsym->may_need_copy_reloc())
9762 {
9763 // We have generated dynamic reloc (R_MIPS_REL32).
9764
9765 bool multi_got = false;
9766 if (target->has_got_section())
9767 multi_got = target->got_section()->multi_got();
9768 bool has_got_offset;
9769 if (!multi_got)
9770 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9771 else
9772 has_got_offset = gsym->global_gotoffset() != -1U;
9773 if (!has_got_offset)
9774 return true;
9775 else
9776 // Apply the relocation only if the symbol is in the local got.
9777 // Do not apply the relocation if the symbol is in the global
9778 // got.
9779 return symbol_references_local(gsym, gsym->has_dynsym_index());
9780 }
9781 else
9782 // We have not generated dynamic reloc.
9783 return true;
9784 }
9785}
9786
9787// Perform a relocation.
9788
9789template<int size, bool big_endian>
9790inline bool
9791Target_mips<size, big_endian>::Relocate::relocate(
9792 const Relocate_info<size, big_endian>* relinfo,
91a65d2f 9793 unsigned int rel_type,
9810d34d
SS
9794 Target_mips* target,
9795 Output_section* output_section,
9796 size_t relnum,
91a65d2f 9797 const unsigned char* preloc,
9810d34d
SS
9798 const Sized_symbol<size>* gsym,
9799 const Symbol_value<size>* psymval,
9800 unsigned char* view,
9801 Mips_address address,
9802 section_size_type)
9803{
9804 Mips_address r_offset;
4d625b70
CC
9805 unsigned int r_sym;
9806 unsigned int r_type;
9810d34d
SS
9807 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9808
9809 if (rel_type == elfcpp::SHT_RELA)
9810 {
4d625b70 9811 const Relatype rela(preloc);
91a65d2f 9812 r_offset = rela.get_r_offset();
4d625b70
CC
9813 r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9814 get_r_sym(&rela);
9815 r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
9816 get_r_type(&rela);
91a65d2f 9817 r_addend = rela.get_r_addend();
9810d34d
SS
9818 }
9819 else
9820 {
4d625b70
CC
9821
9822 const Reltype rel(preloc);
91a65d2f 9823 r_offset = rel.get_r_offset();
4d625b70
CC
9824 r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9825 get_r_sym(&rel);
9826 r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
9827 get_r_type(&rel);
9810d34d
SS
9828 r_addend = 0;
9829 }
9830
9831 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9832 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9833
9834 Mips_relobj<size, big_endian>* object =
4d625b70 9835 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9810d34d 9836
9810d34d
SS
9837 bool target_is_16_bit_code = false;
9838 bool target_is_micromips_code = false;
9839 bool cross_mode_jump;
9840
9841 Symbol_value<size> symval;
9842
9843 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9844
9845 bool changed_symbol_value = false;
9846 if (gsym == NULL)
9847 {
9848 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9849 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9850 if (target_is_16_bit_code || target_is_micromips_code)
9851 {
9852 // MIPS16/microMIPS text labels should be treated as odd.
9853 symval.set_output_value(psymval->value(object, 1));
9854 psymval = &symval;
9855 changed_symbol_value = true;
9856 }
9857 }
9858 else
9859 {
9860 target_is_16_bit_code = mips_sym->is_mips16();
9861 target_is_micromips_code = mips_sym->is_micromips();
9862
9863 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9864 // it odd. This will cause something like .word SYM to come up with
9865 // the right value when it is loaded into the PC.
9866
9867 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9868 && psymval->value(object, 0) != 0)
9869 {
9870 symval.set_output_value(psymval->value(object, 0) | 1);
9871 psymval = &symval;
9872 changed_symbol_value = true;
9873 }
9874
9875 // Pick the value to use for symbols defined in shared objects.
9876 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9877 || mips_sym->has_lazy_stub())
9878 {
9879 Mips_address value;
9880 if (!mips_sym->has_lazy_stub())
9881 {
9882 // Prefer a standard MIPS PLT entry.
9883 if (mips_sym->has_mips_plt_offset())
9884 {
9885 value = target->plt_section()->mips_entry_address(mips_sym);
9886 target_is_micromips_code = false;
9887 target_is_16_bit_code = false;
9888 }
9889 else
9890 {
9891 value = (target->plt_section()->comp_entry_address(mips_sym)
9892 + 1);
9893 if (target->is_output_micromips())
9894 target_is_micromips_code = true;
9895 else
9896 target_is_16_bit_code = true;
9897 }
9898 }
9899 else
9900 value = target->mips_stubs_section()->stub_address(mips_sym);
9901
9902 symval.set_output_value(value);
9903 psymval = &symval;
9904 }
9905 }
9906
9907 // TRUE if the symbol referred to by this relocation is "_gp_disp".
