Can now do a full static link of hello, world in C or C++
[deliverable/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
3#include "gold.h"
4
5#include <cassert>
6#include <stdint.h>
7#include <string>
8#include <utility>
9
10#include "object.h"
75f65a3e 11#include "output.h"
61ba1cf9 12#include "target.h"
14bfc3f5
ILT
13#include "symtab.h"
14
15namespace gold
16{
17
18// Class Symbol.
19
ead1e424
ILT
20// Initialize fields in Symbol. This initializes everything except u_
21// and source_.
14bfc3f5 22
14bfc3f5 23void
ead1e424
ILT
24Symbol::init_fields(const char* name, const char* version,
25 elfcpp::STT type, elfcpp::STB binding,
26 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
27{
28 this->name_ = name;
29 this->version_ = version;
ead1e424
ILT
30 this->got_offset_ = 0;
31 this->type_ = type;
32 this->binding_ = binding;
33 this->visibility_ = visibility;
34 this->nonvis_ = nonvis;
35 this->is_target_special_ = false;
1564db8d
ILT
36 this->is_def_ = false;
37 this->is_forwarder_ = false;
ead1e424
ILT
38 this->in_dyn_ = false;
39 this->has_got_offset_ = false;
40}
41
42// Initialize the fields in the base class Symbol for SYM in OBJECT.
43
44template<int size, bool big_endian>
45void
46Symbol::init_base(const char* name, const char* version, Object* object,
47 const elfcpp::Sym<size, big_endian>& sym)
48{
49 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
50 sym.get_st_visibility(), sym.get_st_nonvis());
51 this->u_.from_object.object = object;
52 // FIXME: Handle SHN_XINDEX.
53 this->u_.from_object.shnum = sym.get_st_shndx();
54 this->source_ = FROM_OBJECT;
1564db8d 55 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
56}
57
ead1e424
ILT
58// Initialize the fields in the base class Symbol for a symbol defined
59// in an Output_data.
60
61void
62Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
63 elfcpp::STB binding, elfcpp::STV visibility,
64 unsigned char nonvis, bool offset_is_from_end)
65{
66 this->init_fields(name, NULL, type, binding, visibility, nonvis);
67 this->u_.in_output_data.output_data = od;
68 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
69 this->source_ = IN_OUTPUT_DATA;
70}
71
72// Initialize the fields in the base class Symbol for a symbol defined
73// in an Output_segment.
74
75void
76Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
77 elfcpp::STB binding, elfcpp::STV visibility,
78 unsigned char nonvis, Segment_offset_base offset_base)
79{
80 this->init_fields(name, NULL, type, binding, visibility, nonvis);
81 this->u_.in_output_segment.output_segment = os;
82 this->u_.in_output_segment.offset_base = offset_base;
83 this->source_ = IN_OUTPUT_SEGMENT;
84}
85
86// Initialize the fields in the base class Symbol for a symbol defined
87// as a constant.
88
89void
90Symbol::init_base(const char* name, elfcpp::STT type,
91 elfcpp::STB binding, elfcpp::STV visibility,
92 unsigned char nonvis)
93{
94 this->init_fields(name, NULL, type, binding, visibility, nonvis);
95 this->source_ = CONSTANT;
96}
97
98// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
99
100template<int size>
101template<bool big_endian>
102void
103Sized_symbol<size>::init(const char* name, const char* version, Object* object,
104 const elfcpp::Sym<size, big_endian>& sym)
105{
106 this->init_base(name, version, object, sym);
107 this->value_ = sym.get_st_value();
ead1e424
ILT
108 this->symsize_ = sym.get_st_size();
109}
110
111// Initialize the fields in Sized_symbol for a symbol defined in an
112// Output_data.
113
114template<int size>
115void
116Sized_symbol<size>::init(const char* name, Output_data* od,
117 Value_type value, Size_type symsize,
118 elfcpp::STT type, elfcpp::STB binding,
119 elfcpp::STV visibility, unsigned char nonvis,
120 bool offset_is_from_end)
121{
122 this->init_base(name, od, type, binding, visibility, nonvis,
123 offset_is_from_end);
124 this->value_ = value;
125 this->symsize_ = symsize;
126}
127
128// Initialize the fields in Sized_symbol for a symbol defined in an
129// Output_segment.
