[S390] Convert machine feature detection code to C.
[deliverable/linux.git] / include / asm-s390 / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
1da177e4
LT
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
2dcea57a 32#include <linux/mm_types.h>
5b7baf05 33#include <asm/bitops.h>
1da177e4
LT
34#include <asm/bug.h>
35#include <asm/processor.h>
1da177e4 36
1da177e4
LT
37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38extern void paging_init(void);
2b67fc46 39extern void vmem_map_init(void);
1da177e4
LT
40
41/*
42 * The S390 doesn't have any external MMU info: the kernel page
43 * tables contain all the necessary information.
44 */
45#define update_mmu_cache(vma, address, pte) do { } while (0)
46
47/*
48 * ZERO_PAGE is a global shared page that is always zero: used
49 * for zero-mapped memory areas etc..
50 */
51extern char empty_zero_page[PAGE_SIZE];
52#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
53#endif /* !__ASSEMBLY__ */
54
55/*
56 * PMD_SHIFT determines the size of the area a second-level page
57 * table can map
58 * PGDIR_SHIFT determines what a third-level page table entry can map
59 */
60#ifndef __s390x__
146e4b3c
MS
61# define PMD_SHIFT 20
62# define PUD_SHIFT 20
63# define PGDIR_SHIFT 20
1da177e4 64#else /* __s390x__ */
146e4b3c 65# define PMD_SHIFT 20
190a1d72 66# define PUD_SHIFT 31
5a216a20 67# define PGDIR_SHIFT 42
1da177e4
LT
68#endif /* __s390x__ */
69
70#define PMD_SIZE (1UL << PMD_SHIFT)
71#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
72#define PUD_SIZE (1UL << PUD_SHIFT)
73#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
74#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
76
77/*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
146e4b3c 83#define PTRS_PER_PTE 256
1da177e4 84#ifndef __s390x__
146e4b3c 85#define PTRS_PER_PMD 1
5a216a20 86#define PTRS_PER_PUD 1
1da177e4 87#else /* __s390x__ */
146e4b3c 88#define PTRS_PER_PMD 2048
5a216a20 89#define PTRS_PER_PUD 2048
1da177e4 90#endif /* __s390x__ */
146e4b3c 91#define PTRS_PER_PGD 2048
1da177e4 92
d455a369
HD
93#define FIRST_USER_ADDRESS 0
94
1da177e4
LT
95#define pte_ERROR(e) \
96 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
97#define pmd_ERROR(e) \
98 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
99#define pud_ERROR(e) \
100 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
101#define pgd_ERROR(e) \
102 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
103
104#ifndef __ASSEMBLY__
105/*
5fd9c6e2
CB
106 * The vmalloc area will always be on the topmost area of the kernel
107 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
108 * which should be enough for any sane case.
109 * By putting vmalloc at the top, we maximise the gap between physical
110 * memory and vmalloc to catch misplaced memory accesses. As a side
111 * effect, this also makes sure that 64 bit module code cannot be used
112 * as system call address.
8b62bc96 113 */
1da177e4 114#ifndef __s390x__
5fd9c6e2
CB
115#define VMALLOC_START 0x78000000UL
116#define VMALLOC_END 0x7e000000UL
0189103c 117#define VMEM_MAP_END 0x80000000UL
1da177e4 118#else /* __s390x__ */
5fd9c6e2
CB
119#define VMALLOC_START 0x3e000000000UL
120#define VMALLOC_END 0x3e040000000UL
0189103c 121#define VMEM_MAP_END 0x40000000000UL
1da177e4
LT
122#endif /* __s390x__ */
123
0189103c
HC
124/*
125 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
126 * mapping. This needs to be calculated at compile time since the size of the
127 * VMEM_MAP is static but the size of struct page can change.
