mm/THP: add pmd args to pgtable deposit and withdraw APIs
[deliverable/linux.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
673eae82 4#ifndef __ASSEMBLY__
9535239f 5#ifdef CONFIG_MMU
673eae82 6
fbd71844 7#include <linux/mm_types.h>
187f1882 8#include <linux/bug.h>
fbd71844 9
6ee8630e
HD
10/*
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
15 */
16#ifndef USER_PGTABLES_CEILING
17#define USER_PGTABLES_CEILING 0UL
18#endif
19
1da177e4 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
21extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24#endif
25
26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
1da177e4
LT
30#endif
31
32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
36{
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
44}
45#endif
46
47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48#ifdef CONFIG_TRANSPARENT_HUGEPAGE
49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
52{
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
60}
61#else /* CONFIG_TRANSPARENT_HUGEPAGE */
62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
65{
66 BUG();
67 return 0;
68}
69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
70#endif
71
72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
73int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75#endif
76
77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
1da177e4
LT
80#endif
81
1da177e4 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
83static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
86{
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
90}
91#endif
92
93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94#ifdef CONFIG_TRANSPARENT_HUGEPAGE
95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
98{
99 pmd_t pmd = *pmdp;
2d28a227 100 pmd_clear(pmdp);
e2cda322 101 return pmd;
49b24d6b 102}
e2cda322 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
104#endif
105
a600388d 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
110{
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
114}
a600388d
ZA
115#endif
116
9888a1ca
ZA
117/*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
123static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
127{
128 pte_clear(mm, address, ptep);
129}
a600388d
ZA
130#endif
131
1da177e4 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
133extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136#endif
137
138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
1da177e4
LT
142#endif
143
144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 145struct mm_struct;
1da177e4
LT
146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147{
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150}
151#endif
152
e2cda322
AA
153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
155static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
157{
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160}
161#else /* CONFIG_TRANSPARENT_HUGEPAGE */
162static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
164{
165 BUG();
166}
167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168#endif
169
170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
73636b1a
CM
171extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address, pmd_t *pmdp);
e2cda322
AA
173#endif
174
e3ebcf64 175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
177 pgtable_t pgtable);
e3ebcf64
GS
178#endif
179
180#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 181extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
182#endif
183
46dcde73
GS
184#ifndef __HAVE_ARCH_PMDP_INVALIDATE
185extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
186 pmd_t *pmdp);
187#endif
188
1da177e4 189#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
190static inline int pte_same(pte_t pte_a, pte_t pte_b)
191{
192 return pte_val(pte_a) == pte_val(pte_b);
193}
194#endif
195
196#ifndef __HAVE_ARCH_PMD_SAME
197#ifdef CONFIG_TRANSPARENT_HUGEPAGE
198static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
199{
200 return pmd_val(pmd_a) == pmd_val(pmd_b);
201}
202#else /* CONFIG_TRANSPARENT_HUGEPAGE */
203static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
204{
205 BUG();
206 return 0;
207}
208#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
209#endif
210
1da177e4 211#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2d42552d 212#define page_test_and_clear_young(pfn) (0)
1da177e4
LT
213#endif
214
215#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
216#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
217#endif
218
0b0968a3 219#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 220#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
221#endif
222
2c3cf556
RR
223#ifndef pte_accessible
224# define pte_accessible(pte) ((void)(pte),1)
225#endif
226
61c77326
SL
227#ifndef flush_tlb_fix_spurious_fault
228#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
229#endif
230
0634a632
PM
231#ifndef pgprot_noncached
232#define pgprot_noncached(prot) (prot)
233#endif
234
2520bd31 235#ifndef pgprot_writecombine
236#define pgprot_writecombine pgprot_noncached
237#endif
238
1da177e4 239/*
8f6c99c1
HD
240 * When walking page tables, get the address of the next boundary,
241 * or the end address of the range if that comes earlier. Although no
242 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
243 */
244
1da177e4
LT
245#define pgd_addr_end(addr, end) \
246({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
247 (__boundary - 1 < (end) - 1)? __boundary: (end); \
248})
1da177e4
LT
249
250#ifndef pud_addr_end
251#define pud_addr_end(addr, end) \
252({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
253 (__boundary - 1 < (end) - 1)? __boundary: (end); \
254})
255#endif
256
257#ifndef pmd_addr_end
258#define pmd_addr_end(addr, end) \
259({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
260 (__boundary - 1 < (end) - 1)? __boundary: (end); \
261})
262#endif
263
1da177e4
LT
264/*
265 * When walking page tables, we usually want to skip any p?d_none entries;
266 * and any p?d_bad entries - reporting the error before resetting to none.