130
131template<int size>
132void
133Sized_symbol<size>::init(const char* name, Output_segment* os,
134 Value_type value, Size_type symsize,
135 elfcpp::STT type, elfcpp::STB binding,
136 elfcpp::STV visibility, unsigned char nonvis,
137 Segment_offset_base offset_base)
138{
139 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
140 this->value_ = value;
141 this->symsize_ = symsize;
142}
143
144// Initialize the fields in Sized_symbol for a symbol defined as a
145// constant.
146
147template<int size>
148void
149Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
150 elfcpp::STT type, elfcpp::STB binding,
151 elfcpp::STV visibility, unsigned char nonvis)
152{
153 this->init_base(name, type, binding, visibility, nonvis);
154 this->value_ = value;
155 this->symsize_ = symsize;
14bfc3f5
ILT
156}
157
158// Class Symbol_table.
159
160Symbol_table::Symbol_table()
ead1e424
ILT
161 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
162 forwarders_(), commons_()
14bfc3f5
ILT
163{
164}
165
166Symbol_table::~Symbol_table()
167{
168}
169
170// The hash function. The key is always canonicalized, so we use a
171// simple combination of the pointers.
172
173size_t
174Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
175{
176 return (reinterpret_cast<size_t>(key.first)
177 ^ reinterpret_cast<size_t>(key.second));
178}
179
180// The symbol table key equality function. This is only called with
181// canonicalized name and version strings, so we can use pointer
182// comparison.
183
184bool
185Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
186 const Symbol_table_key& k2) const
187{
188 return k1.first == k2.first && k1.second == k2.second;
189}
190
191// Make TO a symbol which forwards to FROM.
192
193void
194Symbol_table::make_forwarder(Symbol* from, Symbol* to)
195{
196 assert(!from->is_forwarder() && !to->is_forwarder());
197 this->forwarders_[from] = to;
198 from->set_forwarder();
199}
200
61ba1cf9
ILT
201// Resolve the forwards from FROM, returning the real symbol.
202
14bfc3f5
ILT
203Symbol*
204Symbol_table::resolve_forwards(Symbol* from) const
205{
206 assert(from->is_forwarder());
207 Unordered_map<Symbol*, Symbol*>::const_iterator p =
208 this->forwarders_.find(from);
209 assert(p != this->forwarders_.end());
210 return p->second;
211}
212
61ba1cf9
ILT
213// Look up a symbol by name.
214
215Symbol*
216Symbol_table::lookup(const char* name, const char* version) const
217{
218 name = this->namepool_.find(name);
219 if (name == NULL)
220 return NULL;
221 if (version != NULL)
222 {
223 version = this->namepool_.find(version);
224 if (version == NULL)
225 return NULL;
226 }
227
228 Symbol_table_key key(name, version);
229 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
230 if (p == this->table_.end())
231 return NULL;
232 return p->second;
233}
234
14bfc3f5
ILT
235// Resolve a Symbol with another Symbol. This is only used in the
236// unusual case where there are references to both an unversioned
237// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
238// version is the default version. Because this is unusual, we do
239// this the slow way, by converting back to an ELF symbol.
14bfc3f5 240
1564db8d 241template<int size, bool big_endian>
14bfc3f5 242void
5482377d
ILT
243Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from
244 ACCEPT_SIZE_ENDIAN)
14bfc3f5 245{
1564db8d
ILT
246 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
247 elfcpp::Sym_write<size, big_endian> esym(buf);
248 // We don't bother to set the st_name field.
249 esym.put_st_value(from->value());
250 esym.put_st_size(from->symsize());
251 esym.put_st_info(from->binding(), from->type());
ead1e424 252 esym.put_st_other(from->visibility(), from->nonvis());
1564db8d
ILT
253 esym.put_st_shndx(from->shnum());
254 Symbol_table::resolve(to, esym.sym(), from->object());
14bfc3f5
ILT
255}
256
257// Add one symbol from OBJECT to the symbol table. NAME is symbol
258// name and VERSION is the version; both are canonicalized. DEF is
259// whether this is the default version.
260
261// If DEF is true, then this is the definition of a default version of
262// a symbol. That means that any lookup of NAME/NULL and any lookup
263// of NAME/VERSION should always return the same symbol. This is
264// obvious for references, but in particular we want to do this for
265// definitions: overriding NAME/NULL should also override
266// NAME/VERSION. If we don't do that, it would be very hard to
267// override functions in a shared library which uses versioning.