9908 // Note that such a symbol must always be a global symbol.
9909 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9910 && !object->is_newabi());
9911
9912 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9913 // Note that such a symbol must always be a global symbol.
9914 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9915
9916
9917 if (gp_disp)
9918 {
9919 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9920 gold_error_at_location(relinfo, relnum, r_offset,
9921 _("relocations against _gp_disp are permitted only"
9922 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9923 }
9924 else if (gnu_local_gp)
9925 {
9926 // __gnu_local_gp is _gp symbol.
9927 symval.set_output_value(target->adjusted_gp_value(object));
9928 psymval = &symval;
9929 }
9930
9931 // If this is a reference to a 16-bit function with a stub, we need
9932 // to redirect the relocation to the stub unless:
9933 //
9934 // (a) the relocation is for a MIPS16 JAL;
9935 //
9936 // (b) the relocation is for a MIPS16 PIC call, and there are no
9937 // non-MIPS16 uses of the GOT slot; or
9938 //
9939 // (c) the section allows direct references to MIPS16 functions.
9940 if (r_type != elfcpp::R_MIPS16_26
9941 && !parameters->options().relocatable()
9942 && ((mips_sym != NULL
9943 && mips_sym->has_mips16_fn_stub()
9944 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9945 || (mips_sym == NULL
9946 && object->get_local_mips16_fn_stub(r_sym) != NULL))
9947 && !object->section_allows_mips16_refs(relinfo->data_shndx))
9948 {
9949 // This is a 32- or 64-bit call to a 16-bit function. We should
9950 // have already noticed that we were going to need the
9951 // stub.
9952 Mips_address value;
9953 if (mips_sym == NULL)
9954 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9955 else
9956 {
9957 gold_assert(mips_sym->need_fn_stub());
9958 if (mips_sym->has_la25_stub())
9959 value = target->la25_stub_section()->stub_address(mips_sym);
9960 else
9961 {
9962 value = mips_sym->template
9963 get_mips16_fn_stub<big_endian>()->output_address();
9964 }
9965 }
9966 symval.set_output_value(value);
9967 psymval = &symval;
9968 changed_symbol_value = true;
9969
9970 // The target is 16-bit, but the stub isn't.
9971 target_is_16_bit_code = false;
9972 }
9973 // If this is a MIPS16 call with a stub, that is made through the PLT or
9974 // to a standard MIPS function, we need to redirect the call to the stub.
9975 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9976 // indirect calls should use an indirect stub instead.
9977 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9978 && ((mips_sym != NULL
9979 && (mips_sym->has_mips16_call_stub()
9980 || mips_sym->has_mips16_call_fp_stub()))
9981 || (mips_sym == NULL
9982 && object->get_local_mips16_call_stub(r_sym) != NULL))
9983 && ((mips_sym != NULL && mips_sym->has_plt_offset())
9984 || !target_is_16_bit_code))
9985 {
9986 Mips16_stub_section<size, big_endian>* call_stub;
9987 if (mips_sym == NULL)
9988 call_stub = object->get_local_mips16_call_stub(r_sym);
9989 else
9990 {
9991 // If both call_stub and call_fp_stub are defined, we can figure
9992 // out which one to use by checking which one appears in the input
9993 // file.
9994 if (mips_sym->has_mips16_call_stub()
9995 && mips_sym->has_mips16_call_fp_stub())
9996 {
9997 call_stub = NULL;
9998 for (unsigned int i = 1; i < object->shnum(); ++i)
9999 {
10000 if (object->is_mips16_call_fp_stub_section(i))
10001 {
10002 call_stub = mips_sym->template
10003 get_mips16_call_fp_stub<big_endian>();
10004 break;
10005 }
10006
10007 }
10008 if (call_stub == NULL)
10009 call_stub =
10010 mips_sym->template get_mips16_call_stub<big_endian>();
10011 }
10012 else if (mips_sym->has_mips16_call_stub())
10013 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
10014 else
10015 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
10016 }
10017
10018 symval.set_output_value(call_stub->output_address());
10019 psymval = &symval;
10020 changed_symbol_value = true;
10021 }
10022 // If this is a direct call to a PIC function, redirect to the
10023 // non-PIC stub.