267 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
268 */
269void pgd_clear_bad(pgd_t *);
270void pud_clear_bad(pud_t *);
271void pmd_clear_bad(pmd_t *);
272
273static inline int pgd_none_or_clear_bad(pgd_t *pgd)
274{
275 if (pgd_none(*pgd))
276 return 1;
277 if (unlikely(pgd_bad(*pgd))) {
278 pgd_clear_bad(pgd);
279 return 1;
280 }
281 return 0;
282}
283
284static inline int pud_none_or_clear_bad(pud_t *pud)
285{
286 if (pud_none(*pud))
287 return 1;
288 if (unlikely(pud_bad(*pud))) {
289 pud_clear_bad(pud);
290 return 1;
291 }
292 return 0;
293}
294
295static inline int pmd_none_or_clear_bad(pmd_t *pmd)
296{
297 if (pmd_none(*pmd))
298 return 1;
299 if (unlikely(pmd_bad(*pmd))) {
300 pmd_clear_bad(pmd);
301 return 1;
302 }
303 return 0;
304}
9535239f 305
1ea0704e
JF
306static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
307 unsigned long addr,
308 pte_t *ptep)
309{
310 /*
311 * Get the current pte state, but zero it out to make it
312 * non-present, preventing the hardware from asynchronously
313 * updating it.
314 */
315 return ptep_get_and_clear(mm, addr, ptep);
316}
317
318static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
319 unsigned long addr,
320 pte_t *ptep, pte_t pte)
321{
322 /*
323 * The pte is non-present, so there's no hardware state to
324 * preserve.
325 */
326 set_pte_at(mm, addr, ptep, pte);
327}
328
329#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
330/*
331 * Start a pte protection read-modify-write transaction, which
332 * protects against asynchronous hardware modifications to the pte.
333 * The intention is not to prevent the hardware from making pte
334 * updates, but to prevent any updates it may make from being lost.
335 *
336 * This does not protect against other software modifications of the
337 * pte; the appropriate pte lock must be held over the transation.
338 *
339 * Note that this interface is intended to be batchable, meaning that
340 * ptep_modify_prot_commit may not actually update the pte, but merely
341 * queue the update to be done at some later time. The update must be
342 * actually committed before the pte lock is released, however.
343 */
344static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
345 unsigned long addr,
346 pte_t *ptep)
347{
348 return __ptep_modify_prot_start(mm, addr, ptep);
349}
350
351/*
352 * Commit an update to a pte, leaving any hardware-controlled bits in
353 * the PTE unmodified.
354 */
355static inline void ptep_modify_prot_commit(struct mm_struct *mm,
356 unsigned long addr,
357 pte_t *ptep, pte_t pte)
358{
359 __ptep_modify_prot_commit(mm, addr, ptep, pte);
360}
361#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 362#endif /* CONFIG_MMU */
1ea0704e 363
9535239f
GU
364/*
365 * A facility to provide lazy MMU batching. This allows PTE updates and
366 * page invalidations to be delayed until a call to leave lazy MMU mode
367 * is issued. Some architectures may benefit from doing this, and it is
368 * beneficial for both shadow and direct mode hypervisors, which may batch
369 * the PTE updates which happen during this window. Note that using this
370 * interface requires that read hazards be removed from the code. A read
371 * hazard could result in the direct mode hypervisor case, since the actual
372 * write to the page tables may not yet have taken place, so reads though
373 * a raw PTE pointer after it has been modified are not guaranteed to be
374 * up to date. This mode can only be entered and left under the protection of
375 * the page table locks for all page tables which may be modified. In the UP
376 * case, this is required so that preemption is disabled, and in the SMP case,
377 * it must synchronize the delayed page table writes properly on other CPUs.
378 */
379#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
380#define arch_enter_lazy_mmu_mode() do {} while (0)
381#define arch_leave_lazy_mmu_mode() do {} while (0)
382#define arch_flush_lazy_mmu_mode() do {} while (0)
383#endif
384
385/*
7fd7d83d
JF
386 * A facility to provide batching of the reload of page tables and
387 * other process state with the actual context switch code for
388 * paravirtualized guests. By convention, only one of the batched
389 * update (lazy) modes (CPU, MMU) should be active at any given time,
390 * entry should never be nested, and entry and exits should always be
391 * paired. This is for sanity of maintaining and reasoning about the
392 * kernel code. In this case, the exit (end of the context switch) is
393 * in architecture-specific code, and so doesn't need a generic
394 * definition.
