Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[deliverable/linux.git] / include / asm-powerpc / pgtable.h
CommitLineData
047ea784
PM
1#ifndef _ASM_POWERPC_PGTABLE_H
2#define _ASM_POWERPC_PGTABLE_H
88ced031 3#ifdef __KERNEL__
047ea784
PM
4
5#ifndef CONFIG_PPC64
6#include <asm-ppc/pgtable.h>
7#else
1da177e4 8
1da177e4
LT
9/*
10 * This file contains the functions and defines necessary to modify and use
11 * the ppc64 hashed page table.
12 */
13
14#ifndef __ASSEMBLY__
1da177e4
LT
15#include <linux/stddef.h>
16#include <asm/processor.h> /* For TASK_SIZE */
17#include <asm/mmu.h>
18#include <asm/page.h>
19#include <asm/tlbflush.h>
8c65b4a6 20struct mm_struct;
1da177e4
LT
21#endif /* __ASSEMBLY__ */
22
3c726f8d
BH
23#ifdef CONFIG_PPC_64K_PAGES
24#include <asm/pgtable-64k.h>
25#else
26#include <asm/pgtable-4k.h>
27#endif
1f8d419e
DG
28
29#define FIRST_USER_ADDRESS 0
1da177e4
LT
30
31/*
32 * Size of EA range mapped by our pagetables.
33 */
e28f7faf
DG
34#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
35 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
36#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
37
38#if TASK_SIZE_USER64 > PGTABLE_RANGE
39#error TASK_SIZE_USER64 exceeds pagetable range
40#endif
41
42#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
43#error TASK_SIZE_USER64 exceeds user VSID range
44#endif
1da177e4
LT
45
46/*
47 * Define the address range of the vmalloc VM area.
48 */
bf72aeba
PM
49#define VMALLOC_START ASM_CONST(0xD000000000000000)
50#define VMALLOC_SIZE ASM_CONST(0x80000000000)
20cee16c 51#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
1da177e4 52
800fc3ee
DG
53/*
54 * Define the address range of the imalloc VM area.
55 */
56#define PHBS_IO_BASE VMALLOC_END
57#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
58#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
59
14c89e7f
DG
60/*
61 * Region IDs
62 */
63#define REGION_SHIFT 60UL
64#define REGION_MASK (0xfUL << REGION_SHIFT)
65#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
66
67#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
68#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
69#define USER_REGION_ID (0UL)
70
1da177e4 71/*
3c726f8d
BH
72 * Common bits in a linux-style PTE. These match the bits in the
73 * (hardware-defined) PowerPC PTE as closely as possible. Additional
74 * bits may be defined in pgtable-*.h
1da177e4
LT
75 */
76#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
77#define _PAGE_USER 0x0002 /* matches one of the PP bits */
78#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
79#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
80#define _PAGE_GUARDED 0x0008
81#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
82#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
83#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
84#define _PAGE_DIRTY 0x0080 /* C: page changed */
85#define _PAGE_ACCESSED 0x0100 /* R: page referenced */
86#define _PAGE_RW 0x0200 /* software: user write access allowed */
87#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
88#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
1da177e4
LT
89
90#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
91
92#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
93
047ea784 94/* __pgprot defined in asm-powerpc/page.h */
1da177e4
LT
95#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
96
97#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
98#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
99#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
100#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
101#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
102#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
103#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
104#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
105 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
106#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
107
108#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
109#define HAVE_PAGE_AGP
110
3c726f8d
BH
111/* PTEIDX nibble */
112#define _PTEIDX_SECONDARY 0x8
113#define _PTEIDX_GROUP_IX 0x7
114
1da177e4
LT
115
116/*
117 * POWER4 and newer have per page execute protection, older chips can only
118 * do this on a segment (256MB) basis.
119 *
120 * Also, write permissions imply read permissions.
121 * This is the closest we can get..