128 */
522d8dc0
MS
129#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
130#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
131#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
5fd9c6e2 132#define VMEM_MAP ((struct page *) VMALLOC_END)
5fd9c6e2 133
1da177e4
LT
134/*
135 * A 31 bit pagetable entry of S390 has following format:
136 * | PFRA | | OS |
137 * 0 0IP0
138 * 00000000001111111111222222222233
139 * 01234567890123456789012345678901
140 *
141 * I Page-Invalid Bit: Page is not available for address-translation
142 * P Page-Protection Bit: Store access not possible for page
143 *
144 * A 31 bit segmenttable entry of S390 has following format:
145 * | P-table origin | |PTL
146 * 0 IC
147 * 00000000001111111111222222222233
148 * 01234567890123456789012345678901
149 *
150 * I Segment-Invalid Bit: Segment is not available for address-translation
151 * C Common-Segment Bit: Segment is not private (PoP 3-30)
152 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
153 *
154 * The 31 bit segmenttable origin of S390 has following format:
155 *
156 * |S-table origin | | STL |
157 * X **GPS
158 * 00000000001111111111222222222233
159 * 01234567890123456789012345678901
160 *
161 * X Space-Switch event:
162 * G Segment-Invalid Bit: *
163 * P Private-Space Bit: Segment is not private (PoP 3-30)
164 * S Storage-Alteration:
165 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
166 *
167 * A 64 bit pagetable entry of S390 has following format:
168 * | PFRA |0IP0| OS |
169 * 0000000000111111111122222222223333333333444444444455555555556666
170 * 0123456789012345678901234567890123456789012345678901234567890123
171 *
172 * I Page-Invalid Bit: Page is not available for address-translation
173 * P Page-Protection Bit: Store access not possible for page
174 *
175 * A 64 bit segmenttable entry of S390 has following format:
176 * | P-table origin | TT
177 * 0000000000111111111122222222223333333333444444444455555555556666
178 * 0123456789012345678901234567890123456789012345678901234567890123
179 *
180 * I Segment-Invalid Bit: Segment is not available for address-translation
181 * C Common-Segment Bit: Segment is not private (PoP 3-30)
182 * P Page-Protection Bit: Store access not possible for page
183 * TT Type 00
184 *
185 * A 64 bit region table entry of S390 has following format:
186 * | S-table origin | TF TTTL
187 * 0000000000111111111122222222223333333333444444444455555555556666
188 * 0123456789012345678901234567890123456789012345678901234567890123
189 *
190 * I Segment-Invalid Bit: Segment is not available for address-translation
191 * TT Type 01
192 * TF
190a1d72 193 * TL Table length
1da177e4
LT
194 *
195 * The 64 bit regiontable origin of S390 has following format:
196 * | region table origon | DTTL
197 * 0000000000111111111122222222223333333333444444444455555555556666
198 * 0123456789012345678901234567890123456789012345678901234567890123
199 *
200 * X Space-Switch event:
201 * G Segment-Invalid Bit:
202 * P Private-Space Bit:
203 * S Storage-Alteration:
204 * R Real space
205 * TL Table-Length:
206 *
207 * A storage key has the following format:
208 * | ACC |F|R|C|0|
209 * 0 3 4 5 6 7
210 * ACC: access key
211 * F : fetch protection bit
212 * R : referenced bit
213 * C : changed bit
214 */
215
216/* Hardware bits in the page table entry */
83377484
MS
217#define _PAGE_RO 0x200 /* HW read-only bit */
218#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
219
220/* Software bits in the page table entry */
83377484
MS
221#define _PAGE_SWT 0x001 /* SW pte type bit t */
222#define _PAGE_SWX 0x002 /* SW pte type bit x */
a08cb629
NP
223#define _PAGE_SPECIAL 0x004 /* SW associated with special page */
224#define __HAVE_ARCH_PTE_SPECIAL
1da177e4 225
83377484 226/* Six different types of pages. */
9282ed92
GS
227#define _PAGE_TYPE_EMPTY 0x400
228#define _PAGE_TYPE_NONE 0x401
83377484
MS
229#define _PAGE_TYPE_SWAP 0x403
230#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
231#define _PAGE_TYPE_RO 0x200
232#define _PAGE_TYPE_RW 0x000
c1821c2e
GS
233#define _PAGE_TYPE_EX_RO 0x202
234#define _PAGE_TYPE_EX_RW 0x002
1da177e4 235
83377484
MS
236/*
237 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
238 * pte_none and pte_file to find out the pte type WITHOUT holding the page
239 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
240 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
241 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
242 * This change is done while holding the lock, but the intermediate step
243 * of a previously valid pte with the hw invalid bit set can be observed by
244 * handle_pte_fault. That makes it necessary that all valid pte types with
245 * the hw invalid bit set must be distinguishable from the four pte types
246 * empty, none, swap and file.