9535239f 395 */
7fd7d83d 396#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 397#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
398#endif
399
34801ba9 400#ifndef __HAVE_PFNMAP_TRACKING
401/*
5180da41
SS
402 * Interfaces that can be used by architecture code to keep track of
403 * memory type of pfn mappings specified by the remap_pfn_range,
404 * vm_insert_pfn.
405 */
406
407/*
408 * track_pfn_remap is called when a _new_ pfn mapping is being established
409 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 410 */
5180da41 411static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
412 unsigned long pfn, unsigned long addr,
413 unsigned long size)
34801ba9 414{
415 return 0;
416}
417
418/*
5180da41
SS
419 * track_pfn_insert is called when a _new_ single pfn is established
420 * by vm_insert_pfn().
421 */
422static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
423 unsigned long pfn)
424{
425 return 0;
426}
427
428/*
429 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 430 * copied through copy_page_range().
431 */
5180da41 432static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 433{
434 return 0;
435}
436
437/*
34801ba9 438 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
439 * untrack can be called for a specific region indicated by pfn and size or
5180da41 440 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 441 */
5180da41
SS
442static inline void untrack_pfn(struct vm_area_struct *vma,
443 unsigned long pfn, unsigned long size)
34801ba9 444{
445}
446#else
5180da41 447extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
448 unsigned long pfn, unsigned long addr,
449 unsigned long size);
5180da41
SS
450extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
451 unsigned long pfn);
452extern int track_pfn_copy(struct vm_area_struct *vma);
453extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
454 unsigned long size);
34801ba9 455#endif
456
816422ad
KS
457#ifdef __HAVE_COLOR_ZERO_PAGE
458static inline int is_zero_pfn(unsigned long pfn)
459{
460 extern unsigned long zero_pfn;
461 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
462 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
463}
464
2f91ec8c
KS
465#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
466
816422ad
KS
467#else
468static inline int is_zero_pfn(unsigned long pfn)
469{
470 extern unsigned long zero_pfn;
471 return pfn == zero_pfn;
472}
473
474static inline unsigned long my_zero_pfn(unsigned long addr)
475{
476 extern unsigned long zero_pfn;
477 return zero_pfn;
478}
479#endif
480
1a5a9906
AA
481#ifdef CONFIG_MMU
482
5f6e8da7
AA
483#ifndef CONFIG_TRANSPARENT_HUGEPAGE
484static inline int pmd_trans_huge(pmd_t pmd)
485{
486 return 0;
487}
488static inline int pmd_trans_splitting(pmd_t pmd)
489{
490 return 0;
491}
e2cda322
AA
492#ifndef __HAVE_ARCH_PMD_WRITE
493static inline int pmd_write(pmd_t pmd)
494{
495 BUG();
496 return 0;
497}
498#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
500
26c19178
AA
501#ifndef pmd_read_atomic
502static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
503{
504 /*
505 * Depend on compiler for an atomic pmd read. NOTE: this is
506 * only going to work, if the pmdval_t isn't larger than
507 * an unsigned long.
508 */
509 return *pmdp;
510}
511#endif
512
1a5a9906
AA
513/*
514 * This function is meant to be used by sites walking pagetables with
515 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
516 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
517 * into a null pmd and the transhuge page fault can convert a null pmd
518 * into an hugepmd or into a regular pmd (if the hugepage allocation
519 * fails). While holding the mmap_sem in read mode the pmd becomes
520 * stable and stops changing under us only if it's not null and not a
521 * transhuge pmd. When those races occurs and this function makes a
522 * difference vs the standard pmd_none_or_clear_bad, the result is
523 * undefined so behaving like if the pmd was none is safe (because it
524 * can return none anyway). The compiler level barrier() is critically
525 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
526 *
527 * For 32bit kernels with a 64bit large pmd_t this automatically takes
528 * care of reading the pmd atomically to avoid SMP race conditions
529 * against pmd_populate() when the mmap_sem is hold for reading by the
530 * caller (a special atomic read not done by "gcc" as in the generic
531 * version above, is also needed when THP is disabled because the page
532 * fault can populate the pmd from under us).
1a5a9906
AA
533 */
534static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
535{
26c19178 536 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
537 /*
538 * The barrier will stabilize the pmdval in a register or on
539 * the stack so that it will stop changing under the code.
e4eed03f
AA
540 *
541 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
542 * pmd_read_atomic is allowed to return a not atomic pmdval
543 * (for example pointing to an hugepage that has never been
544 * mapped in the pmd). The below checks will only care about
545 * the low part of the pmd with 32bit PAE x86 anyway, with the
546 * exception of pmd_none(). So the important thing is that if
547 * the low part of the pmd is found null, the high part will
548 * be also null or the pmd_none() check below would be
549 * confused.
