[ARM] Provide dummy noncoherent DMA API
[deliverable/linux.git] / include / asm-arm / cacheflush.h
CommitLineData
1da177e4
LT
1/*
2 * linux/include/asm-arm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
1da177e4
LT
13#include <linux/sched.h>
14#include <linux/mm.h>
15
1da177e4 16#include <asm/glue.h>
b8a9b66f
RK
17#include <asm/shmparam.h>
18
19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
1da177e4
LT
20
21/*
22 * Cache Model
23 * ===========
24 */
25#undef _CACHE
26#undef MULTI_CACHE
27
6cc7cbef 28#if defined(CONFIG_CPU_CACHE_V3)
1da177e4
LT
29# ifdef _CACHE
30# define MULTI_CACHE 1
31# else
32# define _CACHE v3
33# endif
34#endif
35
6cc7cbef 36#if defined(CONFIG_CPU_CACHE_V4)
1da177e4
LT
37# ifdef _CACHE
38# define MULTI_CACHE 1
39# else
40# define _CACHE v4
41# endif
42#endif
43
44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46# define MULTI_CACHE 1
47#endif
48
49#if defined(CONFIG_CPU_ARM926T)
50# ifdef _CACHE
51# define MULTI_CACHE 1
52# else
53# define _CACHE arm926
54# endif
55#endif
56
d60674eb
HC
57#if defined(CONFIG_CPU_ARM940T)
58# ifdef _CACHE
59# define MULTI_CACHE 1
60# else
61# define _CACHE arm940
62# endif
63#endif
64
f37f46eb
HC
65#if defined(CONFIG_CPU_ARM946E)
66# ifdef _CACHE
67# define MULTI_CACHE 1
68# else
69# define _CACHE arm946
70# endif
71#endif
72
6cc7cbef 73#if defined(CONFIG_CPU_CACHE_V4WB)
1da177e4
LT
74# ifdef _CACHE
75# define MULTI_CACHE 1
76# else
77# define _CACHE v4wb
78# endif
79#endif
80
81#if defined(CONFIG_CPU_XSCALE)
82# ifdef _CACHE
83# define MULTI_CACHE 1
84# else
85# define _CACHE xscale
86# endif
87#endif
88
23bdf86a
LB
89#if defined(CONFIG_CPU_XSC3)
90# ifdef _CACHE
91# define MULTI_CACHE 1
92# else
93# define _CACHE xsc3
94# endif
95#endif
96
1da177e4
LT
97#if defined(CONFIG_CPU_V6)
98//# ifdef _CACHE
99# define MULTI_CACHE 1
100//# else
101//# define _CACHE v6
102//# endif
103#endif
104
105#if !defined(_CACHE) && !defined(MULTI_CACHE)
106#error Unknown cache maintainence model
107#endif
108
109/*
110 * This flag is used to indicate that the page pointed to by a pte
111 * is dirty and requires cleaning before returning it to the user.
112 */
113#define PG_dcache_dirty PG_arch_1
114
115/*
116 * MM Cache Management
117 * ===================
118 *
119 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
120 * implement these methods.
121 *
122 * Start addresses are inclusive and end addresses are exclusive;
123 * start addresses should be rounded down, end addresses up.
124 *
125 * See Documentation/cachetlb.txt for more information.
126 * Please note that the implementation of these, and the required
127 * effects are cache-type (VIVT/VIPT/PIPT) specific.
128 *
129 * flush_cache_kern_all()
130 *
131 * Unconditionally clean and invalidate the entire cache.
132 *
133 * flush_cache_user_mm(mm)
134 *
135 * Clean and invalidate all user space cache entries
136 * before a change of page tables.
137 *
138 * flush_cache_user_range(start, end, flags)
139 *
140 * Clean and invalidate a range of cache entries in the
141 * specified address space before a change of page tables.
142 * - start - user start address (inclusive, page aligned)
143 * - end - user end address (exclusive, page aligned)
144 * - flags - vma->vm_flags field
145 *
146 * coherent_kern_range(start, end)
147 *
148 * Ensure coherency between the Icache and the Dcache in the
149 * region described by start, end. If you have non-snooping
150 * Harvard caches, you need to implement this function.
