Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[deliverable/linux.git] / include / asm-powerpc / pgtable-ppc32.h
CommitLineData
f88df14b
DG
1#ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2#define _ASM_POWERPC_PGTABLE_PPC32_H
3
d1953c88 4#include <asm-generic/pgtable-nopmd.h>
f88df14b
DG
5
6#ifndef __ASSEMBLY__
7#include <linux/sched.h>
8#include <linux/threads.h>
f88df14b 9#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
f88df14b
DG
10
11extern unsigned long va_to_phys(unsigned long address);
12extern pte_t *va_to_pte(unsigned long address);
13extern unsigned long ioremap_bot, ioremap_base;
b98ac05d
BH
14
15#ifdef CONFIG_44x
16extern int icache_44x_need_flush;
17#endif
18
f88df14b
DG
19#endif /* __ASSEMBLY__ */
20
21/*
22 * The PowerPC MMU uses a hash table containing PTEs, together with
23 * a set of 16 segment registers (on 32-bit implementations), to define
24 * the virtual to physical address mapping.
25 *
26 * We use the hash table as an extended TLB, i.e. a cache of currently
27 * active mappings. We maintain a two-level page table tree, much
28 * like that used by the i386, for the sake of the Linux memory
29 * management code. Low-level assembler code in hashtable.S
30 * (procedure hash_page) is responsible for extracting ptes from the
31 * tree and putting them into the hash table when necessary, and
32 * updating the accessed and modified bits in the page table tree.
33 */
34
35/*
36 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
37 * We also use the two level tables, but we can put the real bits in them
38 * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
39 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
40 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
41 * based upon user/super access. The TLB does not have accessed nor write
42 * protect. We assume that if the TLB get loaded with an entry it is
43 * accessed, and overload the changed bit for write protect. We use
44 * two bits in the software pte that are supposed to be set to zero in
45 * the TLB entry (24 and 25) for these indicators. Although the level 1
46 * descriptor contains the guarded and writethrough/copyback bits, we can
47 * set these at the page level since they get copied from the Mx_TWC
48 * register when the TLB entry is loaded. We will use bit 27 for guard, since
49 * that is where it exists in the MD_TWC, and bit 26 for writethrough.
50 * These will get masked from the level 2 descriptor at TLB load time, and
51 * copied to the MD_TWC before it gets loaded.
52 * Large page sizes added. We currently support two sizes, 4K and 8M.
53 * This also allows a TLB hander optimization because we can directly
54 * load the PMD into MD_TWC. The 8M pages are only used for kernel
55 * mapping of well known areas. The PMD (PGD) entries contain control
56 * flags in addition to the address, so care must be taken that the
57 * software no longer assumes these are only pointers.
58 */
59
60/*
61 * At present, all PowerPC 400-class processors share a similar TLB
62 * architecture. The instruction and data sides share a unified,
63 * 64-entry, fully-associative TLB which is maintained totally under
64 * software control. In addition, the instruction side has a
65 * hardware-managed, 4-entry, fully-associative TLB which serves as a
66 * first level to the shared TLB. These two TLBs are known as the UTLB
67 * and ITLB, respectively (see "mmu.h" for definitions).
68 */
69
70/*
71 * The normal case is that PTEs are 32-bits and we have a 1-page
72 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
73 *
74 * For any >32-bit physical address platform, we can use the following
75 * two level page table layout where the pgdir is 8KB and the MS 13 bits
76 * are an index to the second level table. The combined pgdir/pmd first
77 * level has 2048 entries and the second level has 512 64-bit PTE entries.
78 * -Matt
79 */
f88df14b 80/* PGDIR_SHIFT determines what a top-level page table entry can map */
d1953c88 81#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
f88df14b
DG
82#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83#define PGDIR_MASK (~(PGDIR_SIZE-1))
84
85/*
86 * entries per page directory level: our page-table tree is two-level, so
87 * we don't really have any PMD directory.