10024 else if (mips_sym != NULL
10025 && mips_sym->has_la25_stub()
10026 && relocation_needs_la25_stub<size, big_endian>(
10027 object, r_type, target_is_16_bit_code))
10028 {
10029 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
10030 if (mips_sym->is_micromips())
10031 value += 1;
10032 symval.set_output_value(value);
10033 psymval = &symval;
10034 }
10035 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
10036 // entry is used if a standard PLT entry has also been made.
10037 else if ((r_type == elfcpp::R_MIPS16_26
10038 || r_type == elfcpp::R_MICROMIPS_26_S1)
10039 && !parameters->options().relocatable()
10040 && mips_sym != NULL
10041 && mips_sym->has_plt_offset()
10042 && mips_sym->has_comp_plt_offset()
10043 && mips_sym->has_mips_plt_offset())
10044 {
10045 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
10046 + 1);
10047 symval.set_output_value(value);
10048 psymval = &symval;
10049
10050 target_is_16_bit_code = !target->is_output_micromips();
10051 target_is_micromips_code = target->is_output_micromips();
10052 }
10053
10054 // Make sure MIPS16 and microMIPS are not used together.
10055 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
10056 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
10057 {
10058 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
10059 }
10060
10061 // Calls from 16-bit code to 32-bit code and vice versa require the
10062 // mode change. However, we can ignore calls to undefined weak symbols,
10063 // which should never be executed at runtime. This exception is important
10064 // because the assembly writer may have "known" that any definition of the
10065 // symbol would be 16-bit code, and that direct jumps were therefore
10066 // acceptable.
10067 cross_mode_jump =
10068 (!parameters->options().relocatable()
10069 && !(gsym != NULL && gsym->is_weak_undefined())
10070 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
10071 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
10072 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
10073 && (target_is_16_bit_code || target_is_micromips_code))));
10074
10075 bool local = (mips_sym == NULL
10076 || (mips_sym->got_only_for_calls()
10077 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
10078 : symbol_references_local(mips_sym,
10079 mips_sym->has_dynsym_index())));
10080
10081 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
10082 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
10083 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
10084 if (got_page_reloc(r_type) && !local)
10085 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
10086 : elfcpp::R_MIPS_GOT_DISP);
10087
10088 unsigned int got_offset = 0;
10089 int gp_offset = 0;
10090
10091 bool update_got_entry = false;
10092 bool extract_addend = rel_type == elfcpp::SHT_REL;
10093 switch (r_type)
10094 {
10095 case elfcpp::R_MIPS_NONE:
10096 break;
10097 case elfcpp::R_MIPS_16:
10098 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
10099 extract_addend, r_type);
10100 break;
10101
10102 case elfcpp::R_MIPS_32:
10103 if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
10104 target))
10105 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
10106 extract_addend, r_type);
10107 if (mips_sym != NULL
10108 && (mips_sym->is_mips16() || mips_sym->is_micromips())
10109 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
10110 {
10111 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
10112 // already updated by adding +1.
10113 if (mips_sym->has_mips16_fn_stub())
10114 {
10115 gold_assert(mips_sym->need_fn_stub());
10116 Mips16_stub_section<size, big_endian>* fn_stub =
10117 mips_sym->template get_mips16_fn_stub<big_endian>();
10118
10119 symval.set_output_value(fn_stub->output_address());
10120 psymval = &symval;
10121 }
10122 got_offset = mips_sym->global_gotoffset();
10123 update_got_entry = true;
10124 }
10125 break;
10126
10127 case elfcpp::R_MIPS_REL32:
10128 gold_unreachable();
10129
10130 case elfcpp::R_MIPS_PC32:
10131 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
10132 r_addend, extract_addend, r_type);
10133 break;
10134
10135 case elfcpp::R_MIPS16_26:
10136 // The calculation for R_MIPS16_26 is just the same as for an
10137 // R_MIPS_26. It's only the storage of the relocated field into
10138 // the output file that's different. So, we just fall through to the
10139 // R_MIPS_26 case here.
