* event-loop.c (event_handle_func): Adjust to use gdb_fildes_t.
[deliverable/binutils-gdb.git] / gold / resolve.cc
CommitLineData
14bfc3f5
ILT
1// resolve.cc -- symbol resolution for gold
2
9c4ae156 3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
25#include "elfcpp.h"
26#include "target.h"
27#include "object.h"
28#include "symtab.h"
89fc3421 29#include "plugin.h"
14bfc3f5
ILT
30
31namespace gold
32{
33
1564db8d
ILT
34// Symbol methods used in this file.
35
75517b77
ILT
36// This symbol is being overridden by another symbol whose version is
37// VERSION. Update the VERSION_ field accordingly.
38
39inline void
2ea97941 40Symbol::override_version(const char* version)
75517b77 41{
2ea97941 42 if (version == NULL)
75517b77
ILT
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
2ea97941 52 this->version_ = version;
75517b77
ILT
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
2ea97941
ILT
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
75517b77
ILT
63 }
64}
65
0602e05a
ILT
66// This symbol is being overidden by another symbol whose visibility
67// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69inline void
2ea97941 70Symbol::override_visibility(elfcpp::STV visibility)
0602e05a
ILT
71{
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
2ea97941 77 if (visibility != elfcpp::STV_DEFAULT)
0602e05a
ILT
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
2ea97941
ILT
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
0602e05a
ILT
83 }
84}
85
1564db8d
ILT
86// Override the fields in Symbol.
87
88template<int size, bool big_endian>
89void
90Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 91 unsigned int st_shndx, bool is_ordinary,
2ea97941 92 Object* object, const char* version)
1564db8d 93{
a3ad94ed 94 gold_assert(this->source_ == FROM_OBJECT);
2ea97941
ILT
95 this->u_.from_object.object = object;
96 this->override_version(version);
d491d34e
ILT
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
1564db8d
ILT
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
0602e05a 101 this->override_visibility(sym.get_st_visibility());
ead1e424 102 this->nonvis_ = sym.get_st_nonvis();
2ea97941 103 if (object->is_dynamic())
0d4f1889
ILT
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
1564db8d
ILT
107}
108
109// Override the fields in Sized_symbol.
110
111template<int size>
112template<bool big_endian>
113void
114Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 115 unsigned st_shndx, bool is_ordinary,
2ea97941 116 Object* object, const char* version)
1564db8d 117{
2ea97941 118 this->override_base(sym, st_shndx, is_ordinary, object, version);
1564db8d 119 this->value_ = sym.get_st_value();
ead1e424 120 this->symsize_ = sym.get_st_size();
1564db8d
ILT
121}
122
aeddab66
ILT
123// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124// VERSION. This handles all aliases of TOSYM.
125
126template<int size, bool big_endian>
127void
128Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
d491d34e 130 unsigned int st_shndx, bool is_ordinary,
2ea97941 131 Object* object, const char* version)
aeddab66 132{
2ea97941 133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
134 if (tosym->has_alias())
135 {
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
7d1a9ebb 138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
139 do
140 {
2ea97941 141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
7d1a9ebb 144 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
145 }
146 while (ssym != tosym);
147 }
148}
149
86f2e683
ILT
150// The resolve functions build a little code for each symbol.
151// Bit 0: 0 for global, 1 for weak.
152// Bit 1: 0 for regular object, 1 for shared object
153// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154// This gives us values from 0 to 11.
155
156static const int global_or_weak_shift = 0;
157static const unsigned int global_flag = 0 << global_or_weak_shift;
158static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160static const int regular_or_dynamic_shift = 1;
161static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164static const int def_undef_or_common_shift = 2;
165static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
70e654ba
ILT
169// This convenience function combines all the flags based on facts
170// about the symbol.
171
172static unsigned int
173symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
d491d34e 174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
70e654ba
ILT
175{
176 unsigned int bits;
177
178 switch (binding)
179 {
180 case elfcpp::STB_GLOBAL:
adcf2816 181 case elfcpp::STB_GNU_UNIQUE:
70e654ba
ILT
182 bits = global_flag;
183 break;
184
185 case elfcpp::STB_WEAK:
186 bits = weak_flag;
187 break;
188
189 case elfcpp::STB_LOCAL:
190 // We should only see externally visible symbols in the symbol
191 // table.
192 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193 bits = global_flag;
194
195 default:
196 // Any target which wants to handle STB_LOOS, etc., needs to
197 // define a resolve method.