88 */
bee86f14
KG
89#ifndef __ASSEMBLY__
90#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
91#define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
92#endif /* __ASSEMBLY__ */
93
f88df14b
DG
94#define PTRS_PER_PTE (1 << PTE_SHIFT)
95#define PTRS_PER_PMD 1
96#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
97
98#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
99#define FIRST_USER_ADDRESS 0
100
f88df14b 101#define pte_ERROR(e) \
0aeafb0c
DG
102 printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
103 (unsigned long long)pte_val(e))
f88df14b
DG
104#define pgd_ERROR(e) \
105 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
106
107/*
108 * Just any arbitrary offset to the start of the vmalloc VM area: the
109 * current 64MB value just means that there will be a 64MB "hole" after the
110 * physical memory until the kernel virtual memory starts. That means that
111 * any out-of-bounds memory accesses will hopefully be caught.
112 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
113 * area for the same reason. ;)
114 *
115 * We no longer map larger than phys RAM with the BATs so we don't have
116 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
117 * about clashes between our early calls to ioremap() that start growing down
118 * from ioremap_base being run into the VM area allocations (growing upwards
119 * from VMALLOC_START). For this reason we have ioremap_bot to check when
120 * we actually run into our mappings setup in the early boot with the VM
121 * system. This really does become a problem for machines with good amounts
122 * of RAM. -- Cort
123 */
124#define VMALLOC_OFFSET (0x1000000) /* 16M */
125#ifdef PPC_PIN_SIZE
126#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
127#else
128#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
129#endif
130#define VMALLOC_END ioremap_bot
131
132/*
133 * Bits in a linux-style PTE. These match the bits in the
134 * (hardware-defined) PowerPC PTE as closely as possible.
135 */
136
137#if defined(CONFIG_40x)
138
139/* There are several potential gotchas here. The 40x hardware TLBLO
140 field looks like this:
141
142 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
143 RPN..................... 0 0 EX WR ZSEL....... W I M G
144
145 Where possible we make the Linux PTE bits match up with this
146
147 - bits 20 and 21 must be cleared, because we use 4k pages (40x can
148 support down to 1k pages), this is done in the TLBMiss exception
149 handler.
150 - We use only zones 0 (for kernel pages) and 1 (for user pages)
151 of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
152 miss handler. Bit 27 is PAGE_USER, thus selecting the correct
153 zone.
154 - PRESENT *must* be in the bottom two bits because swap cache
155 entries use the top 30 bits. Because 40x doesn't support SMP
156 anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
157 is cleared in the TLB miss handler before the TLB entry is loaded.
158 - All other bits of the PTE are loaded into TLBLO without
159 modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
160 software PTE bits. We actually use use bits 21, 24, 25, and
161 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
162 PRESENT.
163*/
164
165/* Definitions for 40x embedded chips. */
166#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
167#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
168#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
169#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
170#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
171#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
172#define _PAGE_RW 0x040 /* software: Writes permitted */
173#define _PAGE_DIRTY 0x080 /* software: dirty page */
174#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
175#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
176#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
177
178#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */
179#define _PMD_BAD 0x802
180#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */
181#define _PMD_SIZE_4M 0x0c0
182#define _PMD_SIZE_16M 0x0e0
183#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4))
184
185#elif defined(CONFIG_44x)
186/*
187 * Definitions for PPC440
188 *
189 * Because of the 3 word TLB entries to support 36-bit addressing,
190 * the attribute are difficult to map in such a fashion that they
191 * are easily loaded during exception processing. I decided to
192 * organize the entry so the ERPN is the only portion in the
193 * upper word of the PTE and the attribute bits below are packed
194 * in as sensibly as they can be in the area below a 4KB page size
195 * oriented RPN. This at least makes it easy to load the RPN and
196 * ERPN fields in the TLB. -Matt
197 *
198 * Note that these bits preclude future use of a page size
199 * less than 4KB.
200 *
201 *
202 * PPC 440 core has following TLB attribute fields;
203 *
204 * TLB1:
205 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
206 * RPN................................. - - - - - - ERPN.......
207 *
208 * TLB2:
209 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
210 * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR
211 *
212 * There are some constrains and options, to decide mapping software bits
213 * into TLB entry.
214 *
215 * - PRESENT *must* be in the bottom three bits because swap cache
216 * entries use the top 29 bits for TLB2.
