Merge branch 'akpm' (updates from Andrew Morton)
[deliverable/linux.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
673eae82 4#ifndef __ASSEMBLY__
9535239f 5#ifdef CONFIG_MMU
673eae82 6
fbd71844 7#include <linux/mm_types.h>
187f1882 8#include <linux/bug.h>
fbd71844 9
6ee8630e
HD
10/*
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
15 */
16#ifndef USER_PGTABLES_CEILING
17#define USER_PGTABLES_CEILING 0UL
18#endif
19
1da177e4 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
21extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24#endif
25
26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
1da177e4
LT
30#endif
31
32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
36{
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
44}
45#endif
46
47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48#ifdef CONFIG_TRANSPARENT_HUGEPAGE
49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
52{
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
60}
61#else /* CONFIG_TRANSPARENT_HUGEPAGE */
62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
65{
66 BUG();
67 return 0;
68}
69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
70#endif
71
72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
73int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75#endif
76
77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
1da177e4
LT
80#endif
81
1da177e4 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
83static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
86{
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
90}
91#endif
92
93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94#ifdef CONFIG_TRANSPARENT_HUGEPAGE
95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
98{
99 pmd_t pmd = *pmdp;
2d28a227 100 pmd_clear(pmdp);
e2cda322 101 return pmd;
49b24d6b 102}
e2cda322 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
104#endif
105
a600388d 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
110{
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
114}
a600388d
ZA
115#endif
116
9888a1ca
ZA
117/*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
123static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
127{
128 pte_clear(mm, address, ptep);
129}
a600388d
ZA
130#endif
131
1da177e4 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
133extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136#endif
137
138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
1da177e4
LT
142#endif
143
144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 145struct mm_struct;
1da177e4
LT
146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147{
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150}
151#endif
152
e2cda322
AA
153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
155static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
157{
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160}
161#else /* CONFIG_TRANSPARENT_HUGEPAGE */
162static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
164{
165 BUG();
166}
167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168#endif
169
170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
73636b1a
CM
171extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address, pmd_t *pmdp);
e2cda322
AA
173#endif
174
e3ebcf64
GS
175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
177#endif
178
179#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
180extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
181#endif
182
46dcde73
GS
183#ifndef __HAVE_ARCH_PMDP_INVALIDATE
184extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
185 pmd_t *pmdp);
186#endif
187
1da177e4 188#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
189static inline int pte_same(pte_t pte_a, pte_t pte_b)
190{
191 return pte_val(pte_a) == pte_val(pte_b);
192}
193#endif
194
195#ifndef __HAVE_ARCH_PMD_SAME
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
198{
199 return pmd_val(pmd_a) == pmd_val(pmd_b);
200}
201#else /* CONFIG_TRANSPARENT_HUGEPAGE */
202static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
203{
204 BUG();
205 return 0;
206}
207#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
208#endif
209
1da177e4 210#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2d42552d 211#define page_test_and_clear_young(pfn) (0)
1da177e4
LT
212#endif
213
214#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
215#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
216#endif
217
0b0968a3 218#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 219#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
220#endif
221
2c3cf556
RR
222#ifndef pte_accessible
223# define pte_accessible(pte) ((void)(pte),1)
224#endif
225
61c77326
SL
226#ifndef flush_tlb_fix_spurious_fault
227#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
228#endif
229
0634a632
PM
230#ifndef pgprot_noncached
231#define pgprot_noncached(prot) (prot)
232#endif
233
2520bd31 234#ifndef pgprot_writecombine
235#define pgprot_writecombine pgprot_noncached
236#endif
237
1da177e4 238/*
8f6c99c1
HD
239 * When walking page tables, get the address of the next boundary,
240 * or the end address of the range if that comes earlier. Although no
241 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
242 */
243
1da177e4
LT
244#define pgd_addr_end(addr, end) \
245({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
246 (__boundary - 1 < (end) - 1)? __boundary: (end); \
247})
1da177e4
LT
248
249#ifndef pud_addr_end
250#define pud_addr_end(addr, end) \
251({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
252 (__boundary - 1 < (end) - 1)? __boundary: (end); \
253})
254#endif
255
256#ifndef pmd_addr_end
257#define pmd_addr_end(addr, end) \
258({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
259 (__boundary - 1 < (end) - 1)? __boundary: (end); \
260})
261#endif
262
1da177e4
LT
263/*
264 * When walking page tables, we usually want to skip any p?d_none entries;
265 * and any p?d_bad entries - reporting the error before resetting to none.