151 * - start - virtual start address
152 * - end - virtual end address
153 *
154 * DMA Cache Coherency
155 * ===================
156 *
157 * dma_inv_range(start, end)
158 *
159 * Invalidate (discard) the specified virtual address range.
160 * May not write back any entries. If 'start' or 'end'
161 * are not cache line aligned, those lines must be written
162 * back.
163 * - start - virtual start address
164 * - end - virtual end address
165 *
166 * dma_clean_range(start, end)
167 *
168 * Clean (write back) the specified virtual address range.
169 * - start - virtual start address
170 * - end - virtual end address
171 *
172 * dma_flush_range(start, end)
173 *
174 * Clean and invalidate the specified virtual address range.
175 * - start - virtual start address
176 * - end - virtual end address
177 */
178
179struct cpu_cache_fns {
180 void (*flush_kern_all)(void);
181 void (*flush_user_all)(void);
182 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
183
184 void (*coherent_kern_range)(unsigned long, unsigned long);
185 void (*coherent_user_range)(unsigned long, unsigned long);
186 void (*flush_kern_dcache_page)(void *);
187
188 void (*dma_inv_range)(unsigned long, unsigned long);
189 void (*dma_clean_range)(unsigned long, unsigned long);
190 void (*dma_flush_range)(unsigned long, unsigned long);
191};
192
193/*
194 * Select the calling method
195 */
196#ifdef MULTI_CACHE
197
198extern struct cpu_cache_fns cpu_cache;
199
200#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
201#define __cpuc_flush_user_all cpu_cache.flush_user_all
202#define __cpuc_flush_user_range cpu_cache.flush_user_range
203#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
204#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
205#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
206
207/*
208 * These are private to the dma-mapping API. Do not use directly.
209 * Their sole purpose is to ensure that data held in the cache
210 * is visible to DMA, or data written by DMA to system memory is
211 * visible to the CPU.
212 */
213#define dmac_inv_range cpu_cache.dma_inv_range
214#define dmac_clean_range cpu_cache.dma_clean_range
215#define dmac_flush_range cpu_cache.dma_flush_range
216
217#else
218
219#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
220#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
221#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
222#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
223#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
224#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
225
226extern void __cpuc_flush_kern_all(void);
227extern void __cpuc_flush_user_all(void);
228extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
229extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
230extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
231extern void __cpuc_flush_dcache_page(void *);
232
233/*
234 * These are private to the dma-mapping API. Do not use directly.
235 * Their sole purpose is to ensure that data held in the cache
236 * is visible to DMA, or data written by DMA to system memory is
237 * visible to the CPU.
238 */
239#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
240#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
241#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
242
243extern void dmac_inv_range(unsigned long, unsigned long);
244extern void dmac_clean_range(unsigned long, unsigned long);
245extern void dmac_flush_range(unsigned long, unsigned long);
246
247#endif
248
249/*
250 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
251 * vmalloc, ioremap etc) in kernel space for pages. Since the
252 * direct-mappings of these pages may contain cached data, we need
253 * to do a full cache flush to ensure that writebacks don't corrupt
254 * data placed into these pages via the new mappings.
255 */
256#define flush_cache_vmap(start, end) flush_cache_all()
257#define flush_cache_vunmap(start, end) flush_cache_all()
258
259/*
260 * Copy user data from/to a page which is mapped into a different
261 * processes address space. Really, we want to allow our "user
262 * space" model to handle this.
263 */
264#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
265 do { \
1da177e4 266 memcpy(dst, src, len); \
a188ad2b 267 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
1da177e4
LT
268 } while (0)
269
270#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
271 do { \
1da177e4
LT
272 memcpy(dst, src, len); \
273 } while (0)
274
275/*
276 * Convert calls to our calling convention.