268
269// We implement this by simply making both entries in the hash table
270// point to the same Symbol structure. That is easy enough if this is
271// the first time we see NAME/NULL or NAME/VERSION, but it is possible
272// that we have seen both already, in which case they will both have
273// independent entries in the symbol table. We can't simply change
274// the symbol table entry, because we have pointers to the entries
275// attached to the object files. So we mark the entry attached to the
276// object file as a forwarder, and record it in the forwarders_ map.
277// Note that entries in the hash table will never be marked as
278// forwarders.
279
280template<int size, bool big_endian>
281Symbol*
282Symbol_table::add_from_object(Sized_object<size, big_endian>* object,
283 const char *name,
284 const char *version, bool def,
285 const elfcpp::Sym<size, big_endian>& sym)
286{
287 Symbol* const snull = NULL;
288 std::pair<typename Symbol_table_type::iterator, bool> ins =
289 this->table_.insert(std::make_pair(std::make_pair(name, version), snull));
290
291 std::pair<typename Symbol_table_type::iterator, bool> insdef =
292 std::make_pair(this->table_.end(), false);
293 if (def)
294 {
295 const char* const vnull = NULL;
296 insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull),
297 snull));
298 }
299
300 // ins.first: an iterator, which is a pointer to a pair.
301 // ins.first->first: the key (a pair of name and version).
302 // ins.first->second: the value (Symbol*).
303 // ins.second: true if new entry was inserted, false if not.
304
1564db8d 305 Sized_symbol<size>* ret;
ead1e424
ILT
306 bool was_undefined;
307 bool was_common;
14bfc3f5
ILT
308 if (!ins.second)
309 {
310 // We already have an entry for NAME/VERSION.
5482377d
ILT
311 ret = this->get_sized_symbol SELECT_SIZE_NAME (ins.first->second
312 SELECT_SIZE(size));
14bfc3f5 313 assert(ret != NULL);
ead1e424
ILT
314
315 was_undefined = ret->is_undefined();
316 was_common = ret->is_common();
317
14bfc3f5
ILT
318 Symbol_table::resolve(ret, sym, object);
319
320 if (def)
321 {
322 if (insdef.second)
323 {
324 // This is the first time we have seen NAME/NULL. Make
325 // NAME/NULL point to NAME/VERSION.
326 insdef.first->second = ret;
327 }
328 else
329 {
330 // This is the unfortunate case where we already have
331 // entries for both NAME/VERSION and NAME/NULL.
274e99f9 332 const Sized_symbol<size>* sym2;
5482377d
ILT
333 sym2 = this->get_sized_symbol SELECT_SIZE_NAME (
334 insdef.first->second
335 SELECT_SIZE(size));
336 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME (
337 ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian));
14bfc3f5
ILT
338 this->make_forwarder(insdef.first->second, ret);
339 insdef.first->second = ret;
340 }
341 }
342 }
343 else
344 {
345 // This is the first time we have seen NAME/VERSION.
346 assert(ins.first->second == NULL);
ead1e424
ILT
347
348 was_undefined = false;
349 was_common = false;
350
14bfc3f5
ILT
351 if (def && !insdef.second)
352 {
353 // We already have an entry for NAME/NULL. Make
354 // NAME/VERSION point to it.
5482377d
ILT
355 ret = this->get_sized_symbol SELECT_SIZE_NAME (insdef.first->second
356 SELECT_SIZE(size));
14bfc3f5
ILT
357 Symbol_table::resolve(ret, sym, object);
358 ins.first->second = ret;
359 }
360 else
361 {
14bfc3f5 362 Sized_target<size, big_endian>* target = object->sized_target();
1564db8d
ILT
363 if (!target->has_make_symbol())
364 ret = new Sized_symbol<size>();
365 else
14bfc3f5 366 {
1564db8d
ILT
367 ret = target->make_symbol();
368 if (ret == NULL)
14bfc3f5
ILT
369 {
370 // This means that we don't want a symbol table
371 // entry after all.
372 if (!def)
373 this->table_.erase(ins.first);
374 else
375 {
376 this->table_.erase(insdef.first);
377 // Inserting insdef invalidated ins.