198 gold_error(_("unsupported symbol binding"));
199 bits = global_flag;
200 }
201
202 if (is_dynamic)
203 bits |= dynamic_flag;
204 else
205 bits |= regular_flag;
206
207 switch (shndx)
208 {
209 case elfcpp::SHN_UNDEF:
210 bits |= undef_flag;
211 break;
212
213 case elfcpp::SHN_COMMON:
d491d34e
ILT
214 if (!is_ordinary)
215 bits |= common_flag;
70e654ba
ILT
216 break;
217
218 default:
219 if (type == elfcpp::STT_COMMON)
220 bits |= common_flag;
8a5e3e08
ILT
221 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
70e654ba
ILT
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229}
230
14bfc3f5 231// Resolve a symbol. This is called the second and subsequent times
d491d34e
ILT
232// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233// section index for SYM, possibly adjusted for many sections.
234// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235// than a special code. ORIG_ST_SHNDX is the original section index,
236// before any munging because of discarded sections, except that all
95d14cd3 237// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
d491d34e 238// the version of SYM.
14bfc3f5
ILT
239
240template<int size, bool big_endian>
241void
1564db8d 242Symbol_table::resolve(Sized_symbol<size>* to,
14bfc3f5 243 const elfcpp::Sym<size, big_endian>& sym,
d491d34e
ILT
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
14b31740 246 Object* object, const char* version)
14bfc3f5 247{
029ba973 248 if (parameters->target().has_resolve())
14bfc3f5 249 {
274e99f9 250 Sized_target<size, big_endian>* sized_target;
029ba973 251 sized_target = parameters->sized_target<size, big_endian>();
14b31740 252 sized_target->resolve(to, sym, object, version);
14bfc3f5
ILT
253 return;
254 }
255
86f2e683
ILT
256 if (!object->is_dynamic())
257 {
258 // Record that we've seen this symbol in a regular object.
259 to->set_in_reg();
260 }
2da73f13
CC
261 else if (st_shndx == elfcpp::SHN_UNDEF
262 && (to->visibility() == elfcpp::STV_HIDDEN
263 || to->visibility() == elfcpp::STV_INTERNAL))
645afe0c
CC
264 {
265 // A dynamic object cannot reference a hidden or internal symbol
266 // defined in another object.
267 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
268 (to->visibility() == elfcpp::STV_HIDDEN
269 ? "hidden"
270 : "internal"),
271 to->demangled_name().c_str(),
272 to->object()->name().c_str(),
273 object->name().c_str());
274 return;
275 }
86f2e683
ILT
276 else
277 {
278 // Record that we've seen this symbol in a dynamic object.
279 to->set_in_dyn();
280 }
14bfc3f5 281
89fc3421
CC
282 // Record if we've seen this symbol in a real ELF object (i.e., the
283 // symbol is referenced from outside the world known to the plugin).
284 if (object->pluginobj() == NULL)
285 to->set_in_real_elf();
286
287 // If we're processing replacement files, allow new symbols to override
288 // the placeholders from the plugin objects.
289 if (to->source() == Symbol::FROM_OBJECT)
290 {
291 Pluginobj* obj = to->object()->pluginobj();
292 if (obj != NULL
293 && parameters->options().plugins()->in_replacement_phase())
294 {
295 this->override(to, sym, st_shndx, is_ordinary, object, version);
296 return;
297 }
298 }
299
ba4d53bf
ILT
300 // A new weak undefined reference, merging with an old weak
301 // reference, could be a One Definition Rule (ODR) violation --
302 // especially if the types or sizes of the references differ. We'll
303 // store such pairs and look them up later to make sure they
304 // actually refer to the same lines of code. We also check
305 // combinations of weak and strong, which might occur if one case is
306 // inline and the other is not. (Note: not all ODR violations can
307 // be found this way, and not everything this finds is an ODR
308 // violation. But it's helpful to warn about.)
309 bool to_is_ordinary;
310 if (parameters->options().detect_odr_violations()
311 && (sym.get_st_bind() == elfcpp::STB_WEAK
312 || to->binding() == elfcpp::STB_WEAK)
313 && orig_st_shndx != elfcpp::SHN_UNDEF
314 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
315 && to_is_ordinary
316 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
317 && to->symsize() != 0
318 && (sym.get_st_type() != to->type()
319 || sym.get_st_size() != to->symsize())
320 // C does not have a concept of ODR, so we only need to do this
321 // on C++ symbols. These have (mangled) names starting with _Z.