217 *
218 * - FILE *must* be in the bottom three bits because swap cache
219 * entries use the top 29 bits for TLB2.
220 *
221 * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it
222 * doesn't support SMP. So we can use this as software bit, like
223 * DIRTY.
224 *
225 * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
226 * for memory protection related functions (see PTE structure in
227 * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the
228 * above bits. Note that the bit values are CPU specific, not architecture
229 * specific.
230 *
231 * The kernel PTE entry holds an arch-dependent swp_entry structure under
232 * certain situations. In other words, in such situations some portion of
233 * the PTE bits are used as a swp_entry. In the PPC implementation, the
234 * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
235 * hold protection values. That means the three protection bits are
236 * reserved for both PTE and SWAP entry at the most significant three
237 * LSBs.
238 *
239 * There are three protection bits available for SWAP entry:
240 * _PAGE_PRESENT
241 * _PAGE_FILE
242 * _PAGE_HASHPTE (if HW has)
243 *
244 * So those three bits have to be inside of 0-2nd LSB of PTE.
245 *
246 */
247
248#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
249#define _PAGE_RW 0x00000002 /* S: Write permission */
250#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */
251#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
252#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */
253#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */
254#define _PAGE_USER 0x00000040 /* S: User page */
255#define _PAGE_ENDIAN 0x00000080 /* H: E bit */
256#define _PAGE_GUARDED 0x00000100 /* H: G bit */
257#define _PAGE_DIRTY 0x00000200 /* S: Page dirty */
258#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
259#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
260
261/* TODO: Add large page lowmem mapping support */
262#define _PMD_PRESENT 0
263#define _PMD_PRESENT_MASK (PAGE_MASK)
264#define _PMD_BAD (~PAGE_MASK)
265
266/* ERPN in a PTE never gets cleared, ignore it */
267#define _PTE_NONE_MASK 0xffffffff00000000ULL
268
269#elif defined(CONFIG_FSL_BOOKE)
270/*
271 MMU Assist Register 3:
272
273 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63
274 RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR
275
276 - PRESENT *must* be in the bottom three bits because swap cache
277 entries use the top 29 bits.
278
279 - FILE *must* be in the bottom three bits because swap cache
280 entries use the top 29 bits.
281*/
282
283/* Definitions for FSL Book-E Cores */
284#define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */
285#define _PAGE_USER 0x00002 /* S: User page (maps to UR) */
286#define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */
287#define _PAGE_ACCESSED 0x00004 /* S: Page referenced */
288#define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */
289#define _PAGE_RW 0x00010 /* S: Write permission */
290#define _PAGE_HWEXEC 0x00020 /* H: UX permission */
291
292#define _PAGE_ENDIAN 0x00040 /* H: E bit */
293#define _PAGE_GUARDED 0x00080 /* H: G bit */
294#define _PAGE_COHERENT 0x00100 /* H: M bit */
295#define _PAGE_NO_CACHE 0x00200 /* H: I bit */
296#define _PAGE_WRITETHRU 0x00400 /* H: W bit */
297
298#ifdef CONFIG_PTE_64BIT
299#define _PAGE_DIRTY 0x08000 /* S: Page dirty */
300
301/* ERPN in a PTE never gets cleared, ignore it */
302#define _PTE_NONE_MASK 0xffffffffffff0000ULL
303#else
304#define _PAGE_DIRTY 0x00800 /* S: Page dirty */
305#endif
306
307#define _PMD_PRESENT 0
308#define _PMD_PRESENT_MASK (PAGE_MASK)
309#define _PMD_BAD (~PAGE_MASK)
310
311#elif defined(CONFIG_8xx)
312/* Definitions for 8xx embedded chips. */
313#define _PAGE_PRESENT 0x0001 /* Page is valid */
314#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */
315#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
316#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
317
318/* These five software bits must be masked out when the entry is loaded
319 * into the TLB.
320 */
321#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
322#define _PAGE_GUARDED 0x0010 /* software: guarded access */
323#define _PAGE_DIRTY 0x0020 /* software: page changed */
324#define _PAGE_RW 0x0040 /* software: user write access allowed */
325#define _PAGE_ACCESSED 0x0080 /* software: page referenced */
326
327/* Setting any bits in the nibble with the follow two controls will
328 * require a TLB exception handler change. It is assumed unused bits
329 * are always zero.