247 *
248 * irxt ipte irxt
249 * _PAGE_TYPE_EMPTY 1000 -> 1000
250 * _PAGE_TYPE_NONE 1001 -> 1001
251 * _PAGE_TYPE_SWAP 1011 -> 1011
252 * _PAGE_TYPE_FILE 11?1 -> 11?1
253 * _PAGE_TYPE_RO 0100 -> 1100
254 * _PAGE_TYPE_RW 0000 -> 1000
c1821c2e
GS
255 * _PAGE_TYPE_EX_RO 0110 -> 1110
256 * _PAGE_TYPE_EX_RW 0010 -> 1010
83377484 257 *
c1821c2e 258 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
259 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
260 * pte_file is true for bits combinations 1101, 1111
c1821c2e 261 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
262 */
263
5b7baf05
CB
264/* Page status table bits for virtualization */
265#define RCP_PCL_BIT 55
266#define RCP_HR_BIT 54
267#define RCP_HC_BIT 53
268#define RCP_GR_BIT 50
269#define RCP_GC_BIT 49
270
1da177e4
LT
271#ifndef __s390x__
272
3610cce8
MS
273/* Bits in the segment table address-space-control-element */
274#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
275#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
276#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
277#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
278#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 279
3610cce8
MS
280/* Bits in the segment table entry */
281#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
282#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
283#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
284#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 285
3610cce8
MS
286#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
287#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4
LT
288
289#else /* __s390x__ */
290
3610cce8
MS
291/* Bits in the segment/region table address-space-control-element */
292#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
293#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
294#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
295#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
296#define _ASCE_REAL_SPACE 0x20 /* real space control */
297#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
298#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
299#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
300#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
301#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
302#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
303
304/* Bits in the region table entry */
305#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
306#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
307#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
308#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
309#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
310#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
311#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
312
313#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
314#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
315#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
316#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
317#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
318#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
319
1da177e4 320/* Bits in the segment table entry */
3610cce8
MS
321#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
322#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
323#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 324
3610cce8
MS
325#define _SEGMENT_ENTRY (0)
326#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
327
328#endif /* __s390x__ */
1da177e4
LT
329
330/*
3610cce8
MS
331 * A user page table pointer has the space-switch-event bit, the
332 * private-space-control bit and the storage-alteration-event-control
333 * bit set. A kernel page table pointer doesn't need them.
1da177e4 334 */
3610cce8
MS
335#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
336 _ASCE_ALT_EVENT)
1da177e4 337
3610cce8 338/* Bits int the storage key */
1da177e4
LT
339#define _PAGE_CHANGED 0x02 /* HW changed bit */
340#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
341
1da177e4 342/*
9282ed92 343 * Page protection definitions.
1da177e4 344 */
9282ed92
GS
345#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
346#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
347#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
c1821c2e
GS
348#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
349#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
9282ed92
GS
350
351#define PAGE_KERNEL PAGE_RW
352#define PAGE_COPY PAGE_RO
1da177e4
LT
353
354/*
c1821c2e
GS
355 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
356 * Write permission always implies read permission. In theory with a
357 * primary/secondary page table execute only can be implemented but
358 * it would cost an additional bit in the pte to distinguish all the
359 * different pte types. To avoid that execute permission currently
360 * implies read permission as well.
1da177e4
LT
361 */
362 /*xwr*/
9282ed92
GS
363#define __P000 PAGE_NONE
364#define __P001 PAGE_RO
365#define __P010 PAGE_RO
366#define __P011 PAGE_RO
c1821c2e
GS
367#define __P100 PAGE_EX_RO
368#define __P101 PAGE_EX_RO
369#define __P110 PAGE_EX_RO
370#define __P111 PAGE_EX_RO
9282ed92
GS
371
372#define __S000 PAGE_NONE
373#define __S001 PAGE_RO
374#define __S010 PAGE_RW
375#define __S011 PAGE_RW
c1821c2e
GS
376#define __S100 PAGE_EX_RO
377#define __S101 PAGE_EX_RO
378#define __S110 PAGE_EX_RW
379#define __S111 PAGE_EX_RW
380
381#ifndef __s390x__
3610cce8 382# define PxD_SHADOW_SHIFT 1
c1821c2e 383#else /* __s390x__ */
3610cce8 384# define PxD_SHADOW_SHIFT 2
c1821c2e
GS
385#endif /* __s390x__ */
386
3610cce8 387static inline void *get_shadow_table(void *table)
c1821c2e 388{
3610cce8
MS
389 unsigned long addr, offset;
390 struct page *page;
391
392 addr = (unsigned long) table;
393 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
394 page = virt_to_page((void *)(addr ^ offset));
395 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
c1821c2e 396}
1da177e4
LT
397
398/*
399 * Certain architectures need to do special things when PTEs
400 * within a page table are directly modified. Thus, the following
401 * hook is made available.
