From Andrew Chatham: exit on relocation error.
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
47
48namespace
49{
50
51using namespace gold;
52
53class Output_data_plt_x86_64;
54
55// The x86_64 target class.
d61c17ea
ILT
56// See the ABI at
57// http://www.x86-64.org/documentation/abi.pdf
58// TLS info comes from
59// http://people.redhat.com/drepper/tls.pdf
60// http://ia32-abi.googlegroups.com/web/RFC-TLSDESC-x86.txt?gda=kWQJPEQAAACEfYQFX0dubPQ2NuO4whhjkR4HAp8tBMb_I0iuUeQslmG1qiJ7UbTIup-M2XPURDRiZJyPR4BqKR2agJ-5jfT5Ley2_-oiOJ4zLNAGCw24Bg
2e30d253
ILT
61
62class Target_x86_64 : public Sized_target<64, false>
63{
64 public:
e822f2b1
ILT
65 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
66 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
67 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
68
69 Target_x86_64()
70 : Sized_target<64, false>(&x86_64_info),
71 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
72 copy_relocs_(NULL), dynbss_(NULL)
73 { }
74
75 // Scan the relocations to look for symbol adjustments.
76 void
77 scan_relocs(const General_options& options,
78 Symbol_table* symtab,
79 Layout* layout,
80 Sized_relobj<64, false>* object,
81 unsigned int data_shndx,
82 unsigned int sh_type,
83 const unsigned char* prelocs,
84 size_t reloc_count,
85 size_t local_symbol_count,
86 const unsigned char* plocal_symbols,
87 Symbol** global_symbols);
88
89 // Finalize the sections.
90 void
91 do_finalize_sections(Layout*);
92
4fb6c25d
ILT
93 // Return the value to use for a dynamic which requires special
94 // treatment.
95 uint64_t
96 do_dynsym_value(const Symbol*) const;
97
2e30d253
ILT
98 // Relocate a section.
99 void
100 relocate_section(const Relocate_info<64, false>*,
101 unsigned int sh_type,
102 const unsigned char* prelocs,
103 size_t reloc_count,
104 unsigned char* view,
105 elfcpp::Elf_types<64>::Elf_Addr view_address,
106 off_t view_size);
107
108 // Return a string used to fill a code section with nops.
109 std::string
110 do_code_fill(off_t length);
111
112 private:
113 // The class which scans relocations.
114 struct Scan
115 {
116 inline void
117 local(const General_options& options, Symbol_table* symtab,
118 Layout* layout, Target_x86_64* target,
119 Sized_relobj<64, false>* object,
120 unsigned int data_shndx,
121 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
122 const elfcpp::Sym<64, false>& lsym);
123
124 inline void
125 global(const General_options& options, Symbol_table* symtab,
126 Layout* layout, Target_x86_64* target,
127 Sized_relobj<64, false>* object,
128 unsigned int data_shndx,
129 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
130 Symbol* gsym);
131 };
132
133 // The class which implements relocation.
134 class Relocate
135 {
136 public:
137 Relocate()
138 : skip_call_tls_get_addr_(false)
139 { }
140
141 ~Relocate()
142 {
143 if (this->skip_call_tls_get_addr_)
144 {
145 // FIXME: This needs to specify the location somehow.
146 fprintf(stderr, _("%s: missing expected TLS relocation\n"),
147 program_name);
148 gold_exit(false);
149 }
150 }
151
152 // Do a relocation. Return false if the caller should not issue
153 // any warnings about this relocation.
154 inline bool
155 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
156 const elfcpp::Rela<64, false>&,
157 unsigned int r_type, const Sized_symbol<64>*,
158 const Symbol_value<64>*,
159 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
160 off_t);
161
162 private:
163 // Do a TLS relocation.
164 inline void
165 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
166 const elfcpp::Rela<64, false>&,
167 unsigned int r_type, const Sized_symbol<64>*,
168 const Symbol_value<64>*,
169 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
170
171 // Do a TLS Initial-Exec to Local-Exec transition.
172 static inline void
173 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
174 Output_segment* tls_segment,
175 const elfcpp::Rela<64, false>&, unsigned int r_type,
176 elfcpp::Elf_types<64>::Elf_Addr value,
177 unsigned char* view,
178 off_t view_size);
179
180 // Do a TLS Global-Dynamic to Local-Exec transition.
181 inline void
182 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
183 Output_segment* tls_segment,
184 const elfcpp::Rela<64, false>&, unsigned int r_type,
185 elfcpp::Elf_types<64>::Elf_Addr value,
186 unsigned char* view,
187 off_t view_size);
188
189 // Check the range for a TLS relocation.
190 static inline void
191 check_range(const Relocate_info<64, false>*, size_t relnum,
192 const elfcpp::Rela<64, false>&, off_t, off_t);
193
194 // Check the validity of a TLS relocation. This is like assert.
195 static inline void
196 check_tls(const Relocate_info<64, false>*, size_t relnum,
197 const elfcpp::Rela<64, false>&, bool);
198
199 // This is set if we should skip the next reloc, which should be a
200 // PLT32 reloc against ___tls_get_addr.
201 bool skip_call_tls_get_addr_;
202 };
203
204 // Adjust TLS relocation type based on the options and whether this
205 // is a local symbol.
206 static unsigned int
207 optimize_tls_reloc(bool is_final, int r_type);
208
209 // Get the GOT section, creating it if necessary.
210 Output_data_got<64, false>*
211 got_section(Symbol_table*, Layout*);
212
213 // Create a PLT entry for a global symbol.
214 void
215 make_plt_entry(Symbol_table*, Layout*, Symbol*);
216
217 // Get the PLT section.
218 Output_data_plt_x86_64*
219 plt_section() const
220 {
221 gold_assert(this->plt_ != NULL);
222 return this->plt_;
223 }
224
225 // Get the dynamic reloc section, creating it if necessary.
226 Reloc_section*
227 rel_dyn_section(Layout*);
228
229 // Copy a relocation against a global symbol.
230 void
231 copy_reloc(const General_options*, Symbol_table*, Layout*,
232 Sized_relobj<64, false>*, unsigned int,
233 Symbol*, const elfcpp::Rela<64, false>&);
234
235 // Information about this specific target which we pass to the
236 // general Target structure.
237 static const Target::Target_info x86_64_info;
238
239 // The GOT section.
240 Output_data_got<64, false>* got_;
241 // The PLT section.
242 Output_data_plt_x86_64* plt_;
243 // The GOT PLT section.
244 Output_data_space* got_plt_;
245 // The dynamic reloc section.