378 this->table_.erase(std::make_pair(name, version));
379 }
380 return NULL;
381 }
382 }
14bfc3f5 383
1564db8d
ILT
384 ret->init(name, version, object, sym);
385
14bfc3f5
ILT
386 ins.first->second = ret;
387 if (def)
388 {
389 // This is the first time we have seen NAME/NULL. Point
390 // it at the new entry for NAME/VERSION.
391 assert(insdef.second);
392 insdef.first->second = ret;
393 }
394 }
395 }
396
ead1e424
ILT
397 // Record every time we see a new undefined symbol, to speed up
398 // archive groups.
399 if (!was_undefined && ret->is_undefined())
400 ++this->saw_undefined_;
401
402 // Keep track of common symbols, to speed up common symbol
403 // allocation.
404 if (!was_common && ret->is_common())
405 this->commons_.push_back(ret);
406
14bfc3f5
ILT
407 return ret;
408}
409
410// Add all the symbols in an object to the hash table.
411
412template<int size, bool big_endian>
413void
414Symbol_table::add_from_object(
415 Sized_object<size, big_endian>* object,
416 const elfcpp::Sym<size, big_endian>* syms,
417 size_t count,
418 const char* sym_names,
419 size_t sym_name_size,
420 Symbol** sympointers)
421{
422 // We take the size from the first object we see.
423 if (this->get_size() == 0)
424 this->set_size(size);
425
426 if (size != this->get_size() || size != object->target()->get_size())
427 {
428 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
429 program_name, object->name().c_str());
430 gold_exit(false);
431 }
432
a783673b
ILT
433 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
434
14bfc3f5 435 const unsigned char* p = reinterpret_cast<const unsigned char*>(syms);
a783673b 436 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
437 {
438 elfcpp::Sym<size, big_endian> sym(p);
a783673b 439 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 440
a783673b 441 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
442 if (st_name >= sym_name_size)
443 {
54dc6425
ILT
444 fprintf(stderr,
445 _("%s: %s: bad global symbol name offset %u at %lu\n"),
14bfc3f5
ILT
446 program_name, object->name().c_str(), st_name,
447 static_cast<unsigned long>(i));
448 gold_exit(false);
449 }
450
a783673b
ILT
451 // A symbol defined in a section which we are not including must
452 // be treated as an undefined symbol.
453 unsigned char symbuf[sym_size];
454 elfcpp::Sym<size, big_endian> sym2(symbuf);
455 unsigned int st_shndx = psym->get_st_shndx();
456 if (st_shndx != elfcpp::SHN_UNDEF
457 && st_shndx < elfcpp::SHN_LORESERVE
458 && !object->is_section_included(st_shndx))
459 {
460 memcpy(symbuf, p, sym_size);
461 elfcpp::Sym_write<size, big_endian> sw(symbuf);
462 sw.put_st_shndx(elfcpp::SHN_UNDEF);
463 psym = &sym2;
464 }
465
14bfc3f5
ILT
466 const char* name = sym_names + st_name;
467
468 // In an object file, an '@' in the name separates the symbol
469 // name from the version name. If there are two '@' characters,
470 // this is the default version.
471 const char* ver = strchr(name, '@');
472
473 Symbol* res;
474 if (ver == NULL)
475 {
476 name = this->namepool_.add(name);
a783673b 477 res = this->add_from_object(object, name, NULL, false, *psym);
14bfc3f5
ILT
478 }
479 else
480 {
481 name = this->namepool_.add(name, ver - name);
482 bool def = false;
483 ++ver;
484 if (*ver == '@')
485 {
486 def = true;
487 ++ver;
488 }
489 ver = this->namepool_.add(ver);
a783673b 490 res = this->add_from_object(object, name, ver, def, *psym);
14bfc3f5
ILT
491 }
492
493 *sympointers++ = res;
14bfc3f5
ILT
494 }
495}
496
ead1e424
ILT
497// Create and return a specially defined symbol. If ONLY_IF_REF is
498// true, then only create the symbol if there is a reference to it.
499
500template<int size, bool big_endian>
501Sized_symbol<size>*
502Symbol_table::define_special_symbol(Target* target, const char* name,
503 bool only_if_ref)
504{
505 assert(this->size_ == size);
506
507 Symbol* oldsym;
508 Sized_symbol<size>* sym;
509
510 if (only_if_ref)
511 {
512 oldsym = this->lookup(name, NULL);
513 if (oldsym == NULL)
514 return NULL;
515 sym = NULL;
516
517 // Canonicalize NAME.