402 */
ba8a9229 403static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
146e4b3c 404 pte_t *ptep, pte_t entry)
1da177e4 405{
146e4b3c
MS
406 *ptep = entry;
407 if (mm->context.noexec) {
408 if (!(pte_val(entry) & _PAGE_INVALID) &&
409 (pte_val(entry) & _PAGE_SWX))
410 pte_val(entry) |= _PAGE_RO;
c1821c2e 411 else
146e4b3c
MS
412 pte_val(entry) = _PAGE_TYPE_EMPTY;
413 ptep[PTRS_PER_PTE] = entry;
c1821c2e 414 }
1da177e4 415}
1da177e4
LT
416
417/*
418 * pgd/pmd/pte query functions
419 */
420#ifndef __s390x__
421
4448aaf0
AB
422static inline int pgd_present(pgd_t pgd) { return 1; }
423static inline int pgd_none(pgd_t pgd) { return 0; }
424static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 425
190a1d72
MS
426static inline int pud_present(pud_t pud) { return 1; }
427static inline int pud_none(pud_t pud) { return 0; }
428static inline int pud_bad(pud_t pud) { return 0; }
429
1da177e4
LT
430#else /* __s390x__ */
431
5a216a20
MS
432static inline int pgd_present(pgd_t pgd)
433{
6252d702
MS
434 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
435 return 1;
5a216a20
MS
436 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
437}
438
439static inline int pgd_none(pgd_t pgd)
440{
6252d702
MS
441 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
442 return 0;
5a216a20
MS
443 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
444}
445
446static inline int pgd_bad(pgd_t pgd)
447{
6252d702
MS
448 /*
449 * With dynamic page table levels the pgd can be a region table
450 * entry or a segment table entry. Check for the bit that are
451 * invalid for either table entry.
452 */
5a216a20 453 unsigned long mask =
6252d702 454 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
455 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
456 return (pgd_val(pgd) & mask) != 0;
457}
190a1d72
MS
458
459static inline int pud_present(pud_t pud)
1da177e4 460{
6252d702
MS
461 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
462 return 1;
0d017923 463 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
464}
465
190a1d72 466static inline int pud_none(pud_t pud)
1da177e4 467{
6252d702
MS
468 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
469 return 0;
0d017923 470 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
471}
472
190a1d72 473static inline int pud_bad(pud_t pud)
1da177e4 474{
6252d702
MS
475 /*
476 * With dynamic page table levels the pud can be a region table
477 * entry or a segment table entry. Check for the bit that are
478 * invalid for either table entry.
479 */
5a216a20 480 unsigned long mask =
6252d702 481 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
482 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
483 return (pud_val(pud) & mask) != 0;
1da177e4
LT
484}
485
3610cce8
MS
486#endif /* __s390x__ */
487
4448aaf0 488static inline int pmd_present(pmd_t pmd)
1da177e4 489{
0d017923 490 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
491}
492
4448aaf0 493static inline int pmd_none(pmd_t pmd)
1da177e4 494{
0d017923 495 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
1da177e4
LT
496}
497
4448aaf0 498static inline int pmd_bad(pmd_t pmd)
1da177e4 499{
3610cce8
MS
500 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
501 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
502}
503
4448aaf0 504static inline int pte_none(pte_t pte)
1da177e4 505{
83377484 506 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
507}
508
4448aaf0 509static inline int pte_present(pte_t pte)
1da177e4 510{
83377484
MS
511 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
512 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
513 (!(pte_val(pte) & _PAGE_INVALID) &&
514 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
515}
516
4448aaf0 517static inline int pte_file(pte_t pte)
1da177e4 518{
83377484
MS
519 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
520 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
521}
522
7e675137
NP
523static inline int pte_special(pte_t pte)
524{
a08cb629 525 return (pte_val(pte) & _PAGE_SPECIAL);
7e675137
NP
526}
527
ba8a9229
MS
