Add missing ChangeLog entry for previous commit.
[deliverable/binutils-gdb.git] / gold / resolve.cc
CommitLineData
14bfc3f5
ILT
1// resolve.cc -- symbol resolution for gold
2
b90efa5b 3// Copyright (C) 2006-2015 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
25#include "elfcpp.h"
26#include "target.h"
27#include "object.h"
28#include "symtab.h"
89fc3421 29#include "plugin.h"
14bfc3f5
ILT
30
31namespace gold
32{
33
1564db8d
ILT
34// Symbol methods used in this file.
35
75517b77
ILT
36// This symbol is being overridden by another symbol whose version is
37// VERSION. Update the VERSION_ field accordingly.
38
39inline void
2ea97941 40Symbol::override_version(const char* version)
75517b77 41{
2ea97941 42 if (version == NULL)
75517b77
ILT
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
2ea97941 52 this->version_ = version;
75517b77
ILT
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
2ea97941
ILT
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
75517b77
ILT
63 }
64}
65
0602e05a
ILT
66// This symbol is being overidden by another symbol whose visibility
67// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69inline void
2ea97941 70Symbol::override_visibility(elfcpp::STV visibility)
0602e05a
ILT
71{
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
2ea97941 77 if (visibility != elfcpp::STV_DEFAULT)
0602e05a
ILT
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
2ea97941
ILT
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
0602e05a
ILT
83 }
84}
85
1564db8d
ILT
86// Override the fields in Symbol.
87
88template<int size, bool big_endian>
89void
90Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 91 unsigned int st_shndx, bool is_ordinary,
2ea97941 92 Object* object, const char* version)
1564db8d 93{
a3ad94ed 94 gold_assert(this->source_ == FROM_OBJECT);
2ea97941
ILT
95 this->u_.from_object.object = object;
96 this->override_version(version);
d491d34e
ILT
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
32364e50
CC
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
1564db8d 102 this->binding_ = sym.get_st_bind();
0602e05a 103 this->override_visibility(sym.get_st_visibility());
ead1e424 104 this->nonvis_ = sym.get_st_nonvis();
2ea97941 105 if (object->is_dynamic())
0d4f1889
ILT
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
1564db8d
ILT
109}
110
111// Override the fields in Sized_symbol.
112
113template<int size>
114template<bool big_endian>
115void
116Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 117 unsigned st_shndx, bool is_ordinary,
2ea97941 118 Object* object, const char* version)
1564db8d 119{
2ea97941 120 this->override_base(sym, st_shndx, is_ordinary, object, version);
1564db8d 121 this->value_ = sym.get_st_value();
ead1e424 122 this->symsize_ = sym.get_st_size();
1564db8d
ILT
123}
124
aeddab66
ILT
125// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126// VERSION. This handles all aliases of TOSYM.
127
128template<int size, bool big_endian>
129void
130Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
d491d34e 132 unsigned int st_shndx, bool is_ordinary,
2ea97941 133 Object* object, const char* version)
aeddab66 134{
2ea97941 135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
7d1a9ebb 140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
141 do
142 {
2ea97941 143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
7d1a9ebb 146 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
147 }
148 while (ssym != tosym);
149 }
150}
151
86f2e683
ILT
152// The resolve functions build a little code for each symbol.
153// Bit 0: 0 for global, 1 for weak.
154// Bit 1: 0 for regular object, 1 for shared object
155// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156// This gives us values from 0 to 11.
157
158static const int global_or_weak_shift = 0;
159static const unsigned int global_flag = 0 << global_or_weak_shift;
160static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162static const int regular_or_dynamic_shift = 1;
163static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166static const int def_undef_or_common_shift = 2;
167static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
70e654ba
ILT
171// This convenience function combines all the flags based on facts
172// about the symbol.
173
174static unsigned int
175symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
b8cf5075 176 unsigned int shndx, bool is_ordinary)
70e654ba
ILT
177{
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
adcf2816 183 case elfcpp::STB_GNU_UNIQUE:
70e654ba
ILT
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
ac897c20 200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
70e654ba
ILT
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
d491d34e
ILT
216 if (!is_ordinary)
217 bits |= common_flag;
70e654ba
ILT
218 break;
219
220 default:
b8cf5075 221 if (!is_ordinary && Symbol::is_common_shndx(shndx))
8a5e3e08 222 bits |= common_flag;
70e654ba
ILT
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229}
230
14bfc3f5 231// Resolve a symbol. This is called the second and subsequent times
d491d34e
ILT
232// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233// section index for SYM, possibly adjusted for many sections.
234// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235// than a special code. ORIG_ST_SHNDX is the original section index,
236// before any munging because of discarded sections, except that all
95d14cd3 237// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
d491d34e 238// the version of SYM.