518 name = oldsym->name();
519 }
520 else
521 {
522 // Canonicalize NAME.
523 name = this->namepool_.add(name);
524
525 Symbol* const snull = NULL;
526 const char* const vnull = NULL;
527 std::pair<typename Symbol_table_type::iterator, bool> ins =
528 this->table_.insert(std::make_pair(std::make_pair(name, vnull),
529 snull));
530
531 if (!ins.second)
532 {
533 // We already have a symbol table entry for NAME.
534 oldsym = ins.first->second;
535 assert(oldsym != NULL);
536 sym = NULL;
537 }
538 else
539 {
540 // We haven't seen this symbol before.
541 assert(ins.first->second == NULL);
542
543 if (!target->has_make_symbol())
544 sym = new Sized_symbol<size>();
545 else
546 {
547 assert(target->get_size() == size);
548 assert(target->is_big_endian() ? big_endian : !big_endian);
549 typedef Sized_target<size, big_endian> My_target;
550 My_target* sized_target = static_cast<My_target*>(target);
551 sym = sized_target->make_symbol();
552 if (sym == NULL)
553 return NULL;
554 }
555
556 ins.first->second = sym;
557 oldsym = NULL;
558 }
559 }
560
561 if (oldsym != NULL)
562 {
563 assert(sym == NULL);
564
565 sym = this->get_sized_symbol SELECT_SIZE_NAME (oldsym
566 SELECT_SIZE(size));
567 assert(sym->source() == Symbol::FROM_OBJECT);
568 const int old_shnum = sym->shnum();
569 if (old_shnum != elfcpp::SHN_UNDEF
570 && old_shnum != elfcpp::SHN_COMMON
571 && !sym->object()->is_dynamic())
572 {
573 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
574 program_name, name);
575 // FIXME: Report old location. Record that we have seen an
576 // error.
577 return NULL;
578 }
579
580 // Our new definition is going to override the old reference.
581 }
582
583 return sym;
584}
585
586// Define a symbol based on an Output_data.
587
588void
589Symbol_table::define_in_output_data(Target* target, const char* name,
590 Output_data* od,
591 uint64_t value, uint64_t symsize,
592 elfcpp::STT type, elfcpp::STB binding,
593 elfcpp::STV visibility,
594 unsigned char nonvis,
595 bool offset_is_from_end,
596 bool only_if_ref)
597{
598 assert(target->get_size() == this->size_);
599 if (this->size_ == 32)
600 this->do_define_in_output_data<32>(target, name, od, value, symsize,
601 type, binding, visibility, nonvis,
602 offset_is_from_end, only_if_ref);
603 else if (this->size_ == 64)
604 this->do_define_in_output_data<64>(target, name, od, value, symsize,
605 type, binding, visibility, nonvis,
606 offset_is_from_end, only_if_ref);
607 else
608 abort();
609}
610
611// Define a symbol in an Output_data, sized version.
612
613template<int size>
614void
615Symbol_table::do_define_in_output_data(
616 Target* target,
617 const char* name,
618 Output_data* od,
619 typename elfcpp::Elf_types<size>::Elf_Addr value,
620 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
621 elfcpp::STT type,
622 elfcpp::STB binding,
623 elfcpp::STV visibility,
624 unsigned char nonvis,
625 bool offset_is_from_end,
626 bool only_if_ref)
627{
628 Sized_symbol<size>* sym;
629
630 if (target->is_big_endian())
631 sym = this->define_special_symbol<size, true>(target, name, only_if_ref);
632 else
633 sym = this->define_special_symbol<size, false>(target, name, only_if_ref);
634
635 if (sym == NULL)
636 return;
637
638 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
639 offset_is_from_end);
640}
641
642// Define a symbol based on an Output_segment.
