[PATCH] powerpc: Remove imalloc.h
[deliverable/linux.git] / include / asm-ppc64 / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _PPC64_PGTABLE_H
2#define _PPC64_PGTABLE_H
3
1da177e4
LT
4/*
5 * This file contains the functions and defines necessary to modify and use
6 * the ppc64 hashed page table.
7 */
8
9#ifndef __ASSEMBLY__
10#include <linux/config.h>
11#include <linux/stddef.h>
12#include <asm/processor.h> /* For TASK_SIZE */
13#include <asm/mmu.h>
14#include <asm/page.h>
15#include <asm/tlbflush.h>
8c65b4a6 16struct mm_struct;
1da177e4
LT
17#endif /* __ASSEMBLY__ */
18
3c726f8d
BH
19#ifdef CONFIG_PPC_64K_PAGES
20#include <asm/pgtable-64k.h>
21#else
22#include <asm/pgtable-4k.h>
23#endif
1f8d419e
DG
24
25#define FIRST_USER_ADDRESS 0
1da177e4
LT
26
27/*
28 * Size of EA range mapped by our pagetables.
29 */
e28f7faf
DG
30#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
31 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
32#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
33
34#if TASK_SIZE_USER64 > PGTABLE_RANGE
35#error TASK_SIZE_USER64 exceeds pagetable range
36#endif
37
38#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
39#error TASK_SIZE_USER64 exceeds user VSID range
40#endif
1da177e4
LT
41
42/*
43 * Define the address range of the vmalloc VM area.
44 */
45#define VMALLOC_START (0xD000000000000000ul)
e28f7faf 46#define VMALLOC_SIZE (0x80000000000UL)
20cee16c 47#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
1da177e4 48
800fc3ee
DG
49/*
50 * Define the address range of the imalloc VM area.
51 */
52#define PHBS_IO_BASE VMALLOC_END
53#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
54#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
55
1da177e4 56/*
3c726f8d
BH
57 * Common bits in a linux-style PTE. These match the bits in the
58 * (hardware-defined) PowerPC PTE as closely as possible. Additional
59 * bits may be defined in pgtable-*.h
1da177e4
LT
60 */
61#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
62#define _PAGE_USER 0x0002 /* matches one of the PP bits */
63#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
64#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
65#define _PAGE_GUARDED 0x0008
66#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
67#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
68#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
69#define _PAGE_DIRTY 0x0080 /* C: page changed */
70#define _PAGE_ACCESSED 0x0100 /* R: page referenced */
71#define _PAGE_RW 0x0200 /* software: user write access allowed */
72#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
73#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
1da177e4
LT
74
75#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
76
77#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
78
79/* __pgprot defined in asm-ppc64/page.h */
80#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
81
82#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
83#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
84#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
85#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
86#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
87#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
88#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
89#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
90 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
91#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
92
93#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
94#define HAVE_PAGE_AGP
95
3c726f8d
BH
96/* PTEIDX nibble */
97#define _PTEIDX_SECONDARY 0x8
98#define _PTEIDX_GROUP_IX 0x7
99
1da177e4
LT
100
101/*
102 * POWER4 and newer have per page execute protection, older chips can only
103 * do this on a segment (256MB) basis.
104 *
105 * Also, write permissions imply read permissions.
106 * This is the closest we can get..
107 *
108 * Note due to the way vm flags are laid out, the bits are XWR
109 */
110#define __P000 PAGE_NONE
111#define __P001 PAGE_READONLY
112#define __P010 PAGE_COPY
113#define __P011 PAGE_COPY
114#define __P100 PAGE_READONLY_X
115#define __P101 PAGE_READONLY_X
116#define __P110 PAGE_COPY_X
117#define __P111 PAGE_COPY_X
118
119#define __S000 PAGE_NONE
120#define __S001 PAGE_READONLY
121#define __S010 PAGE_SHARED
122#define __S011 PAGE_SHARED
123#define __S100 PAGE_READONLY_X
124#define __S101 PAGE_READONLY_X
125#define __S110 PAGE_SHARED_X
126#define __S111 PAGE_SHARED_X
127
128#ifndef __ASSEMBLY__
129
130/*
131 * ZERO_PAGE is a global shared page that is always zero: used
132 * for zero-mapped memory areas etc..