1a5a9906
AA
550 */
551#ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 barrier();
553#endif
554 if (pmd_none(pmdval))
555 return 1;
556 if (unlikely(pmd_bad(pmdval))) {
557 if (!pmd_trans_huge(pmdval))
558 pmd_clear_bad(pmd);
559 return 1;
560 }
561 return 0;
562}
563
564/*
565 * This is a noop if Transparent Hugepage Support is not built into
566 * the kernel. Otherwise it is equivalent to
567 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
568 * places that already verified the pmd is not none and they want to
569 * walk ptes while holding the mmap sem in read mode (write mode don't
570 * need this). If THP is not enabled, the pmd can't go away under the
571 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
572 * run a pmd_trans_unstable before walking the ptes after
573 * split_huge_page_pmd returns (because it may have run when the pmd
574 * become null, but then a page fault can map in a THP and not a
575 * regular page).
576 */
577static inline int pmd_trans_unstable(pmd_t *pmd)
578{
579#ifdef CONFIG_TRANSPARENT_HUGEPAGE
580 return pmd_none_or_trans_huge_or_clear_bad(pmd);
581#else
582 return 0;
5f6e8da7 583#endif
1a5a9906
AA
584}
585
be3a7284
AA
586#ifdef CONFIG_NUMA_BALANCING
587#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
588/*
589 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
590 * same bit too). It's set only when _PAGE_PRESET is not set and it's
591 * never set if _PAGE_PRESENT is set.
592 *
593 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
594 * fault triggers on those regions if pte/pmd_numa returns true
595 * (because _PAGE_PRESENT is not set).
596 */
597#ifndef pte_numa
598static inline int pte_numa(pte_t pte)
599{
600 return (pte_flags(pte) &
601 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
602}
603#endif
604
605#ifndef pmd_numa
606static inline int pmd_numa(pmd_t pmd)
607{
608 return (pmd_flags(pmd) &
609 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
610}
611#endif
612
613/*
614 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
615 * because they're called by the NUMA hinting minor page fault. If we
616 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
617 * would be forced to set it later while filling the TLB after we
618 * return to userland. That would trigger a second write to memory
619 * that we optimize away by setting _PAGE_ACCESSED here.
620 */
621#ifndef pte_mknonnuma
622static inline pte_t pte_mknonnuma(pte_t pte)
623{
624 pte = pte_clear_flags(pte, _PAGE_NUMA);
625 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
626}
627#endif
628
629#ifndef pmd_mknonnuma
630static inline pmd_t pmd_mknonnuma(pmd_t pmd)
631{
632 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
633 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
634}
635#endif
636
637#ifndef pte_mknuma
638static inline pte_t pte_mknuma(pte_t pte)
639{
640 pte = pte_set_flags(pte, _PAGE_NUMA);
641 return pte_clear_flags(pte, _PAGE_PRESENT);
642}
643#endif
644
645#ifndef pmd_mknuma
646static inline pmd_t pmd_mknuma(pmd_t pmd)
647{
648 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
649 return pmd_clear_flags(pmd, _PAGE_PRESENT);
650}
651#endif
652#else
653extern int pte_numa(pte_t pte);
654extern int pmd_numa(pmd_t pmd);
655extern pte_t pte_mknonnuma(pte_t pte);
656extern pmd_t pmd_mknonnuma(pmd_t pmd);
657extern pte_t pte_mknuma(pte_t pte);
658extern pmd_t pmd_mknuma(pmd_t pmd);
659#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
660#else
661static inline int pmd_numa(pmd_t pmd)
662{
663 return 0;
664}
665
666static inline int pte_numa(pte_t pte)
667{
668 return 0;
669}
670
671static inline pte_t pte_mknonnuma(pte_t pte)
672{
673 return pte;
674}
675
676static inline pmd_t pmd_mknonnuma(pmd_t pmd)
677{
678 return pmd;
679}
680
681static inline pte_t pte_mknuma(pte_t pte)
682{
683 return pte;
684}
685
686static inline pmd_t pmd_mknuma(pmd_t pmd)
687{
688 return pmd;
689}
690#endif /* CONFIG_NUMA_BALANCING */
691
1a5a9906 692#endif /* CONFIG_MMU */
5f6e8da7 693
1da177e4
LT
694#endif /* !__ASSEMBLY__ */
695
696#endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.856258 seconds and 5 git commands to generate.