Fix types for firmware arguments. Don't define unneeded messages.
[deliverable/linux.git] / include / asm-mips / io.h
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/config.h>
16#include <linux/compiler.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19
20#include <asm/addrspace.h>
21#include <asm/bug.h>
22#include <asm/byteorder.h>
23#include <asm/cpu.h>
24#include <asm/cpu-features.h>
25#include <asm/page.h>
26#include <asm/pgtable-bits.h>
27#include <asm/processor.h>
fe00f943 28#include <asm/string.h>
1da177e4
LT
29
30#include <mangle-port.h>
31
32/*
33 * Slowdown I/O port space accesses for antique hardware.
34 */
35#undef CONF_SLOWDOWN_IO
36
37/*
4912ba72 38 * Raw operations are never swapped in software. OTOH values that raw
1da177e4
LT
39 * operations are working on may or may not have been swapped by the bus
40 * hardware. An example use would be for flash memory that's used for
41 * execute in place.
42 */
43# define __raw_ioswabb(x) (x)
44# define __raw_ioswabw(x) (x)
45# define __raw_ioswabl(x) (x)
46# define __raw_ioswabq(x) (x)
4912ba72 47# define ____raw_ioswabq(x) (x)
1da177e4
LT
48
49/*
50 * Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware;
51 * less sane hardware forces software to fiddle with this...
4912ba72
MR
52 *
53 * Regardless, if the host bus endianness mismatches that of PCI/ISA, then
54 * you can't have the numerical value of data and byte addresses within
55 * multibyte quantities both preserved at the same time. Hence two
56 * variations of functions: non-prefixed ones that preserve the value
57 * and prefixed ones that preserve byte addresses. The latters are
58 * typically used for moving raw data between a peripheral and memory (cf.
59 * string I/O functions), hence the "mem_" prefix.
1da177e4
LT
60 */
61#if defined(CONFIG_SWAP_IO_SPACE)
62
63# define ioswabb(x) (x)
4912ba72 64# define mem_ioswabb(x) (x)
1da177e4
LT
65# ifdef CONFIG_SGI_IP22
66/*
67 * IP22 seems braindead enough to swap 16bits values in hardware, but
68 * not 32bits. Go figure... Can't tell without documentation.
69 */
70# define ioswabw(x) (x)
4912ba72 71# define mem_ioswabw(x) le16_to_cpu(x)
1da177e4
LT
72# else
73# define ioswabw(x) le16_to_cpu(x)
4912ba72 74# define mem_ioswabw(x) (x)
1da177e4
LT
75# endif
76# define ioswabl(x) le32_to_cpu(x)
4912ba72 77# define mem_ioswabl(x) (x)
1da177e4 78# define ioswabq(x) le64_to_cpu(x)
4912ba72 79# define mem_ioswabq(x) (x)
1da177e4
LT
80
81#else
82
83# define ioswabb(x) (x)
4912ba72 84# define mem_ioswabb(x) (x)
1da177e4 85# define ioswabw(x) (x)
4912ba72 86# define mem_ioswabw(x) cpu_to_le16(x)
1da177e4 87# define ioswabl(x) (x)
4912ba72 88# define mem_ioswabl(x) cpu_to_le32(x)
1da177e4 89# define ioswabq(x) (x)
4912ba72 90# define mem_ioswabq(x) cpu_to_le32(x)
1da177e4
LT
91
92#endif
93
1da177e4
LT
94#define IO_SPACE_LIMIT 0xffff
95
96/*
97 * On MIPS I/O ports are memory mapped, so we access them using normal
98 * load/store instructions. mips_io_port_base is the virtual address to
99 * which all ports are being mapped. For sake of efficiency some code
100 * assumes that this is an address that can be loaded with a single lui
101 * instruction, so the lower 16 bits must be zero. Should be true on
102 * on any sane architecture; generic code does not use this assumption.
103 */
104extern const unsigned long mips_io_port_base;
105
106#define set_io_port_base(base) \
107 do { * (unsigned long *) &mips_io_port_base = (base); } while (0)
108
109/*
110 * Thanks to James van Artsdalen for a better timing-fix than
111 * the two short jumps: using outb's to a nonexistent port seems
112 * to guarantee better timings even on fast machines.