10140 case elfcpp::R_MIPS_26:
10141 case elfcpp::R_MICROMIPS_26_S1:
10142 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
10143 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
10144 target->jal_to_bal());
10145 break;
10146
10147 case elfcpp::R_MIPS_HI16:
10148 case elfcpp::R_MIPS16_HI16:
10149 case elfcpp::R_MICROMIPS_HI16:
10150 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
3d0064a9 10151 address, gp_disp, r_type, r_sym,
9810d34d
SS
10152 extract_addend);
10153 break;
10154
10155 case elfcpp::R_MIPS_LO16:
10156 case elfcpp::R_MIPS16_LO16:
10157 case elfcpp::R_MICROMIPS_LO16:
10158 case elfcpp::R_MICROMIPS_HI0_LO16:
10159 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
10160 r_addend, extract_addend, address,
3d0064a9 10161 gp_disp, r_type, r_sym);
9810d34d
SS
10162 break;
10163
10164 case elfcpp::R_MIPS_LITERAL:
10165 case elfcpp::R_MICROMIPS_LITERAL:
10166 // Because we don't merge literal sections, we can handle this
10167 // just like R_MIPS_GPREL16. In the long run, we should merge
10168 // shared literals, and then we will need to additional work
10169 // here.
10170
10171 // Fall through.
10172
10173 case elfcpp::R_MIPS_GPREL16:
10174 case elfcpp::R_MIPS16_GPREL:
10175 case elfcpp::R_MICROMIPS_GPREL7_S2:
10176 case elfcpp::R_MICROMIPS_GPREL16:
10177 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
10178 target->adjusted_gp_value(object),
10179 r_addend, extract_addend,
10180 gsym == NULL, r_type);
10181 break;
10182
10183 case elfcpp::R_MIPS_PC16:
10184 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
10185 r_addend, extract_addend, r_type);
10186 break;
10187 case elfcpp::R_MICROMIPS_PC7_S1:
10188 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
10189 address, r_addend,
10190 extract_addend, r_type);
10191 break;
10192 case elfcpp::R_MICROMIPS_PC10_S1:
10193 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
10194 address, r_addend,
10195 extract_addend, r_type);
10196 break;
10197 case elfcpp::R_MICROMIPS_PC16_S1:
10198 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
10199 address, r_addend,
10200 extract_addend, r_type);
10201 break;
10202 case elfcpp::R_MIPS_GPREL32:
10203 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
10204 target->adjusted_gp_value(object),
10205 r_addend, extract_addend, r_type);
10206 break;
10207 case elfcpp::R_MIPS_GOT_HI16:
10208 case elfcpp::R_MIPS_CALL_HI16:
10209 case elfcpp::R_MICROMIPS_GOT_HI16:
10210 case elfcpp::R_MICROMIPS_CALL_HI16:
10211 if (gsym != NULL)
10212 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10213 object);
10214 else
10215 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10216 object);
10217 gp_offset = target->got_section()->gp_offset(got_offset, object);
10218 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
10219 update_got_entry = changed_symbol_value;
10220 break;
10221
10222 case elfcpp::R_MIPS_GOT_LO16:
10223 case elfcpp::R_MIPS_CALL_LO16:
10224 case elfcpp::R_MICROMIPS_GOT_LO16:
10225 case elfcpp::R_MICROMIPS_CALL_LO16:
10226 if (gsym != NULL)
10227 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10228 object);
10229 else
10230 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10231 object);
10232 gp_offset = target->got_section()->gp_offset(got_offset, object);
10233 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
10234 update_got_entry = changed_symbol_value;
10235 break;
10236
10237 case elfcpp::R_MIPS_GOT_DISP:
10238 case elfcpp::R_MICROMIPS_GOT_DISP:
10239 if (gsym != NULL)
10240 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10241 object);
10242 else
10243 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10244 object);
10245 gp_offset = target->got_section()->gp_offset(got_offset, object);
10246 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10247 break;
10248
10249 case elfcpp::R_MIPS_CALL16:
10250 case elfcpp::R_MIPS16_CALL16:
10251 case elfcpp::R_MICROMIPS_CALL16:
10252 gold_assert(gsym != NULL);
10253 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10254 object);
10255 gp_offset = target->got_section()->gp_offset(got_offset, object);
10256 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10257 // TODO(sasa): We should also initialize update_got_entry in other places
10258 // where relgot is called.