266 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
267 */
268void pgd_clear_bad(pgd_t *);
269void pud_clear_bad(pud_t *);
270void pmd_clear_bad(pmd_t *);
271
272static inline int pgd_none_or_clear_bad(pgd_t *pgd)
273{
274 if (pgd_none(*pgd))
275 return 1;
276 if (unlikely(pgd_bad(*pgd))) {
277 pgd_clear_bad(pgd);
278 return 1;
279 }
280 return 0;
281}
282
283static inline int pud_none_or_clear_bad(pud_t *pud)
284{
285 if (pud_none(*pud))
286 return 1;
287 if (unlikely(pud_bad(*pud))) {
288 pud_clear_bad(pud);
289 return 1;
290 }
291 return 0;
292}
293
294static inline int pmd_none_or_clear_bad(pmd_t *pmd)
295{
296 if (pmd_none(*pmd))
297 return 1;
298 if (unlikely(pmd_bad(*pmd))) {
299 pmd_clear_bad(pmd);
300 return 1;
301 }
302 return 0;
303}
9535239f 304
1ea0704e
JF
305static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
306 unsigned long addr,
307 pte_t *ptep)
308{
309 /*
310 * Get the current pte state, but zero it out to make it
311 * non-present, preventing the hardware from asynchronously
312 * updating it.
313 */
314 return ptep_get_and_clear(mm, addr, ptep);
315}
316
317static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
318 unsigned long addr,
319 pte_t *ptep, pte_t pte)
320{
321 /*
322 * The pte is non-present, so there's no hardware state to
323 * preserve.
324 */
325 set_pte_at(mm, addr, ptep, pte);
326}
327
328#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
329/*
330 * Start a pte protection read-modify-write transaction, which
331 * protects against asynchronous hardware modifications to the pte.
332 * The intention is not to prevent the hardware from making pte
333 * updates, but to prevent any updates it may make from being lost.
334 *
335 * This does not protect against other software modifications of the
336 * pte; the appropriate pte lock must be held over the transation.
337 *
338 * Note that this interface is intended to be batchable, meaning that
339 * ptep_modify_prot_commit may not actually update the pte, but merely
340 * queue the update to be done at some later time. The update must be
341 * actually committed before the pte lock is released, however.
342 */
343static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
344 unsigned long addr,
345 pte_t *ptep)
346{
347 return __ptep_modify_prot_start(mm, addr, ptep);
348}
349
350/*
351 * Commit an update to a pte, leaving any hardware-controlled bits in
352 * the PTE unmodified.
353 */
354static inline void ptep_modify_prot_commit(struct mm_struct *mm,
355 unsigned long addr,
356 pte_t *ptep, pte_t pte)
357{
358 __ptep_modify_prot_commit(mm, addr, ptep, pte);
359}
360#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 361#endif /* CONFIG_MMU */
1ea0704e 362
9535239f
GU
363/*
364 * A facility to provide lazy MMU batching. This allows PTE updates and
365 * page invalidations to be delayed until a call to leave lazy MMU mode
366 * is issued. Some architectures may benefit from doing this, and it is
367 * beneficial for both shadow and direct mode hypervisors, which may batch
368 * the PTE updates which happen during this window. Note that using this
369 * interface requires that read hazards be removed from the code. A read
370 * hazard could result in the direct mode hypervisor case, since the actual
371 * write to the page tables may not yet have taken place, so reads though
372 * a raw PTE pointer after it has been modified are not guaranteed to be
373 * up to date. This mode can only be entered and left under the protection of
374 * the page table locks for all page tables which may be modified. In the UP
375 * case, this is required so that preemption is disabled, and in the SMP case,
376 * it must synchronize the delayed page table writes properly on other CPUs.
377 */
378#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
379#define arch_enter_lazy_mmu_mode() do {} while (0)
380#define arch_leave_lazy_mmu_mode() do {} while (0)
381#define arch_flush_lazy_mmu_mode() do {} while (0)
382#endif
383
384/*
7fd7d83d
JF
385 * A facility to provide batching of the reload of page tables and
386 * other process state with the actual context switch code for
387 * paravirtualized guests. By convention, only one of the batched
388 * update (lazy) modes (CPU, MMU) should be active at any given time,
389 * entry should never be nested, and entry and exits should always be
390 * paired. This is for sanity of maintaining and reasoning about the
391 * kernel code. In this case, the exit (end of the context switch) is
392 * in architecture-specific code, and so doesn't need a generic
393 * definition.