122 *
123 * Note due to the way vm flags are laid out, the bits are XWR
124 */
125#define __P000 PAGE_NONE
126#define __P001 PAGE_READONLY
127#define __P010 PAGE_COPY
128#define __P011 PAGE_COPY
129#define __P100 PAGE_READONLY_X
130#define __P101 PAGE_READONLY_X
131#define __P110 PAGE_COPY_X
132#define __P111 PAGE_COPY_X
133
134#define __S000 PAGE_NONE
135#define __S001 PAGE_READONLY
136#define __S010 PAGE_SHARED
137#define __S011 PAGE_SHARED
138#define __S100 PAGE_READONLY_X
139#define __S101 PAGE_READONLY_X
140#define __S110 PAGE_SHARED_X
141#define __S111 PAGE_SHARED_X
142
143#ifndef __ASSEMBLY__
144
145/*
146 * ZERO_PAGE is a global shared page that is always zero: used
147 * for zero-mapped memory areas etc..
148 */
149extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
150#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
151#endif /* __ASSEMBLY__ */
152
1da177e4
LT
153#ifdef CONFIG_HUGETLB_PAGE
154
1da177e4
LT
155#define HAVE_ARCH_UNMAPPED_AREA
156#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1da177e4
LT
157
158#endif
159
160#ifndef __ASSEMBLY__
161
162/*
163 * Conversion functions: convert a page and protection to a page entry,
164 * and a page entry and page directory to the page they refer to.
165 *
166 * mk_pte takes a (struct page *) as input
167 */
168#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
169
1f8d419e
DG
170static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
171{
172 pte_t pte;
173
174
3c726f8d 175 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
1f8d419e
DG
176 return pte;
177}
1da177e4
LT
178
179#define pte_modify(_pte, newprot) \
180 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
181
182#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
183#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
184
185/* pte_clear moved to later in this file */
186
3c726f8d 187#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
1da177e4
LT
188#define pte_page(x) pfn_to_page(pte_pfn(x))
189
0f6be7b7
DG
190#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
191#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
192
3c726f8d 193#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
1da177e4 194#define pmd_none(pmd) (!pmd_val(pmd))
0f6be7b7
DG
195#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
196 || (pmd_val(pmd) & PMD_BAD_BITS))
1da177e4
LT
197#define pmd_present(pmd) (pmd_val(pmd) != 0)
198#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
3c726f8d 199#define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
1da177e4 200#define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
58366af5 201
3c726f8d 202#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
58366af5 203#define pud_none(pud) (!pud_val(pud))
0f6be7b7
DG
204#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
205 || (pud_val(pud) & PUD_BAD_BITS))
e28f7faf
DG
206#define pud_present(pud) (pud_val(pud) != 0)
207#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
3c726f8d 208#define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
e28f7faf
DG
209
210#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
1da177e4
LT
211
212/*
213 * Find an entry in a page-table-directory. We combine the address region
214 * (the high order N bits) and the pgd portion of the address.
215 */
216/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
e28f7faf 217#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
1da177e4
LT
218
219#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
220
58366af5 221#define pmd_offset(pudp,addr) \
e28f7faf 222 (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
1da177e4 223
1da177e4 224#define pte_offset_kernel(dir,addr) \
e28f7faf 225 (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
1da177e4
LT
226
227#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
228#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
229#define pte_unmap(pte) do { } while(0)
230#define pte_unmap_nested(pte) do { } while(0)
231
232/* to find an entry in a kernel page-table-directory */
233/* This now only contains the vmalloc pages */
234#define pgd_offset_k(address) pgd_offset(&init_mm, address)
235
1da177e4
LT
236/*
237 * The following only work if pte_present() is true.
238 * Undefined behaviour if not..