277 */
278#define flush_cache_all() __cpuc_flush_kern_all()
d7b6b358 279#ifndef CONFIG_CPU_CACHE_VIPT
1da177e4
LT
280static inline void flush_cache_mm(struct mm_struct *mm)
281{
282 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
283 __cpuc_flush_user_all();
284}
285
286static inline void
287flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
288{
289 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
290 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
291 vma->vm_flags);
292}
293
294static inline void
295flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
296{
297 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
298 unsigned long addr = user_addr & PAGE_MASK;
299 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
300 }
301}
a188ad2b
GD
302
303static inline void
304flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
305 unsigned long uaddr, void *kaddr,
306 unsigned long len, int write)
307{
308 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
309 unsigned long addr = (unsigned long)kaddr;
310 __cpuc_coherent_kern_range(addr, addr + len);
311 }
312}
d7b6b358
RK
313#else
314extern void flush_cache_mm(struct mm_struct *mm);
315extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
316extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
a188ad2b
GD
317extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
318 unsigned long uaddr, void *kaddr,
319 unsigned long len, int write);
d7b6b358 320#endif
1da177e4 321
ec8c0446
RB
322#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
323
1da177e4
LT
324/*
325 * flush_cache_user_range is used when we want to ensure that the
326 * Harvard caches are synchronised for the user space address range.
327 * This is used for the ARM private sys_cacheflush system call.
328 */
329#define flush_cache_user_range(vma,start,end) \
330 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
331
332/*
333 * Perform necessary cache operations to ensure that data previously
334 * stored within this range of addresses can be executed by the CPU.
335 */
336#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
337
338/*
339 * Perform necessary cache operations to ensure that the TLB will
340 * see data written in the specified area.
341 */
342#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
343
344/*
345 * flush_dcache_page is used when the kernel has written to the page
346 * cache page at virtual address page->virtual.
347 *
348 * If this page isn't mapped (ie, page_mapping == NULL), or it might
349 * have userspace mappings, then we _must_ always clean + invalidate
350 * the dcache entries associated with the kernel mapping.
351 *
352 * Otherwise we can defer the operation, and clean the cache when we are
353 * about to change to user space. This is the same method as used on SPARC64.
354 * See update_mmu_cache for the user space part.
355 */
356extern void flush_dcache_page(struct page *);
357
1c9d3df5
RP
358extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
359
6020dff0
RK
360#define ARCH_HAS_FLUSH_ANON_PAGE
361static inline void flush_anon_page(struct vm_area_struct *vma,
362 struct page *page, unsigned long vmaddr)
363{
364 extern void __flush_anon_page(struct vm_area_struct *vma,
365 struct page *, unsigned long);
366 if (PageAnon(page))
367 __flush_anon_page(vma, page, vmaddr);
368}
369
1da177e4
LT
370#define flush_dcache_mmap_lock(mapping) \
371 write_lock_irq(&(mapping)->tree_lock)
372#define flush_dcache_mmap_unlock(mapping) \
373 write_unlock_irq(&(mapping)->tree_lock)
374
375#define flush_icache_user_range(vma,page,addr,len) \
376 flush_dcache_page(page)
377
378/*
379 * We don't appear to need to do anything here. In fact, if we did, we'd
380 * duplicate cache flushing elsewhere performed by flush_dcache_page().
381 */
382#define flush_icache_page(vma,page) do { } while (0)
383
384#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
385#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
386#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
387#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
388#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
389
390#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
391
392#define cache_is_vivt() 1
393#define cache_is_vipt() 0
394#define cache_is_vipt_nonaliasing() 0
395#define cache_is_vipt_aliasing() 0
396
397#elif defined(CONFIG_CPU_CACHE_VIPT)
398
399#define cache_is_vivt() 0
400#define cache_is_vipt() 1
401#define cache_is_vipt_nonaliasing() \
402 ({ \
403 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
404 __cacheid_vipt_nonaliasing(__val); \
405 })
406
407#define cache_is_vipt_aliasing() \
408 ({ \
409 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
410 __cacheid_vipt_aliasing(__val); \
411 })
412
413#else
414
415#define cache_is_vivt() \
416 ({ \
417 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
418 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
419 })
420
421#define cache_is_vipt() \
422 ({ \
423 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
424 __cacheid_present(__val) && __cacheid_vipt(__val); \
425 })
426
427#define cache_is_vipt_nonaliasing() \
428 ({ \
429 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
430 __cacheid_present(__val) && \
431 __cacheid_vipt_nonaliasing(__val); \
432 })
433
434#define cache_is_vipt_aliasing() \
435 ({ \
436 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
437 __cacheid_present(__val) && \
438 __cacheid_vipt_aliasing(__val); \
439 })
440
441#endif
442
443#endif
This page took 0.3136 seconds and 5 git commands to generate.