9535239f 394 */
7fd7d83d 395#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 396#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
397#endif
398
0f8975ec
PE
399#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
400static inline int pte_soft_dirty(pte_t pte)
401{
402 return 0;
403}
404
405static inline int pmd_soft_dirty(pmd_t pmd)
406{
407 return 0;
408}
409
410static inline pte_t pte_mksoft_dirty(pte_t pte)
411{
412 return pte;
413}
414
415static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
416{
417 return pmd;
418}
419#endif
420
34801ba9 421#ifndef __HAVE_PFNMAP_TRACKING
422/*
5180da41
SS
423 * Interfaces that can be used by architecture code to keep track of
424 * memory type of pfn mappings specified by the remap_pfn_range,
425 * vm_insert_pfn.
426 */
427
428/*
429 * track_pfn_remap is called when a _new_ pfn mapping is being established
430 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 431 */
5180da41 432static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
433 unsigned long pfn, unsigned long addr,
434 unsigned long size)
34801ba9 435{
436 return 0;
437}
438
439/*
5180da41
SS
440 * track_pfn_insert is called when a _new_ single pfn is established
441 * by vm_insert_pfn().
442 */
443static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
444 unsigned long pfn)
445{
446 return 0;
447}
448
449/*
450 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 451 * copied through copy_page_range().
452 */
5180da41 453static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 454{
455 return 0;
456}
457
458/*
34801ba9 459 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
460 * untrack can be called for a specific region indicated by pfn and size or
5180da41 461 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 462 */
5180da41
SS
463static inline void untrack_pfn(struct vm_area_struct *vma,
464 unsigned long pfn, unsigned long size)
34801ba9 465{
466}
467#else
5180da41 468extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
469 unsigned long pfn, unsigned long addr,
470 unsigned long size);
5180da41
SS
471extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
472 unsigned long pfn);
473extern int track_pfn_copy(struct vm_area_struct *vma);
474extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
475 unsigned long size);
34801ba9 476#endif
477
816422ad
KS
478#ifdef __HAVE_COLOR_ZERO_PAGE
479static inline int is_zero_pfn(unsigned long pfn)
480{
481 extern unsigned long zero_pfn;
482 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
483 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
484}
485
2f91ec8c
KS
486#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
487
816422ad
KS
488#else
489static inline int is_zero_pfn(unsigned long pfn)
490{
491 extern unsigned long zero_pfn;
492 return pfn == zero_pfn;
493}
494
495static inline unsigned long my_zero_pfn(unsigned long addr)
496{
497 extern unsigned long zero_pfn;
498 return zero_pfn;
499}
500#endif
501
1a5a9906
AA
502#ifdef CONFIG_MMU
503
5f6e8da7
AA
504#ifndef CONFIG_TRANSPARENT_HUGEPAGE
505static inline int pmd_trans_huge(pmd_t pmd)
506{
507 return 0;
508}
509static inline int pmd_trans_splitting(pmd_t pmd)
510{
511 return 0;
512}
e2cda322
AA
513#ifndef __HAVE_ARCH_PMD_WRITE
514static inline int pmd_write(pmd_t pmd)
515{
516 BUG();
517 return 0;
518}
519#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
520#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
521
26c19178
AA
522#ifndef pmd_read_atomic
523static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
524{
525 /*
526 * Depend on compiler for an atomic pmd read. NOTE: this is
527 * only going to work, if the pmdval_t isn't larger than
528 * an unsigned long.
529 */
530 return *pmdp;
531}
532#endif
533
1a5a9906
AA
534/*
535 * This function is meant to be used by sites walking pagetables with
536 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
537 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
538 * into a null pmd and the transhuge page fault can convert a null pmd
539 * into an hugepmd or into a regular pmd (if the hugepage allocation
540 * fails). While holding the mmap_sem in read mode the pmd becomes
541 * stable and stops changing under us only if it's not null and not a
542 * transhuge pmd. When those races occurs and this function makes a
543 * difference vs the standard pmd_none_or_clear_bad, the result is
544 * undefined so behaving like if the pmd was none is safe (because it
545 * can return none anyway). The compiler level barrier() is critically
546 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
547 *
548 * For 32bit kernels with a 64bit large pmd_t this automatically takes
549 * care of reading the pmd atomically to avoid SMP race conditions
550 * against pmd_populate() when the mmap_sem is hold for reading by the
551 * caller (a special atomic read not done by "gcc" as in the generic
552 * version above, is also needed when THP is disabled because the page
553 * fault can populate the pmd from under us).
1a5a9906
AA
554 */
555static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
556{
26c19178 557 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
558 /*
559 * The barrier will stabilize the pmdval in a register or on
560 * the stack so that it will stop changing under the code.
e4eed03f
AA
561 *
562 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
563 * pmd_read_atomic is allowed to return a not atomic pmdval
564 * (for example pointing to an hugepage that has never been
565 * mapped in the pmd). The below checks will only care about
566 * the low part of the pmd with 32bit PAE x86 anyway, with the
567 * exception of pmd_none(). So the important thing is that if
568 * the low part of the pmd is found null, the high part will
569 * be also null or the pmd_none() check below would be
570 * confused.