643
644void
645Symbol_table::define_in_output_segment(Target* target, const char* name,
646 Output_segment* os,
647 uint64_t value, uint64_t symsize,
648 elfcpp::STT type, elfcpp::STB binding,
649 elfcpp::STV visibility,
650 unsigned char nonvis,
651 Symbol::Segment_offset_base offset_base,
652 bool only_if_ref)
653{
654 assert(target->get_size() == this->size_);
655 if (this->size_ == 32)
656 this->do_define_in_output_segment<32>(target, name, os, value, symsize,
657 type, binding, visibility, nonvis,
658 offset_base, only_if_ref);
659 else if (this->size_ == 64)
660 this->do_define_in_output_segment<64>(target, name, os, value, symsize,
661 type, binding, visibility, nonvis,
662 offset_base, only_if_ref);
663 else
664 abort();
665}
666
667// Define a symbol in an Output_segment, sized version.
668
669template<int size>
670void
671Symbol_table::do_define_in_output_segment(
672 Target* target,
673 const char* name,
674 Output_segment* os,
675 typename elfcpp::Elf_types<size>::Elf_Addr value,
676 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
677 elfcpp::STT type,
678 elfcpp::STB binding,
679 elfcpp::STV visibility,
680 unsigned char nonvis,
681 Symbol::Segment_offset_base offset_base,
682 bool only_if_ref)
683{
684 Sized_symbol<size>* sym;
685
686 if (target->is_big_endian())
687 sym = this->define_special_symbol<size, true>(target, name, only_if_ref);
688 else
689 sym = this->define_special_symbol<size, false>(target, name, only_if_ref);
690
691 if (sym == NULL)
692 return;
693
694 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
695 offset_base);
696}
697
698// Define a special symbol with a constant value. It is a multiple
699// definition error if this symbol is already defined.
700
701void
702Symbol_table::define_as_constant(Target* target, const char* name,
703 uint64_t value, uint64_t symsize,
704 elfcpp::STT type, elfcpp::STB binding,
705 elfcpp::STV visibility, unsigned char nonvis,
706 bool only_if_ref)
707{
708 assert(target->get_size() == this->size_);
709 if (this->size_ == 32)
710 this->do_define_as_constant<32>(target, name, value, symsize,
711 type, binding, visibility, nonvis,
712 only_if_ref);
713 else if (this->size_ == 64)
714 this->do_define_as_constant<64>(target, name, value, symsize,
715 type, binding, visibility, nonvis,
716 only_if_ref);
717 else
718 abort();
719}
720
721// Define a symbol as a constant, sized version.
722
723template<int size>
724void
725Symbol_table::do_define_as_constant(
726 Target* target,
727 const char* name,
728 typename elfcpp::Elf_types<size>::Elf_Addr value,
729 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
730 elfcpp::STT type,
731 elfcpp::STB binding,
732 elfcpp::STV visibility,
733 unsigned char nonvis,
734 bool only_if_ref)
735{
736 Sized_symbol<size>* sym;
737
738 if (target->is_big_endian())
739 sym = this->define_special_symbol<size, true>(target, name, only_if_ref);
740 else
741 sym = this->define_special_symbol<size, false>(target, name, only_if_ref);
742
743 if (sym == NULL)
744 return;
745
746 sym->init(name, value, symsize, type, binding, visibility, nonvis);
747}
748
749// Define a set of symbols in output sections.
750
751void
752Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
753 const Define_symbol_in_section* p)
754{
755 for (int i = 0; i < count; ++i, ++p)
756 {
757 Output_section* os = layout->find_output_section(p->output_section);
758 if (os != NULL)
759 this->define_in_output_data(target, p->name, os, p->value, p->size,
760 p->type, p->binding, p->visibility,
761 p->nonvis, p->offset_is_from_end,
762 p->only_if_ref);
763 else
764 this->define_as_constant(target, p->name, 0, p->size, p->type,
765 p->binding, p->visibility, p->nonvis,
766 p->only_if_ref);
767 }
768}
769
770// Define a set of symbols in output segments.
771
772void
773Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
774 const Define_symbol_in_segment* p)
775{
776 for (int i = 0; i < count; ++i, ++p)
777 {
778 Output_segment* os = layout->find_output_segment(p->segment_type,
779 p->segment_flags_set,
780 p->segment_flags_clear);
781 if (os != NULL)
782 this->define_in_output_segment(target, p->name, os, p->value, p->size,
783 p->type, p->binding, p->visibility,
784 p->nonvis, p->offset_base,
785 p->only_if_ref);
786 else
787 this->define_as_constant(target, p->name, 0, p->size, p->type,
788 p->binding, p->visibility, p->nonvis,
789 p->only_if_ref);
790 }
791}
792
75f65a3e
ILT
793// Set the final values for all the symbols. Record the file offset
794// OFF. Add their names to POOL. Return the new file offset.