246 Reloc_section* rel_dyn_;
247 // Relocs saved to avoid a COPY reloc.
248 Copy_relocs<64, false>* copy_relocs_;
249 // Space for variables copied with a COPY reloc.
250 Output_data_space* dynbss_;
251};
252
253const Target::Target_info Target_x86_64::x86_64_info =
254{
255 64, // size
256 false, // is_big_endian
257 elfcpp::EM_X86_64, // machine_code
258 false, // has_make_symbol
259 false, // has_resolve
260 true, // has_code_fill
261 "/lib/ld64.so.1", // program interpreter
262 0x400000, // text_segment_address
263 0x1000, // abi_pagesize
264 0x1000 // common_pagesize
265};
266
267// Get the GOT section, creating it if necessary.
268
269Output_data_got<64, false>*
270Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
271{
272 if (this->got_ == NULL)
273 {
274 gold_assert(symtab != NULL && layout != NULL);
275
276 this->got_ = new Output_data_got<64, false>();
277
278 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
279 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
280 this->got_);
281
282 // The old GNU linker creates a .got.plt section. We just
283 // create another set of data in the .got section. Note that we
284 // always create a PLT if we create a GOT, although the PLT
285 // might be empty.
286 // TODO(csilvers): do we really need an alignment of 8?
287 this->got_plt_ = new Output_data_space(8);
288 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
289 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
290 this->got_plt_);
291
292 // The first three entries are reserved.
293 this->got_plt_->set_space_size(3 * 8);
294
295 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
296 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
297 this->got_plt_,
298 0, 0, elfcpp::STT_OBJECT,
299 elfcpp::STB_LOCAL,
300 elfcpp::STV_HIDDEN, 0,
301 false, false);
302 }
303
304 return this->got_;
305}
306
307// Get the dynamic reloc section, creating it if necessary.
308
309Target_x86_64::Reloc_section*
310Target_x86_64::rel_dyn_section(Layout* layout)
311{
312 if (this->rel_dyn_ == NULL)
313 {
314 gold_assert(layout != NULL);
315 this->rel_dyn_ = new Reloc_section();
316 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
317 elfcpp::SHF_ALLOC, this->rel_dyn_);
318 }
319 return this->rel_dyn_;
320}
321
322// A class to handle the PLT data.
323
324class Output_data_plt_x86_64 : public Output_section_data
325{
326 public:
327 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
328
329 Output_data_plt_x86_64(Layout*, Output_data_space*);
330
331 // Add an entry to the PLT.
332 void
333 add_entry(Symbol* gsym);
334
335 // Return the .rel.plt section data.
336 const Reloc_section*
337 rel_plt() const
338 { return this->rel_; }
339
340 protected:
341 void
342 do_adjust_output_section(Output_section* os);
343
344 private:
345 // The size of an entry in the PLT.
346 static const int plt_entry_size = 16;
347
348 // The first entry in the PLT.
349 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
350 // procedure linkage table for both programs and shared objects."
351 static unsigned char first_plt_entry[plt_entry_size];
352
353 // Other entries in the PLT for an executable.
354 static unsigned char plt_entry[plt_entry_size];
355
356 // Set the final size.
357 void
358 do_set_address(uint64_t, off_t)
359 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
360
361 // Write out the PLT data.
362 void
363 do_write(Output_file*);
364
365 // The reloc section.
366 Reloc_section* rel_;
367 // The .got.plt section.
368 Output_data_space* got_plt_;
369 // The number of PLT entries.
370 unsigned int count_;
371};
372
373// Create the PLT section. The ordinary .got section is an argument,
374// since we need to refer to the start. We also create our own .got
375// section just for PLT entries.
376
377Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
378 Output_data_space* got_plt)
379 // TODO(csilvers): do we really need an alignment of 8?
380 : Output_section_data(8), got_plt_(got_plt), count_(0)
381{
382 this->rel_ = new Reloc_section();
383 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
384 elfcpp::SHF_ALLOC, this->rel_);
385}
386
387void
388Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
389{
390 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
391 // linker, and so do we.
392 os->set_entsize(4);
393}
394
395// Add an entry to the PLT.
396
397void
398Output_data_plt_x86_64::add_entry(Symbol* gsym)
399{
400 gold_assert(!gsym->has_plt_offset());
401
402 // Note that when setting the PLT offset we skip the initial
403 // reserved PLT entry.
404 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
405
406 ++this->count_;
407
408 off_t got_offset = this->got_plt_->data_size();
409
410 // Every PLT entry needs a GOT entry which points back to the PLT
411 // entry (this will be changed by the dynamic linker, normally
412 // lazily when the function is called).
413 this->got_plt_->set_space_size(got_offset + 8);
414
415 // Every PLT entry needs a reloc.
416 gsym->set_needs_dynsym_entry();
417 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
418 got_offset, 0);
419
420 // Note that we don't need to save the symbol. The contents of the
421 // PLT are independent of which symbols are used. The symbols only
422 // appear in the relocations.
423}
424
425// The first entry in the PLT for an executable.
426
427unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
428{
429 // From AMD64 ABI Draft 0.98, page 76
430 0xff, 0x35, // pushq contents of memory address
431 0, 0, 0, 0, // replaced with address of .got + 4
432 0xff, 0x25, // jmp indirect
433 0, 0, 0, 0, // replaced with address of .got + 8
434 0x90, 0x90, 0x90, 0x90 // noop (x4)
435};
436
437// Subsequent entries in the PLT for an executable.
438
439unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
440{
441 // From AMD64 ABI Draft 0.98, page 76
442 0xff, 0x25, // jmpq indirect
443 0, 0, 0, 0, // replaced with address of symbol in .got
444 0x68, // pushq immediate
445 0, 0, 0, 0, // replaced with offset into relocation table
446 0xe9, // jmpq relative
447 0, 0, 0, 0 // replaced with offset to start of .plt
448};
449
450// Write out the PLT. This uses the hand-coded instructions above,
451// and adjusts them as needed. This is specified by the AMD64 ABI.
452
453void
454Output_data_plt_x86_64::do_write(Output_file* of)
455{
456 const off_t offset = this->offset();
457 const off_t oview_size = this->data_size();
458 unsigned char* const oview = of->get_output_view(offset, oview_size);
459
460 const off_t got_file_offset = this->got_plt_->offset();
461 const off_t got_size = this->got_plt_->data_size();
462 unsigned char* const got_view = of->get_output_view(got_file_offset,
463 got_size);
464
465 unsigned char* pov = oview;
466
467 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
468 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
469
470 memcpy(pov, first_plt_entry, plt_entry_size);
471 if (!parameters->output_is_shared())
472 {
473 // We do a jmp relative to the PC at the end of this instruction.