330 */
331#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
332#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
333
334#define _PMD_PRESENT 0x0001
335#define _PMD_BAD 0x0ff0
336#define _PMD_PAGE_MASK 0x000c
337#define _PMD_PAGE_8M 0x000c
338
f88df14b
DG
339#define _PTE_NONE_MASK _PAGE_ACCESSED
340
341#else /* CONFIG_6xx */
342/* Definitions for 60x, 740/750, etc. */
343#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
344#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
345#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */
346#define _PAGE_USER 0x004 /* usermode access allowed */
347#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
348#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
349#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
350#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
351#define _PAGE_DIRTY 0x080 /* C: page changed */
352#define _PAGE_ACCESSED 0x100 /* R: page referenced */
353#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
354#define _PAGE_RW 0x400 /* software: user write access allowed */
355
356#define _PTE_NONE_MASK _PAGE_HASHPTE
357
358#define _PMD_PRESENT 0
359#define _PMD_PRESENT_MASK (PAGE_MASK)
360#define _PMD_BAD (~PAGE_MASK)
361#endif
362
363/*
364 * Some bits are only used on some cpu families...
365 */
366#ifndef _PAGE_HASHPTE
367#define _PAGE_HASHPTE 0
368#endif
369#ifndef _PTE_NONE_MASK
370#define _PTE_NONE_MASK 0
371#endif
372#ifndef _PAGE_SHARED
373#define _PAGE_SHARED 0
374#endif
375#ifndef _PAGE_HWWRITE
376#define _PAGE_HWWRITE 0
377#endif
378#ifndef _PAGE_HWEXEC
379#define _PAGE_HWEXEC 0
380#endif
381#ifndef _PAGE_EXEC
382#define _PAGE_EXEC 0
383#endif
384#ifndef _PMD_PRESENT_MASK
385#define _PMD_PRESENT_MASK _PMD_PRESENT
386#endif
387#ifndef _PMD_SIZE
388#define _PMD_SIZE 0
389#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
390#endif
391
392#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
393
394/*
395 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
396 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
397 * to have it in the Linux PTE, and in fact the bit could be reused for
398 * another purpose. -- paulus.
399 */
400
401#ifdef CONFIG_44x
402#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED)
403#else
404#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
405#endif
406#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
407#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
408
409#ifdef CONFIG_PPC_STD_MMU
410/* On standard PPC MMU, no user access implies kernel read/write access,
411 * so to write-protect kernel memory we must turn on user access */
412#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
413#else
414#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
415#endif
416
417#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
418#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
419
221ac329
IN
420#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
421 defined(CONFIG_KPROBES)
f88df14b
DG
422/* We want the debuggers to be able to set breakpoints anywhere, so
423 * don't write protect the kernel text */
424#define _PAGE_RAM_TEXT _PAGE_RAM
425#else
426#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
427#endif
428
429#define PAGE_NONE __pgprot(_PAGE_BASE)
430#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
431#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
432#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
433#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
434#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
435#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
436
437#define PAGE_KERNEL __pgprot(_PAGE_RAM)
438#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
439
440/*
441 * The PowerPC can only do execute protection on a segment (256MB) basis,
442 * not on a page basis. So we consider execute permission the same as read.
443 * Also, write permissions imply read permissions.
444 * This is the closest we can get..
445 */
446#define __P000 PAGE_NONE
447#define __P001 PAGE_READONLY_X
448#define __P010 PAGE_COPY
449#define __P011 PAGE_COPY_X
450#define __P100 PAGE_READONLY
451#define __P101 PAGE_READONLY_X
452#define __P110 PAGE_COPY
453#define __P111 PAGE_COPY_X
454
455#define __S000 PAGE_NONE
456#define __S001 PAGE_READONLY_X
457#define __S010 PAGE_SHARED
458#define __S011 PAGE_SHARED_X
459#define __S100 PAGE_READONLY
460#define __S101 PAGE_READONLY_X
461#define __S110 PAGE_SHARED
462#define __S111 PAGE_SHARED_X
463
464#ifndef __ASSEMBLY__
465/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
466 * kernel without large page PMD support */
467extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
468
469/*
470 * Conversions between PTE values and page frame numbers.