322 && to->name()[0] == '_' && to->name()[1] == 'Z')
323 {
324 Symbol_location fromloc
325 = { object, orig_st_shndx, sym.get_st_value() };
326 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
327 to->value() };
328 this->candidate_odr_violations_[to->name()].insert(fromloc);
329 this->candidate_odr_violations_[to->name()].insert(toloc);
330 }
331
70e654ba
ILT
332 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
333 object->is_dynamic(),
d491d34e 334 st_shndx, is_ordinary,
70e654ba 335 sym.get_st_type());
14bfc3f5 336
86f2e683 337 bool adjust_common_sizes;
ce279a62 338 bool adjust_dyndef;
1ae4d23b 339 typename Sized_symbol<size>::Size_type tosize = to->symsize();
99fff23b 340 if (Symbol_table::should_override(to, frombits, OBJECT, object,
ce279a62
CC
341 &adjust_common_sizes,
342 &adjust_dyndef))
86f2e683 343 {
ce279a62 344 elfcpp::STB tobinding = to->binding();
d491d34e 345 this->override(to, sym, st_shndx, is_ordinary, object, version);
86f2e683
ILT
346 if (adjust_common_sizes && tosize > to->symsize())
347 to->set_symsize(tosize);
ce279a62
CC
348 if (adjust_dyndef)
349 {
350 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
351 // Remember which kind of UNDEF it was for future reference.
352 to->set_undef_binding(tobinding);
353 }
86f2e683
ILT
354 }
355 else
356 {
1ae4d23b 357 if (adjust_common_sizes && sym.get_st_size() > tosize)
86f2e683 358 to->set_symsize(sym.get_st_size());
ce279a62
CC
359 if (adjust_dyndef)
360 {
361 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
362 // Remember which kind of UNDEF it was.
363 to->set_undef_binding(sym.get_st_bind());
364 }
0602e05a
ILT
365 // The ELF ABI says that even for a reference to a symbol we
366 // merge the visibility.
367 to->override_visibility(sym.get_st_visibility());
86f2e683 368 }
70e654ba 369
1ae4d23b
ILT
370 if (adjust_common_sizes && parameters->options().warn_common())
371 {
372 if (tosize > sym.get_st_size())
373 Symbol_table::report_resolve_problem(false,
374 _("common of '%s' overriding "
375 "smaller common"),
99fff23b 376 to, OBJECT, object);
1ae4d23b
ILT
377 else if (tosize < sym.get_st_size())
378 Symbol_table::report_resolve_problem(false,
379 _("common of '%s' overidden by "
380 "larger common"),
99fff23b 381 to, OBJECT, object);
1ae4d23b
ILT
382 else
383 Symbol_table::report_resolve_problem(false,
384 _("multiple common of '%s'"),
99fff23b 385 to, OBJECT, object);
1ae4d23b 386 }
86f2e683
ILT
387}
388
389// Handle the core of symbol resolution. This is called with the
390// existing symbol, TO, and a bitflag describing the new symbol. This
391// returns true if we should override the existing symbol with the new
392// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
393// true if we should set the symbol size to the maximum of the TO and
394// FROM sizes. It handles error conditions.
395
396bool
397Symbol_table::should_override(const Symbol* to, unsigned int frombits,
99fff23b 398 Defined defined, Object* object,
ce279a62
CC
399 bool* adjust_common_sizes,
400 bool* adjust_dyndef)
86f2e683
ILT
401{
402 *adjust_common_sizes = false;
ce279a62 403 *adjust_dyndef = false;
86f2e683 404
e5756efb 405 unsigned int tobits;
f3e9c5c5
ILT
406 if (to->source() == Symbol::IS_UNDEFINED)
407 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
408 to->type());
409 else if (to->source() != Symbol::FROM_OBJECT)
d491d34e 410 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
e5756efb
ILT
411 to->type());
412 else
d491d34e
ILT
413 {
414 bool is_ordinary;
415 unsigned int shndx = to->shndx(&is_ordinary);
416 tobits = symbol_to_bits(to->binding(),
417 to->object()->is_dynamic(),
418 shndx,
419 is_ordinary,
420 to->type());
421 }
14bfc3f5 422
1564db8d
ILT
423 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
424
14bfc3f5
ILT
425 // We use a giant switch table for symbol resolution. This code is
426 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
427 // cases; 3) it is easy to change the handling of a particular case.
428 // The alternative would be a series of conditionals, but it is easy
429 // to get the ordering wrong. This could also be done as a table,
430 // but that is no easier to understand than this large switch
431 // statement.
432
86f2e683
ILT
433 // These are the values generated by the bit codes.
434 enum
435 {
436 DEF = global_flag | regular_flag | def_flag,
437 WEAK_DEF = weak_flag | regular_flag | def_flag,
438 DYN_DEF = global_flag | dynamic_flag | def_flag,
439 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
440 UNDEF = global_flag | regular_flag | undef_flag,
441 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
442 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
443 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
444 COMMON = global_flag | regular_flag | common_flag,
445 WEAK_COMMON = weak_flag | regular_flag | common_flag,
446 DYN_COMMON = global_flag | dynamic_flag | common_flag,
447 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
448 };
449
14bfc3f5
ILT
450 switch (tobits * 16 + frombits)
451 {
452 case DEF * 16 + DEF:
12e14209 453 // Two definitions of the same symbol.