10259 update_got_entry = changed_symbol_value;
10260 break;
10261
10262 case elfcpp::R_MIPS_GOT16:
10263 case elfcpp::R_MIPS16_GOT16:
10264 case elfcpp::R_MICROMIPS_GOT16:
10265 if (gsym != NULL)
10266 {
10267 got_offset = target->got_section()->got_offset(gsym,
10268 GOT_TYPE_STANDARD,
10269 object);
10270 gp_offset = target->got_section()->gp_offset(got_offset, object);
10271 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10272 }
10273 else
10274 reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10275 r_addend, extract_addend,
3d0064a9 10276 r_type, r_sym);
9810d34d
SS
10277 update_got_entry = changed_symbol_value;
10278 break;
10279
10280 case elfcpp::R_MIPS_TLS_GD:
10281 case elfcpp::R_MIPS16_TLS_GD:
10282 case elfcpp::R_MICROMIPS_TLS_GD:
10283 if (gsym != NULL)
10284 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10285 object);
10286 else
10287 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10288 object);
10289 gp_offset = target->got_section()->gp_offset(got_offset, object);
10290 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10291 break;
10292
10293 case elfcpp::R_MIPS_TLS_GOTTPREL:
10294 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10295 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10296 if (gsym != NULL)
10297 got_offset = target->got_section()->got_offset(gsym,
10298 GOT_TYPE_TLS_OFFSET,
10299 object);
10300 else
10301 got_offset = target->got_section()->got_offset(r_sym,
10302 GOT_TYPE_TLS_OFFSET,
10303 object);
10304 gp_offset = target->got_section()->gp_offset(got_offset, object);
10305 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10306 break;
10307
10308 case elfcpp::R_MIPS_TLS_LDM:
10309 case elfcpp::R_MIPS16_TLS_LDM:
10310 case elfcpp::R_MICROMIPS_TLS_LDM:
10311 // Relocate the field with the offset of the GOT entry for
10312 // the module index.
10313 got_offset = target->got_section()->tls_ldm_offset(object);
10314 gp_offset = target->got_section()->gp_offset(got_offset, object);
10315 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10316 break;
10317
10318 case elfcpp::R_MIPS_GOT_PAGE:
10319 case elfcpp::R_MICROMIPS_GOT_PAGE:
10320 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10321 r_addend, extract_addend, r_type);
10322 break;
10323
10324 case elfcpp::R_MIPS_GOT_OFST:
10325 case elfcpp::R_MICROMIPS_GOT_OFST:
10326 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10327 r_addend, extract_addend, local,
10328 r_type);
10329 break;
10330
10331 case elfcpp::R_MIPS_JALR:
10332 case elfcpp::R_MICROMIPS_JALR:
10333 // This relocation is only a hint. In some cases, we optimize
10334 // it into a bal instruction. But we don't try to optimize
10335 // when the symbol does not resolve locally.
10336 if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10337 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10338 r_addend, extract_addend,
10339 cross_mode_jump, r_type,
10340 target->jalr_to_bal(),
10341 target->jr_to_b());
10342 break;
10343
10344 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10345 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10346 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10347 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10348 elfcpp::DTP_OFFSET, r_addend,
10349 extract_addend, r_type);
10350 break;
10351 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10352 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10353 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10354 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10355 elfcpp::DTP_OFFSET, r_addend,
10356 extract_addend, r_type);
10357 break;
10358 case elfcpp::R_MIPS_TLS_DTPREL32:
10359 case elfcpp::R_MIPS_TLS_DTPREL64:
10360 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10361 elfcpp::DTP_OFFSET, r_addend,
10362 extract_addend, r_type);
10363 break;
10364 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10365 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10366 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10367 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10368 elfcpp::TP_OFFSET, r_addend,
10369 extract_addend, r_type);
10370 break;
10371 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10372 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10373 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10374 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10375 elfcpp::TP_OFFSET, r_addend,
10376 extract_addend, r_type);
10377 break;
10378 case elfcpp::R_MIPS_TLS_TPREL32:
10379 case elfcpp::R_MIPS_TLS_TPREL64:
10380 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10381 elfcpp::TP_OFFSET, r_addend,
10382 extract_addend, r_type);
10383 break;
10384 case elfcpp::R_MIPS_SUB:
10385 case elfcpp::R_MICROMIPS_SUB:
10386 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10387 extract_addend, r_type);
10388 break;
10389 default:
10390 gold_error_at_location(relinfo, relnum, r_offset,
10391 _("unsupported reloc %u"), r_type);
10392 break;
10393 }
10394
10395 if (update_got_entry)
10396 {
10397 Mips_output_data_got<size, big_endian>* got = target->got_section();
10398 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10399 got->update_got_entry(got->get_primary_got_offset(mips_sym),
10400 psymval->value(object, 0));
10401 else
10402 got->update_got_entry(got_offset, psymval->value(object, 0));
10403 }
10404
10405 // Report any errors.