474 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
475 - (plt_address + 6));
476 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
477 - (plt_address + 12));
478 }
479 pov += plt_entry_size;
480
481 unsigned char* got_pov = got_view;
482
483 memset(got_pov, 0, 24);
484 got_pov += 24;
485
486 unsigned int plt_offset = plt_entry_size;
487 unsigned int got_offset = 24;
488 const unsigned int count = this->count_;
489 for (unsigned int plt_index = 0;
490 plt_index < count;
491 ++plt_index,
492 pov += plt_entry_size,
493 got_pov += 8,
494 plt_offset += plt_entry_size,
495 got_offset += 8)
496 {
497 // Set and adjust the PLT entry itself.
498 memcpy(pov, plt_entry, plt_entry_size);
499 if (parameters->output_is_shared())
500 // FIXME(csilvers): what's the right thing to write here?
501 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
502 else
503 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
504 (got_address + got_offset
505 - (plt_address + plt_offset
506 + 6)));
507
508 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
509 elfcpp::Swap<32, false>::writeval(pov + 12,
510 - (plt_offset + plt_entry_size));
511
512 // Set the entry in the GOT.
513 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
514 }
515
516 gold_assert(pov - oview == oview_size);
517 gold_assert(got_pov - got_view == got_size);
518
519 of->write_output_view(offset, oview_size, oview);
520 of->write_output_view(got_file_offset, got_size, got_view);
521}
522
523// Create a PLT entry for a global symbol.
524
525void
526Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
527 Symbol* gsym)
528{
529 if (gsym->has_plt_offset())
530 return;
531
532 if (this->plt_ == NULL)
533 {
534 // Create the GOT sections first.
535 this->got_section(symtab, layout);
536
537 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
538 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
539 (elfcpp::SHF_ALLOC
540 | elfcpp::SHF_EXECINSTR),
541 this->plt_);
542 }
543
544 this->plt_->add_entry(gsym);
545}
546
547// Handle a relocation against a non-function symbol defined in a
548// dynamic object. The traditional way to handle this is to generate
549// a COPY relocation to copy the variable at runtime from the shared
550// object into the executable's data segment. However, this is
551// undesirable in general, as if the size of the object changes in the
552// dynamic object, the executable will no longer work correctly. If
553// this relocation is in a writable section, then we can create a
554// dynamic reloc and the dynamic linker will resolve it to the correct
555// address at runtime. However, we do not want do that if the
556// relocation is in a read-only section, as it would prevent the
557// readonly segment from being shared. And if we have to eventually
558// generate a COPY reloc, then any dynamic relocations will be
559// useless. So this means that if this is a writable section, we need
560// to save the relocation until we see whether we have to create a
561// COPY relocation for this symbol for any other relocation.
562
563void
564Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
565 Symbol_table* symtab,
566 Layout* layout,
567 Sized_relobj<64, false>* object,
568 unsigned int data_shndx, Symbol* gsym,
569 const elfcpp::Rela<64, false>& rel)
2e30d253
ILT
570{
571 Sized_symbol<64>* ssym;
572 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
573 SELECT_SIZE(64));
574
575 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
576 data_shndx, ssym))
577 {
578 // So far we do not need a COPY reloc. Save this relocation.
579 // If it turns out that we never need a COPY reloc for this
580 // symbol, then we will emit the relocation.
581 if (this->copy_relocs_ == NULL)
582 this->copy_relocs_ = new Copy_relocs<64, false>();
583 this->copy_relocs_->save(ssym, object, data_shndx, rel);
584 }
585 else
586 {
587 // Allocate space for this symbol in the .bss section.
588
589 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
590
591 // There is no defined way to determine the required alignment
592 // of the symbol. We pick the alignment based on the size. We
593 // set an arbitrary maximum of 256.
594 unsigned int align;
595 for (align = 1; align < 512; align <<= 1)
596 if ((symsize & align) != 0)
597 break;
598
599 if (this->dynbss_ == NULL)
600 {
601 this->dynbss_ = new Output_data_space(align);
602 layout->add_output_section_data(".bss",
603 elfcpp::SHT_NOBITS,
604 (elfcpp::SHF_ALLOC
605 | elfcpp::SHF_WRITE),
606 this->dynbss_);
607 }
608
609 Output_data_space* dynbss = this->dynbss_;
610
611 if (align > dynbss->addralign())
612 dynbss->set_space_alignment(align);
613
614 off_t dynbss_size = dynbss->data_size();
615 dynbss_size = align_address(dynbss_size, align);
616 off_t offset = dynbss_size;
617 dynbss->set_space_size(dynbss_size + symsize);
618
619 // Define the symbol in the .dynbss section.
620 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
621 dynbss, offset, symsize, ssym->type(),
622 ssym->binding(), ssym->visibility(),
623 ssym->nonvis(), false, false);
624
625 // Add the COPY reloc.
626 ssym->set_needs_dynsym_entry();
627 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
ff006520 628 rel_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
629 }
630}
631
632
633// Optimize the TLS relocation type based on what we know about the
634// symbol. IS_FINAL is true if the final address of this symbol is
635// known at link time.
636
637unsigned int
638Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
639{
2e30d253
ILT
640 // If we are generating a shared library, then we can't do anything
641 // in the linker.
642 if (parameters->output_is_shared())
643 return r_type;
644
645 switch (r_type)
646 {
647 case elfcpp::R_X86_64_TLSGD:
d61c17ea
ILT
648 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // TODO(csilvers): correct?
649 case elfcpp::R_X86_64_TLSDESC_CALL: // TODO(csilvers): correct?
2e30d253
ILT
650 // These are Global-Dynamic which permits fully general TLS
651 // access. Since we know that we are generating an executable,
652 // we can convert this to Initial-Exec. If we also know that
653 // this is a local symbol, we can further switch to Local-Exec.
654 if (is_final)
d61c17ea
ILT
655 return elfcpp::R_X86_64_TPOFF32;
656 return elfcpp::R_X86_64_GOTTPOFF; // used for Initial-exec
2e30d253 657
d61c17ea 658 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
659 // This is Local-Dynamic, which refers to a local symbol in the
660 // dynamic TLS block. Since we know that we generating an
661 // executable, we can switch to Local-Exec.
d61c17ea 662 return elfcpp::R_X86_64_TPOFF32;
2e30d253 663
d61c17ea 664 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
665 // These are Initial-Exec relocs which get the thread offset
666 // from the GOT. If we know that we are linking against the
667 // local symbol, we can switch to Local-Exec, which links the
668 // thread offset into the instruction.