133 */
134extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
135#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
136#endif /* __ASSEMBLY__ */
137
1da177e4
LT
138#ifdef CONFIG_HUGETLB_PAGE
139
1da177e4
LT
140#define HAVE_ARCH_UNMAPPED_AREA
141#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1da177e4
LT
142
143#endif
144
145#ifndef __ASSEMBLY__
146
147/*
148 * Conversion functions: convert a page and protection to a page entry,
149 * and a page entry and page directory to the page they refer to.
150 *
151 * mk_pte takes a (struct page *) as input
152 */
153#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
154
1f8d419e
DG
155static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
156{
157 pte_t pte;
158
159
3c726f8d 160 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
1f8d419e
DG
161 return pte;
162}
1da177e4
LT
163
164#define pte_modify(_pte, newprot) \
165 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
166
167#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
168#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
169
170/* pte_clear moved to later in this file */
171
3c726f8d 172#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
1da177e4
LT
173#define pte_page(x) pfn_to_page(pte_pfn(x))
174
3c726f8d 175#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
1da177e4
LT
176#define pmd_none(pmd) (!pmd_val(pmd))
177#define pmd_bad(pmd) (pmd_val(pmd) == 0)
178#define pmd_present(pmd) (pmd_val(pmd) != 0)
179#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
3c726f8d 180#define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
1da177e4 181#define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
58366af5 182
3c726f8d 183#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
58366af5 184#define pud_none(pud) (!pud_val(pud))
e28f7faf
DG
185#define pud_bad(pud) ((pud_val(pud)) == 0)
186#define pud_present(pud) (pud_val(pud) != 0)
187#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
3c726f8d 188#define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
e28f7faf
DG
189
190#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
1da177e4
LT
191
192/*
193 * Find an entry in a page-table-directory. We combine the address region
194 * (the high order N bits) and the pgd portion of the address.
195 */
196/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
e28f7faf 197#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
1da177e4
LT
198
199#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
200
58366af5 201#define pmd_offset(pudp,addr) \
e28f7faf 202 (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
1da177e4 203
1da177e4 204#define pte_offset_kernel(dir,addr) \
e28f7faf 205 (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
1da177e4
LT
206
207#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
208#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
209#define pte_unmap(pte) do { } while(0)
210#define pte_unmap_nested(pte) do { } while(0)
211
212/* to find an entry in a kernel page-table-directory */
213/* This now only contains the vmalloc pages */
214#define pgd_offset_k(address) pgd_offset(&init_mm, address)
215
1da177e4
LT
216/*
217 * The following only work if pte_present() is true.
218 * Undefined behaviour if not..
219 */
220static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
221static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
222static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
223static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
224static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
225static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
1da177e4
LT
226
227static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
228static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
229
230static inline pte_t pte_rdprotect(pte_t pte) {
231 pte_val(pte) &= ~_PAGE_USER; return pte; }
232static inline pte_t pte_exprotect(pte_t pte) {
233 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
234static inline pte_t pte_wrprotect(pte_t pte) {
235 pte_val(pte) &= ~(_PAGE_RW); return pte; }
236static inline pte_t pte_mkclean(pte_t pte) {
237 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
238static inline pte_t pte_mkold(pte_t pte) {
239 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
1da177e4
LT
240static inline pte_t pte_mkread(pte_t pte) {
241 pte_val(pte) |= _PAGE_USER; return pte; }
242static inline pte_t pte_mkexec(pte_t pte) {
243 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
244static inline pte_t pte_mkwrite(pte_t pte) {
245 pte_val(pte) |= _PAGE_RW; return pte; }
246static inline pte_t pte_mkdirty(pte_t pte) {
247 pte_val(pte) |= _PAGE_DIRTY; return pte; }
248static inline pte_t pte_mkyoung(pte_t pte) {
249 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
250static inline pte_t pte_mkhuge(pte_t pte) {
3c726f8d 251 return pte; }
1da177e4
LT
252
253/* Atomic PTE updates */
254static inline unsigned long pte_update(pte_t *p, unsigned long clr)
255{
256 unsigned long old, tmp;
257
258 __asm__ __volatile__(
259 "1: ldarx %0,0,%3 # pte_update\n\
260 andi. %1,%0,%6\n\
261 bne- 1b \n\
262 andc %1,%0,%4 \n\
263 stdcx. %1,0,%3 \n\
264 bne- 1b"
265 : "=&r" (old), "=&r" (tmp), "=m" (*p)
266 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
267 : "cc" );
268 return old;
269}
270
271/* PTE updating functions, this function puts the PTE in the
272 * batch, doesn't actually triggers the hash flush immediately,
273 * you need to call flush_tlb_pending() to do that.