10406 switch (reloc_status)
10407 {
10408 case Reloc_funcs::STATUS_OKAY:
10409 break;
10410 case Reloc_funcs::STATUS_OVERFLOW:
10411 gold_error_at_location(relinfo, relnum, r_offset,
10412 _("relocation overflow"));
10413 break;
10414 case Reloc_funcs::STATUS_BAD_RELOC:
10415 gold_error_at_location(relinfo, relnum, r_offset,
10416 _("unexpected opcode while processing relocation"));
10417 break;
10418 default:
10419 gold_unreachable();
10420 }
10421
10422 return true;
10423}
10424
9810d34d
SS
10425// Get the Reference_flags for a particular relocation.
10426
10427template<int size, bool big_endian>
10428int
10429Target_mips<size, big_endian>::Scan::get_reference_flags(
10430 unsigned int r_type)
10431{
10432 switch (r_type)
10433 {
10434 case elfcpp::R_MIPS_NONE:
10435 // No symbol reference.
10436 return 0;
10437
10438 case elfcpp::R_MIPS_16:
10439 case elfcpp::R_MIPS_32:
10440 case elfcpp::R_MIPS_64:
10441 case elfcpp::R_MIPS_HI16:
10442 case elfcpp::R_MIPS_LO16:
10443 case elfcpp::R_MIPS16_HI16:
10444 case elfcpp::R_MIPS16_LO16:
10445 case elfcpp::R_MICROMIPS_HI16:
10446 case elfcpp::R_MICROMIPS_LO16:
10447 return Symbol::ABSOLUTE_REF;
10448
10449 case elfcpp::R_MIPS_26:
10450 case elfcpp::R_MIPS16_26:
10451 case elfcpp::R_MICROMIPS_26_S1:
10452 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10453
10454 case elfcpp::R_MIPS_GPREL32:
10455 case elfcpp::R_MIPS_GPREL16:
10456 case elfcpp::R_MIPS_REL32:
10457 case elfcpp::R_MIPS16_GPREL:
10458 return Symbol::RELATIVE_REF;
10459
10460 case elfcpp::R_MIPS_PC16:
10461 case elfcpp::R_MIPS_PC32:
10462 case elfcpp::R_MIPS_JALR:
10463 case elfcpp::R_MICROMIPS_JALR:
10464 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10465
10466 case elfcpp::R_MIPS_GOT16:
10467 case elfcpp::R_MIPS_CALL16:
10468 case elfcpp::R_MIPS_GOT_DISP:
10469 case elfcpp::R_MIPS_GOT_HI16:
10470 case elfcpp::R_MIPS_GOT_LO16:
10471 case elfcpp::R_MIPS_CALL_HI16:
10472 case elfcpp::R_MIPS_CALL_LO16:
10473 case elfcpp::R_MIPS_LITERAL:
10474 case elfcpp::R_MIPS_GOT_PAGE:
10475 case elfcpp::R_MIPS_GOT_OFST:
10476 case elfcpp::R_MIPS16_GOT16:
10477 case elfcpp::R_MIPS16_CALL16:
10478 case elfcpp::R_MICROMIPS_GOT16:
10479 case elfcpp::R_MICROMIPS_CALL16:
10480 case elfcpp::R_MICROMIPS_GOT_HI16:
10481 case elfcpp::R_MICROMIPS_GOT_LO16:
10482 case elfcpp::R_MICROMIPS_CALL_HI16:
10483 case elfcpp::R_MICROMIPS_CALL_LO16:
10484 // Absolute in GOT.
10485 return Symbol::RELATIVE_REF;
10486
10487 case elfcpp::R_MIPS_TLS_DTPMOD32:
10488 case elfcpp::R_MIPS_TLS_DTPREL32:
10489 case elfcpp::R_MIPS_TLS_DTPMOD64:
10490 case elfcpp::R_MIPS_TLS_DTPREL64:
10491 case elfcpp::R_MIPS_TLS_GD:
10492 case elfcpp::R_MIPS_TLS_LDM:
10493 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10494 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10495 case elfcpp::R_MIPS_TLS_GOTTPREL:
10496 case elfcpp::R_MIPS_TLS_TPREL32:
10497 case elfcpp::R_MIPS_TLS_TPREL64:
10498 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10499 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10500 case elfcpp::R_MIPS16_TLS_GD:
10501 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10502 case elfcpp::R_MICROMIPS_TLS_GD:
10503 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10504 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10505 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10506 return Symbol::TLS_REF;
10507
10508 case elfcpp::R_MIPS_COPY:
10509 case elfcpp::R_MIPS_JUMP_SLOT:
10510 default:
10511 gold_unreachable();
10512 // Not expected. We will give an error later.