471 */
472
473/* in some case we want to additionaly adjust where the pfn is in the pte to
474 * allow room for more flags */
475#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
476#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8)
477#else
478#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
479#endif
480
481#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
482#define pte_page(x) pfn_to_page(pte_pfn(x))
483
484#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
485 pgprot_val(prot))
486#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
f88df14b
DG
487#endif /* __ASSEMBLY__ */
488
489#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
490#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
491#define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
492
493#define pmd_none(pmd) (!pmd_val(pmd))
494#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
495#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
496#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
497
498#ifndef __ASSEMBLY__
f88df14b
DG
499/*
500 * The following only work if pte_present() is true.
501 * Undefined behaviour if not..
502 */
f88df14b 503static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
f88df14b
DG
504static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
505static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
506static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
7e675137 507static inline int pte_special(pte_t pte) { return 0; }
f88df14b
DG
508
509static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
510static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
511
f88df14b
DG
512static inline pte_t pte_wrprotect(pte_t pte) {
513 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
f88df14b
DG
514static inline pte_t pte_mkclean(pte_t pte) {
515 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
516static inline pte_t pte_mkold(pte_t pte) {
517 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
518
f88df14b
DG
519static inline pte_t pte_mkwrite(pte_t pte) {
520 pte_val(pte) |= _PAGE_RW; return pte; }
521static inline pte_t pte_mkdirty(pte_t pte) {
522 pte_val(pte) |= _PAGE_DIRTY; return pte; }
523static inline pte_t pte_mkyoung(pte_t pte) {
524 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
7e675137
NP
525static inline pte_t pte_mkspecial(pte_t pte) {
526 return pte; }
f88df14b
DG
527
528static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
529{
530 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
531 return pte;
532}
533
534/*
535 * When flushing the tlb entry for a page, we also need to flush the hash
536 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
537 */
538extern int flush_hash_pages(unsigned context, unsigned long va,
539 unsigned long pmdval, int count);
540
541/* Add an HPTE to the hash table */
542extern void add_hash_page(unsigned context, unsigned long va,
543 unsigned long pmdval);
544
545/*
546 * Atomic PTE updates.
547 *
548 * pte_update clears and sets bit atomically, and returns
549 * the old pte value. In the 64-bit PTE case we lock around the
550 * low PTE word since we expect ALL flag bits to be there
551 */
552#ifndef CONFIG_PTE_64BIT
553static inline unsigned long pte_update(pte_t *p, unsigned long clr,
554 unsigned long set)
555{
556 unsigned long old, tmp;
557
558 __asm__ __volatile__("\
5591: lwarx %0,0,%3\n\
560 andc %1,%0,%4\n\
561 or %1,%1,%5\n"
562 PPC405_ERR77(0,%3)
563" stwcx. %1,0,%3\n\
564 bne- 1b"
565 : "=&r" (old), "=&r" (tmp), "=m" (*p)
566 : "r" (p), "r" (clr), "r" (set), "m" (*p)
567 : "cc" );
b98ac05d
BH
568#ifdef CONFIG_44x
569 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
570 icache_44x_need_flush = 1;
571#endif
f88df14b
DG
572 return old;
573}
574#else
575static inline unsigned long long pte_update(pte_t *p, unsigned long clr,
576 unsigned long set)
577{
578 unsigned long long old;
579 unsigned long tmp;
580
581 __asm__ __volatile__("\
5821: lwarx %L0,0,%4\n\
583 lwzx %0,0,%3\n\
584 andc %1,%L0,%5\n\
585 or %1,%1,%6\n"
586 PPC405_ERR77(0,%3)
587" stwcx. %1,0,%4\n\
588 bne- 1b"
589 : "=&r" (old), "=&r" (tmp), "=m" (*p)
590 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
591 : "cc" );
b98ac05d
BH
592#ifdef CONFIG_44x
593 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
594 icache_44x_need_flush = 1;
595#endif
f88df14b
DG
596 return old;
597}
598#endif
599
600/*
601 * set_pte stores a linux PTE into the linux page table.