14bfc3f5
ILT
239
240template<int size, bool big_endian>
241void
1564db8d 242Symbol_table::resolve(Sized_symbol<size>* to,
14bfc3f5 243 const elfcpp::Sym<size, big_endian>& sym,
d491d34e
ILT
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
14b31740 246 Object* object, const char* version)
14bfc3f5 247{
534b4e5f
ILT
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
262
029ba973 263 if (parameters->target().has_resolve())
14bfc3f5 264 {
274e99f9 265 Sized_target<size, big_endian>* sized_target;
029ba973 266 sized_target = parameters->sized_target<size, big_endian>();
14b31740 267 sized_target->resolve(to, sym, object, version);
14bfc3f5
ILT
268 return;
269 }
270
86f2e683
ILT
271 if (!object->is_dynamic())
272 {
b8cf5075
CC
273 if (sym.get_st_type() == elfcpp::STT_COMMON
274 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
275 {
276 gold_warning(_("STT_COMMON symbol '%s' in %s "
277 "is not in a common section"),
278 to->demangled_name().c_str(),
279 to->object()->name().c_str());
280 return;
281 }
86f2e683
ILT
282 // Record that we've seen this symbol in a regular object.
283 to->set_in_reg();
284 }
2da73f13
CC
285 else if (st_shndx == elfcpp::SHN_UNDEF
286 && (to->visibility() == elfcpp::STV_HIDDEN
287 || to->visibility() == elfcpp::STV_INTERNAL))
645afe0c 288 {
c20ceeb2
YW
289 // The symbol is hidden, so a reference from a shared object
290 // cannot bind to it. We tried issuing a warning in this case,
291 // but that produces false positives when the symbol is
292 // actually resolved in a different shared object (PR 15574).
645afe0c
CC
293 return;
294 }
86f2e683
ILT
295 else
296 {
297 // Record that we've seen this symbol in a dynamic object.
298 to->set_in_dyn();
299 }
14bfc3f5 300
89fc3421
CC
301 // Record if we've seen this symbol in a real ELF object (i.e., the
302 // symbol is referenced from outside the world known to the plugin).
f7c5b166 303 if (object->pluginobj() == NULL && !object->is_dynamic())
89fc3421
CC
304 to->set_in_real_elf();
305
306 // If we're processing replacement files, allow new symbols to override
307 // the placeholders from the plugin objects.
6168c2a1
RÁE
308 // Treat common symbols specially since it is possible that an ELF
309 // file increased the size of the alignment.
89fc3421
CC
310 if (to->source() == Symbol::FROM_OBJECT)
311 {
312 Pluginobj* obj = to->object()->pluginobj();
313 if (obj != NULL
1707f183 314 && parameters->options().plugins()->in_replacement_phase())
89fc3421 315 {
1707f183
CC
316 bool adjust_common = false;
317 typename Sized_symbol<size>::Size_type tosize = 0;
318 typename Sized_symbol<size>::Value_type tovalue = 0;
b8cf5075
CC
319 if (to->is_common()
320 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
1707f183
CC
321 {
322 adjust_common = true;
db4c9594
CC
323 tosize = to->symsize();
324 tovalue = to->value();
1707f183
CC
325 }
326 this->override(to, sym, st_shndx, is_ordinary, object, version);
327 if (adjust_common)
328 {
329 if (tosize > to->symsize())
330 to->set_symsize(tosize);
331 if (tovalue > to->value())
332 to->set_value(tovalue);
333 }
334 return;
89fc3421
CC
335 }
336 }
337
ba4d53bf
ILT
338 // A new weak undefined reference, merging with an old weak
339 // reference, could be a One Definition Rule (ODR) violation --
340 // especially if the types or sizes of the references differ. We'll
341 // store such pairs and look them up later to make sure they
342 // actually refer to the same lines of code. We also check
343 // combinations of weak and strong, which might occur if one case is
344 // inline and the other is not. (Note: not all ODR violations can
345 // be found this way, and not everything this finds is an ODR
346 // violation. But it's helpful to warn about.)
ba4d53bf
ILT
347 if (parameters->options().detect_odr_violations()
348 && (sym.get_st_bind() == elfcpp::STB_WEAK
349 || to->binding() == elfcpp::STB_WEAK)
350 && orig_st_shndx != elfcpp::SHN_UNDEF
351 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
352 && to_is_ordinary
353 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
354 && to->symsize() != 0
355 && (sym.get_st_type() != to->type()
356 || sym.get_st_size() != to->symsize())
357 // C does not have a concept of ODR, so we only need to do this
358 // on C++ symbols. These have (mangled) names starting with _Z.
359 && to->name()[0] == '_' && to->name()[1] == 'Z')
360 {
361 Symbol_location fromloc
76677ad0 362 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
ba4d53bf 363 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
76677ad0 364 static_cast<off_t>(to->value()) };
ba4d53bf
ILT
365 this->candidate_odr_violations_[to->name()].insert(fromloc);
366 this->candidate_odr_violations_[to->name()].insert(toloc);
367 }
368
32364e50
CC
369 // Plugins don't provide a symbol type, so adopt the existing type
370 // if the FROM symbol is from a plugin.