3c726f8d 274 * Pass -1 for "normal" size (4K or 64K)
1da177e4 275 */
3c726f8d
BH
276extern void hpte_update(struct mm_struct *mm, unsigned long addr,
277 pte_t *ptep, unsigned long pte, int huge);
1da177e4 278
3c726f8d
BH
279static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
280 unsigned long addr, pte_t *ptep)
1da177e4
LT
281{
282 unsigned long old;
283
284 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
285 return 0;
286 old = pte_update(ptep, _PAGE_ACCESSED);
287 if (old & _PAGE_HASHPTE) {
3c726f8d 288 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
289 flush_tlb_pending();
290 }
291 return (old & _PAGE_ACCESSED) != 0;
292}
293#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
294#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
295({ \
296 int __r; \
297 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
298 __r; \
299})
300
301/*
302 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
303 * moment we always flush but we need to fix hpte_update and test if the
304 * optimisation is worth it.
305 */
3c726f8d
BH
306static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
307 unsigned long addr, pte_t *ptep)
1da177e4
LT
308{
309 unsigned long old;
310
311 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
312 return 0;
313 old = pte_update(ptep, _PAGE_DIRTY);
314 if (old & _PAGE_HASHPTE)
3c726f8d 315 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
316 return (old & _PAGE_DIRTY) != 0;
317}
318#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
319#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
320({ \
321 int __r; \
322 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
323 __r; \
324})
325
326#define __HAVE_ARCH_PTEP_SET_WRPROTECT
3c726f8d
BH
327static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
328 pte_t *ptep)
1da177e4
LT
329{
330 unsigned long old;
331
332 if ((pte_val(*ptep) & _PAGE_RW) == 0)
333 return;
334 old = pte_update(ptep, _PAGE_RW);
335 if (old & _PAGE_HASHPTE)
3c726f8d 336 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
337}
338
339/*
340 * We currently remove entries from the hashtable regardless of whether
341 * the entry was young or dirty. The generic routines only flush if the
342 * entry was young or dirty which is not good enough.
343 *
344 * We should be more intelligent about this but for the moment we override
345 * these functions and force a tlb flush unconditionally
346 */
347#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
348#define ptep_clear_flush_young(__vma, __address, __ptep) \
349({ \
350 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
351 __ptep); \
352 __young; \
353})
354
355#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
356#define ptep_clear_flush_dirty(__vma, __address, __ptep) \
357({ \
358 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
359 __ptep); \
360 flush_tlb_page(__vma, __address); \
361 __dirty; \
362})
363
364#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
3c726f8d
BH
365static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
366 unsigned long addr, pte_t *ptep)
1da177e4
LT
367{
368 unsigned long old = pte_update(ptep, ~0UL);
369
370 if (old & _PAGE_HASHPTE)
3c726f8d 371 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
372 return __pte(old);
373}
374
3c726f8d
BH
375static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
376 pte_t * ptep)
1da177e4
LT
377{
378 unsigned long old = pte_update(ptep, ~0UL);
379
380 if (old & _PAGE_HASHPTE)
3c726f8d 381 hpte_update(mm, addr, ptep, old, 0);
1da177e4
LT
382}
383
384/*
385 * set_pte stores a linux PTE into the linux page table.