878405a8
ILT
454
455 // If either symbol is defined by an object included using
456 // --just-symbols, then don't warn. This is for compatibility
457 // with the GNU linker. FIXME: This is a hack.
458 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
99fff23b 459 || (object != NULL && object->just_symbols()))
878405a8
ILT
460 return false;
461
9c4ae156 462 if (!parameters->options().muldefs())
30bc8c46
ILT
463 Symbol_table::report_resolve_problem(true,
464 _("multiple definition of '%s'"),
465 to, defined, object);
86f2e683 466 return false;
14bfc3f5
ILT
467
468 case WEAK_DEF * 16 + DEF:
1564db8d
ILT
469 // We've seen a weak definition, and now we see a strong
470 // definition. In the original SVR4 linker, this was treated as
471 // a multiple definition error. In the Solaris linker and the
472 // GNU linker, a weak definition followed by a regular
473 // definition causes the weak definition to be overridden. We
474 // are currently compatible with the GNU linker. In the future
475 // we should add a target specific option to change this.
476 // FIXME.
86f2e683 477 return true;
14bfc3f5
ILT
478
479 case DYN_DEF * 16 + DEF:
480 case DYN_WEAK_DEF * 16 + DEF:
1564db8d
ILT
481 // We've seen a definition in a dynamic object, and now we see a
482 // definition in a regular object. The definition in the
483 // regular object overrides the definition in the dynamic
484 // object.
86f2e683 485 return true;
1564db8d 486
14bfc3f5
ILT
487 case UNDEF * 16 + DEF:
488 case WEAK_UNDEF * 16 + DEF:
489 case DYN_UNDEF * 16 + DEF:
490 case DYN_WEAK_UNDEF * 16 + DEF:
1564db8d
ILT
491 // We've seen an undefined reference, and now we see a
492 // definition. We use the definition.
86f2e683 493 return true;
1564db8d 494
14bfc3f5
ILT
495 case COMMON * 16 + DEF:
496 case WEAK_COMMON * 16 + DEF:
497 case DYN_COMMON * 16 + DEF:
498 case DYN_WEAK_COMMON * 16 + DEF:
1564db8d 499 // We've seen a common symbol and now we see a definition. The
1ae4d23b
ILT
500 // definition overrides.
501 if (parameters->options().warn_common())
502 Symbol_table::report_resolve_problem(false,
503 _("definition of '%s' overriding "
504 "common"),
99fff23b 505 to, defined, object);
86f2e683 506 return true;
14bfc3f5
ILT
507
508 case DEF * 16 + WEAK_DEF:
509 case WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
510 // We've seen a definition and now we see a weak definition. We
511 // ignore the new weak definition.
86f2e683 512 return false;
1564db8d 513
14bfc3f5
ILT
514 case DYN_DEF * 16 + WEAK_DEF:
515 case DYN_WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
516 // We've seen a dynamic definition and now we see a regular weak
517 // definition. The regular weak definition overrides.
86f2e683 518 return true;
1564db8d 519
14bfc3f5
ILT
520 case UNDEF * 16 + WEAK_DEF:
521 case WEAK_UNDEF * 16 + WEAK_DEF:
522 case DYN_UNDEF * 16 + WEAK_DEF:
523 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
1564db8d 524 // A weak definition of a currently undefined symbol.
86f2e683 525 return true;
1564db8d 526
14bfc3f5
ILT
527 case COMMON * 16 + WEAK_DEF:
528 case WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 529 // A weak definition does not override a common definition.
86f2e683 530 return false;
1564db8d 531
14bfc3f5
ILT
532 case DYN_COMMON * 16 + WEAK_DEF:
533 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 534 // A weak definition does override a definition in a dynamic
1ae4d23b
ILT
535 // object.
536 if (parameters->options().warn_common())
537 Symbol_table::report_resolve_problem(false,
538 _("definition of '%s' overriding "
539 "dynamic common definition"),
99fff23b 540 to, defined, object);
86f2e683 541 return true;
14bfc3f5
ILT
542
543 case DEF * 16 + DYN_DEF:
544 case WEAK_DEF * 16 + DYN_DEF:
545 case DYN_DEF * 16 + DYN_DEF:
546 case DYN_WEAK_DEF * 16 + DYN_DEF:
1564db8d 547 // Ignore a dynamic definition if we already have a definition.
86f2e683 548 return false;
1564db8d 549
14bfc3f5 550 case UNDEF * 16 + DYN_DEF:
14bfc3f5
ILT
551 case DYN_UNDEF * 16 + DYN_DEF:
552 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
1564db8d 553 // Use a dynamic definition if we have a reference.
86f2e683 554 return true;
1564db8d 555
ce279a62
CC
556 case WEAK_UNDEF * 16 + DYN_DEF:
557 // When overriding a weak undef by a dynamic definition,
558 // we need to remember that the original undef was weak.