371 elfcpp::STT fromtype = (object->pluginobj() != NULL
372 ? to->type()
373 : sym.get_st_type());
70e654ba
ILT
374 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
375 object->is_dynamic(),
b8cf5075 376 st_shndx, is_ordinary);
14bfc3f5 377
86f2e683 378 bool adjust_common_sizes;
ce279a62 379 bool adjust_dyndef;
1ae4d23b 380 typename Sized_symbol<size>::Size_type tosize = to->symsize();
32364e50 381 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
62855347 382 object, &adjust_common_sizes,
ce279a62 383 &adjust_dyndef))
86f2e683 384 {
ce279a62 385 elfcpp::STB tobinding = to->binding();
fd325007 386 typename Sized_symbol<size>::Value_type tovalue = to->value();
d491d34e 387 this->override(to, sym, st_shndx, is_ordinary, object, version);
fd325007
ILT
388 if (adjust_common_sizes)
389 {
390 if (tosize > to->symsize())
391 to->set_symsize(tosize);
392 if (tovalue > to->value())
393 to->set_value(tovalue);
394 }
ce279a62
CC
395 if (adjust_dyndef)
396 {
397 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
398 // Remember which kind of UNDEF it was for future reference.
399 to->set_undef_binding(tobinding);
400 }
86f2e683
ILT
401 }
402 else
403 {
fd325007
ILT
404 if (adjust_common_sizes)
405 {
406 if (sym.get_st_size() > tosize)
407 to->set_symsize(sym.get_st_size());
408 if (sym.get_st_value() > to->value())
409 to->set_value(sym.get_st_value());
410 }
ce279a62
CC
411 if (adjust_dyndef)
412 {
413 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
414 // Remember which kind of UNDEF it was.
415 to->set_undef_binding(sym.get_st_bind());
416 }
0602e05a
ILT
417 // The ELF ABI says that even for a reference to a symbol we
418 // merge the visibility.
419 to->override_visibility(sym.get_st_visibility());
86f2e683 420 }
70e654ba 421
1ae4d23b
ILT
422 if (adjust_common_sizes && parameters->options().warn_common())
423 {
424 if (tosize > sym.get_st_size())
425 Symbol_table::report_resolve_problem(false,
426 _("common of '%s' overriding "
427 "smaller common"),
99fff23b 428 to, OBJECT, object);
1ae4d23b
ILT
429 else if (tosize < sym.get_st_size())
430 Symbol_table::report_resolve_problem(false,
431 _("common of '%s' overidden by "
432 "larger common"),
99fff23b 433 to, OBJECT, object);
1ae4d23b
ILT
434 else
435 Symbol_table::report_resolve_problem(false,
436 _("multiple common of '%s'"),
99fff23b 437 to, OBJECT, object);
1ae4d23b 438 }
86f2e683
ILT
439}
440
441// Handle the core of symbol resolution. This is called with the
442// existing symbol, TO, and a bitflag describing the new symbol. This
443// returns true if we should override the existing symbol with the new
444// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
445// true if we should set the symbol size to the maximum of the TO and
446// FROM sizes. It handles error conditions.
447
448bool
449Symbol_table::should_override(const Symbol* to, unsigned int frombits,
62855347
ILT
450 elfcpp::STT fromtype, Defined defined,
451 Object* object, bool* adjust_common_sizes,
ce279a62 452 bool* adjust_dyndef)
86f2e683
ILT
453{
454 *adjust_common_sizes = false;
ce279a62 455 *adjust_dyndef = false;
86f2e683 456
e5756efb 457 unsigned int tobits;
f3e9c5c5 458 if (to->source() == Symbol::IS_UNDEFINED)
b8cf5075 459 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
f3e9c5c5 460 else if (to->source() != Symbol::FROM_OBJECT)
b8cf5075 461 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
e5756efb 462 else
d491d34e
ILT
463 {
464 bool is_ordinary;
465 unsigned int shndx = to->shndx(&is_ordinary);
466 tobits = symbol_to_bits(to->binding(),
467 to->object()->is_dynamic(),
468 shndx,
b8cf5075 469 is_ordinary);
d491d34e 470 }
14bfc3f5 471
32364e50
CC
472 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
473 && !to->is_placeholder())
62855347
ILT
474 Symbol_table::report_resolve_problem(true,
475 _("symbol '%s' used as both __thread "
476 "and non-__thread"),
477 to, defined, object);
1564db8d 478
14bfc3f5
ILT
479 // We use a giant switch table for symbol resolution. This code is
480 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
481 // cases; 3) it is easy to change the handling of a particular case.
482 // The alternative would be a series of conditionals, but it is easy
483 // to get the ordering wrong. This could also be done as a table,
484 // but that is no easier to understand than this large switch
485 // statement.
486
86f2e683
ILT
487 // These are the values generated by the bit codes.
488 enum
489 {
490 DEF = global_flag | regular_flag | def_flag,
491 WEAK_DEF = weak_flag | regular_flag | def_flag,
492 DYN_DEF = global_flag | dynamic_flag | def_flag,
493 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
494 UNDEF = global_flag | regular_flag | undef_flag,
495 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
496 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
497 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
498 COMMON = global_flag | regular_flag | common_flag,
499 WEAK_COMMON = weak_flag | regular_flag | common_flag,
500 DYN_COMMON = global_flag | dynamic_flag | common_flag,
501 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
502 };
503
14bfc3f5
ILT
504 switch (tobits * 16 + frombits)
505 {
506 case DEF * 16 + DEF:
12e14209 507 // Two definitions of the same symbol.