669 if (is_final)
d61c17ea 670 return elfcpp::R_X86_64_TPOFF32;
2e30d253
ILT
671 return r_type;
672
d61c17ea 673 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
674 // When we already have Local-Exec, there is nothing further we
675 // can do.
676 return r_type;
677
678 default:
679 gold_unreachable();
680 }
2e30d253
ILT
681}
682
683// Scan a relocation for a local symbol.
684
685inline void
686Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
687 Symbol_table* symtab,
688 Layout* layout,
689 Target_x86_64* target,
690 Sized_relobj<64, false>* object,
691 unsigned int,
692 const elfcpp::Rela<64, false>&,
693 unsigned int r_type,
694 const elfcpp::Sym<64, false>&)
2e30d253
ILT
695{
696 switch (r_type)
697 {
698 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
699 case elfcpp::R_386_GNU_VTINHERIT:
700 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
701 break;
702
703 case elfcpp::R_X86_64_64:
704 case elfcpp::R_X86_64_32:
705 case elfcpp::R_X86_64_32S:
706 case elfcpp::R_X86_64_16:
707 case elfcpp::R_X86_64_8:
708 // FIXME: If we are generating a shared object we need to copy
709 // this relocation into the object.
710 gold_assert(!parameters->output_is_shared());
711 break;
712
713 case elfcpp::R_X86_64_PC64:
714 case elfcpp::R_X86_64_PC32:
715 case elfcpp::R_X86_64_PC16:
716 case elfcpp::R_X86_64_PC8:
717 break;
718
e822f2b1 719 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
e822f2b1
ILT
720 case elfcpp::R_X86_64_GOTOFF64:
721 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
e822f2b1 722 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
2e30d253
ILT
723 // We need a GOT section.
724 target->got_section(symtab, layout);
725 break;
726
727 case elfcpp::R_X86_64_COPY:
728 case elfcpp::R_X86_64_GLOB_DAT:
729 case elfcpp::R_X86_64_JUMP_SLOT:
730 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 731 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 732 case elfcpp::R_X86_64_TPOFF64:
2e30d253
ILT
733 case elfcpp::R_X86_64_DTPMOD64:
734 case elfcpp::R_X86_64_DTPOFF64:
735 case elfcpp::R_X86_64_DTPOFF32:
736 case elfcpp::R_X86_64_TLSDESC:
737 fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
738 program_name, object->name().c_str(), r_type);
739 gold_exit(false);
740 break;
741
d61c17ea 742 // These are initial tls relocs, which are expected when linking
e822f2b1
ILT
743 case elfcpp::R_X86_64_TLSGD: // TODO(csilvers): correct?
744 case elfcpp::R_X86_64_TLSLD: // TODO(csilvers): correct?
d61c17ea
ILT
745 case elfcpp::R_X86_64_GOTTPOFF: // TODO(csilvers): correct?
746 case elfcpp::R_X86_64_TPOFF32: // TODO(csilvers): correct?
747 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // TODO(csilvers): correct?
748 case elfcpp::R_X86_64_TLSDESC_CALL: // TODO(csilvers): correct?
2e30d253
ILT
749 {
750 bool output_is_shared = parameters->output_is_shared();
d61c17ea 751 r_type = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
752 switch (r_type)
753 {
d61c17ea 754 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
755 // FIXME: If generating a shared object, we need to copy
756 // this relocation into the object.
757 gold_assert(!output_is_shared);
758 break;
759
d61c17ea
ILT
760 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
761 case elfcpp::R_X86_64_TLSGD: // General Dynamic
762 case elfcpp::R_X86_64_TLSLD: // Local Dynamic
763 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
764 case elfcpp::R_X86_64_TLSDESC_CALL:
2e30d253
ILT
765 fprintf(stderr,
766 _("%s: %s: unsupported reloc %u against local symbol\n"),
767 program_name, object->name().c_str(), r_type);
768 break;
769 }
770 }
771 break;
2e30d253 772
ff006520 773 case elfcpp::R_X86_64_GOT64: // TODO(csilvers): correct?
2e30d253 774 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
775 case elfcpp::R_X86_64_GOTPCREL64: // TODO(csilvers): correct?
776 case elfcpp::R_X86_64_GOTPCREL:
777 case elfcpp::R_X86_64_GOTPLT64: // TODO(csilvers): correct?
2e30d253 778 case elfcpp::R_X86_64_PLT32:
e822f2b1
ILT
779 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
780 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
2e30d253
ILT
781 default:
782 fprintf(stderr, _("%s: %s: unsupported reloc %u against local symbol\n"),
783 program_name, object->name().c_str(), r_type);
784 break;
785 }
786}
787
788
789// Scan a relocation for a global symbol.
790
791inline void
792Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
793 Symbol_table* symtab,
794 Layout* layout,
795 Target_x86_64* target,
796 Sized_relobj<64, false>* object,
797 unsigned int data_shndx,
798 const elfcpp::Rela<64, false>& reloc,
799 unsigned int r_type,
800 Symbol* gsym)
2e30d253
ILT
801{
802 switch (r_type)
803 {
804 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
805 case elfcpp::R_386_GNU_VTINHERIT:
806 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
807 break;
808
809 case elfcpp::R_X86_64_64:
810 case elfcpp::R_X86_64_PC64:
811 case elfcpp::R_X86_64_32:
812 case elfcpp::R_X86_64_32S:
813 case elfcpp::R_X86_64_PC32:
814 case elfcpp::R_X86_64_16:
815 case elfcpp::R_X86_64_PC16:
816 case elfcpp::R_X86_64_8:
817 case elfcpp::R_X86_64_PC8:
818 // FIXME: If we are generating a shared object we may need to
819 // copy this relocation into the object. If this symbol is
820 // defined in a shared object, we may need to copy this
821 // relocation in order to avoid a COPY relocation.
822 gold_assert(!parameters->output_is_shared());
823
824 if (gsym->is_from_dynobj())
825 {
826 // This symbol is defined in a dynamic object. If it is a
827 // function, we make a PLT entry. Otherwise we need to
828 // either generate a COPY reloc or copy this reloc.
829 if (gsym->type() == elfcpp::STT_FUNC)
4fb6c25d
ILT
830 {
831 target->make_plt_entry(symtab, layout, gsym);
832
833 // If this is not a PC relative reference, then we may
834 // be taking the address of the function. In that case
835 // we need to set the entry in the dynamic symbol table
836 // to the address of the PLT entry.