1a5a9906
AA
571 */
572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
573 barrier();
574#endif
575 if (pmd_none(pmdval))
576 return 1;
577 if (unlikely(pmd_bad(pmdval))) {
578 if (!pmd_trans_huge(pmdval))
579 pmd_clear_bad(pmd);
580 return 1;
581 }
582 return 0;
583}
584
585/*
586 * This is a noop if Transparent Hugepage Support is not built into
587 * the kernel. Otherwise it is equivalent to
588 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
589 * places that already verified the pmd is not none and they want to
590 * walk ptes while holding the mmap sem in read mode (write mode don't
591 * need this). If THP is not enabled, the pmd can't go away under the
592 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
593 * run a pmd_trans_unstable before walking the ptes after
594 * split_huge_page_pmd returns (because it may have run when the pmd
595 * become null, but then a page fault can map in a THP and not a
596 * regular page).
597 */
598static inline int pmd_trans_unstable(pmd_t *pmd)
599{
600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
601 return pmd_none_or_trans_huge_or_clear_bad(pmd);
602#else
603 return 0;
5f6e8da7 604#endif
1a5a9906
AA
605}
606
be3a7284
AA
607#ifdef CONFIG_NUMA_BALANCING
608#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
609/*
610 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
611 * same bit too). It's set only when _PAGE_PRESET is not set and it's
612 * never set if _PAGE_PRESENT is set.
613 *
614 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
615 * fault triggers on those regions if pte/pmd_numa returns true
616 * (because _PAGE_PRESENT is not set).
617 */
618#ifndef pte_numa
619static inline int pte_numa(pte_t pte)
620{
621 return (pte_flags(pte) &
622 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
623}
624#endif
625
626#ifndef pmd_numa
627static inline int pmd_numa(pmd_t pmd)
628{
629 return (pmd_flags(pmd) &
630 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
631}
632#endif
633
634/*
635 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
636 * because they're called by the NUMA hinting minor page fault. If we
637 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
638 * would be forced to set it later while filling the TLB after we
639 * return to userland. That would trigger a second write to memory
640 * that we optimize away by setting _PAGE_ACCESSED here.
641 */
642#ifndef pte_mknonnuma
643static inline pte_t pte_mknonnuma(pte_t pte)
644{
645 pte = pte_clear_flags(pte, _PAGE_NUMA);
646 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
647}
648#endif
649
650#ifndef pmd_mknonnuma
651static inline pmd_t pmd_mknonnuma(pmd_t pmd)
652{
653 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
654 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
655}
656#endif
657
658#ifndef pte_mknuma
659static inline pte_t pte_mknuma(pte_t pte)
660{
661 pte = pte_set_flags(pte, _PAGE_NUMA);
662 return pte_clear_flags(pte, _PAGE_PRESENT);
663}
664#endif
665
666#ifndef pmd_mknuma
667static inline pmd_t pmd_mknuma(pmd_t pmd)
668{
669 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
670 return pmd_clear_flags(pmd, _PAGE_PRESENT);
671}
672#endif
673#else
674extern int pte_numa(pte_t pte);
675extern int pmd_numa(pmd_t pmd);
676extern pte_t pte_mknonnuma(pte_t pte);
677extern pmd_t pmd_mknonnuma(pmd_t pmd);
678extern pte_t pte_mknuma(pte_t pte);
679extern pmd_t pmd_mknuma(pmd_t pmd);
680#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
681#else
682static inline int pmd_numa(pmd_t pmd)
683{
684 return 0;
685}
686
687static inline int pte_numa(pte_t pte)
688{
689 return 0;
690}
691
692static inline pte_t pte_mknonnuma(pte_t pte)
693{
694 return pte;
695}
696
697static inline pmd_t pmd_mknonnuma(pmd_t pmd)
698{
699 return pmd;
700}
701
702static inline pte_t pte_mknuma(pte_t pte)
703{
704 return pte;
705}
706
707static inline pmd_t pmd_mknuma(pmd_t pmd)
708{
709 return pmd;
710}
711#endif /* CONFIG_NUMA_BALANCING */
712
1a5a9906 713#endif /* CONFIG_MMU */
5f6e8da7 714
1da177e4
LT
715#endif /* !__ASSEMBLY__ */
716
40d158e6
AV
717#ifndef io_remap_pfn_range
718#define io_remap_pfn_range remap_pfn_range
719#endif
720
1da177e4 721#endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.632019 seconds and 5 git commands to generate.