878405a8
ILT
508
509 // If either symbol is defined by an object included using
510 // --just-symbols, then don't warn. This is for compatibility
511 // with the GNU linker. FIXME: This is a hack.
512 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
99fff23b 513 || (object != NULL && object->just_symbols()))
878405a8
ILT
514 return false;
515
9c4ae156 516 if (!parameters->options().muldefs())
30bc8c46
ILT
517 Symbol_table::report_resolve_problem(true,
518 _("multiple definition of '%s'"),
519 to, defined, object);
86f2e683 520 return false;
14bfc3f5
ILT
521
522 case WEAK_DEF * 16 + DEF:
1564db8d
ILT
523 // We've seen a weak definition, and now we see a strong
524 // definition. In the original SVR4 linker, this was treated as
525 // a multiple definition error. In the Solaris linker and the
526 // GNU linker, a weak definition followed by a regular
527 // definition causes the weak definition to be overridden. We
528 // are currently compatible with the GNU linker. In the future
529 // we should add a target specific option to change this.
530 // FIXME.
86f2e683 531 return true;
14bfc3f5
ILT
532
533 case DYN_DEF * 16 + DEF:
534 case DYN_WEAK_DEF * 16 + DEF:
1564db8d
ILT
535 // We've seen a definition in a dynamic object, and now we see a
536 // definition in a regular object. The definition in the
537 // regular object overrides the definition in the dynamic
538 // object.
86f2e683 539 return true;
1564db8d 540
14bfc3f5
ILT
541 case UNDEF * 16 + DEF:
542 case WEAK_UNDEF * 16 + DEF:
543 case DYN_UNDEF * 16 + DEF:
544 case DYN_WEAK_UNDEF * 16 + DEF:
1564db8d
ILT
545 // We've seen an undefined reference, and now we see a
546 // definition. We use the definition.
86f2e683 547 return true;
1564db8d 548
14bfc3f5
ILT
549 case COMMON * 16 + DEF:
550 case WEAK_COMMON * 16 + DEF:
551 case DYN_COMMON * 16 + DEF:
552 case DYN_WEAK_COMMON * 16 + DEF:
1564db8d 553 // We've seen a common symbol and now we see a definition. The
1ae4d23b
ILT
554 // definition overrides.
555 if (parameters->options().warn_common())
556 Symbol_table::report_resolve_problem(false,
557 _("definition of '%s' overriding "
558 "common"),
99fff23b 559 to, defined, object);
86f2e683 560 return true;
14bfc3f5
ILT
561
562 case DEF * 16 + WEAK_DEF:
563 case WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
564 // We've seen a definition and now we see a weak definition. We
565 // ignore the new weak definition.
86f2e683 566 return false;
1564db8d 567
14bfc3f5
ILT
568 case DYN_DEF * 16 + WEAK_DEF:
569 case DYN_WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
570 // We've seen a dynamic definition and now we see a regular weak
571 // definition. The regular weak definition overrides.
86f2e683 572 return true;
1564db8d 573
14bfc3f5
ILT
574 case UNDEF * 16 + WEAK_DEF:
575 case WEAK_UNDEF * 16 + WEAK_DEF:
576 case DYN_UNDEF * 16 + WEAK_DEF:
577 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
1564db8d 578 // A weak definition of a currently undefined symbol.
86f2e683 579 return true;
1564db8d 580
14bfc3f5
ILT
581 case COMMON * 16 + WEAK_DEF:
582 case WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 583 // A weak definition does not override a common definition.
86f2e683 584 return false;
1564db8d 585
14bfc3f5
ILT
586 case DYN_COMMON * 16 + WEAK_DEF:
587 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 588 // A weak definition does override a definition in a dynamic
1ae4d23b
ILT
589 // object.
590 if (parameters->options().warn_common())
591 Symbol_table::report_resolve_problem(false,
592 _("definition of '%s' overriding "
593 "dynamic common definition"),
99fff23b 594 to, defined, object);
86f2e683 595 return true;
14bfc3f5
ILT
596
597 case DEF * 16 + DYN_DEF:
598 case WEAK_DEF * 16 + DYN_DEF:
599 case DYN_DEF * 16 + DYN_DEF:
600 case DYN_WEAK_DEF * 16 + DYN_DEF:
1564db8d 601 // Ignore a dynamic definition if we already have a definition.
86f2e683 602 return false;
1564db8d 603
14bfc3f5 604 case UNDEF * 16 + DYN_DEF:
14bfc3f5
ILT
605 case DYN_UNDEF * 16 + DYN_DEF:
606 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
1564db8d 607 // Use a dynamic definition if we have a reference.