528#define __HAVE_ARCH_PTE_SAME
529#define pte_same(a,b) (pte_val(a) == pte_val(b))
1da177e4 530
5b7baf05
CB
531static inline void rcp_lock(pte_t *ptep)
532{
533#ifdef CONFIG_PGSTE
534 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
535 preempt_disable();
536 while (test_and_set_bit(RCP_PCL_BIT, pgste))
537 ;
538#endif
539}
540
541static inline void rcp_unlock(pte_t *ptep)
542{
543#ifdef CONFIG_PGSTE
544 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
545 clear_bit(RCP_PCL_BIT, pgste);
546 preempt_enable();
547#endif
548}
549
550/* forward declaration for SetPageUptodate in page-flags.h*/
551static inline void page_clear_dirty(struct page *page);
552#include <linux/page-flags.h>
553
554static inline void ptep_rcp_copy(pte_t *ptep)
555{
556#ifdef CONFIG_PGSTE
557 struct page *page = virt_to_page(pte_val(*ptep));
558 unsigned int skey;
559 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
560
561 skey = page_get_storage_key(page_to_phys(page));
562 if (skey & _PAGE_CHANGED)
c71799c1 563 set_bit_simple(RCP_GC_BIT, pgste);
5b7baf05 564 if (skey & _PAGE_REFERENCED)
c71799c1
HC
565 set_bit_simple(RCP_GR_BIT, pgste);
566 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste))
5b7baf05 567 SetPageDirty(page);
c71799c1 568 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
5b7baf05
CB
569 SetPageReferenced(page);
570#endif
571}
572
1da177e4
LT
573/*
574 * query functions pte_write/pte_dirty/pte_young only work if
575 * pte_present() is true. Undefined behaviour if not..
576 */
4448aaf0 577static inline int pte_write(pte_t pte)
1da177e4
LT
578{
579 return (pte_val(pte) & _PAGE_RO) == 0;
580}
581
4448aaf0 582static inline int pte_dirty(pte_t pte)
1da177e4
LT
583{
584 /* A pte is neither clean nor dirty on s/390. The dirty bit
585 * is in the storage key. See page_test_and_clear_dirty for
586 * details.
587 */
588 return 0;
589}
590
4448aaf0 591static inline int pte_young(pte_t pte)
1da177e4
LT
592{
593 /* A pte is neither young nor old on s/390. The young bit
594 * is in the storage key. See page_test_and_clear_young for
595 * details.
596 */
597 return 0;
598}
599
1da177e4
LT
600/*
601 * pgd/pmd/pte modification functions
602 */
603
604#ifndef __s390x__
605
190a1d72
MS
606#define pgd_clear(pgd) do { } while (0)
607#define pud_clear(pud) do { } while (0)
1da177e4 608
1da177e4
LT
609#else /* __s390x__ */
610
5a216a20
MS
611static inline void pgd_clear_kernel(pgd_t * pgd)
612{
6252d702
MS
613 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
614 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
615}
616
617static inline void pgd_clear(pgd_t * pgd)
618{
619 pgd_t *shadow = get_shadow_table(pgd);
620
621 pgd_clear_kernel(pgd);
622 if (shadow)
623 pgd_clear_kernel(shadow);
624}
190a1d72
MS
625
626static inline void pud_clear_kernel(pud_t *pud)
1da177e4 627{
6252d702
MS
628 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
629 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
630}
631
6252d702 632static inline void pud_clear(pud_t *pud)
c1821c2e 633{
190a1d72 634 pud_t *shadow = get_shadow_table(pud);
c1821c2e 635
190a1d72
MS
636 pud_clear_kernel(pud);
637 if (shadow)
638 pud_clear_kernel(shadow);
c1821c2e
GS
639}
640
146e4b3c
MS
641#endif /* __s390x__ */
642
c1821c2e 643static inline void pmd_clear_kernel(pmd_t * pmdp)
1da177e4 644{
3610cce8 645 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
646}
647
146e4b3c 648static inline void pmd_clear(pmd_t *pmd)
c1821c2e 649{
146e4b3c 650 pmd_t *shadow = get_shadow_table(pmd);
c1821c2e 651
146e4b3c
MS
652 pmd_clear_kernel(pmd);
653 if (shadow)
654 pmd_clear_kernel(shadow);
c1821c2e
GS
655}
656
4448aaf0 657static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 658{
5b7baf05
CB
659 if (mm->context.pgstes)
660 ptep_rcp_copy(ptep);
9282ed92 661 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
146e4b3c
MS
662 if (mm->context.noexec)
663 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
1da177e4
LT
664}
665
666/*
667 * The following pte modification functions only work if
668 * pte_present() is true. Undefined behaviour if not..