837 if (r_type != elfcpp::R_X86_64_PC64
838 && r_type != elfcpp::R_X86_64_PC32
839 && r_type != elfcpp::R_X86_64_PC16
840 && r_type != elfcpp::R_X86_64_PC8)
841 gsym->set_needs_dynsym_value();
842 }
2e30d253
ILT
843 else
844 target->copy_reloc(&options, symtab, layout, object, data_shndx,
845 gsym, reloc);
846 }
847
848 break;
849
ff006520 850 case elfcpp::R_X86_64_GOT64:
2e30d253 851 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
852 case elfcpp::R_X86_64_GOTPCREL64:
853 case elfcpp::R_X86_64_GOTPCREL:
854 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
855 {
856 // The symbol requires a GOT entry.
857 Output_data_got<64, false>* got = target->got_section(symtab, layout);
858 if (got->add_global(gsym))
859 {
860 // If this symbol is not fully resolved, we need to add a
861 // dynamic relocation for it.
862 if (!gsym->final_value_is_known())
863 {
864 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
865 rel_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
ff006520 866 gsym->got_offset(), 0);
2e30d253
ILT
867 }
868 }
869 }
870 break;
871
872 case elfcpp::R_X86_64_PLT32:
873 // If the symbol is fully resolved, this is just a PC32 reloc.
874 // Otherwise we need a PLT entry.
875 if (gsym->final_value_is_known())
876 break;
877 target->make_plt_entry(symtab, layout, gsym);
878 break;
879
e822f2b1 880 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
e822f2b1
ILT
881 case elfcpp::R_X86_64_GOTOFF64:
882 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
e822f2b1 883 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
2e30d253
ILT
884 // We need a GOT section.
885 target->got_section(symtab, layout);
886 break;
887
2e30d253
ILT
888 case elfcpp::R_X86_64_COPY:
889 case elfcpp::R_X86_64_GLOB_DAT:
890 case elfcpp::R_X86_64_JUMP_SLOT:
891 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 892 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 893 case elfcpp::R_X86_64_TPOFF64:
2e30d253
ILT
894 case elfcpp::R_X86_64_DTPMOD64:
895 case elfcpp::R_X86_64_DTPOFF64:
896 case elfcpp::R_X86_64_DTPOFF32:
e822f2b1 897 case elfcpp::R_X86_64_TLSDESC:
2e30d253
ILT
898 fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
899 program_name, object->name().c_str(), r_type);
900 gold_exit(false);
901 break;
2e30d253 902
d61c17ea 903 // These are initial tls relocs, which are expected for global()
e822f2b1
ILT
904 case elfcpp::R_X86_64_TLSGD: // TODO(csilvers): correct?
905 case elfcpp::R_X86_64_TLSLD: // TODO(csilvers): correct?
d61c17ea
ILT
906 case elfcpp::R_X86_64_GOTTPOFF: // TODO(csilvers): correct?
907 case elfcpp::R_X86_64_TPOFF32: // TODO(csilvers): correct?
908 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // TODO(csilvers): correct?
909 case elfcpp::R_X86_64_TLSDESC_CALL: // TODO(csilvers): correct?
2e30d253
ILT
910 {
911 const bool is_final = gsym->final_value_is_known();
912 r_type = Target_x86_64::optimize_tls_reloc(is_final, r_type);
913 switch (r_type)
914 {
d61c17ea 915 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
916 // FIXME: If generating a shared object, we need to copy
917 // this relocation into the object.
918 gold_assert(!parameters->output_is_shared());
919 break;
920
d61c17ea
ILT
921 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
922 case elfcpp::R_X86_64_TLSGD: // General Dynamic
923 case elfcpp::R_X86_64_TLSLD: // Local Dynamic
924 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
925 case elfcpp::R_X86_64_TLSDESC_CALL:
2e30d253
ILT
926 fprintf(stderr,
927 _("%s: %s: unsupported reloc %u "
928 "against global symbol %s\n"),
929 program_name, object->name().c_str(), r_type,
930 gsym->name());
931 break;
932 }
933 }
934 break;
2e30d253 935
e822f2b1
ILT
936 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
937 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
2e30d253
ILT
938 default:
939 fprintf(stderr,
940 _("%s: %s: unsupported reloc %u against global symbol %s\n"),
941 program_name, object->name().c_str(), r_type, gsym->name());
942 break;
943 }
944}
945
946// Scan relocations for a section.
947
948void
949Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
950 Symbol_table* symtab,
951 Layout* layout,
952 Sized_relobj<64, false>* object,
953 unsigned int data_shndx,
954 unsigned int sh_type,
955 const unsigned char* prelocs,
956 size_t reloc_count,
957 size_t local_symbol_count,
958 const unsigned char* plocal_symbols,
959 Symbol** global_symbols)
2e30d253
ILT
960{
961 if (sh_type == elfcpp::SHT_REL)
962 {
963 fprintf(stderr, _("%s: %s: unsupported REL reloc section\n"),
964 program_name, object->name().c_str());
965 gold_exit(false);
966 }
967
968 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
969 Target_x86_64::Scan>(
970 options,
971 symtab,
972 layout,
973 this,
974 object,
975 data_shndx,
976 prelocs,
977 reloc_count,
978 local_symbol_count,
979 plocal_symbols,
980 global_symbols);
981}
982
983// Finalize the sections.
984
985void
986Target_x86_64::do_finalize_sections(Layout* layout)
987{
988 // Fill in some more dynamic tags.
989 Output_data_dynamic* const odyn = layout->dynamic_data();
990 if (odyn != NULL)
991 {
992 if (this->got_plt_ != NULL)
993 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
994
995 if (this->plt_ != NULL)
996 {
997 const Output_data* od = this->plt_->rel_plt();
998 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
999 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1000 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1001 }
1002
1003 if (this->rel_dyn_ != NULL)
1004 {
1005 const Output_data* od = this->rel_dyn_;
1006 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1007 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1008 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1009 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1010 }
1011
1012 if (!parameters->output_is_shared())
1013 {
1014 // The value of the DT_DEBUG tag is filled in by the dynamic
1015 // linker at run time, and used by the debugger.
1016 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1017 }
1018 }
1019
1020 // Emit any relocs we saved in an attempt to avoid generating COPY
1021 // relocs.