86f2e683 608 return true;
1564db8d 609
ce279a62
CC
610 case WEAK_UNDEF * 16 + DYN_DEF:
611 // When overriding a weak undef by a dynamic definition,
612 // we need to remember that the original undef was weak.
613 *adjust_dyndef = true;
614 return true;
615
14bfc3f5
ILT
616 case COMMON * 16 + DYN_DEF:
617 case WEAK_COMMON * 16 + DYN_DEF:
618 case DYN_COMMON * 16 + DYN_DEF:
619 case DYN_WEAK_COMMON * 16 + DYN_DEF:
1564db8d
ILT
620 // Ignore a dynamic definition if we already have a common
621 // definition.
86f2e683 622 return false;
14bfc3f5
ILT
623
624 case DEF * 16 + DYN_WEAK_DEF:
625 case WEAK_DEF * 16 + DYN_WEAK_DEF:
626 case DYN_DEF * 16 + DYN_WEAK_DEF:
627 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
1564db8d
ILT
628 // Ignore a weak dynamic definition if we already have a
629 // definition.
86f2e683 630 return false;
1564db8d 631
14bfc3f5 632 case UNDEF * 16 + DYN_WEAK_DEF:
74f67560
DK
633 // When overriding an undef by a dynamic weak definition,
634 // we need to remember that the original undef was not weak.
635 *adjust_dyndef = true;
636 return true;
637
14bfc3f5
ILT
638 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
639 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
1564db8d 640 // Use a weak dynamic definition if we have a reference.
86f2e683 641 return true;
1564db8d 642
ce279a62
CC
643 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
644 // When overriding a weak undef by a dynamic definition,
645 // we need to remember that the original undef was weak.
646 *adjust_dyndef = true;
647 return true;
648
14bfc3f5
ILT
649 case COMMON * 16 + DYN_WEAK_DEF:
650 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
651 case DYN_COMMON * 16 + DYN_WEAK_DEF:
652 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
1564db8d
ILT
653 // Ignore a weak dynamic definition if we already have a common
654 // definition.
86f2e683 655 return false;
14bfc3f5
ILT
656
657 case DEF * 16 + UNDEF:
658 case WEAK_DEF * 16 + UNDEF:
14bfc3f5 659 case UNDEF * 16 + UNDEF:
ead1e424 660 // A new undefined reference tells us nothing.
86f2e683 661 return false;
ead1e424 662
ce279a62
CC
663 case DYN_DEF * 16 + UNDEF:
664 case DYN_WEAK_DEF * 16 + UNDEF:
665 // For a dynamic def, we need to remember which kind of undef we see.
666 *adjust_dyndef = true;
667 return false;
668
14bfc3f5
ILT
669 case WEAK_UNDEF * 16 + UNDEF:
670 case DYN_UNDEF * 16 + UNDEF:
671 case DYN_WEAK_UNDEF * 16 + UNDEF:
ead1e424 672 // A strong undef overrides a dynamic or weak undef.
86f2e683 673 return true;
ead1e424 674
14bfc3f5
ILT
675 case COMMON * 16 + UNDEF:
676 case WEAK_COMMON * 16 + UNDEF:
677 case DYN_COMMON * 16 + UNDEF:
678 case DYN_WEAK_COMMON * 16 + UNDEF:
1564db8d 679 // A new undefined reference tells us nothing.
86f2e683 680 return false;
14bfc3f5
ILT
681
682 case DEF * 16 + WEAK_UNDEF:
683 case WEAK_DEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
684 case UNDEF * 16 + WEAK_UNDEF:
685 case WEAK_UNDEF * 16 + WEAK_UNDEF:
686 case DYN_UNDEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
687 case COMMON * 16 + WEAK_UNDEF:
688 case WEAK_COMMON * 16 + WEAK_UNDEF:
689 case DYN_COMMON * 16 + WEAK_UNDEF:
690 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
a4649286
DK
691 // A new weak undefined reference tells us nothing unless the
692 // exisiting symbol is a dynamic weak reference.
86f2e683 693 return false;
14bfc3f5 694
a4649286
DK
695 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
696 // A new weak reference overrides an existing dynamic weak reference.
697 // This is necessary because a dynamic weak reference remembers
698 // the old binding, which may not be weak. If we keeps the existing
699 // dynamic weak reference, the weakness may be dropped in the output.
700 return true;
701
ce279a62
CC
702 case DYN_DEF * 16 + WEAK_UNDEF:
703 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
704 // For a dynamic def, we need to remember which kind of undef we see.
705 *adjust_dyndef = true;
706 return false;
707
14bfc3f5
ILT
708 case DEF * 16 + DYN_UNDEF:
709 case WEAK_DEF * 16 + DYN_UNDEF:
710 case DYN_DEF * 16 + DYN_UNDEF:
711 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
712 case UNDEF * 16 + DYN_UNDEF:
713 case WEAK_UNDEF * 16 + DYN_UNDEF:
714 case DYN_UNDEF * 16 + DYN_UNDEF:
715 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
716 case COMMON * 16 + DYN_UNDEF:
717 case WEAK_COMMON * 16 + DYN_UNDEF:
718 case DYN_COMMON * 16 + DYN_UNDEF:
719 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
1564db8d 720 // A new dynamic undefined reference tells us nothing.