669 */
4448aaf0 670static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4
LT
671{
672 pte_val(pte) &= PAGE_MASK;
673 pte_val(pte) |= pgprot_val(newprot);
674 return pte;
675}
676
4448aaf0 677static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 678{
9282ed92 679 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
680 if (!(pte_val(pte) & _PAGE_INVALID))
681 pte_val(pte) |= _PAGE_RO;
682 return pte;
683}
684
4448aaf0 685static inline pte_t pte_mkwrite(pte_t pte)
1da177e4
LT
686{
687 pte_val(pte) &= ~_PAGE_RO;
688 return pte;
689}
690
4448aaf0 691static inline pte_t pte_mkclean(pte_t pte)
1da177e4
LT
692{
693 /* The only user of pte_mkclean is the fork() code.
694 We must *not* clear the *physical* page dirty bit
695 just because fork() wants to clear the dirty bit in
696 *one* of the page's mappings. So we just do nothing. */
697 return pte;
698}
699
4448aaf0 700static inline pte_t pte_mkdirty(pte_t pte)
1da177e4
LT
701{
702 /* We do not explicitly set the dirty bit because the
703 * sske instruction is slow. It is faster to let the
704 * next instruction set the dirty bit.
705 */
706 return pte;
707}
708
4448aaf0 709static inline pte_t pte_mkold(pte_t pte)
1da177e4
LT
710{
711 /* S/390 doesn't keep its dirty/referenced bit in the pte.
712 * There is no point in clearing the real referenced bit.
713 */
714 return pte;
715}
716
4448aaf0 717static inline pte_t pte_mkyoung(pte_t pte)
1da177e4
LT
718{
719 /* S/390 doesn't keep its dirty/referenced bit in the pte.
720 * There is no point in setting the real referenced bit.
721 */
722 return pte;
723}
724
7e675137
NP
725static inline pte_t pte_mkspecial(pte_t pte)
726{
a08cb629 727 pte_val(pte) |= _PAGE_SPECIAL;
7e675137
NP
728 return pte;
729}
730
ba8a9229
MS
731#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
732static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
733 unsigned long addr, pte_t *ptep)
1da177e4 734{
5b7baf05
CB
735#ifdef CONFIG_PGSTE
736 unsigned long physpage;
737 int young;
738 unsigned long *pgste;
739
740 if (!vma->vm_mm->context.pgstes)
741 return 0;
742 physpage = pte_val(*ptep) & PAGE_MASK;
743 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
744
745 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
746 rcp_lock(ptep);
747 if (young)
c71799c1
HC
748 set_bit_simple(RCP_GR_BIT, pgste);
749 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
5b7baf05
CB
750 rcp_unlock(ptep);
751 return young;
752#endif
1da177e4
LT
753 return 0;
754}
755
ba8a9229
MS
756#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
757static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
758 unsigned long address, pte_t *ptep)
1da177e4 759{
5b7baf05
CB
760 /* No need to flush TLB
761 * On s390 reference bits are in storage key and never in TLB
762 * With virtualization we handle the reference bit, without we
763 * we can simply return */
764#ifdef CONFIG_PGSTE
765 return ptep_test_and_clear_young(vma, address, ptep);
766#endif
ba8a9229 767 return 0;
1da177e4
LT
768}
769
9282ed92 770static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 771{
9282ed92 772 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1da177e4 773#ifndef __s390x__
146e4b3c 774 /* pto must point to the start of the segment table */
1da177e4 775 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
776#else
777 /* ipte in zarch mode can do the math */
778 pte_t *pto = ptep;
779#endif
94c12cc7
MS
780 asm volatile(
781 " ipte %2,%3"
782 : "=m" (*ptep) : "m" (*ptep),
783 "a" (pto), "a" (address));
1da177e4 784 }
9282ed92
GS
785}
786
146e4b3c
MS
787static inline void ptep_invalidate(struct mm_struct *mm,
788 unsigned long address, pte_t *ptep)
9282ed92 789{
5b7baf05
CB
790 if (mm->context.pgstes) {
791 rcp_lock(ptep);
792 __ptep_ipte(address, ptep);
793 ptep_rcp_copy(ptep);
794 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
795 rcp_unlock(ptep);
796 return;
797 }
9282ed92 798 __ptep_ipte(address, ptep);
5b7baf05
CB
799 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
800 if (mm->context.noexec) {
146e4b3c 801 __ptep_ipte(address, ptep + PTRS_PER_PTE);
5b7baf05
CB
802 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
803 }
f0e47c22
MS
804}
805
ba8a9229
MS
806/*
807 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
808 * both clear the TLB for the unmapped pte. The reason is that
809 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
810 * to modify an active pte. The sequence is
811 * 1) ptep_get_and_clear
812 * 2) set_pte_at
813 * 3) flush_tlb_range
814 * On s390 the tlb needs to get flushed with the modification of the pte
815 * if the pte is active. The only way how this can be implemented is to
816 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
817 * is a nop.