1022 if (this->copy_relocs_ == NULL)
1023 return;
1024 if (this->copy_relocs_->any_to_emit())
1025 {
1026 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1027 this->copy_relocs_->emit(rel_dyn);
1028 }
1029 delete this->copy_relocs_;
1030 this->copy_relocs_ = NULL;
1031}
1032
1033// Perform a relocation.
1034
1035inline bool
1036Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1037 Target_x86_64* target,
1038 size_t relnum,
1039 const elfcpp::Rela<64, false>& rel,
1040 unsigned int r_type,
1041 const Sized_symbol<64>* gsym,
1042 const Symbol_value<64>* psymval,
1043 unsigned char* view,
1044 elfcpp::Elf_types<64>::Elf_Addr address,
1045 off_t view_size)
1046{
1047 if (this->skip_call_tls_get_addr_)
1048 {
1049 if (r_type != elfcpp::R_X86_64_PLT32
1050 || gsym == NULL
1051 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1052 {
1053 fprintf(stderr, _("%s: %s: missing expected TLS relocation\n"),
1054 program_name,
1055 relinfo->location(relnum, rel.get_r_offset()).c_str());
1056 gold_exit(false);
1057 }
1058
1059 this->skip_call_tls_get_addr_ = false;
1060
1061 return false;
1062 }
1063
1064 // Pick the value to use for symbols defined in shared objects.
1065 Symbol_value<64> symval;
1066 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1067 {
1068 symval.set_output_value(target->plt_section()->address()
1069 + gsym->plt_offset());
1070 psymval = &symval;
1071 }
1072
1073 const Sized_relobj<64, false>* object = relinfo->object;
1074 const elfcpp::Elf_Xword addend = rel.get_r_addend();
1075
1076 switch (r_type)
1077 {
1078 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1079 case elfcpp::R_386_GNU_VTINHERIT:
1080 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1081 break;
1082
1083 case elfcpp::R_X86_64_64:
1084 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1085 break;
1086
1087 case elfcpp::R_X86_64_PC64:
1088 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1089 address);
1090 break;
1091
1092 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1093 // FIXME: we need to verify that value + addend fits into 32 bits:
1094 // uint64_t x = value + addend;
1095 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1096 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1097 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1098 break;
1099
1100 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1101 // FIXME: we need to verify that value + addend fits into 32 bits:
1102 // int64_t x = value + addend; // note this quantity is signed!
1103 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1104 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1105 break;
1106
1107 case elfcpp::R_X86_64_PC32:
1108 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1109 address);
1110 break;
1111
1112 case elfcpp::R_X86_64_16:
1113 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1114 break;
1115
1116 case elfcpp::R_X86_64_PC16:
1117 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1118 address);
1119 break;
1120
1121 case elfcpp::R_X86_64_8:
1122 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1123 break;
1124
1125 case elfcpp::R_X86_64_PC8:
1126 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1127 address);
1128 break;
1129
1130 case elfcpp::R_X86_64_PLT32:
1131 gold_assert(gsym->has_plt_offset()
1132 || gsym->final_value_is_known());
1133 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1134 address);
1135 break;
1136
1137 case elfcpp::R_X86_64_GOT32:
1138 // Local GOT offsets not yet supported.
1139 gold_assert(gsym);
1140 gold_assert(gsym->has_got_offset());
1141 Relocate_functions<64, false>::rela32(view, gsym->got_offset(), addend);
1142 break;
1143
e822f2b1
ILT
1144 case elfcpp::R_X86_64_GOTPC32:
1145 {
1146 gold_assert(gsym);
1147 elfcpp::Elf_types<64>::Elf_Addr value;
1148 value = target->got_section(NULL, NULL)->address();
1149 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1150 }
1151 break;
1152
1153 case elfcpp::R_X86_64_GOT64:
1154 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1155 // Since we always add a PLT entry, this is equivalent.
1156 case elfcpp::R_X86_64_GOTPLT64: // TODO(csilvers): correct?
1157 // Local GOT offsets not yet supported.
1158 gold_assert(gsym);
1159 gold_assert(gsym->has_got_offset());
1160 Relocate_functions<64, false>::rela64(view, gsym->got_offset(), addend);
1161 break;
1162
1163 case elfcpp::R_X86_64_GOTPC64:
1164 {
1165 gold_assert(gsym);
1166 elfcpp::Elf_types<64>::Elf_Addr value;
1167 value = target->got_section(NULL, NULL)->address();
1168 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1169 }
1170 break;
1171
2e30d253
ILT
1172 case elfcpp::R_X86_64_GOTOFF64:
1173 {
1174 elfcpp::Elf_types<64>::Elf_Addr value;
1175 value = (psymval->value(object, 0)
1176 - target->got_section(NULL, NULL)->address());
1177 Relocate_functions<64, false>::rela64(view, value, addend);
1178 }
1179 break;
1180
1181 case elfcpp::R_X86_64_GOTPCREL:
1182 {
ff006520 1183 // Local GOT offsets not yet supported.
2e30d253 1184 gold_assert(gsym);
ff006520 1185 gold_assert(gsym->has_got_offset());
2e30d253 1186 elfcpp::Elf_types<64>::Elf_Addr value;
2e30d253 1187 value = (target->got_section(NULL, NULL)->address()
ff006520 1188 + gsym->got_offset());
2e30d253
ILT
1189 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1190 }
1191 break;
1192
e822f2b1
ILT
1193 case elfcpp::R_X86_64_GOTPCREL64:
1194 {
ff006520 1195 // Local GOT offsets not yet supported.
e822f2b1 1196 gold_assert(gsym);
ff006520 1197 gold_assert(gsym->has_got_offset());
e822f2b1 1198 elfcpp::Elf_types<64>::Elf_Addr value;
e822f2b1 1199 value = (target->got_section(NULL, NULL)->address()
ff006520 1200 + gsym->got_offset());
e822f2b1
ILT
1201 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1202 }
1203 break;
1204
2e30d253
ILT
1205 case elfcpp::R_X86_64_COPY:
1206 case elfcpp::R_X86_64_GLOB_DAT:
1207 case elfcpp::R_X86_64_JUMP_SLOT:
1208 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1209 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1210 case elfcpp::R_X86_64_TPOFF64:
2e30d253
ILT
1211 case elfcpp::R_X86_64_DTPMOD64:
1212 case elfcpp::R_X86_64_DTPOFF64:
1213 case elfcpp::R_X86_64_DTPOFF32:
1214 case elfcpp::R_X86_64_TLSDESC:
1215 fprintf(stderr, _("%s: %s: unexpected reloc %u in object file\n"),
1216 program_name,
1217 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1218 r_type);
1219 gold_exit(false);
1220 break;
1221
d61c17ea 1222 // These are initial tls relocs, which are expected when linking
e822f2b1
ILT
1223 case elfcpp::R_X86_64_TLSGD: // TODO(csilvers): correct?