559 *adjust_dyndef = true;
560 return true;
561
14bfc3f5
ILT
562 case COMMON * 16 + DYN_DEF:
563 case WEAK_COMMON * 16 + DYN_DEF:
564 case DYN_COMMON * 16 + DYN_DEF:
565 case DYN_WEAK_COMMON * 16 + DYN_DEF:
1564db8d
ILT
566 // Ignore a dynamic definition if we already have a common
567 // definition.
86f2e683 568 return false;
14bfc3f5
ILT
569
570 case DEF * 16 + DYN_WEAK_DEF:
571 case WEAK_DEF * 16 + DYN_WEAK_DEF:
572 case DYN_DEF * 16 + DYN_WEAK_DEF:
573 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
1564db8d
ILT
574 // Ignore a weak dynamic definition if we already have a
575 // definition.
86f2e683 576 return false;
1564db8d 577
14bfc3f5 578 case UNDEF * 16 + DYN_WEAK_DEF:
74f67560
DK
579 // When overriding an undef by a dynamic weak definition,
580 // we need to remember that the original undef was not weak.
581 *adjust_dyndef = true;
582 return true;
583
14bfc3f5
ILT
584 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
585 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
1564db8d 586 // Use a weak dynamic definition if we have a reference.
86f2e683 587 return true;
1564db8d 588
ce279a62
CC
589 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
590 // When overriding a weak undef by a dynamic definition,
591 // we need to remember that the original undef was weak.
592 *adjust_dyndef = true;
593 return true;
594
14bfc3f5
ILT
595 case COMMON * 16 + DYN_WEAK_DEF:
596 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
597 case DYN_COMMON * 16 + DYN_WEAK_DEF:
598 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
1564db8d
ILT
599 // Ignore a weak dynamic definition if we already have a common
600 // definition.
86f2e683 601 return false;
14bfc3f5
ILT
602
603 case DEF * 16 + UNDEF:
604 case WEAK_DEF * 16 + UNDEF:
14bfc3f5 605 case UNDEF * 16 + UNDEF:
ead1e424 606 // A new undefined reference tells us nothing.
86f2e683 607 return false;
ead1e424 608
ce279a62
CC
609 case DYN_DEF * 16 + UNDEF:
610 case DYN_WEAK_DEF * 16 + UNDEF:
611 // For a dynamic def, we need to remember which kind of undef we see.
612 *adjust_dyndef = true;
613 return false;
614
14bfc3f5
ILT
615 case WEAK_UNDEF * 16 + UNDEF:
616 case DYN_UNDEF * 16 + UNDEF:
617 case DYN_WEAK_UNDEF * 16 + UNDEF:
ead1e424 618 // A strong undef overrides a dynamic or weak undef.
86f2e683 619 return true;
ead1e424 620
14bfc3f5
ILT
621 case COMMON * 16 + UNDEF:
622 case WEAK_COMMON * 16 + UNDEF:
623 case DYN_COMMON * 16 + UNDEF:
624 case DYN_WEAK_COMMON * 16 + UNDEF:
1564db8d 625 // A new undefined reference tells us nothing.
86f2e683 626 return false;
14bfc3f5
ILT
627
628 case DEF * 16 + WEAK_UNDEF:
629 case WEAK_DEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
630 case UNDEF * 16 + WEAK_UNDEF:
631 case WEAK_UNDEF * 16 + WEAK_UNDEF:
632 case DYN_UNDEF * 16 + WEAK_UNDEF:
633 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
634 case COMMON * 16 + WEAK_UNDEF:
635 case WEAK_COMMON * 16 + WEAK_UNDEF:
636 case DYN_COMMON * 16 + WEAK_UNDEF:
637 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
1564db8d 638 // A new weak undefined reference tells us nothing.
86f2e683 639 return false;
14bfc3f5 640
ce279a62
CC
641 case DYN_DEF * 16 + WEAK_UNDEF:
642 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
643 // For a dynamic def, we need to remember which kind of undef we see.
644 *adjust_dyndef = true;
645 return false;
646
14bfc3f5
ILT
647 case DEF * 16 + DYN_UNDEF:
648 case WEAK_DEF * 16 + DYN_UNDEF:
649 case DYN_DEF * 16 + DYN_UNDEF:
650 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
651 case UNDEF * 16 + DYN_UNDEF:
652 case WEAK_UNDEF * 16 + DYN_UNDEF:
653 case DYN_UNDEF * 16 + DYN_UNDEF:
654 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
655 case COMMON * 16 + DYN_UNDEF:
656 case WEAK_COMMON * 16 + DYN_UNDEF:
657 case DYN_COMMON * 16 + DYN_UNDEF:
658 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
1564db8d 659 // A new dynamic undefined reference tells us nothing.