239 */
240static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
241static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
242static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
243static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
244static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
245static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
1da177e4
LT
246
247static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
248static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
249
250static inline pte_t pte_rdprotect(pte_t pte) {
251 pte_val(pte) &= ~_PAGE_USER; return pte; }
252static inline pte_t pte_exprotect(pte_t pte) {
253 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
254static inline pte_t pte_wrprotect(pte_t pte) {
255 pte_val(pte) &= ~(_PAGE_RW); return pte; }
256static inline pte_t pte_mkclean(pte_t pte) {
257 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
258static inline pte_t pte_mkold(pte_t pte) {
259 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
1da177e4
LT
260static inline pte_t pte_mkread(pte_t pte) {
261 pte_val(pte) |= _PAGE_USER; return pte; }
262static inline pte_t pte_mkexec(pte_t pte) {
263 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
264static inline pte_t pte_mkwrite(pte_t pte) {
265 pte_val(pte) |= _PAGE_RW; return pte; }
266static inline pte_t pte_mkdirty(pte_t pte) {
267 pte_val(pte) |= _PAGE_DIRTY; return pte; }
268static inline pte_t pte_mkyoung(pte_t pte) {
269 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
270static inline pte_t pte_mkhuge(pte_t pte) {
3c726f8d 271 return pte; }
1da177e4
LT
272
273/* Atomic PTE updates */
274static inline unsigned long pte_update(pte_t *p, unsigned long clr)
275{
276 unsigned long old, tmp;
277
278 __asm__ __volatile__(
279 "1: ldarx %0,0,%3 # pte_update\n\
280 andi. %1,%0,%6\n\
281 bne- 1b \n\
282 andc %1,%0,%4 \n\
283 stdcx. %1,0,%3 \n\
284 bne- 1b"
285 : "=&r" (old), "=&r" (tmp), "=m" (*p)
286 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
287 : "cc" );
288 return old;
289}
290
291/* PTE updating functions, this function puts the PTE in the
292 * batch, doesn't actually triggers the hash flush immediately,
293 * you need to call flush_tlb_pending() to do that.
3c726f8d 294 * Pass -1 for "normal" size (4K or 64K)
1da177e4 295 */
3c726f8d
BH
296extern void hpte_update(struct mm_struct *mm, unsigned long addr,
297 pte_t *ptep, unsigned long pte, int huge);
1da177e4 298
3c726f8d
BH
299static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
300 unsigned long addr, pte_t *ptep)
1da177e4
LT
301{
302 unsigned long old;
303
304 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
305 return 0;
306 old = pte_update(ptep, _PAGE_ACCESSED);
307 if (old & _PAGE_HASHPTE) {
3c726f8d 308 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
309 flush_tlb_pending();
310 }
311 return (old & _PAGE_ACCESSED) != 0;
312}
313#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
314#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
315({ \
316 int __r; \
317 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
318 __r; \
319})
320
321/*
322 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
323 * moment we always flush but we need to fix hpte_update and test if the
324 * optimisation is worth it.
325 */
3c726f8d
BH
326static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
327 unsigned long addr, pte_t *ptep)
1da177e4
LT
328{
329 unsigned long old;
330
331 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
332 return 0;
333 old = pte_update(ptep, _PAGE_DIRTY);
334 if (old & _PAGE_HASHPTE)
3c726f8d 335 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
336 return (old & _PAGE_DIRTY) != 0;
337}
338#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
339#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
340({ \
341 int __r; \
342 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
343 __r; \
344})
345
346#define __HAVE_ARCH_PTEP_SET_WRPROTECT
3c726f8d
BH
347static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep)
1da177e4
LT
349{
350 unsigned long old;
351
352 if ((pte_val(*ptep) & _PAGE_RW) == 0)
353 return;
354 old = pte_update(ptep, _PAGE_RW);
355 if (old & _PAGE_HASHPTE)
3c726f8d 356 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
357}
358
359/*
360 * We currently remove entries from the hashtable regardless of whether
361 * the entry was young or dirty. The generic routines only flush if the
362 * entry was young or dirty which is not good enough.
363 *
364 * We should be more intelligent about this but for the moment we override
365 * these functions and force a tlb flush unconditionally
366 */
367#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
368#define ptep_clear_flush_young(__vma, __address, __ptep) \
369({ \
370 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
371 __ptep); \
372 __young; \
373})
374
375#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
376#define ptep_clear_flush_dirty(__vma, __address, __ptep) \
377({ \
378 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
379 __ptep); \
380 flush_tlb_page(__vma, __address); \
381 __dirty; \
382})
383
384#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
3c726f8d
BH
385static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
386 unsigned long addr, pte_t *ptep)
1da177e4
LT
387{
388 unsigned long old = pte_update(ptep, ~0UL);
389
390 if (old & _PAGE_HASHPTE)
3c726f8d 391 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
392 return __pte(old);
393}
394
3c726f8d
BH
395static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
396 pte_t * ptep)
1da177e4
LT
397{
398 unsigned long old = pte_update(ptep, ~0UL);
399
400 if (old & _PAGE_HASHPTE)
3c726f8d 401 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
402}
403
404/*
405 * set_pte stores a linux PTE into the linux page table.