86f2e683 721 return false;
14bfc3f5
ILT
722
723 case DEF * 16 + DYN_WEAK_UNDEF:
724 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
725 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
726 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
727 case UNDEF * 16 + DYN_WEAK_UNDEF:
728 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
729 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
730 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
731 case COMMON * 16 + DYN_WEAK_UNDEF:
732 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
733 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
734 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
1564db8d 735 // A new weak dynamic undefined reference tells us nothing.
86f2e683 736 return false;
14bfc3f5
ILT
737
738 case DEF * 16 + COMMON:
1564db8d 739 // A common symbol does not override a definition.
1ae4d23b
ILT
740 if (parameters->options().warn_common())
741 Symbol_table::report_resolve_problem(false,
742 _("common '%s' overridden by "
743 "previous definition"),
99fff23b 744 to, defined, object);
86f2e683 745 return false;
1564db8d 746
14bfc3f5
ILT
747 case WEAK_DEF * 16 + COMMON:
748 case DYN_DEF * 16 + COMMON:
749 case DYN_WEAK_DEF * 16 + COMMON:
1564db8d
ILT
750 // A common symbol does override a weak definition or a dynamic
751 // definition.
86f2e683 752 return true;
1564db8d 753
14bfc3f5
ILT
754 case UNDEF * 16 + COMMON:
755 case WEAK_UNDEF * 16 + COMMON:
756 case DYN_UNDEF * 16 + COMMON:
757 case DYN_WEAK_UNDEF * 16 + COMMON:
1564db8d 758 // A common symbol is a definition for a reference.
86f2e683 759 return true;
1564db8d 760
14bfc3f5 761 case COMMON * 16 + COMMON:
ead1e424 762 // Set the size to the maximum.
86f2e683
ILT
763 *adjust_common_sizes = true;
764 return false;
ead1e424 765
14bfc3f5 766 case WEAK_COMMON * 16 + COMMON:
ead1e424
ILT
767 // I'm not sure just what a weak common symbol means, but
768 // presumably it can be overridden by a regular common symbol.
86f2e683 769 return true;
ead1e424 770
14bfc3f5
ILT
771 case DYN_COMMON * 16 + COMMON:
772 case DYN_WEAK_COMMON * 16 + COMMON:
86f2e683
ILT
773 // Use the real common symbol, but adjust the size if necessary.
774 *adjust_common_sizes = true;
775 return true;
14bfc3f5
ILT
776
777 case DEF * 16 + WEAK_COMMON:
778 case WEAK_DEF * 16 + WEAK_COMMON:
779 case DYN_DEF * 16 + WEAK_COMMON:
780 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
ead1e424
ILT
781 // Whatever a weak common symbol is, it won't override a
782 // definition.
86f2e683 783 return false;
ead1e424 784
14bfc3f5
ILT
785 case UNDEF * 16 + WEAK_COMMON:
786 case WEAK_UNDEF * 16 + WEAK_COMMON:
787 case DYN_UNDEF * 16 + WEAK_COMMON:
788 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
ead1e424 789 // A weak common symbol is better than an undefined symbol.
86f2e683 790 return true;
ead1e424 791
14bfc3f5
ILT
792 case COMMON * 16 + WEAK_COMMON:
793 case WEAK_COMMON * 16 + WEAK_COMMON:
794 case DYN_COMMON * 16 + WEAK_COMMON:
795 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
ead1e424
ILT
796 // Ignore a weak common symbol in the presence of a real common
797 // symbol.
86f2e683 798 return false;
14bfc3f5
ILT
799
800 case DEF * 16 + DYN_COMMON:
801 case WEAK_DEF * 16 + DYN_COMMON:
802 case DYN_DEF * 16 + DYN_COMMON:
803 case DYN_WEAK_DEF * 16 + DYN_COMMON:
ead1e424
ILT
804 // Ignore a dynamic common symbol in the presence of a
805 // definition.
86f2e683 806 return false;
ead1e424 807
14bfc3f5
ILT
808 case UNDEF * 16 + DYN_COMMON:
809 case WEAK_UNDEF * 16 + DYN_COMMON:
810 case DYN_UNDEF * 16 + DYN_COMMON:
811 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
ead1e424 812 // A dynamic common symbol is a definition of sorts.
86f2e683 813 return true;
ead1e424 814
14bfc3f5
ILT
815 case COMMON * 16 + DYN_COMMON:
816 case WEAK_COMMON * 16 + DYN_COMMON:
817 case DYN_COMMON * 16 + DYN_COMMON:
818 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
ead1e424 819 // Set the size to the maximum.
86f2e683
ILT
820 *adjust_common_sizes = true;
821 return false;
14bfc3f5
ILT
822
823 case DEF * 16 + DYN_WEAK_COMMON:
824 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
825 case DYN_DEF * 16 + DYN_WEAK_COMMON:
826 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
ead1e424 827 // A common symbol is ignored in the face of a definition.