113 *
114 * On the other hand, I'd like to be sure of a non-existent port:
115 * I feel a bit unsafe about using 0x80 (should be safe, though)
116 *
117 * Linus
118 *
119 */
120
121#define __SLOW_DOWN_IO \
122 __asm__ __volatile__( \
123 "sb\t$0,0x80(%0)" \
124 : : "r" (mips_io_port_base));
125
126#ifdef CONF_SLOWDOWN_IO
127#ifdef REALLY_SLOW_IO
128#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
129#else
130#define SLOW_DOWN_IO __SLOW_DOWN_IO
131#endif
132#else
133#define SLOW_DOWN_IO
134#endif
135
136/*
137 * virt_to_phys - map virtual addresses to physical
138 * @address: address to remap
139 *
140 * The returned physical address is the physical (CPU) mapping for
141 * the memory address given. It is only valid to use this function on
142 * addresses directly mapped or allocated via kmalloc.
143 *
144 * This function does not give bus mappings for DMA transfers. In
145 * almost all conceivable cases a device driver should not be using
146 * this function
147 */
148static inline unsigned long virt_to_phys(volatile void * address)
149{
150 return (unsigned long)address - PAGE_OFFSET;
151}
152
153/*
154 * phys_to_virt - map physical address to virtual
155 * @address: address to remap
156 *
157 * The returned virtual address is a current CPU mapping for
158 * the memory address given. It is only valid to use this function on
159 * addresses that have a kernel mapping
160 *
161 * This function does not handle bus mappings for DMA transfers. In
162 * almost all conceivable cases a device driver should not be using
163 * this function
164 */
165static inline void * phys_to_virt(unsigned long address)
166{
167 return (void *)(address + PAGE_OFFSET);
168}
169
170/*
171 * ISA I/O bus memory addresses are 1:1 with the physical address.
172 */
173static inline unsigned long isa_virt_to_bus(volatile void * address)
174{
175 return (unsigned long)address - PAGE_OFFSET;
176}
177
178static inline void * isa_bus_to_virt(unsigned long address)
179{
180 return (void *)(address + PAGE_OFFSET);
181}
182
183#define isa_page_to_bus page_to_phys
184
185/*
186 * However PCI ones are not necessarily 1:1 and therefore these interfaces
187 * are forbidden in portable PCI drivers.
188 *
189 * Allow them for x86 for legacy drivers, though.
190 */
191#define virt_to_bus virt_to_phys
192#define bus_to_virt phys_to_virt
193
194/*
195 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
196 * for the processor. This implies the assumption that there is only
197 * one of these busses.
198 */
199extern unsigned long isa_slot_offset;
200
201/*
202 * Change "struct page" to physical address.
203 */
204#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
205
0f04afb5 206extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
1da177e4
LT
207extern void __iounmap(volatile void __iomem *addr);
208
0f04afb5 209static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
1da177e4
LT
210 unsigned long flags)
211{
212 if (cpu_has_64bit_addresses) {
213 u64 base = UNCAC_BASE;
214
215 /*
216 * R10000 supports a 2 bit uncached attribute therefore
217 * UNCAC_BASE may not equal IO_BASE.
218 */
219 if (flags == _CACHE_UNCACHED)
220 base = (u64) IO_BASE;
fe00f943 221 return (void __iomem *) (unsigned long) (base + offset);
1da177e4
LT
222 }
223
224 return __ioremap(offset, size, flags);
225}
226
227/*
228 * ioremap - map bus memory into CPU space
229 * @offset: bus address of the memory
230 * @size: size of the resource to map
231 *
232 * ioremap performs a platform specific sequence of operations to
233 * make bus memory CPU accessible via the readb/readw/readl/writeb/
234 * writew/writel functions and the other mmio helpers. The returned
235 * address is not guaranteed to be usable directly as a virtual
236 * address.
237 */
238#define ioremap(offset, size) \
239 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
240
241/*
242 * ioremap_nocache - map bus memory into CPU space
243 * @offset: bus address of the memory
244 * @size: size of the resource to map
245 *
246 * ioremap_nocache performs a platform specific sequence of operations to
247 * make bus memory CPU accessible via the readb/readw/readl/writeb/
248 * writew/writel functions and the other mmio helpers. The returned
249 * address is not guaranteed to be usable directly as a virtual
250 * address.