602 * On machines which use an MMU hash table we avoid changing the
603 * _PAGE_HASHPTE bit.
604 */
605static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
606 pte_t *ptep, pte_t pte)
607{
608#if _PAGE_HASHPTE != 0
609 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
610#else
611 *ptep = pte;
612#endif
613}
614
615/*
616 * 2.6 calles this without flushing the TLB entry, this is wrong
617 * for our hash-based implementation, we fix that up here
618 */
619#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
620static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
621{
622 unsigned long old;
623 old = pte_update(ptep, _PAGE_ACCESSED, 0);
624#if _PAGE_HASHPTE != 0
625 if (old & _PAGE_HASHPTE) {
626 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
627 flush_hash_pages(context, addr, ptephys, 1);
628 }
629#endif
630 return (old & _PAGE_ACCESSED) != 0;
631}
632#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
633 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
634
f88df14b
DG
635#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
636static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
637 pte_t *ptep)
638{
639 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
640}
641
642#define __HAVE_ARCH_PTEP_SET_WRPROTECT
643static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
644 pte_t *ptep)
645{
646 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
647}
648
649#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
650static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
651{
652 unsigned long bits = pte_val(entry) &
653 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW);
654 pte_update(ptep, 0, bits);
655}
656
657#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
8dab5241
BH
658({ \
659 int __changed = !pte_same(*(__ptep), __entry); \
660 if (__changed) { \
661 __ptep_set_access_flags(__ptep, __entry, __dirty); \
662 flush_tlb_page_nohash(__vma, __address); \
663 } \
664 __changed; \
665})
f88df14b
DG
666
667/*
668 * Macro to mark a page protection value as "uncacheable".
669 */
670#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
671
672struct file;
673extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
674 unsigned long size, pgprot_t vma_prot);
675#define __HAVE_PHYS_MEM_ACCESS_PROT
676
677#define __HAVE_ARCH_PTE_SAME
678#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
679
680/*
681 * Note that on Book E processors, the pmd contains the kernel virtual
682 * (lowmem) address of the pte page. The physical address is less useful
683 * because everything runs with translation enabled (even the TLB miss
684 * handler). On everything else the pmd contains the physical address
685 * of the pte page. -- paulus
686 */
687#ifndef CONFIG_BOOKE
688#define pmd_page_vaddr(pmd) \
689 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
690#define pmd_page(pmd) \
691 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
692#else
693#define pmd_page_vaddr(pmd) \
694 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
695#define pmd_page(pmd) \
af892e0f 696 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
f88df14b
DG
697#endif
698
699/* to find an entry in a kernel page-table-directory */
700#define pgd_offset_k(address) pgd_offset(&init_mm, address)
701
702/* to find an entry in a page-table-directory */
703#define pgd_index(address) ((address) >> PGDIR_SHIFT)
704#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
705
f88df14b
DG
706/* Find an entry in the third-level page table.. */
707#define pte_index(address) \
708 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
709#define pte_offset_kernel(dir, addr) \
710 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
711#define pte_offset_map(dir, addr) \
712 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
713#define pte_offset_map_nested(dir, addr) \
714 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
715
716#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
717#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
718
f88df14b
DG
719/*
720 * Encode and decode a swap entry.
721 * Note that the bits we use in a PTE for representing a swap entry
722 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
723 *_PAGE_HASHPTE bit (if used). -- paulus
724 */
725#define __swp_type(entry) ((entry).val & 0x1f)
726#define __swp_offset(entry) ((entry).val >> 5)
727#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
728#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
729#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
730
731/* Encode and decode a nonlinear file mapping entry */
732#define PTE_FILE_MAX_BITS 29
733#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
734#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
735
f88df14b
DG
736/*
737 * No page table caches to initialise
738 */
739#define pgtable_cache_init() do { } while (0)
740
741extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
742 pmd_t **pmdp);
743
744#endif /* !__ASSEMBLY__ */
745
746#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
This page took 0.182351 seconds and 5 git commands to generate.