86f2e683 828 return false;
ead1e424 829
14bfc3f5
ILT
830 case UNDEF * 16 + DYN_WEAK_COMMON:
831 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
832 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
833 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
ead1e424 834 // I guess a weak common symbol is better than a definition.
86f2e683 835 return true;
ead1e424 836
14bfc3f5
ILT
837 case COMMON * 16 + DYN_WEAK_COMMON:
838 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
839 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
840 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
ead1e424 841 // Set the size to the maximum.
86f2e683
ILT
842 *adjust_common_sizes = true;
843 return false;
1564db8d
ILT
844
845 default:
a3ad94ed 846 gold_unreachable();
14bfc3f5
ILT
847 }
848}
849
1ae4d23b
ILT
850// Issue an error or warning due to symbol resolution. IS_ERROR
851// indicates an error rather than a warning. MSG is the error
852// message; it is expected to have a %s for the symbol name. TO is
99fff23b
ILT
853// the existing symbol. DEFINED/OBJECT is where the new symbol was
854// found.
1ae4d23b
ILT
855
856// FIXME: We should have better location information here. When the
857// symbol is defined, we should be able to pull the location from the
858// debug info if there is any.
859
860void
861Symbol_table::report_resolve_problem(bool is_error, const char* msg,
99fff23b
ILT
862 const Symbol* to, Defined defined,
863 Object* object)
1ae4d23b
ILT
864{
865 std::string demangled(to->demangled_name());
866 size_t len = strlen(msg) + demangled.length() + 10;
867 char* buf = new char[len];
868 snprintf(buf, len, msg, demangled.c_str());
869
870 const char* objname;
99fff23b
ILT
871 switch (defined)
872 {
873 case OBJECT:
874 objname = object->name().c_str();
875 break;
876 case COPY:
877 objname = _("COPY reloc");
878 break;
879 case DEFSYM:
880 case UNDEFINED:
881 objname = _("command line");
882 break;
883 case SCRIPT:
884 objname = _("linker script");
885 break;
886 case PREDEFINED:
5146f448 887 case INCREMENTAL_BASE:
99fff23b
ILT
888 objname = _("linker defined");
889 break;
890 default:
891 gold_unreachable();
892 }
1ae4d23b
ILT
893
894 if (is_error)
895 gold_error("%s: %s", objname, buf);
896 else
897 gold_warning("%s: %s", objname, buf);
898
899 delete[] buf;
900
901 if (to->source() == Symbol::FROM_OBJECT)
902 objname = to->object()->name().c_str();
903 else
904 objname = _("command line");
905 gold_info("%s: %s: previous definition here", program_name, objname);
906}
907
86f2e683
ILT
908// A special case of should_override which is only called for a strong
909// defined symbol from a regular object file. This is used when
910// defining special symbols.
911
912bool
62855347
ILT
913Symbol_table::should_override_with_special(const Symbol* to,
914 elfcpp::STT fromtype,
915 Defined defined)
86f2e683
ILT
916{
917 bool adjust_common_sizes;
ce279a62 918 bool adjust_dyn_def;
86f2e683 919 unsigned int frombits = global_flag | regular_flag | def_flag;
62855347
ILT
920 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
921 NULL, &adjust_common_sizes,
ce279a62
CC
922 &adjust_dyn_def);
923 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
86f2e683
ILT
924 return ret;
925}
926
927// Override symbol base with a special symbol.
928
929void
930Symbol::override_base_with_special(const Symbol* from)
931{
21131061
ILT
932 bool same_name = this->name_ == from->name_;
933 gold_assert(same_name || this->has_alias());
46fe1623 934
d1bddd3c
CC
935 // If we are overriding an undef, remember the original binding.
936 if (this->is_undefined())
937 this->set_undef_binding(this->binding_);
938
86f2e683
ILT
939 this->source_ = from->source_;
940 switch (from->source_)
941 {
942 case FROM_OBJECT:
943 this->u_.from_object = from->u_.from_object;
944 break;
945 case IN_OUTPUT_DATA:
946 this->u_.in_output_data = from->u_.in_output_data;
947 break;
948 case IN_OUTPUT_SEGMENT:
949 this->u_.in_output_segment = from->u_.in_output_segment;
950 break;
f3e9c5c5
ILT
951 case IS_CONSTANT:
952 case IS_UNDEFINED:
86f2e683
ILT
953 break;
954 default:
955 gold_unreachable();
956 break;
957 }
958
21131061 959 if (same_name)
24d47b34
ILT
960 {
961 // When overriding a versioned symbol with a special symbol, we
962 // may be changing the version. This will happen if we see a
963 // special symbol such as "_end" defined in a shared object with
964 // one version (from a version script), but we want to define it
965 // here with a different version (from a different version
966 // script).
967 this->version_ = from->version_;
968 }
86f2e683
ILT
969 this->type_ = from->type_;
970 this->binding_ = from->binding_;
0602e05a 971 this->override_visibility(from->visibility_);
86f2e683
ILT
972 this->nonvis_ = from->nonvis_;
973
974 // Special symbols are always considered to be regular symbols.