54dc6425 795
75f65a3e
ILT
796off_t
797Symbol_table::finalize(off_t off, Stringpool* pool)
54dc6425 798{
75f65a3e
ILT
799 if (this->size_ == 32)
800 return this->sized_finalize<32>(off, pool);
61ba1cf9 801 else if (this->size_ == 64)
75f65a3e 802 return this->sized_finalize<64>(off, pool);
61ba1cf9
ILT
803 else
804 abort();
75f65a3e
ILT
805}
806
ead1e424
ILT
807// Set the final value for all the symbols. This is called after
808// Layout::finalize, so all the output sections have their final
809// address.
75f65a3e
ILT
810
811template<int size>
812off_t
813Symbol_table::sized_finalize(off_t off, Stringpool* pool)
814{
ead1e424 815 off = align_address(off, size >> 3);
75f65a3e
ILT
816 this->offset_ = off;
817
818 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
819 Symbol_table_type::iterator p = this->table_.begin();
61ba1cf9 820 size_t count = 0;
75f65a3e 821 while (p != this->table_.end())
54dc6425 822 {
75f65a3e 823 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
54dc6425 824
75f65a3e
ILT
825 // FIXME: Here we need to decide which symbols should go into
826 // the output file.
827
ead1e424 828 typename Sized_symbol<size>::Value_type value;
75f65a3e 829
ead1e424 830 switch (sym->source())
75f65a3e 831 {
ead1e424
ILT
832 case Symbol::FROM_OBJECT:
833 {
834 unsigned int shnum = sym->shnum();
835
836 // FIXME: We need some target specific support here.
837 if (shnum >= elfcpp::SHN_LORESERVE
838 && shnum != elfcpp::SHN_ABS)
839 {
840 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
841 program_name, sym->name(), shnum);
842 gold_exit(false);
843 }
844
845 if (shnum == elfcpp::SHN_UNDEF)
846 value = 0;
847 else if (shnum == elfcpp::SHN_ABS)
848 value = sym->value();
849 else
850 {
851 off_t secoff;
852 Output_section* os = sym->object()->output_section(shnum,
853 &secoff);
854
855 if (os == NULL)
856 {
857 // We should be able to erase this symbol from the
858 // symbol table, but at least with gcc 4.0.2
859 // std::unordered_map::erase doesn't appear to return
860 // the new iterator.
861 // p = this->table_.erase(p);
862 ++p;
863 continue;
864 }
865
866 value = sym->value() + os->address() + secoff;
867 }
868 }
869 break;
870
871 case Symbol::IN_OUTPUT_DATA:
872 {
873 Output_data* od = sym->output_data();
874 value = sym->value() + od->address();
875 if (sym->offset_is_from_end())
876 value += od->data_size();
877 }
878 break;
879
880 case Symbol::IN_OUTPUT_SEGMENT:
881 {
882 Output_segment* os = sym->output_segment();
883 value = sym->value() + os->vaddr();
884 switch (sym->offset_base())
885 {
886 case Symbol::SEGMENT_START:
887 break;
888 case Symbol::SEGMENT_END:
889 value += os->memsz();
890 break;
891 case Symbol::SEGMENT_BSS:
892 value += os->filesz();
893 break;
894 default:
895 abort();
896 }
897 }
898 break;
899
900 case Symbol::CONSTANT:
901 value = sym->value();
902 break;
903
904 default:
905 abort();
54dc6425 906 }
ead1e424
ILT
907
908 sym->set_value(value);
909 pool->add(sym->name());
910 ++count;
911 off += sym_size;
912 ++p;
54dc6425 913 }
75f65a3e 914
61ba1cf9
ILT
915 this->output_count_ = count;
916
75f65a3e 917 return off;
54dc6425
ILT
918}
919
61ba1cf9
ILT
920// Write out the global symbols.