251 *
252 * This version of ioremap ensures that the memory is marked uncachable
253 * on the CPU as well as honouring existing caching rules from things like
254 * the PCI bus. Note that there are other caches and buffers on many
255 * busses. In paticular driver authors should read up on PCI writes
256 *
257 * It's useful if some control registers are in such an area and
258 * write combining or read caching is not desirable:
259 */
260#define ioremap_nocache(offset, size) \
261 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
262
263/*
264 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
265 * requests a cachable mapping, ioremap_uncached_accelerated requests a
266 * mapping using the uncached accelerated mode which isn't supported on
267 * all processors.
268 */
269#define ioremap_cacheable_cow(offset, size) \
270 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
271#define ioremap_uncached_accelerated(offset, size) \
272 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
273
274static inline void iounmap(volatile void __iomem *addr)
275{
276 if (cpu_has_64bit_addresses)
277 return;
278
279 __iounmap(addr);
280}
281
282
283#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
284 \
285static inline void pfx##write##bwlq(type val, \
286 volatile void __iomem *mem) \
287{ \
288 volatile type *__mem; \
289 type __val; \
290 \
291 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
292 \
293 __val = pfx##ioswab##bwlq(val); \
294 \
295 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
296 *__mem = __val; \
297 else if (cpu_has_64bits) { \
298 unsigned long __flags; \
299 type __tmp; \
300 \
301 if (irq) \
302 local_irq_save(__flags); \
303 __asm__ __volatile__( \
304 ".set mips3" "\t\t# __writeq""\n\t" \
305 "dsll32 %L0, %L0, 0" "\n\t" \
306 "dsrl32 %L0, %L0, 0" "\n\t" \
307 "dsll32 %M0, %M0, 0" "\n\t" \
308 "or %L0, %L0, %M0" "\n\t" \
309 "sd %L0, %2" "\n\t" \
310 ".set mips0" "\n" \
311 : "=r" (__tmp) \
312 : "0" (__val), "m" (*__mem)); \
313 if (irq) \
314 local_irq_restore(__flags); \
315 } else \
316 BUG(); \
317} \
318 \
319static inline type pfx##read##bwlq(volatile void __iomem *mem) \
320{ \
321 volatile type *__mem; \
322 type __val; \
323 \
324 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
325 \
326 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
327 __val = *__mem; \
328 else if (cpu_has_64bits) { \
329 unsigned long __flags; \
330 \
049b13c3
TS
331 if (irq) \
332 local_irq_save(__flags); \
1da177e4
LT
333 __asm__ __volatile__( \
334 ".set mips3" "\t\t# __readq" "\n\t" \
335 "ld %L0, %1" "\n\t" \
336 "dsra32 %M0, %L0, 0" "\n\t" \
337 "sll %L0, %L0, 0" "\n\t" \
338 ".set mips0" "\n" \
339 : "=r" (__val) \
340 : "m" (*__mem)); \
049b13c3
TS
341 if (irq) \
342 local_irq_restore(__flags); \
1da177e4
LT
343 } else { \
344 __val = 0; \
345 BUG(); \
346 } \
347 \
348 return pfx##ioswab##bwlq(__val); \
349}
350
351#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
352 \
353static inline void pfx##out##bwlq##p(type val, unsigned long port) \
354{ \
355 volatile type *__addr; \
356 type __val; \
357 \
358 port = __swizzle_addr_##bwlq(port); \
359 __addr = (void *)(mips_io_port_base + port); \
360 \
361 __val = pfx##ioswab##bwlq(val); \
362 \
363 if (sizeof(type) != sizeof(u64)) { \
364 *__addr = __val; \
365 slow; \
366 } else \
367 BUILD_BUG(); \
368} \
369 \
370static inline type pfx##in##bwlq##p(unsigned long port) \
371{ \
372 volatile type *__addr; \
373 type __val; \
374 \
375 port = __swizzle_addr_##bwlq(port); \
376 __addr = (void *)(mips_io_port_base + port); \
377 \
378 if (sizeof(type) != sizeof(u64)) { \
379 __val = *__addr; \
380 slow; \
381 } else { \
382 __val = 0; \
383 BUILD_BUG(); \
384 } \
385 \
386 return pfx##ioswab##bwlq(__val); \
387}
388
389#define __BUILD_MEMORY_PFX(bus, bwlq, type) \
390 \
391__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
392
393#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
394 \
395__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
396__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
397