1224 case elfcpp::R_X86_64_TLSLD: // TODO(csilvers): correct?
d61c17ea
ILT
1225 case elfcpp::R_X86_64_GOTTPOFF: // TODO(csilvers): correct?
1226 case elfcpp::R_X86_64_TPOFF32: // TODO(csilvers): correct?
1227 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // TODO(csilvers): correct?
1228 case elfcpp::R_X86_64_TLSDESC_CALL: // TODO(csilvers): correct?
2e30d253
ILT
1229 this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1230 address, view_size);
1231 break;
2e30d253 1232
e822f2b1
ILT
1233 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1234 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
1235 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): implement me!
2e30d253
ILT
1236 default:
1237 fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1238 program_name,
1239 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1240 r_type);
7d00dcbd 1241 gold_exit(false);
2e30d253
ILT
1242 break;
1243 }
1244
1245 return true;
1246}
1247
1248// Perform a TLS relocation.
1249
1250inline void
d61c17ea
ILT
1251Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1252 size_t relnum,
1253 const elfcpp::Rela<64, false>& rel,
1254 unsigned int r_type,
1255 const Sized_symbol<64>* gsym,
1256 const Symbol_value<64>* psymval,
1257 unsigned char* view,
2e30d253 1258 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1259 off_t view_size)
2e30d253 1260{
2e30d253
ILT
1261 Output_segment* tls_segment = relinfo->layout->tls_segment();
1262 if (tls_segment == NULL)
1263 {
1264 fprintf(stderr, _("%s: %s: TLS reloc but no TLS segment\n"),
1265 program_name,
1266 relinfo->location(relnum, rel.get_r_offset()).c_str());
1267 gold_exit(false);
1268 }
1269
1270 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1271
1272 const bool is_final = (gsym == NULL
1273 ? !parameters->output_is_shared()
1274 : gsym->final_value_is_known());
1275 const unsigned int opt_r_type =
1276 Target_x86_64::optimize_tls_reloc(is_final, r_type);
1277 switch (r_type)
1278 {
d61c17ea 1279 case elfcpp::R_X86_64_TPOFF32: // Local-exec reloc
2e30d253 1280 value = value - (tls_segment->vaddr() + tls_segment->memsz());
d61c17ea 1281 Relocate_functions<64, false>::rel32(view, value);
2e30d253
ILT
1282 break;
1283
d61c17ea
ILT
1284 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec reloc
1285 if (opt_r_type == elfcpp::R_X86_64_TPOFF32)
2e30d253
ILT
1286 {
1287 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
d61c17ea
ILT
1288 rel, r_type, value, view,
1289 view_size);
2e30d253
ILT
1290 break;
1291 }
1292 fprintf(stderr, _("%s: %s: unsupported reloc type %u\n"),
d61c17ea
ILT
1293 program_name,
1294 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1295 r_type);
7d00dcbd 1296 gold_exit(false);
2e30d253
ILT
1297 break;
1298
d61c17ea
ILT
1299 case elfcpp::R_X86_64_TLSGD:
1300 if (opt_r_type == elfcpp::R_X86_64_TPOFF32)
2e30d253
ILT
1301 {
1302 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1303 rel, r_type, value, view,
1304 view_size);
1305 break;
1306 }
1307 fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1308 program_name,
1309 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1310 r_type);
7d00dcbd 1311 gold_exit(false);
2e30d253
ILT
1312 break;
1313
d61c17ea 1314 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
1315 fprintf(stderr, _("%s: %s: unsupported reloc %u\n"),
1316 program_name,
1317 relinfo->location(relnum, rel.get_r_offset()).c_str(),
1318 r_type);
7d00dcbd 1319 gold_exit(false);
2e30d253
ILT
1320 break;
1321 }
2e30d253
ILT
1322}
1323
1324// Do a relocation in which we convert a TLS Initial-Exec to a
1325// Local-Exec.
d61c17ea 1326// TODO(csilvers): verify this is right.
2e30d253
ILT
1327
1328inline void
d61c17ea
ILT
1329Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1330 size_t relnum,
1331 Output_segment* tls_segment,
1332 const elfcpp::Rela<64, false>& rel,
1333 unsigned int,
1334 elfcpp::Elf_types<64>::Elf_Addr value,
1335 unsigned char* view,
1336 off_t view_size)
2e30d253 1337{
2e30d253
ILT
1338 // We have to actually change the instructions, which means that we
1339 // need to examine the opcodes to figure out which instruction we
1340 // are looking at.
2e30d253 1341
d61c17ea
ILT
1342 // movl %gs:XX,%eax ==> movl $YY,%eax
1343 // movl %gs:XX,%reg ==> movl $YY,%reg
1344 // addl %gs:XX,%reg ==> addl $YY,%reg
1345 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -1);
1346 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1347
1348 unsigned char op1 = view[-1];
1349 if (op1 == 0xa1)
1350 {
1351 // movl XX,%eax ==> movl $YY,%eax
1352 view[-1] = 0xb8;
2e30d253
ILT
1353 }
1354 else
1355 {
d61c17ea
ILT
1356 Target_x86_64::Relocate::check_range(relinfo, relnum, rel,
1357 view_size, -2);
2e30d253 1358
2e30d253 1359 unsigned char op2 = view[-2];
2e30d253 1360 if (op2 == 0x8b)
d61c17ea
ILT
1361 {
1362 // movl XX,%reg ==> movl $YY,%reg
1363 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
1364 (op1 & 0xc7) == 0x05);
1365 view[-2] = 0xc7;
1366 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1367 }
2e30d253 1368 else if (op2 == 0x03)
d61c17ea
ILT
1369 {
1370 // addl XX,%reg ==> addl $YY,%reg
1371 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
1372 (op1 & 0xc7) == 0x05);
1373 view[-2] = 0x81;
1374 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1375 }
2e30d253 1376 else
d61c17ea 1377 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel, 0);
2e30d253
ILT
1378 }
1379
d61c17ea
ILT
1380 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1381 Relocate_functions<64, false>::rel32(view, value);
2e30d253
ILT
1382}
1383
1384// Do a relocation in which we convert a TLS Global-Dynamic to a
1385// Local-Exec.
d61c17ea 1386// TODO(csilvers): verify this is right.