818 */
819#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
820#define ptep_get_and_clear(__mm, __address, __ptep) \
821({ \
822 pte_t __pte = *(__ptep); \
823 if (atomic_read(&(__mm)->mm_users) > 1 || \
824 (__mm) != current->active_mm) \
146e4b3c 825 ptep_invalidate(__mm, __address, __ptep); \
ba8a9229
MS
826 else \
827 pte_clear((__mm), (__address), (__ptep)); \
828 __pte; \
829})
830
831#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
832static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
833 unsigned long address, pte_t *ptep)
834{
835 pte_t pte = *ptep;
146e4b3c 836 ptep_invalidate(vma->vm_mm, address, ptep);
1da177e4
LT
837 return pte;
838}
839
ba8a9229
MS
840/*
841 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
842 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
843 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
844 * cannot be accessed while the batched unmap is running. In this case
845 * full==1 and a simple pte_clear is enough. See tlb.h.
846 */
847#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
848static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
849 unsigned long addr,
850 pte_t *ptep, int full)
1da177e4 851{
ba8a9229
MS
852 pte_t pte = *ptep;
853
854 if (full)
855 pte_clear(mm, addr, ptep);
856 else
146e4b3c 857 ptep_invalidate(mm, addr, ptep);
ba8a9229 858 return pte;
1da177e4
LT
859}
860
ba8a9229
MS
861#define __HAVE_ARCH_PTEP_SET_WRPROTECT
862#define ptep_set_wrprotect(__mm, __addr, __ptep) \
863({ \
864 pte_t __pte = *(__ptep); \
865 if (pte_write(__pte)) { \
866 if (atomic_read(&(__mm)->mm_users) > 1 || \
867 (__mm) != current->active_mm) \
146e4b3c 868 ptep_invalidate(__mm, __addr, __ptep); \
ba8a9229
MS
869 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
870 } \
871})
872
873#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
f0e47c22
MS
874#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
875({ \
876 int __changed = !pte_same(*(__ptep), __entry); \
877 if (__changed) { \
146e4b3c 878 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
f0e47c22
MS
879 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
880 } \
881 __changed; \
8dab5241 882})
1da177e4
LT
883
884/*
885 * Test and clear dirty bit in storage key.
886 * We can't clear the changed bit atomically. This is a potential
887 * race against modification of the referenced bit. This function
888 * should therefore only be called if it is not mapped in any
889 * address space.
890 */
ba8a9229 891#define __HAVE_ARCH_PAGE_TEST_DIRTY
6c210482 892static inline int page_test_dirty(struct page *page)
2dcea57a 893{
6c210482
MS
894 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
895}
2dcea57a 896
ba8a9229 897#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
6c210482
MS
898static inline void page_clear_dirty(struct page *page)
899{
900 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
2dcea57a 901}
1da177e4
LT
902
903/*
904 * Test and clear referenced bit in storage key.
905 */
ba8a9229 906#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2dcea57a
HC
907static inline int page_test_and_clear_young(struct page *page)
908{
0b2b6e1d 909 unsigned long physpage = page_to_phys(page);
2dcea57a
HC
910 int ccode;
911
0b2b6e1d
HC
912 asm volatile(
913 " rrbe 0,%1\n"
914 " ipm %0\n"
915 " srl %0,28\n"
2dcea57a
HC
916 : "=d" (ccode) : "a" (physpage) : "cc" );
917 return ccode & 2;
918}
1da177e4
LT
919
920/*
921 * Conversion functions: convert a page and protection to a page entry,
922 * and a page entry and page directory to the page they refer to.