398#define BUILDIO(bwlq, type) \
399 \
1da177e4 400__BUILD_MEMORY_PFX(__raw_, bwlq, type) \
4912ba72
MR
401__BUILD_MEMORY_PFX(, bwlq, type) \
402__BUILD_MEMORY_PFX(mem_, bwlq, type) \
1da177e4 403__BUILD_IOPORT_PFX(, bwlq, type) \
4912ba72 404__BUILD_IOPORT_PFX(mem_, bwlq, type)
1da177e4
LT
405
406#define __BUILDIO(bwlq, type) \
407 \
4912ba72 408__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
1da177e4
LT
409
410BUILDIO(b, u8)
411BUILDIO(w, u16)
412BUILDIO(l, u32)
413BUILDIO(q, u64)
414
415__BUILDIO(q, u64)
416
417#define readb_relaxed readb
418#define readw_relaxed readw
419#define readl_relaxed readl
420#define readq_relaxed readq
421
422/*
423 * Some code tests for these symbols
424 */
425#define readq readq
426#define writeq writeq
427
428#define __BUILD_MEMORY_STRING(bwlq, type) \
429 \
430static inline void writes##bwlq(volatile void __iomem *mem, void *addr, \
431 unsigned int count) \
432{ \
433 volatile type *__addr = addr; \
434 \
435 while (count--) { \
4912ba72 436 mem_write##bwlq(*__addr, mem); \
1da177e4
LT
437 __addr++; \
438 } \
439} \
440 \
441static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
442 unsigned int count) \
443{ \
444 volatile type *__addr = addr; \
445 \
446 while (count--) { \
4912ba72 447 *__addr = mem_read##bwlq(mem); \
1da177e4
LT
448 __addr++; \
449 } \
450}
451
452#define __BUILD_IOPORT_STRING(bwlq, type) \
453 \
ecba36da 454static inline void outs##bwlq(unsigned long port, const void *addr, \
1da177e4
LT
455 unsigned int count) \
456{ \
ecba36da 457 const volatile type *__addr = addr; \
1da177e4
LT
458 \
459 while (count--) { \
4912ba72 460 mem_out##bwlq(*__addr, port); \
1da177e4
LT
461 __addr++; \
462 } \
463} \
464 \
465static inline void ins##bwlq(unsigned long port, void *addr, \
466 unsigned int count) \
467{ \
468 volatile type *__addr = addr; \
469 \
470 while (count--) { \
4912ba72 471 *__addr = mem_in##bwlq(port); \
1da177e4
LT
472 __addr++; \
473 } \
474}
475
476#define BUILDSTRING(bwlq, type) \
477 \
478__BUILD_MEMORY_STRING(bwlq, type) \
479__BUILD_IOPORT_STRING(bwlq, type)
480
481BUILDSTRING(b, u8)
482BUILDSTRING(w, u16)
483BUILDSTRING(l, u32)
484BUILDSTRING(q, u64)
485
486
487/* Depends on MIPS II instruction set */
488#define mmiowb() asm volatile ("sync" ::: "memory")
489
fe00f943
RB
490static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
491{
492 memset((void __force *) addr, val, count);
493}
494static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
495{
496 memcpy(dst, (void __force *) src, count);
497}
498static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
499{
500 memcpy((void __force *) dst, src, count);
501}
1da177e4
LT
502
503/*
504 * Memory Mapped I/O
505 */
506#define ioread8(addr) readb(addr)
507#define ioread16(addr) readw(addr)
508#define ioread32(addr) readl(addr)
509
510#define iowrite8(b,addr) writeb(b,addr)
511#define iowrite16(w,addr) writew(w,addr)
512#define iowrite32(l,addr) writel(l,addr)
513
514#define ioread8_rep(a,b,c) readsb(a,b,c)
515#define ioread16_rep(a,b,c) readsw(a,b,c)
516#define ioread32_rep(a,b,c) readsl(a,b,c)
517
518#define iowrite8_rep(a,b,c) writesb(a,b,c)
519#define iowrite16_rep(a,b,c) writesw(a,b,c)
520#define iowrite32_rep(a,b,c) writesl(a,b,c)
521
522/* Create a virtual mapping cookie for an IO port range */
523extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
524extern void ioport_unmap(void __iomem *);
525
526/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */
527struct pci_dev;
528extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
529extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
530
531/*
532 * ISA space is 'always mapped' on currently supported MIPS systems, no need
533 * to explicitly ioremap() it. The fact that the ISA IO space is mapped
534 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
535 * are physical addresses. The following constant pointer can be
536 * used as the IO-area pointer (it can be iounmapped as well, so the
537 * analogy with PCI is quite large):
538 */
539#define __ISA_IO_base ((char *)(isa_slot_offset))
540