2e30d253
ILT
1387
1388inline void
d61c17ea
ILT
1389Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1390 size_t relnum,
1391 Output_segment* tls_segment,
1392 const elfcpp::Rela<64, false>& rel,
1393 unsigned int,
1394 elfcpp::Elf_types<64>::Elf_Addr value,
1395 unsigned char* view,
1396 off_t view_size)
2e30d253 1397{
2e30d253
ILT
1398 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1399 // ==> movl %gs,0,%eax; subl $foo@tpoff,%eax
1400 // leal foo(%reg),%eax; call ___tls_get_addr
1401 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1402
1403 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -2);
1404 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 9);
1405
1406 unsigned char op1 = view[-1];
1407 unsigned char op2 = view[-2];
1408
1409 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
d61c17ea 1410 op2 == 0x8d || op2 == 0x04);
2e30d253 1411 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
d61c17ea 1412 view[4] == 0xe8);
2e30d253
ILT
1413
1414 int roff = 5;
1415
1416 if (op2 == 0x04)
1417 {
1418 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
1419 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
d61c17ea 1420 view[-3] == 0x8d);
2e30d253 1421 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
d61c17ea
ILT
1422 ((op1 & 0xc7) == 0x05
1423 && op1 != (4 << 3)));
2e30d253
ILT
1424 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1425 }
1426 else
1427 {
1428 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
d61c17ea
ILT
1429 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1430 if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1431 && view[9] == 0x90)
2e30d253
ILT
1432 {
1433 // There is a trailing nop. Use the size byte subl.
1434 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1435 roff = 6;
1436 }
1437 else
1438 {
1439 // Use the five byte subl.
1440 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1441 }
1442 }
1443
1444 value = tls_segment->vaddr() + tls_segment->memsz() - value;
d61c17ea 1445 Relocate_functions<64, false>::rel32(view + roff, value);
2e30d253
ILT
1446
1447 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1448 // We can skip it.
1449 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1450}
1451
1452// Check the range for a TLS relocation.
1453
1454inline void
1455Target_x86_64::Relocate::check_range(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1456 size_t relnum,
1457 const elfcpp::Rela<64, false>& rel,
1458 off_t view_size, off_t off)
2e30d253
ILT
1459{
1460 off_t offset = rel.get_r_offset() + off;
1461 if (offset < 0 || offset > view_size)
1462 {
1463 fprintf(stderr, _("%s: %s: TLS relocation out of range\n"),
1464 program_name,
1465 relinfo->location(relnum, rel.get_r_offset()).c_str());
1466 gold_exit(false);
1467 }
1468}
1469
1470// Check the validity of a TLS relocation. This is like assert.
1471
1472inline void
1473Target_x86_64::Relocate::check_tls(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1474 size_t relnum,
1475 const elfcpp::Rela<64, false>& rel,
1476 bool valid)
2e30d253
ILT
1477{
1478 if (!valid)
1479 {
1480 fprintf(stderr,
1481 _("%s: %s: TLS relocation against invalid instruction\n"),
1482 program_name,
1483 relinfo->location(relnum, rel.get_r_offset()).c_str());
1484 gold_exit(false);
1485 }
1486}
1487
1488// Relocate section data.
1489
1490void
1491Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1492 unsigned int sh_type,
1493 const unsigned char* prelocs,
1494 size_t reloc_count,
1495 unsigned char* view,
1496 elfcpp::Elf_types<64>::Elf_Addr address,
1497 off_t view_size)
2e30d253
ILT
1498{
1499 gold_assert(sh_type == elfcpp::SHT_RELA);
1500
1501 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1502 Target_x86_64::Relocate>(
1503 relinfo,
1504 this,
1505 prelocs,
1506 reloc_count,
1507 view,
1508 address,
1509 view_size);
1510}
1511
4fb6c25d
ILT
1512// Return the value to use for a dynamic which requires special
1513// treatment. This is how we support equality comparisons of function
1514// pointers across shared library boundaries, as described in the
1515// processor specific ABI supplement.
1516
1517uint64_t
1518Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1519{
1520 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1521 return this->plt_section()->address() + gsym->plt_offset();
1522}
1523
2e30d253
ILT
1524// Return a string used to fill a code section with nops to take up
1525// the specified length.
1526
1527std::string
1528Target_x86_64::do_code_fill(off_t length)
1529{
1530 if (length >= 16)
1531 {
1532 // Build a jmpq instruction to skip over the bytes.
1533 unsigned char jmp[5];
1534 jmp[0] = 0xe9;
1535 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1536 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1537 + std::string(length - 5, '\0'));
1538 }
1539
1540 // Nop sequences of various lengths.
1541 const char nop1[1] = { 0x90 }; // nop
1542 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1543 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1544 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1545 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1546 0x00 }; // leal 0(%esi,1),%esi
1547 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1548 0x00, 0x00 };
1549 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1550 0x00, 0x00, 0x00 };
1551 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1552 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1553 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1554 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1555 0x00 };
1556 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1557 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1558 0x00, 0x00 };
1559 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1560 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1561 0x00, 0x00, 0x00 };
1562 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1563 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1564 0x00, 0x00, 0x00, 0x00 };
1565 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1566 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1567 0x27, 0x00, 0x00, 0x00,
1568 0x00 };
1569 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1570 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1571 0xbc, 0x27, 0x00, 0x00,
1572 0x00, 0x00 };
1573 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1574 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1575 0x90, 0x90, 0x90, 0x90,
1576 0x90, 0x90, 0x90 };
1577
1578 const char* nops[16] = {
1579 NULL,
1580 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1581 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1582 };
1583
1584 return std::string(nops[length], length);
1585}
1586
1587// The selector for x86_64 object files.
1588
1589class Target_selector_x86_64 : public Target_selector
1590{
1591public:
1592 Target_selector_x86_64()
1593 : Target_selector(elfcpp::EM_X86_64, 64, false)
1594 { }
1595
1596 Target*
1597 recognize(int machine, int osabi, int abiversion);
1598
1599 private:
1600 Target_x86_64* target_;
1601};
1602
1603// Recognize an x86_64 object file when we already know that the machine
1604// number is EM_X86_64.
1605
1606Target*
1607Target_selector_x86_64::recognize(int, int, int)
1608{
1609 if (this->target_ == NULL)
1610 this->target_ = new Target_x86_64();
1611 return this->target_;
1612}
1613
1614Target_selector_x86_64 target_selector_x86_64;
1615
1616} // End anonymous namespace.
This page took 0.102974 seconds and 4 git commands to generate.