10513 return 0;
10514 }
10515}
10516
10517// Report an unsupported relocation against a local symbol.
10518
10519template<int size, bool big_endian>
10520void
10521Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10522 Sized_relobj_file<size, big_endian>* object,
10523 unsigned int r_type)
10524{
10525 gold_error(_("%s: unsupported reloc %u against local symbol"),
10526 object->name().c_str(), r_type);
10527}
10528
10529// Report an unsupported relocation against a global symbol.
10530
10531template<int size, bool big_endian>
10532void
10533Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10534 Sized_relobj_file<size, big_endian>* object,
10535 unsigned int r_type,
10536 Symbol* gsym)
10537{
10538 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10539 object->name().c_str(), r_type, gsym->demangled_name().c_str());
10540}
10541
10542// Return printable name for ABI.
10543template<int size, bool big_endian>
10544const char*
10545Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10546 unsigned char ei_class)
10547{
10548 switch (e_flags & elfcpp::EF_MIPS_ABI)
10549 {
10550 case 0:
10551 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10552 return "N32";
10553 else if (elfcpp::abi_64(ei_class))
10554 return "64";
10555 else
10556 return "none";
10557 case elfcpp::E_MIPS_ABI_O32:
10558 return "O32";
10559 case elfcpp::E_MIPS_ABI_O64:
10560 return "O64";
10561 case elfcpp::E_MIPS_ABI_EABI32:
10562 return "EABI32";
10563 case elfcpp::E_MIPS_ABI_EABI64:
10564 return "EABI64";
10565 default:
10566 return "unknown abi";
10567 }
10568}
10569
10570template<int size, bool big_endian>
10571const char*
10572Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10573{
10574 switch (e_flags & elfcpp::EF_MIPS_MACH)
10575 {
10576 case elfcpp::E_MIPS_MACH_3900:
10577 return "mips:3900";
10578 case elfcpp::E_MIPS_MACH_4010:
10579 return "mips:4010";
10580 case elfcpp::E_MIPS_MACH_4100:
10581 return "mips:4100";
10582 case elfcpp::E_MIPS_MACH_4111:
10583 return "mips:4111";
10584 case elfcpp::E_MIPS_MACH_4120:
10585 return "mips:4120";
10586 case elfcpp::E_MIPS_MACH_4650:
10587 return "mips:4650";
10588 case elfcpp::E_MIPS_MACH_5400:
10589 return "mips:5400";
10590 case elfcpp::E_MIPS_MACH_5500:
10591 return "mips:5500";
10592 case elfcpp::E_MIPS_MACH_SB1:
10593 return "mips:sb1";
10594 case elfcpp::E_MIPS_MACH_9000:
10595 return "mips:9000";
10596 case elfcpp::E_MIPS_MACH_LS2E:
10597 return "mips:loongson-2e";
10598 case elfcpp::E_MIPS_MACH_LS2F:
10599 return "mips:loongson-2f";
10600 case elfcpp::E_MIPS_MACH_LS3A:
10601 return "mips:loongson-3a";
10602 case elfcpp::E_MIPS_MACH_OCTEON:
10603 return "mips:octeon";
10604 case elfcpp::E_MIPS_MACH_OCTEON2:
10605 return "mips:octeon2";
10606 case elfcpp::E_MIPS_MACH_XLR:
10607 return "mips:xlr";
10608 default:
10609 switch (e_flags & elfcpp::EF_MIPS_ARCH)
10610 {
10611 default:
10612 case elfcpp::E_MIPS_ARCH_1:
10613 return "mips:3000";
10614
10615 case elfcpp::E_MIPS_ARCH_2:
10616 return "mips:6000";
10617
10618 case elfcpp::E_MIPS_ARCH_3:
10619 return "mips:4000";
10620
10621 case elfcpp::E_MIPS_ARCH_4:
10622 return "mips:8000";
10623
10624 case elfcpp::E_MIPS_ARCH_5:
10625 return "mips:mips5";
10626
10627 case elfcpp::E_MIPS_ARCH_32:
10628 return "mips:isa32";
10629
10630 case elfcpp::E_MIPS_ARCH_64:
10631 return "mips:isa64";
10632
10633 case elfcpp::E_MIPS_ARCH_32R2:
10634 return "mips:isa32r2";
10635
10636 case elfcpp::E_MIPS_ARCH_64R2:
10637 return "mips:isa64r2";
10638 }
10639 }
10640 return "unknown CPU";
10641}
10642
10643template<int size, bool big_endian>
62661c93 10644const Target::Target_info Target_mips<size, big_endian>::mips_info =
9810d34d
SS
10645{
10646 size, // size
10647 big_endian, // is_big_endian
10648 elfcpp::EM_MIPS, // machine_code
10649 true, // has_make_symbol