541#define isa_readb(a) readb(__ISA_IO_base + (a))
542#define isa_readw(a) readw(__ISA_IO_base + (a))
543#define isa_readl(a) readl(__ISA_IO_base + (a))
544#define isa_readq(a) readq(__ISA_IO_base + (a))
545#define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a))
546#define isa_writew(w,a) writew(w,__ISA_IO_base + (a))
547#define isa_writel(l,a) writel(l,__ISA_IO_base + (a))
548#define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a))
549#define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c))
550#define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c))
551#define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c))
552
553/*
554 * We don't have csum_partial_copy_fromio() yet, so we cheat here and
555 * just copy it. The net code will then do the checksum later.
556 */
557#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
558#define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))
559
560/*
561 * check_signature - find BIOS signatures
562 * @io_addr: mmio address to check
563 * @signature: signature block
564 * @length: length of signature
565 *
566 * Perform a signature comparison with the mmio address io_addr. This
567 * address should have been obtained by ioremap.
568 * Returns 1 on a match.
569 */
570static inline int check_signature(char __iomem *io_addr,
571 const unsigned char *signature, int length)
572{
573 int retval = 0;
574 do {
575 if (readb(io_addr) != *signature)
576 goto out;
577 io_addr++;
578 signature++;
579 length--;
580 } while (length);
581 retval = 1;
582out:
583 return retval;
584}
585
586/*
587 * The caches on some architectures aren't dma-coherent and have need to
588 * handle this in software. There are three types of operations that
589 * can be applied to dma buffers.
590 *
591 * - dma_cache_wback_inv(start, size) makes caches and coherent by
592 * writing the content of the caches back to memory, if necessary.
593 * The function also invalidates the affected part of the caches as
594 * necessary before DMA transfers from outside to memory.
595 * - dma_cache_wback(start, size) makes caches and coherent by
596 * writing the content of the caches back to memory, if necessary.
597 * The function also invalidates the affected part of the caches as
598 * necessary before DMA transfers from outside to memory.
599 * - dma_cache_inv(start, size) invalidates the affected parts of the
600 * caches. Dirty lines of the caches may be written back or simply
601 * be discarded. This operation is necessary before dma operations
602 * to the memory.
603 */
604#ifdef CONFIG_DMA_NONCOHERENT
605
606extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
607extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
608extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
609
610#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size)
611#define dma_cache_wback(start, size) _dma_cache_wback(start,size)
612#define dma_cache_inv(start, size) _dma_cache_inv(start,size)
613
614#else /* Sane hardware */
615
616#define dma_cache_wback_inv(start,size) \
617 do { (void) (start); (void) (size); } while (0)
618#define dma_cache_wback(start,size) \
619 do { (void) (start); (void) (size); } while (0)
620#define dma_cache_inv(start,size) \
621 do { (void) (start); (void) (size); } while (0)
622
623#endif /* CONFIG_DMA_NONCOHERENT */
624
625/*
626 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
627 * Avoid interrupt mucking, just adjust the address for 4-byte access.
628 * Assume the addresses are 8-byte aligned.
629 */
630#ifdef __MIPSEB__
631#define __CSR_32_ADJUST 4
632#else
633#define __CSR_32_ADJUST 0
634#endif
635
636#define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
637#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
638
639/*
640 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
641 * access
642 */
643#define xlate_dev_mem_ptr(p) __va(p)
644
645/*
646 * Convert a virtual cached pointer to an uncached pointer
647 */
648#define xlate_dev_kmem_ptr(p) p
649
650#endif /* _ASM_IO_H */
This page took 0.105433 seconds and 5 git commands to generate.