86f2e683 660 return false;
14bfc3f5
ILT
661
662 case DEF * 16 + DYN_WEAK_UNDEF:
663 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
664 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
665 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
666 case UNDEF * 16 + DYN_WEAK_UNDEF:
667 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
668 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
669 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
670 case COMMON * 16 + DYN_WEAK_UNDEF:
671 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
672 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
673 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
1564db8d 674 // A new weak dynamic undefined reference tells us nothing.
86f2e683 675 return false;
14bfc3f5
ILT
676
677 case DEF * 16 + COMMON:
1564db8d 678 // A common symbol does not override a definition.
1ae4d23b
ILT
679 if (parameters->options().warn_common())
680 Symbol_table::report_resolve_problem(false,
681 _("common '%s' overridden by "
682 "previous definition"),
99fff23b 683 to, defined, object);
86f2e683 684 return false;
1564db8d 685
14bfc3f5
ILT
686 case WEAK_DEF * 16 + COMMON:
687 case DYN_DEF * 16 + COMMON:
688 case DYN_WEAK_DEF * 16 + COMMON:
1564db8d
ILT
689 // A common symbol does override a weak definition or a dynamic
690 // definition.
86f2e683 691 return true;
1564db8d 692
14bfc3f5
ILT
693 case UNDEF * 16 + COMMON:
694 case WEAK_UNDEF * 16 + COMMON:
695 case DYN_UNDEF * 16 + COMMON:
696 case DYN_WEAK_UNDEF * 16 + COMMON:
1564db8d 697 // A common symbol is a definition for a reference.
86f2e683 698 return true;
1564db8d 699
14bfc3f5 700 case COMMON * 16 + COMMON:
ead1e424 701 // Set the size to the maximum.
86f2e683
ILT
702 *adjust_common_sizes = true;
703 return false;
ead1e424 704
14bfc3f5 705 case WEAK_COMMON * 16 + COMMON:
ead1e424
ILT
706 // I'm not sure just what a weak common symbol means, but
707 // presumably it can be overridden by a regular common symbol.
86f2e683 708 return true;
ead1e424 709
14bfc3f5
ILT
710 case DYN_COMMON * 16 + COMMON:
711 case DYN_WEAK_COMMON * 16 + COMMON:
86f2e683
ILT
712 // Use the real common symbol, but adjust the size if necessary.
713 *adjust_common_sizes = true;
714 return true;
14bfc3f5
ILT
715
716 case DEF * 16 + WEAK_COMMON:
717 case WEAK_DEF * 16 + WEAK_COMMON:
718 case DYN_DEF * 16 + WEAK_COMMON:
719 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
ead1e424
ILT
720 // Whatever a weak common symbol is, it won't override a
721 // definition.
86f2e683 722 return false;
ead1e424 723
14bfc3f5
ILT
724 case UNDEF * 16 + WEAK_COMMON:
725 case WEAK_UNDEF * 16 + WEAK_COMMON:
726 case DYN_UNDEF * 16 + WEAK_COMMON:
727 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
ead1e424 728 // A weak common symbol is better than an undefined symbol.
86f2e683 729 return true;
ead1e424 730
14bfc3f5
ILT
731 case COMMON * 16 + WEAK_COMMON:
732 case WEAK_COMMON * 16 + WEAK_COMMON:
733 case DYN_COMMON * 16 + WEAK_COMMON:
734 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
ead1e424
ILT
735 // Ignore a weak common symbol in the presence of a real common
736 // symbol.
86f2e683 737 return false;
14bfc3f5
ILT
738
739 case DEF * 16 + DYN_COMMON:
740 case WEAK_DEF * 16 + DYN_COMMON:
741 case DYN_DEF * 16 + DYN_COMMON:
742 case DYN_WEAK_DEF * 16 + DYN_COMMON:
ead1e424
ILT
743 // Ignore a dynamic common symbol in the presence of a
744 // definition.
86f2e683 745 return false;
ead1e424 746
14bfc3f5
ILT
747 case UNDEF * 16 + DYN_COMMON:
748 case WEAK_UNDEF * 16 + DYN_COMMON:
749 case DYN_UNDEF * 16 + DYN_COMMON:
750 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
ead1e424 751 // A dynamic common symbol is a definition of sorts.
86f2e683 752 return true;
ead1e424 753
14bfc3f5
ILT
754 case COMMON * 16 + DYN_COMMON:
755 case WEAK_COMMON * 16 + DYN_COMMON:
756 case DYN_COMMON * 16 + DYN_COMMON:
757 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
ead1e424 758 // Set the size to the maximum.