386 */
387static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
388 pte_t *ptep, pte_t pte)
389{
390 if (pte_present(*ptep)) {
391 pte_clear(mm, addr, ptep);
392 flush_tlb_pending();
393 }
3c726f8d
BH
394 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
395
396#ifdef CONFIG_PPC_64K_PAGES
397 if (mmu_virtual_psize != MMU_PAGE_64K)
398 pte = __pte(pte_val(pte) | _PAGE_COMBO);
399#endif /* CONFIG_PPC_64K_PAGES */
400
401 *ptep = pte;
1da177e4
LT
402}
403
404/* Set the dirty and/or accessed bits atomically in a linux PTE, this
405 * function doesn't need to flush the hash entry
406 */
407#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
408static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
409{
410 unsigned long bits = pte_val(entry) &
411 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
412 unsigned long old, tmp;
413
414 __asm__ __volatile__(
415 "1: ldarx %0,0,%4\n\
416 andi. %1,%0,%6\n\
417 bne- 1b \n\
418 or %0,%3,%0\n\
419 stdcx. %0,0,%4\n\
420 bne- 1b"
421 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
422 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
423 :"cc");
424}
425#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
426 do { \
427 __ptep_set_access_flags(__ptep, __entry, __dirty); \
428 flush_tlb_page_nohash(__vma, __address); \
429 } while(0)
430
431/*
432 * Macro to mark a page protection value as "uncacheable".
433 */
434#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
435
436struct file;
8b150478 437extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
1da177e4
LT
438 unsigned long size, pgprot_t vma_prot);
439#define __HAVE_PHYS_MEM_ACCESS_PROT
440
441#define __HAVE_ARCH_PTE_SAME
442#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
443
65500d23
HD
444#define pte_ERROR(e) \
445 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1da177e4 446#define pmd_ERROR(e) \
e28f7faf 447 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1da177e4 448#define pgd_ERROR(e) \
e28f7faf 449 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1da177e4 450
1f8d419e 451extern pgd_t swapper_pg_dir[];
1da177e4
LT
452
453extern void paging_init(void);
454
b74d0bd5 455#ifdef CONFIG_HUGETLB_PAGE
3bf5ee95 456#define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
e28f7faf 457 free_pgd_range(tlb, addr, end, floor, ceiling)
b74d0bd5 458#endif
1da177e4
LT
459
460/*
461 * This gets called at the end of handling a page fault, when
462 * the kernel has put a new PTE into the page table for the process.
463 * We use it to put a corresponding HPTE into the hash table
464 * ahead of time, instead of waiting for the inevitable extra
465 * hash-table miss exception.
466 */
467struct vm_area_struct;
468extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
469
470/* Encode and de-code a swap entry */
471#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
472#define __swp_offset(entry) ((entry).val >> 8)
3c726f8d
BH
473#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
474#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
475#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
476#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
477#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
478#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
1da177e4
LT
479
480/*
481 * kern_addr_valid is intended to indicate whether an address is a valid
482 * kernel address. Most 32-bit archs define it as always true (like this)
483 * but most 64-bit archs actually perform a test. What should we do here?
484 * The only use is in fs/ncpfs/dir.c
485 */
486#define kern_addr_valid(addr) (1)
487
1da177e4
LT
488#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
489 remap_pfn_range(vma, vaddr, pfn, size, prot)
490
1da177e4
LT
491void pgtable_cache_init(void);
492
1da177e4
LT
493/*
494 * find_linux_pte returns the address of a linux pte for a given
495 * effective address and directory. If not found, it returns zero.
3c726f8d 496 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
1da177e4
LT
497{
498 pgd_t *pg;
58366af5 499 pud_t *pu;
1da177e4
LT
500 pmd_t *pm;
501 pte_t *pt = NULL;
1da177e4
LT
502
503 pg = pgdir + pgd_index(ea);
504 if (!pgd_none(*pg)) {
58366af5
BH
505 pu = pud_offset(pg, ea);
506 if (!pud_none(*pu)) {
507 pm = pmd_offset(pu, ea);
3c726f8d 508 if (pmd_present(*pm))
58366af5 509 pt = pte_offset_kernel(pm, ea);
1da177e4
LT
510 }
511 }
1da177e4
LT
512 return pt;
513}
514
515#include <asm-generic/pgtable.h>
516
517#endif /* __ASSEMBLY__ */
518
519#endif /* _PPC64_PGTABLE_H */
This page took 0.229378 seconds and 5 git commands to generate.