406 */
407static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
408 pte_t *ptep, pte_t pte)
409{
410 if (pte_present(*ptep)) {
411 pte_clear(mm, addr, ptep);
412 flush_tlb_pending();
413 }
3c726f8d 414 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
3c726f8d 415 *ptep = pte;
1da177e4
LT
416}
417
418/* Set the dirty and/or accessed bits atomically in a linux PTE, this
419 * function doesn't need to flush the hash entry
420 */
421#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
422static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
423{
424 unsigned long bits = pte_val(entry) &
425 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
426 unsigned long old, tmp;
427
428 __asm__ __volatile__(
429 "1: ldarx %0,0,%4\n\
430 andi. %1,%0,%6\n\
431 bne- 1b \n\
432 or %0,%3,%0\n\
433 stdcx. %0,0,%4\n\
434 bne- 1b"
435 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
436 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
437 :"cc");
438}
439#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
440 do { \
441 __ptep_set_access_flags(__ptep, __entry, __dirty); \
442 flush_tlb_page_nohash(__vma, __address); \
443 } while(0)
444
445/*
446 * Macro to mark a page protection value as "uncacheable".
447 */
448#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
449
450struct file;
8b150478 451extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
1da177e4
LT
452 unsigned long size, pgprot_t vma_prot);
453#define __HAVE_PHYS_MEM_ACCESS_PROT
454
455#define __HAVE_ARCH_PTE_SAME
456#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
457
65500d23
HD
458#define pte_ERROR(e) \
459 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1da177e4 460#define pmd_ERROR(e) \
e28f7faf 461 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1da177e4 462#define pgd_ERROR(e) \
e28f7faf 463 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1da177e4 464
1f8d419e 465extern pgd_t swapper_pg_dir[];
1da177e4
LT
466
467extern void paging_init(void);
468
1da177e4
LT
469/*
470 * This gets called at the end of handling a page fault, when
471 * the kernel has put a new PTE into the page table for the process.
472 * We use it to put a corresponding HPTE into the hash table
473 * ahead of time, instead of waiting for the inevitable extra
474 * hash-table miss exception.
475 */
476struct vm_area_struct;
477extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
478
479/* Encode and de-code a swap entry */
480#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
481#define __swp_offset(entry) ((entry).val >> 8)
3c726f8d
BH
482#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
483#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
484#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
485#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
486#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
487#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
1da177e4
LT
488
489/*
490 * kern_addr_valid is intended to indicate whether an address is a valid
491 * kernel address. Most 32-bit archs define it as always true (like this)
492 * but most 64-bit archs actually perform a test. What should we do here?
493 * The only use is in fs/ncpfs/dir.c
494 */
495#define kern_addr_valid(addr) (1)
496
1da177e4
LT
497#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
498 remap_pfn_range(vma, vaddr, pfn, size, prot)
499
1da177e4
LT
500void pgtable_cache_init(void);
501
1da177e4
LT
502/*
503 * find_linux_pte returns the address of a linux pte for a given
504 * effective address and directory. If not found, it returns zero.
3c726f8d 505 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
1da177e4
LT
506{
507 pgd_t *pg;
58366af5 508 pud_t *pu;
1da177e4
LT
509 pmd_t *pm;
510 pte_t *pt = NULL;
1da177e4
LT
511
512 pg = pgdir + pgd_index(ea);
513 if (!pgd_none(*pg)) {
58366af5
BH
514 pu = pud_offset(pg, ea);
515 if (!pud_none(*pu)) {
516 pm = pmd_offset(pu, ea);
3c726f8d 517 if (pmd_present(*pm))
58366af5 518 pt = pte_offset_kernel(pm, ea);
1da177e4
LT
519 }
520 }
1da177e4
LT
521 return pt;
522}
523
524#include <asm-generic/pgtable.h>
525
526#endif /* __ASSEMBLY__ */
527
047ea784 528#endif /* CONFIG_PPC64 */
88ced031 529#endif /* __KERNEL__ */
047ea784 530#endif /* _ASM_POWERPC_PGTABLE_H */
This page took 0.185081 seconds and 5 git commands to generate.