86f2e683
ILT
759 *adjust_common_sizes = true;
760 return false;
14bfc3f5
ILT
761
762 case DEF * 16 + DYN_WEAK_COMMON:
763 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
764 case DYN_DEF * 16 + DYN_WEAK_COMMON:
765 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
ead1e424 766 // A common symbol is ignored in the face of a definition.
86f2e683 767 return false;
ead1e424 768
14bfc3f5
ILT
769 case UNDEF * 16 + DYN_WEAK_COMMON:
770 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
771 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
772 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
ead1e424 773 // I guess a weak common symbol is better than a definition.
86f2e683 774 return true;
ead1e424 775
14bfc3f5
ILT
776 case COMMON * 16 + DYN_WEAK_COMMON:
777 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
778 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
779 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
ead1e424 780 // Set the size to the maximum.
86f2e683
ILT
781 *adjust_common_sizes = true;
782 return false;
1564db8d
ILT
783
784 default:
a3ad94ed 785 gold_unreachable();
14bfc3f5
ILT
786 }
787}
788
1ae4d23b
ILT
789// Issue an error or warning due to symbol resolution. IS_ERROR
790// indicates an error rather than a warning. MSG is the error
791// message; it is expected to have a %s for the symbol name. TO is
99fff23b
ILT
792// the existing symbol. DEFINED/OBJECT is where the new symbol was
793// found.
1ae4d23b
ILT
794
795// FIXME: We should have better location information here. When the
796// symbol is defined, we should be able to pull the location from the
797// debug info if there is any.
798
799void
800Symbol_table::report_resolve_problem(bool is_error, const char* msg,
99fff23b
ILT
801 const Symbol* to, Defined defined,
802 Object* object)
1ae4d23b
ILT
803{
804 std::string demangled(to->demangled_name());
805 size_t len = strlen(msg) + demangled.length() + 10;
806 char* buf = new char[len];
807 snprintf(buf, len, msg, demangled.c_str());
808
809 const char* objname;
99fff23b
ILT
810 switch (defined)
811 {
812 case OBJECT:
813 objname = object->name().c_str();
814 break;
815 case COPY:
816 objname = _("COPY reloc");
817 break;
818 case DEFSYM:
819 case UNDEFINED:
820 objname = _("command line");
821 break;
822 case SCRIPT:
823 objname = _("linker script");
824 break;
825 case PREDEFINED:
826 objname = _("linker defined");
827 break;
828 default:
829 gold_unreachable();
830 }
1ae4d23b
ILT
831
832 if (is_error)
833 gold_error("%s: %s", objname, buf);
834 else
835 gold_warning("%s: %s", objname, buf);
836
837 delete[] buf;
838
839 if (to->source() == Symbol::FROM_OBJECT)
840 objname = to->object()->name().c_str();
841 else
842 objname = _("command line");
843 gold_info("%s: %s: previous definition here", program_name, objname);
844}
845
86f2e683
ILT
846// A special case of should_override which is only called for a strong
847// defined symbol from a regular object file. This is used when
848// defining special symbols.
849
850bool
99fff23b 851Symbol_table::should_override_with_special(const Symbol* to, Defined defined)
86f2e683
ILT
852{
853 bool adjust_common_sizes;
ce279a62 854 bool adjust_dyn_def;
86f2e683 855 unsigned int frombits = global_flag | regular_flag | def_flag;
99fff23b 856 bool ret = Symbol_table::should_override(to, frombits, defined, NULL,
ce279a62
CC
857 &adjust_common_sizes,
858 &adjust_dyn_def);
859 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
86f2e683
ILT
860 return ret;
861}
862
863// Override symbol base with a special symbol.
864
865void
866Symbol::override_base_with_special(const Symbol* from)
867{
46fe1623
ILT
868 gold_assert(this->name_ == from->name_ || this->has_alias());
869
86f2e683
ILT
870 this->source_ = from->source_;
871 switch (from->source_)
872 {
873 case FROM_OBJECT:
874 this->u_.from_object = from->u_.from_object;
875 break;
876 case IN_OUTPUT_DATA:
877 this->u_.in_output_data = from->u_.in_output_data;
878 break;
879 case IN_OUTPUT_SEGMENT:
880 this->u_.in_output_segment = from->u_.in_output_segment;
881 break;
f3e9c5c5
ILT
882 case IS_CONSTANT:
883 case IS_UNDEFINED:
86f2e683
ILT
884 break;
885 default:
886 gold_unreachable();
887 break;
888 }
889
75517b77 890 this->override_version(from->version_);
86f2e683
ILT
891 this->type_ = from->type_;
892 this->binding_ = from->binding_;
0602e05a 893 this->override_visibility(from->visibility_);
86f2e683
ILT
894 this->nonvis_ = from->nonvis_;
895
896 // Special symbols are always considered to be regular symbols.