975 this->in_reg_ = true;
46fe1623
ILT
976
977 if (from->needs_dynsym_entry_)
978 this->needs_dynsym_entry_ = true;
979 if (from->needs_dynsym_value_)
980 this->needs_dynsym_value_ = true;
981
5146f448
CC
982 this->is_predefined_ = from->is_predefined_;
983
46fe1623
ILT
984 // We shouldn't see these flags. If we do, we need to handle them
985 // somehow.
46fe1623 986 gold_assert(!from->is_forwarder_);
880cd20d 987 gold_assert(!from->has_plt_offset());
46fe1623
ILT
988 gold_assert(!from->has_warning_);
989 gold_assert(!from->is_copied_from_dynobj_);
55a93433 990 gold_assert(!from->is_forced_local_);
86f2e683
ILT
991}
992
993// Override a symbol with a special symbol.
994
995template<int size>
996void
997Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
998{
999 this->override_base_with_special(from);
1000 this->value_ = from->value_;
1001 this->symsize_ = from->symsize_;
1002}
1003
aeddab66
ILT
1004// Override TOSYM with the special symbol FROMSYM. This handles all
1005// aliases of TOSYM.
1006
1007template<int size>
1008void
1009Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1010 const Sized_symbol<size>* fromsym)
1011{
1012 tosym->override_with_special(fromsym);
1013 if (tosym->has_alias())
1014 {
1015 Symbol* sym = this->weak_aliases_[tosym];
1016 gold_assert(sym != NULL);
7d1a9ebb 1017 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
1018 do
1019 {
1020 ssym->override_with_special(fromsym);
1021 sym = this->weak_aliases_[ssym];
1022 gold_assert(sym != NULL);
7d1a9ebb 1023 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
1024 }
1025 while (ssym != tosym);
1026 }
0602e05a
ILT
1027 if (tosym->binding() == elfcpp::STB_LOCAL
1028 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1029 || tosym->visibility() == elfcpp::STV_INTERNAL)
1030 && (tosym->binding() == elfcpp::STB_GLOBAL
adcf2816 1031 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
0602e05a
ILT
1032 || tosym->binding() == elfcpp::STB_WEAK)
1033 && !parameters->options().relocatable()))
55a93433 1034 this->force_local(tosym);
aeddab66
ILT
1035}
1036
14bfc3f5
ILT
1037// Instantiate the templates we need. We could use the configure
1038// script to restrict this to only the ones needed for implemented
1039// targets.
1040
6cfaf60b
DK
1041// We have to instantiate both big and little endian versions because
1042// these are used by other templates that depends on size only.
1043
1044#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
14bfc3f5
ILT
1045template
1046void
193a53d9 1047Symbol_table::resolve<32, false>(
1564db8d 1048 Sized_symbol<32>* to,
193a53d9 1049 const elfcpp::Sym<32, false>& sym,
d491d34e
ILT
1050 unsigned int st_shndx,
1051 bool is_ordinary,
1052 unsigned int orig_st_shndx,
14b31740
ILT
1053 Object* object,
1054 const char* version);
14bfc3f5
ILT
1055
1056template
1057void
193a53d9 1058Symbol_table::resolve<32, true>(
1564db8d 1059 Sized_symbol<32>* to,
193a53d9 1060 const elfcpp::Sym<32, true>& sym,
d491d34e
ILT
1061 unsigned int st_shndx,
1062 bool is_ordinary,
1063 unsigned int orig_st_shndx,
14b31740
ILT
1064 Object* object,
1065 const char* version);
193a53d9 1066#endif
14bfc3f5 1067
6cfaf60b 1068#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
14bfc3f5
ILT
1069template
1070void
193a53d9 1071Symbol_table::resolve<64, false>(
1564db8d 1072 Sized_symbol<64>* to,
193a53d9 1073 const elfcpp::Sym<64, false>& sym,
d491d34e
ILT
1074 unsigned int st_shndx,
1075 bool is_ordinary,
1076 unsigned int orig_st_shndx,
14b31740
ILT
1077 Object* object,
1078 const char* version);
14bfc3f5
ILT
1079
1080template
1081void
193a53d9 1082Symbol_table::resolve<64, true>(
1564db8d 1083 Sized_symbol<64>* to,
193a53d9 1084 const elfcpp::Sym<64, true>& sym,
d491d34e
ILT
1085 unsigned int st_shndx,
1086 bool is_ordinary,
1087 unsigned int orig_st_shndx,
14b31740
ILT
1088 Object* object,
1089 const char* version);
193a53d9 1090#endif
14bfc3f5 1091
86f2e683
ILT
1092#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1093template
1094void
aeddab66
ILT
1095Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1096 const Sized_symbol<32>*);
86f2e683
ILT
1097#endif
1098
1099#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1100template
1101void
aeddab66
ILT
1102Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1103 const Sized_symbol<64>*);
86f2e683
ILT
1104#endif
1105
14bfc3f5 1106} // End namespace gold.
This page took 0.419983 seconds and 4 git commands to generate.