921
922void
923Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
924 Output_file* of) const
925{
926 if (this->size_ == 32)
927 {
928 if (target->is_big_endian())
929 this->sized_write_globals<32, true>(target, sympool, of);
930 else
931 this->sized_write_globals<32, false>(target, sympool, of);
932 }
933 else if (this->size_ == 64)
934 {
935 if (target->is_big_endian())
936 this->sized_write_globals<64, true>(target, sympool, of);
937 else
938 this->sized_write_globals<64, false>(target, sympool, of);
939 }
940 else
941 abort();
942}
943
944// Write out the global symbols.
945
946template<int size, bool big_endian>
947void
948Symbol_table::sized_write_globals(const Target*,
949 const Stringpool* sympool,
950 Output_file* of) const
951{
952 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
953 unsigned char* psyms = of->get_output_view(this->offset_,
954 this->output_count_ * sym_size);
955 unsigned char* ps = psyms;
956 for (Symbol_table_type::const_iterator p = this->table_.begin();
957 p != this->table_.end();
958 ++p)
959 {
960 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
961
962 // FIXME: This repeats sized_finalize().
963
ead1e424
ILT
964 unsigned int shndx;
965 switch (sym->source())
966 {
967 case Symbol::FROM_OBJECT:
968 {
969 unsigned int shnum = sym->shnum();
970
971 // FIXME: We need some target specific support here.
972 if (shnum >= elfcpp::SHN_LORESERVE
973 && shnum != elfcpp::SHN_ABS)
974 {
975 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
976 program_name, sym->name(), sym->shnum());
977 gold_exit(false);
978 }
979
980 if (shnum == elfcpp::SHN_UNDEF || shnum == elfcpp::SHN_ABS)
981 shndx = shnum;
982 else
983 {
984 off_t secoff;
985 Output_section* os = sym->object()->output_section(shnum,
986 &secoff);
987 if (os == NULL)
988 continue;
989
990 shndx = os->out_shndx();
991 }
992 }
993 break;
994
995 case Symbol::IN_OUTPUT_DATA:
996 shndx = sym->output_data()->out_shndx();
997 break;
998
999 case Symbol::IN_OUTPUT_SEGMENT:
1000 shndx = elfcpp::SHN_ABS;
1001 break;
1002
1003 case Symbol::CONSTANT:
1004 shndx = elfcpp::SHN_ABS;
1005 break;
1006
1007 default:
1008 abort();
1009 }
61ba1cf9
ILT
1010
1011 elfcpp::Sym_write<size, big_endian> osym(ps);
1012 osym.put_st_name(sympool->get_offset(sym->name()));
1013 osym.put_st_value(sym->value());
1014 osym.put_st_size(sym->symsize());
1015 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
ead1e424
ILT
1016 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
1017 sym->nonvis()));
1018 osym.put_st_shndx(shndx);
61ba1cf9
ILT
1019
1020 ps += sym_size;
1021 }
1022
1023 of->write_output_view(this->offset_, this->output_count_ * sym_size, psyms);
1024}
1025
14bfc3f5
ILT
1026// Instantiate the templates we need. We could use the configure
1027// script to restrict this to only the ones needed for implemented
1028// targets.
1029
1030template
1031void
1032Symbol_table::add_from_object<32, true>(
1033 Sized_object<32, true>* object,
1034 const elfcpp::Sym<32, true>* syms,
1035 size_t count,
1036 const char* sym_names,
1037 size_t sym_name_size,
1038 Symbol** sympointers);
1039
1040template
1041void
1042Symbol_table::add_from_object<32, false>(
1043 Sized_object<32, false>* object,
1044 const elfcpp::Sym<32, false>* syms,
1045 size_t count,
1046 const char* sym_names,
1047 size_t sym_name_size,
1048 Symbol** sympointers);
1049
1050template
1051void
1052Symbol_table::add_from_object<64, true>(
1053 Sized_object<64, true>* object,
1054 const elfcpp::Sym<64, true>* syms,
1055 size_t count,
1056 const char* sym_names,
1057 size_t sym_name_size,
1058 Symbol** sympointers);
1059
1060template
1061void
1062Symbol_table::add_from_object<64, false>(
1063 Sized_object<64, false>* object,
1064 const elfcpp::Sym<64, false>* syms,
1065 size_t count,
1066 const char* sym_names,
1067 size_t sym_name_size,
1068 Symbol** sympointers);
1069
1070} // End namespace gold.
This page took 0.073603 seconds and 4 git commands to generate.