923 */
924static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
925{
926 pte_t __pte;
927 pte_val(__pte) = physpage + pgprot_val(pgprot);
928 return __pte;
929}
930
2dcea57a
HC
931static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
932{
0b2b6e1d 933 unsigned long physpage = page_to_phys(page);
1da177e4 934
2dcea57a
HC
935 return mk_pte_phys(physpage, pgprot);
936}
937
190a1d72
MS
938#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
939#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
940#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
941#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 942
190a1d72
MS
943#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
944#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 945
190a1d72 946#ifndef __s390x__
1da177e4 947
190a1d72
MS
948#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
949#define pud_deref(pmd) ({ BUG(); 0UL; })
950#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 951
190a1d72
MS
952#define pud_offset(pgd, address) ((pud_t *) pgd)
953#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 954
190a1d72 955#else /* __s390x__ */
1da177e4 956
190a1d72
MS
957#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
958#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 959#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 960
5a216a20
MS
961static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
962{
6252d702
MS
963 pud_t *pud = (pud_t *) pgd;
964 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
965 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
966 return pud + pud_index(address);
967}
1da177e4 968
190a1d72 969static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 970{
6252d702
MS
971 pmd_t *pmd = (pmd_t *) pud;
972 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
973 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 974 return pmd + pmd_index(address);
1da177e4
LT
975}
976
190a1d72 977#endif /* __s390x__ */
1da177e4 978
190a1d72
MS
979#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
980#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
981#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 982
190a1d72 983#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 984
190a1d72
MS
985/* Find an entry in the lowest level page table.. */
986#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
987#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4
LT
988#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
989#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
990#define pte_unmap(pte) do { } while (0)
991#define pte_unmap_nested(pte) do { } while (0)
992
993/*
994 * 31 bit swap entry format:
995 * A page-table entry has some bits we have to treat in a special way.
996 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
997 * exception will occur instead of a page translation exception. The
998 * specifiation exception has the bad habit not to store necessary
999 * information in the lowcore.
1000 * Bit 21 and bit 22 are the page invalid bit and the page protection
1001 * bit. We set both to indicate a swapped page.
1002 * Bit 30 and 31 are used to distinguish the different page types. For
1003 * a swapped page these bits need to be zero.
1004 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1005 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1006 * plus 24 for the offset.
1007 * 0| offset |0110|o|type |00|
1008 * 0 0000000001111111111 2222 2 22222 33
1009 * 0 1234567890123456789 0123 4 56789 01
1010 *
1011 * 64 bit swap entry format:
1012 * A page-table entry has some bits we have to treat in a special way.
1013 * Bits 52 and bit 55 have to be zero, otherwise an specification
1014 * exception will occur instead of a page translation exception. The
1015 * specifiation exception has the bad habit not to store necessary
1016 * information in the lowcore.
1017 * Bit 53 and bit 54 are the page invalid bit and the page protection
1018 * bit. We set both to indicate a swapped page.
1019 * Bit 62 and 63 are used to distinguish the different page types. For
1020 * a swapped page these bits need to be zero.
1021 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1022 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1023 * plus 56 for the offset.
1024 * | offset |0110|o|type |00|
1025 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1026 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1027 */
1028#ifndef __s390x__
1029#define __SWP_OFFSET_MASK (~0UL >> 12)
1030#else
1031#define __SWP_OFFSET_MASK (~0UL >> 11)
1032#endif
4448aaf0 1033static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1034{
1035 pte_t pte;
1036 offset &= __SWP_OFFSET_MASK;
9282ed92 1037 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
1038 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1039 return pte;
1040}
1041
1042#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1043#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1044#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1045
1046#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1047#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1048
1049#ifndef __s390x__
1050# define PTE_FILE_MAX_BITS 26
1051#else /* __s390x__ */
1052# define PTE_FILE_MAX_BITS 59
1053#endif /* __s390x__ */
1054
1055#define pte_to_pgoff(__pte) \
1056 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1057
1058#define pgoff_to_pte(__off) \
1059 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 1060 | _PAGE_TYPE_FILE })
1da177e4
LT
1061
1062#endif /* !__ASSEMBLY__ */
1063
1064#define kern_addr_valid(addr) (1)
1065
f4eb07c1
HC
1066extern int add_shared_memory(unsigned long start, unsigned long size);
1067extern int remove_shared_memory(unsigned long start, unsigned long size);
402b0862 1068extern int s390_enable_sie(void);
f4eb07c1 1069
1da177e4
LT
1070/*
1071 * No page table caches to initialise
1072 */
1073#define pgtable_cache_init() do { } while (0)
1074
f4eb07c1
HC
1075#define __HAVE_ARCH_MEMMAP_INIT
1076extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
1077
1da177e4
LT
1078#include <asm-generic/pgtable.h>
1079
1080#endif /* _S390_PAGE_H */
This page took 0.536475 seconds and 5 git commands to generate.