897 this->in_reg_ = true;
46fe1623
ILT
898
899 if (from->needs_dynsym_entry_)
900 this->needs_dynsym_entry_ = true;
901 if (from->needs_dynsym_value_)
902 this->needs_dynsym_value_ = true;
903
904 // We shouldn't see these flags. If we do, we need to handle them
905 // somehow.
46fe1623 906 gold_assert(!from->is_forwarder_);
880cd20d 907 gold_assert(!from->has_plt_offset());
46fe1623
ILT
908 gold_assert(!from->has_warning_);
909 gold_assert(!from->is_copied_from_dynobj_);
55a93433 910 gold_assert(!from->is_forced_local_);
86f2e683
ILT
911}
912
913// Override a symbol with a special symbol.
914
915template<int size>
916void
917Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
918{
919 this->override_base_with_special(from);
920 this->value_ = from->value_;
921 this->symsize_ = from->symsize_;
922}
923
aeddab66
ILT
924// Override TOSYM with the special symbol FROMSYM. This handles all
925// aliases of TOSYM.
926
927template<int size>
928void
929Symbol_table::override_with_special(Sized_symbol<size>* tosym,
930 const Sized_symbol<size>* fromsym)
931{
932 tosym->override_with_special(fromsym);
933 if (tosym->has_alias())
934 {
935 Symbol* sym = this->weak_aliases_[tosym];
936 gold_assert(sym != NULL);
7d1a9ebb 937 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
938 do
939 {
940 ssym->override_with_special(fromsym);
941 sym = this->weak_aliases_[ssym];
942 gold_assert(sym != NULL);
7d1a9ebb 943 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
944 }
945 while (ssym != tosym);
946 }
0602e05a
ILT
947 if (tosym->binding() == elfcpp::STB_LOCAL
948 || ((tosym->visibility() == elfcpp::STV_HIDDEN
949 || tosym->visibility() == elfcpp::STV_INTERNAL)
950 && (tosym->binding() == elfcpp::STB_GLOBAL
adcf2816 951 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
0602e05a
ILT
952 || tosym->binding() == elfcpp::STB_WEAK)
953 && !parameters->options().relocatable()))
55a93433 954 this->force_local(tosym);
aeddab66
ILT
955}
956
14bfc3f5
ILT
957// Instantiate the templates we need. We could use the configure
958// script to restrict this to only the ones needed for implemented
959// targets.
960
6cfaf60b
DK
961// We have to instantiate both big and little endian versions because
962// these are used by other templates that depends on size only.
963
964#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
14bfc3f5
ILT
965template
966void
193a53d9 967Symbol_table::resolve<32, false>(
1564db8d 968 Sized_symbol<32>* to,
193a53d9 969 const elfcpp::Sym<32, false>& sym,
d491d34e
ILT
970 unsigned int st_shndx,
971 bool is_ordinary,
972 unsigned int orig_st_shndx,
14b31740
ILT
973 Object* object,
974 const char* version);
14bfc3f5
ILT
975
976template
977void
193a53d9 978Symbol_table::resolve<32, true>(
1564db8d 979 Sized_symbol<32>* to,
193a53d9 980 const elfcpp::Sym<32, true>& sym,
d491d34e
ILT
981 unsigned int st_shndx,
982 bool is_ordinary,
983 unsigned int orig_st_shndx,
14b31740
ILT
984 Object* object,
985 const char* version);
193a53d9 986#endif
14bfc3f5 987
6cfaf60b 988#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
14bfc3f5
ILT
989template
990void
193a53d9 991Symbol_table::resolve<64, false>(
1564db8d 992 Sized_symbol<64>* to,
193a53d9 993 const elfcpp::Sym<64, false>& sym,
d491d34e
ILT
994 unsigned int st_shndx,
995 bool is_ordinary,
996 unsigned int orig_st_shndx,
14b31740
ILT
997 Object* object,
998 const char* version);
14bfc3f5
ILT
999
1000template
1001void
193a53d9 1002Symbol_table::resolve<64, true>(
1564db8d 1003 Sized_symbol<64>* to,
193a53d9 1004 const elfcpp::Sym<64, true>& sym,
d491d34e
ILT
1005 unsigned int st_shndx,
1006 bool is_ordinary,
1007 unsigned int orig_st_shndx,
14b31740
ILT
1008 Object* object,
1009 const char* version);
193a53d9 1010#endif
14bfc3f5 1011
86f2e683
ILT
1012#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1013template
1014void
aeddab66
ILT
1015Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1016 const Sized_symbol<32>*);
86f2e683
ILT
1017#endif
1018
1019#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1020template
1021void
aeddab66
ILT
1022Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1023 const Sized_symbol<64>*);
86f2e683
ILT
1024#endif
1025
14bfc3f5 1026} // End namespace gold.
This page took 0.223168 seconds and 4 git commands to generate.