10650 false, // has_resolve
10651 false, // has_code_fill
10652 true, // is_default_stack_executable
10653 false, // can_icf_inline_merge_sections
10654 '\0', // wrap_char
10655 "/lib/ld.so.1", // dynamic_linker
10656 0x400000, // default_text_segment_address
10657 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
10658 4 * 1024, // common_pagesize (overridable by -z common-page-size)
10659 false, // isolate_execinstr
10660 0, // rosegment_gap
10661 elfcpp::SHN_UNDEF, // small_common_shndx
10662 elfcpp::SHN_UNDEF, // large_common_shndx
10663 0, // small_common_section_flags
10664 0, // large_common_section_flags
10665 NULL, // attributes_section
10666 NULL, // attributes_vendor
8d9743bd
MK
10667 "__start", // entry_symbol_name
10668 32, // hash_entry_size
9810d34d
SS
10669};
10670
62661c93
SS
10671template<int size, bool big_endian>
10672class Target_mips_nacl : public Target_mips<size, big_endian>
10673{
10674 public:
10675 Target_mips_nacl()
10676 : Target_mips<size, big_endian>(&mips_nacl_info)
10677 { }
10678
10679 private:
10680 static const Target::Target_info mips_nacl_info;
10681};
10682
10683template<int size, bool big_endian>
10684const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10685{
10686 size, // size
10687 big_endian, // is_big_endian
10688 elfcpp::EM_MIPS, // machine_code
10689 true, // has_make_symbol
10690 false, // has_resolve
10691 false, // has_code_fill
10692 true, // is_default_stack_executable
10693 false, // can_icf_inline_merge_sections
10694 '\0', // wrap_char
10695 "/lib/ld.so.1", // dynamic_linker
10696 0x20000, // default_text_segment_address
10697 0x10000, // abi_pagesize (overridable by -z max-page-size)
10698 0x10000, // common_pagesize (overridable by -z common-page-size)
10699 true, // isolate_execinstr
10700 0x10000000, // rosegment_gap
10701 elfcpp::SHN_UNDEF, // small_common_shndx
10702 elfcpp::SHN_UNDEF, // large_common_shndx
10703 0, // small_common_section_flags
10704 0, // large_common_section_flags
10705 NULL, // attributes_section
10706 NULL, // attributes_vendor
8d9743bd
MK
10707 "_start", // entry_symbol_name
10708 32, // hash_entry_size
62661c93
SS
10709};
10710
10711// Target selector for Mips. Note this is never instantiated directly.
10712// It's only used in Target_selector_mips_nacl, below.
9810d34d
SS
10713
10714template<int size, bool big_endian>
10715class Target_selector_mips : public Target_selector
10716{
10717public:
10718 Target_selector_mips()
10719 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10720 (size == 64 ?
10721 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10722 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10723 (size == 64 ?
10724 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10725 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10726 { }
10727
10728 Target* do_instantiate_target()
10729 { return new Target_mips<size, big_endian>(); }
10730};
10731
62661c93
SS
10732template<int size, bool big_endian>
10733class Target_selector_mips_nacl
10734 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10735 Target_mips_nacl<size, big_endian> >
10736{
10737 public:
10738 Target_selector_mips_nacl()
10739 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10740 Target_mips_nacl<size, big_endian> >(
10741 // NaCl currently supports only MIPS32 little-endian.
10742 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10743 { }
10744};
9810d34d 10745
62661c93
SS
10746Target_selector_mips_nacl<32, true> target_selector_mips32;
10747Target_selector_mips_nacl<32, false> target_selector_mips32el;
10748Target_selector_mips_nacl<64, true> target_selector_mips64;
10749Target_selector_mips_nacl<64, false> target_selector_mips64el;
9810d34d
SS
10750
10751} // End anonymous namespace.
This page took 0.510657 seconds and 4 git commands to generate.